1
|
Zhou H, Yang Z, Jin G, Wang L, Su Y, Liu H, Sun H, Xue L, Mi L, Veselova IA, Li M, Lv S, Chen X. Prodrug-designed nanocarrier co-delivering chemotherapeutic and vascular disrupting agents with exceptionally high drug loading capacity. J Control Release 2025; 382:113628. [PMID: 40088979 DOI: 10.1016/j.jconrel.2025.113628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/01/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
Chemotherapy remains a vital component of cancer treatment, with combination therapy widely used in clinical practice to overcome the limitations of single-drug administration. However, challenges persist including pharmacokinetic discrepancies among different pharmaceutical agents, and insufficient synergistic efficiency in small-molecule drug combinations. There is an urgent need to develop more efficient combination therapy strategies. Nanocarriers have been extensively used to address issues associated with free drugs, but achieving high delivery efficiency of small-molecular pharmaceuticals through traditional drug delivery methods remains difficult. Herein, we report an exceptionally efficient drug delivery strategy mediated by prodrug design. A prodrug composed of paclitaxel (PTX) and combretastatin A-4 (CA4) was developed to achieve synchronous and efficient delivery of both drugs. When the prodrug was encapsulated by a nanocarrier, the drug loading capacity (DLC) could reach as high as 99 %, almost achieving quantitative drug loading. The good biocompatibility and potent anti-tumor efficacy of the prodrug-loaded nanoparticles were confirmed through both in vitro and in vivo experiments. Our work provides valuable insights into the safe and efficient combination cancer therapy.
Collapse
Affiliation(s)
- Huicong Zhou
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Zhaofan Yang
- School of Materials Science and Engineering, The Central Laboratory, Peking University School and Hospital of Stomatology, Peking University, Beijing 100871, China
| | - Guanyu Jin
- School of Materials Science and Engineering, The Central Laboratory, Peking University School and Hospital of Stomatology, Peking University, Beijing 100871, China
| | - Lanqing Wang
- School of Materials Science and Engineering, The Central Laboratory, Peking University School and Hospital of Stomatology, Peking University, Beijing 100871, China
| | - Yuanzhen Su
- School of Materials Science and Engineering, The Central Laboratory, Peking University School and Hospital of Stomatology, Peking University, Beijing 100871, China
| | - Hao Liu
- School of Materials Science and Engineering, The Central Laboratory, Peking University School and Hospital of Stomatology, Peking University, Beijing 100871, China
| | - Hai Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Lingwei Xue
- Yaoshan Laboratory, Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Liwei Mi
- Yaoshan Laboratory, Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Irina A Veselova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, China.
| | - Shixian Lv
- School of Materials Science and Engineering, The Central Laboratory, Peking University School and Hospital of Stomatology, Peking University, Beijing 100871, China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| |
Collapse
|
2
|
Lin Y, Lin P, Chen X, Zhao X, Cui L. Harnessing nanoprodrugs to enhance cancer immunotherapy: overcoming barriers to precision treatment. Mater Today Bio 2025; 32:101933. [PMID: 40520550 PMCID: PMC12167063 DOI: 10.1016/j.mtbio.2025.101933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2025] [Revised: 05/29/2025] [Accepted: 05/31/2025] [Indexed: 06/18/2025] Open
Abstract
Nanoprodrugs, leveraging advanced nanoparticle-based delivery systems, represent a promising strategy to enhance the efficacy of immunotherapy in cancer treatment. These systems offer precise tumor targeting, controlled drug release, and the potential to modulate the immune microenvironment, addressing several limitations of conventional therapeutic approaches. This review systematically evaluates the role of nanoprodrugs in improving immunotherapy outcomes, focusing on their ability to overcome challenges such as poor bioavailability, systemic toxicity, and limited tumor specificity. We also discuss the key advantages of these systems, including their ability to co-deliver immune checkpoint inhibitors and other immunomodulatory agents, potentially enabling more synergistic and effective treatment strategies. Despite their promise, several challenges remain, including achieving precise control over drug release, integrating multiple stimulus-responsive mechanisms, addressing tumor heterogeneity, and overcoming barriers to clinical translation. The review concludes with a perspective on future directions, emphasizing the need for further optimization of nanomaterial design, improved delivery strategies, and solutions to the complexities of the tumor microenvironment to maximize the clinical impact of nanoprodrugs in cancer immunotherapy.
Collapse
Affiliation(s)
- Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xu Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
- School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA
| |
Collapse
|
3
|
Tao H, Liu H, Zhang H, Ren H, Wen B, Zhang J, Du J, Cai Z, Deng Z. HGF/c-Met Axis-Targeted Nanotherapy via GSH-Responsive Polymer Platforms Suppresses Uveal Melanoma Metastasis. Adv Healthc Mater 2025; 14:e2405056. [PMID: 40341826 DOI: 10.1002/adhm.202405056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 04/11/2025] [Indexed: 05/11/2025]
Abstract
Uveal melanoma (UM), a malignant tumor originating within the ocular, characterizes high metastasis and lethality among patients. Cancer stem cells (CSCs) distinguished by the c-Met protein are believed to mediate tumor metastasis in UM. However, the low bioavailability of c-Met inhibitors like Crizotilib (Criz) limits their clinical application. Herein, a GSH-responsive nanoparticle named NP@Oxa/Criz to precisely deliver Criz and Oxaliplatin (Oxa) is synthesized in this study. The dual-action mechanism of NP@Oxa/Criz inhibits the HGF/c-Met axis to prevent the nuclear translocation of β-Catenin, thereby reducing the transcription of metastasis-associated genes and undermining the stemness and metastasis of UM cells. Simultaneously, NP@Oxa/Criz induces immunogenic cell death to boost anti-tumor immunity. In vivo studies demonstrate that NP@Oxa/Criz can accumulate in tumor sites, significantly eradicating the primary UM in the ocular and suppressing the metastasis UM in the liver and peritoneal. The outcomes from this work illuminate the therapeutic mechanisms of NP@Oxa/Criz and provide a precise and potent nanotherapeutic strategy for clinical treatment and research in highly metastatic UM.
Collapse
Affiliation(s)
- Hui Tao
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Hanhan Liu
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Hanchen Zhang
- Chinese Academy of Sciences, Beijing, 100049, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Polymer Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hong Ren
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Binyu Wen
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Jing Zhang
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Jiaqi Du
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Ziyi Cai
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Zhihong Deng
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| |
Collapse
|
4
|
Pal J, Khan A, Samanta P, Khamrai M, Mallick AI, Dhara D. Raspberry-like gold nano-conjugates of block copolymer prodrug based bicontinuous nanoparticles for cancer theranostics. J Colloid Interface Sci 2025; 687:817-829. [PMID: 39986010 DOI: 10.1016/j.jcis.2025.02.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/06/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Theranostic nanoparticles like polymer conjugated gold nanoparticles are at the cutting edge of cancer therapy, offering an integrated platform for simultaneous diagnosis and treatment. In this study, we report a nanoconjugate (P2AuNPs) by combining doxorubicin (DOX) tethered polymeric prodrug based bicontinuous nanoparticles (P2NPs), developed recently by us, with gold nanoparticles (AuNPs). The AuNPs were generated by in situ reduction of HAuCl4, where different polymer functionalities served the role of reducing and stabilizing agents. The bicontinuous morphology of P2NPs provided a unique template for the growth of gold nanoparticles, resulting in an overall raspberry-like morphology. Compared to existing small-sized theranostic AuNPs, which often trigger systematic cytotoxicity, the synthesized P2AuNPs had an ideal size of ∼90 nm for passive targeting of cancer cells through leaky tumor blood vessels. Furthermore, the embedded gold nanoparticles in P2AuNPs nanoconjugate served as a nanometal surface energy transfer (NSET) pair with the covalently attached DOX molecules, resulting in the significant quenching of DOX (turned 'OFF' state) fluorescence at physiological pH (7.4) as confirmed through steady-state and time-resolved fluorescence measurements. It was also possible to recover the quenched DOX fluorescence (turned 'ON' state) with the release of DOX selectively in cancer cell lines, plausibly due to higher glutathione (GSH) levels and acidic pH. In vitro cellular studies asserted the safe nature of P2NPs against non-cancerous cells (HEK-293T) while exhibiting significantly higher drug-induced cytotoxicity against cancerous cells (MCF-7) compared to free DOX. Moreover, when P2AuNPs were incubated with HEK-293T and MCF-7 cells, a fluorescence turn 'ON' for DOX was observed only in MCF-7 cells after the release of DOX, thereby providing an opportunity to improve the sensitivity of imaging and real-time monitoring of drug release. Together, this integrated theranostic system not only has the potential to enhance the precision and effectiveness of cancer therapy but also offers improved monitoring capabilities, representing a significant advancement in tailored nanomedicine.
Collapse
Affiliation(s)
- Juthi Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Afruja Khan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741 246 West Bengal, India
| | - Pousali Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Manisha Khamrai
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Amirul Islam Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741 246 West Bengal, India.
| | - Dibakar Dhara
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
5
|
Wang X, Li Q, Liu J, Xie C, Zou L, Shi Y, Jiang L, Qin X. Harnessing nano-delivery systems to un-cover the challenges for cervical cancer therapy. Int J Pharm 2025; 677:125657. [PMID: 40306445 DOI: 10.1016/j.ijpharm.2025.125657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/17/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Cervical cancer (CC) remains a prevalent malignancy among women, with current therapeutic strategies facing significant challenges in curbing its rising incidence. Nano-delivery systems have emerged as a promising approach to hinder CC progression. This review provides a comprehensive examination of CC pathogenesis and its physiological characteristics while focusing on applying various nano-delivery systems in CC therapy. Specifically, it highlights the potential of both internal (e.g., pH, reactive oxygen species, glutathione) and external (e.g., Photo, magnetism, sound waves, microwaves, electricity) stimuli-responsive nano-delivery platforms to enhance therapeutic efficacy. The challenges of nano-delivery systems in CC therapy, encompassing in vivo stability, biosafety, distribution, and metabolic processes, are addressed, along with potential remedies. Additionally, the review underscores recent preclinical advances in nano-delivery systems for CC therapy. By thoroughly exploring nanomaterial applications, this review provides valuable perspectives for advancing CC treatment and stimulating future research and innovation in this domain.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medical, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Qi Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medical, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Jianxin Liu
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medical, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Chunbao Xie
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medical, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yi Shi
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medical, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China; Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lingxi Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medical, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.
| | - Xianyan Qin
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medical, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.
| |
Collapse
|
6
|
Shi Y, Li X, Li Z, Sun J, Gao T, Wei G, Guo Q. Nano-formulations in disease therapy: designs, advances, challenges, and future directions. J Nanobiotechnology 2025; 23:396. [PMID: 40448105 DOI: 10.1186/s12951-025-03442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 05/05/2025] [Indexed: 06/02/2025] Open
Abstract
Nano-formulations, as an innovative drug delivery system, offer distinct advantages in enhancing drug administration methods, improving bioavailability, promoting biodegradability, and enabling targeted delivery. By exploiting the unique size advantages of nano-formulations, therapeutic agents, including drugs, genes, and proteins, can be precisely reorganized at the microscale level. This modification not only facilitates the precise release of these agents but also significantly enhances their efficacy while minimizing adverse effects, thereby creating novel opportunities for treatment of a wide range of diseases. In this review, we discuss recent advancements, challenges, and future perspectives in nano-formulations for therapeutic applications. For this aim, we firstly introduce the development, design, synthesis, and action mechanisms of nano-formulations. Then, we summarize their applications in disease diagnosis and treatment, especially in fields of oncology, pulmonology, cardiology, endocrinology, dermatology, and ophthalmology. Furthermore, we address the challenges associated with the medical applications of nanomaterials, and provide an outlook on future directions based on these considerations. This review offers a comprehensive examination of the current applications and potential significance of nano-formulations in disease diagnosis and treatment, thereby contributing to the advancement of modern medical therapies.
Collapse
Affiliation(s)
- YunYan Shi
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Xiao Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Zhiyuan Li
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Jialin Sun
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Tong Gao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China.
| | - Qie Guo
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China.
| |
Collapse
|
7
|
Li C, Wang Z, Ge Z. Stimuli-Responsive Polymeric Nanoprobes for Bioimaging of Cancer Metastasis. Macromol Biosci 2025:e00168. [PMID: 40396585 DOI: 10.1002/mabi.202500168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/18/2025] [Indexed: 05/22/2025]
Abstract
Stimuli-responsive polymeric nanoprobes as a type of nanoscale probe can respond to the tumor microenvironment via specific stimuli inside tumors, such as pH, hypoxia, glutathione (GSH), enzymes, aberrant receptors, and high ATP concentration. The ingenious design of the nanoprobes can improve the specificity and sensitivity to distinguish the slight differences between normal tissues and tumors. Thus, the tiny tumor metastasis can be detected by bioimaging of the stimuli-responsive polymeric nanoprobes. This review summarizes the progress and applications of polymeric nanoprobes in the bioimaging of tumor metastasis. The design strategies for the nanoprobes targeting tumor tissues are discussed according to the stimulus types, including tumor pH, hypoxia, glutathione, enzymes, aberrant receptor, and ATP. Moreover, the challenges currently faced in this field are also discussed. This review will provide valuable insights for the design and optimization of stimuli-responsive polymeric nanoprobes to accelerate the development of bioimaging for tumor metastasis and promote the clinical translation.
Collapse
Affiliation(s)
- Cheng Li
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Zhidong Wang
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Zhishen Ge
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
8
|
Lin M, Liu D, Gong Y, Shu L, Wang H, Zhang G, Li J, Gao Z, Sun J, Chen X. Bioactive Assembly Cofactor-Assisted Ursolic Acid Helix for Enhanced Anticancer Efficacy via In Situ Virus-like Transition. J Am Chem Soc 2025; 147:17010-17021. [PMID: 40354555 DOI: 10.1021/jacs.5c01214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Natural bioactive pentacyclic triterpenoids, such as ursolic acid (UA), hold significant potential as anticancer agents. However, their clinical application is limited by their poor solubility and bioavailability. Herein, we developed a novel polypeptoid assembly cofactor-assisted nanoplatform designed to enhance UA's therapeutic efficacy through in situ self-assembly within the tumor microenvironment (TME). Bioactive polypeptoid polyelectrolytes, inspired by natural molecular chaperones, were utilized as assembly cofactors to guide UA's co-assembly into stimuli-responsive nanostructures. These polypeptoids provide precise control over the assembly process, improving stability and enabling reversible, pH-responsive transformations. Acid-responsive groups and the target molecule lactobionic acid further promote the specificity and efficacy of UA delivery. Under neutral conditions, the assemblies retain a helical fibrous structure, while in the acidic TME, they transform into virus-like clusters composed of assembly subunits, facilitating deeper tumor penetration. Once internalized, these nanoparticles escape into the cytoplasm and accumulate around the mitochondria, where the oxidation of thioether bonds triggers the release of UA and polypeptoids, causing mitochondrial damage and apoptosis. Some nanoparticles reassemble into fibrous structures intracellularly, extending their retention in tumor cells and potentially leading to mitochondria damage. Notably, the nanoplatform demonstrates excellent synergistic effects, achieving significantly higher therapeutic efficiency compared with individual components, including UA and polypeptoids. In vivo studies further confirmed the effectiveness, demonstrating significant tumor growth suppression and reduced metastasis. By integrating the therapeutic UA with bioactive polypeptoids under precise control, this synergistic platform represents a highly efficient and targeted approach to cancer therapy, offering a promising new opportunity for natural compounds for advanced nanomedicine.
Collapse
Affiliation(s)
- Min Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Dandan Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Yiyu Gong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Lilei Shu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Helin Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Guojing Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Jiayi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Zixin Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Xuesi Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
| |
Collapse
|
9
|
Cai MZ, Wen Z, Li HZ, Yang Y, Liang JX, Liao YS, Wang JY, Wang LY, Zhang NY, Kamei KI, An HW, Wang H. Peptide-based fluorescent probes for the diagnosis of tumor and image-guided surgery. Biosens Bioelectron 2025; 276:117255. [PMID: 39965418 DOI: 10.1016/j.bios.2025.117255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/12/2025] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
Fluorescent contrast agents are instrumental in amplifying signals, thereby enhancing the sensitivity and accuracy of live optical imaging. However, a significant proportion of traditional fluorescent contrast agents exhibit drawbacks such as short half-life, suboptimal biocompatibility, and inadequate tumor targeting, all of which impede effective imaging guidance. Peptides, derived from natural structures, offer a flexible modular design that can be precisely engineered and adjusted using synthetic methods to achieve specific biological activity and pharmacokinetic properties. They bind with designated receptors to exert their effects, demonstrating high specificity. The development of fluorescent probes based on peptides significantly overcomes the limitations of conventional contrast agents, offering superior performance. This article provides a comprehensive review of three strategies for constructing peptide-based fluorescent probes, delving into their distinct design concepts, mechanisms of action, and innovative aspects. It also highlights the potential applications of peptide-based fluorescent probes in tumor diagnosis and image-guided surgery, offering insights into their future clinical transformation.
Collapse
Affiliation(s)
- Ming-Ze Cai
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Zhuan Wen
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China
| | - Hao-Ze Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China
| | - Yang Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China
| | - Jian-Xiao Liang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yu-Si Liao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China
| | - Jing-Yao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Li-Ying Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China
| | - Ni-Yuan Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ken-Ichiro Kamei
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 110016, Shenyang, China; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan; Programs of Biology and Bioengineering, Divisions of Science and Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
10
|
Wang K, Yang R, Li J, Wang H, Wan L, He J. Nanocarrier-based targeted drug delivery for Alzheimer's disease: addressing neuroinflammation and enhancing clinical translation. Front Pharmacol 2025; 16:1591438. [PMID: 40438598 PMCID: PMC12116324 DOI: 10.3389/fphar.2025.1591438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 05/05/2025] [Indexed: 06/01/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, amyloid-beta (Aβ) aggregation, tau pathology, and chronic neuroinflammation. Among these, neuroinflammation plays a crucial role in exacerbating disease progression, making it an attractive therapeutic target. However, the presence of the blood-brain barrier (BBB) significantly limits the effective delivery of therapeutic agents to the brain, necessitating novel drug delivery strategies. Nanocarrier-based delivery systems have emerged as a promising solution to these challenges, offering targeted drug transport, enhanced BBB penetration, and improved bioavailability while minimizing systemic toxicity. This review explores the current advancements in nanocarrier-mediated drug delivery for AD, focusing on the mechanisms of neuroinflammation, the role of nanocarriers in overcoming the BBB, and their ability to modulate inflammatory pathways. Furthermore, the review discusses preclinical validation strategies and key challenges, including safety concerns, large-scale production limitations, and regulatory hurdles that must be addressed to enable clinical translation. Future perspectives emphasize the integration of nanotechnology with precision medicine, gene therapy, and artificial intelligence to optimize nanocarrier design for individualized AD treatment. By overcoming these obstacles, nanocarriers hold the potential to revolutionize therapeutic approaches for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Kang Wang
- Acupuncture and Moxibustion Department, Beijing Massage Hospital, Beijing, China
| | - Rongying Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Li
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haitao Wang
- The school of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Li Wan
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiale He
- Department of Rheumatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Kim JW, Kang TI, Choi E, Kim H. Reverse Block Sequence in Self-Immolative Poly(benzyl ether)-Based Amphiphiles for Tailoring End Groups and Self-Assembly Behavior. Biomacromolecules 2025; 26:2934-2944. [PMID: 40305787 DOI: 10.1021/acs.biomac.4c01845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
This paper reports a modular design of self-immolative poly(benzyl ether) (PBE) amphiphiles that allows precise control over polymer chain structure, end-group placement, and degradation behavior. By tuning block sequences and exposing reactive end groups, these amphiphiles undergo efficient head-to-tail depolymerization upon external stimuli. Structural variations in the monomers enable micelle formation with end groups displayed on the surface, while the carboxylate content in the hydrophilic block influences global micelle morphology. The resulting micelles are degradable in aqueous environments and can transform into spherical structures when combined with conventional surfactants. As a proof of concept, small-molecule cargos were successfully loaded and released from the mixed micelles on demand. This design platform offers a versatile route to create functional, stimulus-responsive surfactants with tunable assembly, degradation, and controlled release capabilities.
Collapse
Affiliation(s)
- Ji Woo Kim
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Tae-Il Kang
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Korea
| | - Eunpyo Choi
- Department of Mechanical Engineering, Sogang University, 35, Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyungwoo Kim
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| |
Collapse
|
12
|
Esmaeilpour D, Ghomi M, Zare EN, Sillanpää M. Nanotechnology-Enhanced siRNA Delivery: Revolutionizing Cancer Therapy. ACS APPLIED BIO MATERIALS 2025. [PMID: 40354673 DOI: 10.1021/acsabm.5c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
RNA interference (RNAi) has emerged as a transformative approach for cancer therapy, enabling precise gene silencing through small interfering RNA (siRNA). However, the clinical application of siRNA-based treatments faces challenges such as rapid degradation, inefficient cellular uptake, and immune system clearance. Nanotechnology-enhanced siRNA delivery has revolutionized cancer therapy by addressing these limitations, improving siRNA stability, tumor-specific targeting, and therapeutic efficacy. Recent advancements in nanocarrier engineering have introduced innovative strategies to enhance the safety and precision of siRNA-based therapies, offering new opportunities for personalized medicine. This review highlights three key innovations in nanotechnology-enhanced siRNA delivery: artificial intelligence (AI)-driven nanocarrier design, multifunctional nanoparticles for combined therapeutic strategies, and biomimetic nanocarriers for enhanced biocompatibility. AI-driven nanocarriers utilize machine learning algorithms to optimize nanoparticle properties, improving drug release profiles and minimizing off-target effects. Multifunctional nanoparticles integrate siRNA with chemotherapy, immunotherapy, or photothermal therapy, enabling synergistic treatment approaches that enhance therapeutic outcomes and reduce drug resistance. Biomimetic nanocarriers, including exosome-mimicking systems and cell-membrane-coated nanoparticles, improve circulation time, immune evasion, and targeted tumor delivery. These innovations collectively enhance the precision, efficiency, and safety of siRNA-based cancer therapies. The scope and novelty of these advancements lie in their ability to overcome the primary barriers of siRNA delivery while paving the way for clinically viable solutions. This review provides a comprehensive analysis of the latest developments in nanocarrier fabrication, preclinical and clinical studies, and safety assessments. By integrating AI-driven design, multifunctionality, and biomimicry, nanotechnology-enhanced siRNA delivery holds immense potential for the future of precision cancer therapy.
Collapse
Affiliation(s)
- Donya Esmaeilpour
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Science, Shiraz 71345-1583, Iran
| | - Matineh Ghomi
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6153753843 Iran
| | - Ehsan Nazarzadeh Zare
- School of Chemistry, Damghan University, Damghan 36716-45667, Iran
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
13
|
Shinde S, Shah S, Famta P, Wagh S, Pandey G, Sharma A, Vambhurkar G, Jain A, Srivastava S. Next-Generation Transformable Nanomedicines: Revolutionizing Cancer Drug Delivery and Theranostics. Mol Pharm 2025. [PMID: 40317253 DOI: 10.1021/acs.molpharmaceut.4c01495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Nanomedicine has significantly advanced the treatment of various cancer phenotypes, addressing numerous challenges associated with conventional therapies. Researchers have extensively investigated the physicochemical properties of nanocarriers, such as charge, morphology, and surface chemistry, to optimize drug delivery systems. In the context of transformable nanomedicine, these properties are particularly critical for overcoming existing limitations, including suboptimal blood circulation times, sequestration by the reticuloendothelial system and mononuclear phagocyte system, and inefficient targeting of the tumor microenvironment (TME). Alterations in nanocarrier geometry, surface charge, and hydrophilicity have shown potential in mitigating these barriers, offering improved therapeutic outcomes and enhanced biomedical applications. This review explores controlled modulation of these properties in the context of anticancer therapy, offering an in-depth exploration of transformable strategies activated by both internal and external stimuli. We analyze the implications of these tunable characteristics on pharmacokinetics, biodistribution, and targeted delivery to the TME. Additionally, we address the current challenges in the clinical translation of these advanced nanocarriers and propose strategies to overcome these obstacles to enhance the clinical feasibility of nanomedicine-based cancer therapies.
Collapse
Affiliation(s)
- Swapnil Shinde
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Suraj Wagh
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Abhishek Sharma
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Akshita Jain
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| |
Collapse
|
14
|
Yao Y, Cao Q, Fang H, Tian H. Application of Nanomaterials in the Diagnosis and Treatment of Retinal Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2503070. [PMID: 40197854 DOI: 10.1002/smll.202503070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/24/2025] [Indexed: 04/10/2025]
Abstract
In recent years, nanomaterials have demonstrated broad prospects in the diagnosis and treatment of retinal diseases due to their unique physicochemical properties, such as small-size effects, high biocompatibility, and functional surfaces. Retinal diseases are often accompanied by complex pathological microenvironments, where conventional diagnostic and therapeutic approaches face challenges such as low drug delivery efficiency, risks associated with invasive procedures, and difficulties in real-time monitoring. Nanomaterials hold promise in addressing these limitations of traditional therapies, thereby improving treatment precision and efficacy. The applications of nanomaterials in diagnostics are summarized, where they enable high-resolution retinal imaging by carrying fluorescent probes or contrast agents or act as biosensors to sensitively detect disease-related biomarkers, facilitating early diagnosis and dynamic monitoring. In therapeutics, functionalized nanocarriers can precisely deliver drugs, genes, or antioxidant molecules to retinal target cells, significantly enhancing therapeutic outcomes while reducing systemic toxicity. Additionally, nanofiber materials possess unique properties that make them particularly suitable for retinal regeneration in tissue engineering. By loading neurotrophic factors into nanofiber scaffolds, their regenerative effects can be amplified, promoting the repair of retinal neurons. Despite their immense potential, clinical translation of nanomaterials still requires addressing challenges such as long-term biosafety, scalable manufacturing processes, and optimization of targeting efficiency.
Collapse
Affiliation(s)
- Yingli Yao
- College of Chemistry and Chemical Engineering, Xiamen Eye Center and Eye Institute of Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Qiannan Cao
- College of Chemistry and Chemical Engineering, Xiamen Eye Center and Eye Institute of Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Huapan Fang
- College of Chemistry and Chemical Engineering, Xiamen Eye Center and Eye Institute of Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, China
| | - Huayu Tian
- College of Chemistry and Chemical Engineering, Xiamen Eye Center and Eye Institute of Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
15
|
Pandey V, Pandey T. A Mechanistic Understanding of Reactive Oxygen Species (ROS)-Responsive Bio-Polymeric Nanoparticles: Current State, Challenges and Future Toward Precision Therapeutics. Biopolymers 2025; 116:e70027. [PMID: 40370134 DOI: 10.1002/bip.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 03/19/2025] [Accepted: 05/07/2025] [Indexed: 05/16/2025]
Abstract
Inflammation is a hallmark of various pathological conditions, including cancer, cardiovascular diseases, neurodegenerative disorders, and autoimmune diseases. Reactive oxygen species (ROS) are crucial mediators in the inflammatory microenvironment, playing a pivotal role in both normal cellular processes and disease progression. Targeting ROS overproduction in inflamed tissues has emerged as a promising therapeutic strategy. Polymeric nanoparticles (NPs) responsive to ROS levels in pathological tissues have gained substantial attention as precision drug delivery systems, capable of ensuring controlled, site-specific drug release. This review provides a comprehensive mechanistic insight into ROS-responsive polymeric nanoparticles, examining their structural design, functionalization strategies, drug release mechanisms, and potential for targeted therapies in inflammatory conditions. Furthermore, we discuss recent advancements, challenges, and future directions in utilizing ROS-responsive polymeric nanoparticles for precision therapeutics, highlighting their transformative potential in clinical applications.
Collapse
Affiliation(s)
- Vivek Pandey
- Department of Chemistry, School for Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Tejasvi Pandey
- Department of Forensic Sciences, School for Bioengineering and Biosciences Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
16
|
Lei X, Meng J, Gao T, Zhang M, Zhang Z, Xie S, Su Y, Li X. pH-responsive photothermal effect and heterojunction formation for tumor-specific pyroelectrodynamic and nanozyme-catalyzed starvation therapy. Acta Biomater 2025; 197:444-459. [PMID: 40113022 DOI: 10.1016/j.actbio.2025.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Pyroelectrodynamic therapy (PEDT) integrates photothermal ablation and catalytic generation of reactive oxygen species (ROS), yet tumor-specific PEDT remains unexplored. Herein, pyroelectric tetragonal BaTiO3 (tBT) nanoparticles (NPs) were capped with polyaniline (PANI) via a Pickering emulsion-masking method, followed by in situ deposition of MnO2 nanodots on PANI caps to synthesize Janus tBT@PANI-MnO2 NPs. PANI emeraldine salts (PANI-ES) at pH 6.5 display strong near-infrared II (NIR-II) absorption and 4.67-fold higher photothermal conversion efficiency than that of PANI emeraldine base at pH 7.4. MnO2 nanodots exhibit self-propagating glucose oxidase (GOx), peroxidase (POD), and catalase (CAT) catalytic activities, remodeling the tumor microenvironment and enhancing PTT and PEDT efficacy. Heterojunction formation with PANI-ES generates 1.63-fold higher pyroelectric potentials compared to pristine tBT NPs. The pyroelectric field selectively alters tumor cell membrane potential and, along with the self-propelled motion by asymmetrical thermophoresis from the Janus structure, promotes cellular uptake of NPs. Tumor accumulation of NPs increases 3.2 folds with broad intratumoral distributions of NPs and ROS. Synergistic toxicities to tumor cells arise from PANI-mediated photothermal effect, ROS generation from tBT-PANI heterojunctions, and MnO2 nanozymes-catalyzed glucose depletion. Integration of PEDT, mild PTT and MnO2-catalyzed starvation therapy completely inhibits tumor growth, extends animal survival, elevated intratumoral O2 levels, and suppressed adenosine triphosphate productions. Thus, this Janus NP design represents the first attempt to develop pH-responsive heterojunctions and enables tumor-specific PTT, PEDT and nanozyme-catalyzed starvation therapy. STATEMENT OF SIGNIFICANCE: Although phototherapy achieves light localization for tumor suppression, inevitable toxicities usually occur when light penetrates healthy tissues with accumulation of photoactive agents. Extensive efforts have been dedicated to exploring tumor microenvironment-responsive drug delivery systems, aiming to enhance tumor-targeting efficiency and treatment selectivity of anticancer agents. However, to date, no efforts have been made to develop a method that can achieve tumor-specific temperature elevation and pyroelectrodynamic therapy while simultaneously minimizing exposure to normal tissues. To address these challenges, a concise strategy is proposed to generate pyroelectric heterojunctions in response to the slightly acidic tumor microenvironment, taking advantages of reversible protonation and deprotonation properties of polyaniline. The tumor-specific conversion into polyaniline emeraldine salts triggers strong NIR-II absorptions and pyroelectric effect, and the self-propagated catalytic reactions of MnO2 nanozymes reinforce photothermal, pyroelectrodynamic and starvation therapies of tumors.
Collapse
Affiliation(s)
- Xia Lei
- Institute of Biomedical Engineering, College of Medicine, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Jie Meng
- Institute of Biomedical Engineering, College of Medicine, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Tianyu Gao
- Institute of Biomedical Engineering, College of Medicine, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Mengxue Zhang
- Institute of Biomedical Engineering, College of Medicine, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Zhanlin Zhang
- Institute of Biomedical Engineering, College of Medicine, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Shuang Xie
- Institute of Biomedical Engineering, College of Medicine, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Yupeng Su
- Institute of Biomedical Engineering, College of Medicine, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Xiaohong Li
- Institute of Biomedical Engineering, College of Medicine, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China.
| |
Collapse
|
17
|
Ding M, Chen H, He L, Wang Z, Zhao X, Sun P, Mei Q, Li D, Fan Q. NIR-II D-A-D-Type Small-Molecule Coordination with Carboxylatopillar[5]Arene: a Multifunctional Phototheranostic for Low-Temperature NIR-II Photothermal/Platinum-Based/Chemodynamic Combination Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501903. [PMID: 40255101 DOI: 10.1002/smll.202501903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/03/2025] [Indexed: 04/22/2025]
Abstract
Low-temperature second near-infrared region (NIR-II) photothermal therapy (PTT) has shown significant potential in minimizing damage to normal tissues and reducing inflammation. However, it still faces challenge of insufficient immune response. Thus, a multifunctional phototheranostic nanoparticle (BDPB/Pt/Fe@P[5]) is developed by co-loading BDPB, CDHPt, and Fe2⁺ with a pH-sensitive lipid DSPE-PEOz2K. The carboxylatopillar[5]arene (CP[5]) used to construct this nanoparticle exhibits strong host-guest recognition with pyridine salts, alleviating aggregation caused quench (ACQ) effect and enhancing the NIR-II emission of the donor-acceptor-donor (D-A-D)-type organic small molecule (BDPB). CP[5] provides suitable vehicles for encapsulating platinum (IV) prodrugs (CDHPt) and Fe2⁺ ions via metal coordination for controllable reactive oxygen species (ROS) release. Under low-intensity NIR-II laser irradiation and an acidic tumor microenvironment, the nanoparticles degrade, releasing CDHPt and Fe2⁺ ions for platinum-based therapy and chemodynamic therapy (CDT). CDHPt facilitates the direct production of superoxide anions (O₂·⁻) from O₂ and partially converts it into the highly cytotoxic hydroxyl radicals, thereby promoting the Fenton reaction process. The therapeutic efficacy is further synergized by immunogenic cell death (ICD) effect.
Collapse
Affiliation(s)
- Miaomiao Ding
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Haoran Chen
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Liuliang He
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhichao Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xianghua Zhao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan, 464000, China
| | - Pengfei Sun
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Qunbo Mei
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Daifeng Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Quli Fan
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
18
|
Zhu S, Li J, Sun H, Liang J, Qiu Z, Zhou X, Wang W, Wei D, Zhong L. A biotin guided Pt IV amphiphilic prodrug synergized with CDK4/6 inhibition for enhanced tumor targeted therapy. NANOSCALE 2025; 17:9907-9913. [PMID: 40136056 DOI: 10.1039/d5nr00218d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Platinum-based chemotherapy has been the first-line treatment for advanced bladder cancer for decades, but its durability and safety remain important challenges. Targeted delivery and other precision medicine bring hope to fight cancer. In this study, we present a novel targeted therapy utilizing a biotin receptor-targeting lipid PtIV prodrug amphiphile, which encapsulates a CDK4/6 inhibitor into BPtIV@Rib. CDK4/6 inhibitors have the potential to combat breast cancer and enhance sensitivity to cisplatin, thereby improving its therapeutic efficacy. Our findings demonstrate that BPtIV@Rib also exhibits excellent bladder tumor-targeting capability, resulting in increased accumulation of Pt and ribociclib (Rib) at the tumor site. The combination of PtIV and Rib leads to substantial tumor growth suppression while minimizing synergistic toxicity compared to conventional therapies. In conclusion, this combination therapy represents a promising strategy for enhanced targeted treatment of bladder cancer, potentially improving patient outcomes while reducing adverse effects.
Collapse
Affiliation(s)
- Shaoming Zhu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Jiaxu Li
- College of Chemistry and Materials, Graduate School, Nanning Normal University, Nanning 530001, People's Republic of China
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Hao Sun
- Department of Breast Surgery, Sixth Affiliated Hospital of Harbin Medical University, Harbin 150023, China.
| | - Jian Liang
- Department of Breast Surgery, Sixth Affiliated Hospital of Harbin Medical University, Harbin 150023, China.
| | - Zhi Qiu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Xiaoguang Zhou
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Wei Wang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Dengshuai Wei
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Lei Zhong
- Department of Breast Surgery, Sixth Affiliated Hospital of Harbin Medical University, Harbin 150023, China.
| |
Collapse
|
19
|
An J, Zhou Q, Chu K, Chen S, Niu C, Zhang W, Gao J, Li M, Cao J, Lv J, Zhang D, Wu Z, Li S, Wei H. Tumor microenvironment-responsive precise delivery nanocarrier potentiating synchronous radionuclide therapy and chemotherapy against cancer. J Nanobiotechnology 2025; 23:290. [PMID: 40229814 PMCID: PMC11998434 DOI: 10.1186/s12951-025-03364-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/01/2025] [Indexed: 04/16/2025] Open
Abstract
To achieve better therapeutic outcomes in cancer treatment, the combination of radionuclide and chemotherapy is commonly employed in clinical practice. However, the primary challenge lies in achieving precise drug delivery to tumor tissues, often leading to suboptimal therapeutic efficacy. This study presents a novel, tumor microenvironment-responsive drug delivery carrier that integrates real-time MRI/SPECT dual-modal imaging for precise diagnosis and treatment monitoring. The carrier comprised is based on a hybrid structure composed of hyaluronic acid (HA) and human serum albumin (HSA), encapsulating the metal-organic framework MIL-100(Fe). It was loaded with the chemotherapeutic drug doxorubicin (DOX) and modified with the radionuclide 131I, designed to precise diagnosis and treatment of tumors. HA binds specifically to the overexpressed CD44 receptor on the tumor surface, ensuring that the carrier targets tumors selectively. The incorporated 131I emits β rays, which deliver ionizing radiation to eradicate tumor cells. Concurrently, the carrier could release DOX in response to the tumor microenvironment, inhibiting DNA synthesis and sensitizing the tumor cells to radiation. This combined approach results in synchronous radionuclide therapy (RNT) and chemotherapy, maximizing therapeutic impact. In vitro and in vivo experiments demonstrated that the carrier exhibited favorable biocompatibility, stable radionuclide labeling, tumor-specific accumulation, and controlled release of DOX within the tumor microenvironment. Furthermore, MRI/SPECT dual-modal imaging enabled real-time tumor localization and monitoring of the carrier in vivo biodistribution. Experimental outcomes confirmed that this innovative carrier, combining RNT and chemotherapy, significantly inhibited tumor growth. This strategy offers a promising approach for precision radio-chemotherapy guided by dual-modal imaging, providing valuable insights for integrated targeted diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Jie An
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China
| | - Qin Zhou
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi Province, P. R. China
| | - Kaile Chu
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi Province, P. R. China
| | - Siyuan Chen
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China
| | - Chenliang Niu
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi Province, P. R. China
| | - Weiming Zhang
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi Province, P. R. China
| | - Jie Gao
- CAEA Center of Excellence on Nuclear Technology Applications for Nonclinical Evaluation for Radiopharmaceutical, Shanxi Key Laboratory of Drug Toxicology and Preclinical Studies for Radiopharmaceutical, Shanxi Province, 030006, Taiyuan, P. R. China
| | - Min Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China
| | - Jianbo Cao
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China
| | - Junping Lv
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China
| | - Di Zhang
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China
| | - Zhifang Wu
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China
| | - Sijin Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China.
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China.
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China.
| | - Hua Wei
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China.
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China.
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, P. R. China.
| |
Collapse
|
20
|
Sun K, Wei X, Han S, Sun Y, Xiao H, Wei D. Biotin Receptor-Targeting Pt IV Oxygen Carrying Prodrug Amphiphile for Alleviating Tumor Hypoxia Induced Immune Chemotherapy Suppression. ACS NANO 2025; 19:13300-13313. [PMID: 40035261 DOI: 10.1021/acsnano.5c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Platinum (Pt)-based chemotherapeutic agents, known for their potent cytotoxicity, are extensively used in clinical oncology. However, their therapeutic efficacy is severely limited by a variety of factors, particularly the hypoxic tumor microenvironment (TME), which not only impedes effective drug delivery but also triggers immune suppression, further diminishing the antitumor effects of Pt drugs. In response to these challenges, we have developed a biotin receptor (BR)-targeting oxaliplatin (OXA)-based PtIV prodrug, named Lipo-OPtIV-BT, which could encapsulate hemoglobin (Hb) as an oxygen carrier, forming PtIV-loaded lipid nanoparticles (Hb@BTOPtIV). The design of the Hb@BTOPtIV aims to address the dual issues of poor drug delivery and immune suppression by effectively increasing local oxygen tension in the TME. Notably, our findings demonstrate that the cytotoxic effects of the BR-targeting PtIV prodrug and increased oxygen levels synergistically reverse the tumor immune microenvironment, leading to improved antitumor efficacy. We observed that Hb@BTOPtIV significantly improved the biodistribution of the drug, enabling it to preferentially accumulate in tumor regions. Importantly, the enhanced oxygenation within the TME also plays a critical role in reshaping the immune landscape of the tumor, promoting a more favorable immune environment for effective chemotherapy. This reversal of immune suppression is evidenced by increased infiltration of cytotoxic T cells and reduced levels of regulatory T cells (Tregs) within the tumor. These findings highlight the promising potential of using BR-targeting lipid PtIV prodrug amphiphiles to improve drug accumulation at tumor sites and counteract immunosuppression induced by tumor hypoxia.
Collapse
Affiliation(s)
- Kaichuang Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Xiaodan Wei
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Shangcong Han
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dengshuai Wei
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| |
Collapse
|
21
|
Ow V, Lin Q, Wong JHM, Sim B, Tan YL, Leow Y, Goh R, Loh XJ. Understanding the interplay between pH and charges for theranostic nanomaterials. NANOSCALE 2025; 17:6960-6980. [PMID: 40008569 DOI: 10.1039/d4nr03706e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Nanotechnology has emerged as a highly promising platform for theranostics, offering dual capabilities in targeted imaging and therapy. Interactions between the nanomaterial and biological components determine the in vivo fate of these materials which makes the control of their surface properties of utmost importance. Nanoparticles with neutral or negative surface charge have a longer circulation time while positively charged nanoparticles have higher affinity to cells and better cellular uptake. This trade-off presents a key challenge in optimizing surface charge for theranostic applications. A sophisticated solution is an on-demand switch of surface charge, enabled by leveraging the distinct pH conditions at the target site. In this review, we explore the intricate relationship between pH and charge modulation, summarizing recent advances in pH-induced charge-switchable nanomaterials for theranostics over the past five years. Additionally, we discuss how these innovations enhance targeted drug delivery and imaging contrast and provide perspectives on future directions for this transformative field.
Collapse
Affiliation(s)
- Valerie Ow
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore.
- Department of Biomedical Engineering, National University of Singapore (NUS), Singapore
| | - Qianyu Lin
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Joey Hui Min Wong
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Belynn Sim
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore.
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore
| | - Yee Lin Tan
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Yihao Leow
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore.
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore
| | - Rubayn Goh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore.
| |
Collapse
|
22
|
Huang Y, Li J, Wang S, Tian H, Fan S, Zhao Y. Diselenide-based nanoparticles enhancing the radioprotection to the small intestine of mice. J Nanobiotechnology 2025; 23:236. [PMID: 40119423 PMCID: PMC11929180 DOI: 10.1186/s12951-025-03276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/24/2025] [Indexed: 03/24/2025] Open
Abstract
The widespread application of ionizing radiation (IR) in medicine, while beneficial, also poses potential risks that necessitate effective countermeasures. Both 2-(3-aminopropylamino) ethanethiol (WR-1065) and curcumin are recognized as radioprotective agents; however, their clinical utility is hindered by notable shortcomings that could be addressed through reactive oxygen species (ROS)-responsive amphiphilic nanomaterials. We introduced a newly synthesized poly (ethylene glycol) (PEG)-polycaprolactone (PCL) polymer integrated with diselenide bonds and curcumin (HOOC-SeSe-Cur-PEG-SeSe-Cur-PCL, PEG-Cur-SeSe-PCL). The resulting spherical nanoparticles (NPs), which self-assembled from this polymer, were uniform with an average diameter of 118 nm. As a carrier for WR-1065, these NPs demonstrated a loading capacity of 30.9% and an efficacy of 56.7%. Importantly, the degradation of WR-1065 within the NPs was minimal in gastric fluid, decreasing by only approximately 20% over a 6-hour period. The innovative aspect of these NPs is their design to destabilize in ROS-rich environments, facilitating the release of WR-1065 and curcumin. Indeed, the survival rate of mice increased to 50% when these NPs were orally administered prior to exposure to a lethal dose of whole-body irradiation (8 Gy). The radioprotective impact of WR-1065-loaded NPs was evident in the small intestine of irradiated mice, characterized by the amelioration of radiation-induced epithelial damage, reduction of DNA damage, and inhibition of the apoptotic pathway. Collectively, this oral nanocarrier system for WR-1065 and curcumin holds promise as a potential candidate for the prophylaxis and treatment of acute intestinal injuries induced by IR.
Collapse
Affiliation(s)
- Yichi Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Jiaze Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Sen Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Hongqi Tian
- Kechow Pharma, Inc., Shanghai, 200131, China.
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
23
|
Zhang M, Xu Y, Zhu J, Xu J. Responsive Surfactant-Driven Morphology Transformation of Block Copolymer Microparticles. Chemistry 2025; 31:e202404245. [PMID: 39861971 DOI: 10.1002/chem.202404245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Block copolymer (BCP) microparticles, which exhibit rapid change of morphology and physicochemical property in response to external stimuli, represent a promising avenue for the development of programmable smart materials. Among the methods available for generating BCP microparticles with adjustable morphologies, the confined assembly of BCPs within emulsions has emerged as a particularly facile and versatile approach. This review provides a comprehensive overview of the role of responsive surfactants in modulating interfacial interactions at the oil-water interface, which facilitates controlled BCP microparticle morphology. We elucidate how variations in the properties of responsive surfactants, activated by external stimuli, influence BCP chain arrangement and interfacial selectivity. Additionally, this review explores the applications of shape-switchable microparticles in advanced technologies such as smart display, fluorescence modulation, magnetic resonance imaging, drug delivery, and photonic crystal. Finally, the challenges and prospective future directions in this rapidly evolving field are discussed.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, State Key Laboratory of Materials Processing and Die & Mold Technology, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yinhan Xu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, State Key Laboratory of Materials Processing and Die & Mold Technology, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, State Key Laboratory of Materials Processing and Die & Mold Technology, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiangping Xu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, State Key Laboratory of Materials Processing and Die & Mold Technology, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
24
|
Chen S, Jiang Y, Zheng J, Li P, Liu M, Zhu Y, Zhu S, Chang S. Folate-targeted nanoparticles for glutamine metabolism inhibition enhance anti-tumor immunity and suppress tumor growth in ovarian cancer. J Control Release 2025; 379:89-104. [PMID: 39756690 DOI: 10.1016/j.jconrel.2024.12.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
Ovarian cancer (OC) is a highly malignant gynecological tumor, and its effective treatment is frequently impeded by drug resistance and recurrent tumor growth. The reprogramming of glutamine metabolism in ovarian cancer is closely associated with tumor progression and the immunosuppressive tumor microenvironment. Recently, targeting metabolic reprogramming has emerged as a promising approach for cancer therapy. However, the application of such therapies is often constrained by their significant toxicity to normal tissues. In this study, we fabricated folate-targeted nanoparticles (FA-DCNPs) that co-encapsulate the glutamine metabolism inhibitor 6-diazo-5-oxo-L-norleucine (DON) and calcium carbonate (CaCO3). These nanoparticles alleviate damage to normal tissues by specifically targeting tumor cells via folate receptors (FOLR) mediation. Under acidic conditions, the FA-DCNPs release DON and Ca2+, generating a synergistic anti-tumor effect by impeding glutamine metabolism and inducing calcium overload. Additionally, FA-DCNPs target M2 phenotype tumor-associated macrophages (TAMs) via FOLR2, attenuating M2-TAMs activity. When partially phagocytosed by M0-TAMs, the nanoparticles restrict glutamate production, inhibiting polarization towards the M2 phenotype. This resulted in an increased proportion of M1-TAMs, thereby improving the tumor immune microenvironment. Our study explores a nanotherapeutic strategy that enhances the biosafety of anti-glutamine metabolism therapy through folate targeting, effectively suppresses tumor cell proliferation, and enhances the anti-tumor immune response.
Collapse
Affiliation(s)
- Shuning Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China; Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, The Second Afliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China; State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yu Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Jiao Zheng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Pan Li
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, The Second Afliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Maoyu Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Yi Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Shenyin Zhu
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, People's Republic of China
| | - Shufang Chang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China.
| |
Collapse
|
25
|
Luo H, Lv J, Wen P, Zhang S, Ma W, Yang Z. Supramolecular polyrotaxane-based nano-theranostics enable cancer-cell stiffening for enhanced T-cell-mediated anticancer immunotherapy. Nat Commun 2025; 16:2331. [PMID: 40057488 PMCID: PMC11890869 DOI: 10.1038/s41467-025-57718-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 02/28/2025] [Indexed: 05/13/2025] Open
Abstract
Despite the tremendous therapeutic promise of activating stimulators of interferon genes (STING) enable to prime robust de novo T-cell responses, biomechanics-mediated immune inhibitory pathways hinder the cytotoxicity of T cells against tumor cells. Blocking cancer cell biomechanics-mediated evasion provides a feasible strategy for augmenting STING activation-mediated anti-tumor therapeutic efficacy. Here, we fabricate a redox-responsive Methyl-β-cyclodextrin (MeβCD)-based supramolecular polyrotaxanes (MSPs), where the amphiphilic diselenide-bridged axle polymer loads MeβCD by the host-guest interaction and end-caping with two near-infrared (NIR) fluorescence probes IR783. The MSPs self-assemble with STING agonists diABZIs into nanoparticles (RDPNs@diABZIs), which enable simultaneous release of MeβCD and diABZIs in the redox tumor microenvironment. After the released diABZIs activate STING on antigen-presenting cells (APCs), de novo T-cell responses are initiated. Meanwhile, the released MeβCD depletes membrane cholesterol to overcome cancer-cell mechanical softness, which enhances the CTL-mediated killing of cancer cells. In the female tumor-bearing mouse model, we demonstrate that RDPNs@diABZIs lead to effective tumor regression and generate long-term immunological memory. Furthermore, RDPNs@diABZIs can achieve significant tumor eradication, with these mice remaining survival for at least 2 months.
Collapse
Affiliation(s)
- Haifen Luo
- Strait Laboratory of Flexible Electronics (SLoFE), Fujian Key Laboratory of Flexible Electronics, Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, College of Photonic and Electronic Engineering, Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, China
| | - Jingqi Lv
- Strait Laboratory of Flexible Electronics (SLoFE), Fujian Key Laboratory of Flexible Electronics, Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, College of Photonic and Electronic Engineering, Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, China
| | - Peiye Wen
- Strait Laboratory of Flexible Electronics (SLoFE), Fujian Key Laboratory of Flexible Electronics, Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, College of Photonic and Electronic Engineering, Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, China
| | - Shan Zhang
- Strait Laboratory of Flexible Electronics (SLoFE), Fujian Key Laboratory of Flexible Electronics, Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, College of Photonic and Electronic Engineering, Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, China
| | - Wen Ma
- Strait Laboratory of Flexible Electronics (SLoFE), Fujian Key Laboratory of Flexible Electronics, Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, College of Photonic and Electronic Engineering, Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, China.
| | - Zhen Yang
- Strait Laboratory of Flexible Electronics (SLoFE), Fujian Key Laboratory of Flexible Electronics, Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, College of Photonic and Electronic Engineering, Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, China.
| |
Collapse
|
26
|
Biswas S, Rajdev P, Banerjee A, Das A. Mitochondria-targeting nanostructures from enzymatically degradable fluorescent amphiphilic polyesters. NANOSCALE 2025; 17:5732-5742. [PMID: 39873404 DOI: 10.1039/d4nr04696j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Water-soluble π-conjugated luminescent bioprobes have been broadly used in biomedical research but are limited by the nonbiodegradability associated with their rigid C-C backbones. In the present work, we introduced three naphthalene monoimide (NMI)-functionalized amphiphilic fluorescent polyesters (P1, P2, and P3) prepared by transesterification of functional diols with an activated diester monomer of adipic acid. These polyesters featured a side-chain NMI fluorophore, imparting the required hydrophobicity for self-assembly in water and endowing the polymeric nanoassemblies with green fluorescence. Two polymers (P1 and P2) were intrinsically cationic at physiological pH (7.4), while neutral P3 exhibited pH-triggered (pH ∼6.2) cationic features due to the protonation of the tertiary amine groups present in its backbone. These biocompatible polymers revealed around 85% cellular uptake after 1 hour of incubation. However, the initial uptake for the cationic polymers (P1 and P2) within 15 minutes was significantly greater than that of the neutral P3 because of their stronger electrostatic interactions with the negatively charged cell membranes. Notably, cationic P1 and P2 could specifically target mitochondria in cancerous HeLa cells by escaping the initial endosome/lysosome trap. In contrast, neutral P3 exhibited cell-selective mitochondria targeting in cancerous (HeLa) cells over non-cancerous (NKE) cells. This is attributed to P3's protonation-induced positive charge accumulation in the acidic environment of cancer cells, unlike in the non-acidic environment of non-cancerous cells. This possibly causes P3 nanoassemblies to behave similarly to P1 and P2 in HeLa cells despite P3 being intrinsically neutral. The insights gained from this work may be relevant for future development of cell-specific, mitochondria-targeted drug delivery systems from enzymatically degradable polyester backbones.
Collapse
Affiliation(s)
- Subhendu Biswas
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja. S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Priya Rajdev
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja. S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Ankita Banerjee
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja. S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja. S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
27
|
Ergun C, Eskizengin H. Recent Updates on Blood Purification: Use of Smart Polymer Materials. J Biomed Mater Res A 2025; 113:e37883. [PMID: 39995147 DOI: 10.1002/jbm.a.37883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/08/2025] [Accepted: 01/29/2025] [Indexed: 02/26/2025]
Abstract
Blood purification is indispensable in addressing various conditions such as liver dysfunction, autoimmune diseases, and renal failure whereby toxins have to be cleared from the bloodstream effectively. Conventional methods that involve hemoperfusion, hemodialysis, and hemofiltration possess several weaknesses, including loss of plasma components and inefficient clearance of high molecular weight solutes. This review explores current developments in blood purification techniques particularly stimuli-responsive polymers for use in extracorporeal therapy among other applications. Many aspects of engineering stimuli-responsive polymers are described in terms of their role in the removal of small soluble molecules and toxins in blood purification techniques. The development of stimuli-responsive systems has introduced a new paradigm in blood purification by enabling selective, on-demand control of polymer parameters in response to external stimuli such as temperature, pH, electrolytes, and light. Such advanced materials have been demonstrated potential for toxin clearance, minimizing thrombosis, and improving blood compatibility and antifouling, which are far much better than traditional approaches. Furthermore, the review presents a perspective on stimuli-responsive polymers that could be used in developing novel extracorporeal systems for future medical purposes.
Collapse
Affiliation(s)
- Can Ergun
- Department of Biology, Faculty of Science, Ankara University, Ankara, Türkiye
| | - Hakan Eskizengin
- Department of Biology, Faculty of Science, Ankara University, Ankara, Türkiye
| |
Collapse
|
28
|
Dai XJ, Li WJ, Xie DD, Liu BX, Gong L, Han HH. Stimuli-Responsive Nano Drug Delivery Systems for the Treatment of Neurological Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410030. [PMID: 39840482 DOI: 10.1002/smll.202410030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/07/2025] [Indexed: 01/23/2025]
Abstract
Nanomaterials with unparalleled physical and chemical attributes have become a cornerstone in the field of nanomedicine delivery. These materials can be engineered into various functionalized nanocarriers, which have become the focus of research. Stimulus-responsive nanodrug delivery systems (SRDDS) stand out as a sophisticated class of nanocarriers that can release drugs in response to environmental cues. Due to the complex pathogenesis and the multifaceted pathological environment of the nervous system, developing accurate and effective drug therapy with low side-effects is a formidable task. In recent years, SRDDS have been widely used in the treatment of neurological diseases. By customizing SRDDS to align with the specific microenvironment of the nervous system tissues or external stimulation, the efficacy of drug delivery can be enhanced. This review provides an in-depth look at the characteristics of the microenvironment of neurological diseases and highlights case studies of SRDDS tailored to treat these disorders based on the unique stimulation criteria of nervous system tissues or external triggers. Additionally, this review provides a comprehensive overview of the progress and future prospects of SRDDS technology in the treatment of neurological diseases, providing valuable guidance for its transition from fundamental research to clinical application.
Collapse
Affiliation(s)
- Xi-Jian Dai
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P. R. China
- Jiangxi Provincial Key Laboratory of Intelligent Medical Imaging, Nanchang, 330006, P. R. China
| | - Wen-Jia Li
- Molecular Imaging Center, National Center for Drug Screening, Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Dong-Dong Xie
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, P. R. China
| | - Bi-Xia Liu
- Jiangxi Provincial Key Laboratory of Intelligent Medical Imaging, Nanchang, 330006, P. R. China
| | - Lianggeng Gong
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P. R. China
- Jiangxi Provincial Key Laboratory of Intelligent Medical Imaging, Nanchang, 330006, P. R. China
| | - Hai-Hao Han
- Molecular Imaging Center, National Center for Drug Screening, Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
29
|
El-Shafai NM, Mostafa YS, Alamri SA, Zaghloul A, Emira A, Shukry M, El-Mehasseb I. Chemical and biological investigations on modified gemcitabine by nanoliposome structured on cholesterol, pectin, and phosphatidylcholine as an anticancer drug via a drug delivery system. Int J Biol Macromol 2025; 292:139310. [PMID: 39740707 DOI: 10.1016/j.ijbiomac.2024.139310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/16/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
Gemcitabine hydrochloride (GEM) mimics one of the building blocks of DNA and RNA, so it indicates possible chemotherapeutic effects. It prevents cancer cells from producing DNA and proteins, which ultimately leads to their death. The goal of this work is to modify the GEM medication by nanoforming nanoliposomes based on the composition of Cholesterol, pectin nanoparticles, and phosphatidylcholine (PhC). The drug in nanoliposome form is made using the precipitation method, and several approaches are employed to characterize it. UV-Vis spectroscopy is used to measure the release process of GEM from the lipids and its integration with them. Results of the combination efficiency for PhC.Pectin@GEM, PhC.GEM@Pectin, and PhC@Cholestrol.GEM were recorded at 78.8 %, 83 %, and 80 %, respectively. A UV-Vis spectrophotometer was used to determine the release efficiency of the nanoliposomes, which was measured at pH values of 3, 6.8, and 7.4. The in-vitro investigation employed SRB (Routine analysis IC50) to determine the modified drug's toxicity on breast adenocarcinoma (MCF-7) cells, while the in-vitro study assessed the produced nanoliposomes' capacity to do so. The conclusion is that to ascertain whether GEM medicine's nanoliposomes can effectively treat breast cancer in place of GEM medication, clinical trials are necessary to prove the ability for treatment.
Collapse
Affiliation(s)
- Nagi M El-Shafai
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt.
| | - Yasser S Mostafa
- Department of Biology, College of Science, King Khalid University, Abha, P.O. Box 9004, Saudi Arabia
| | - Saad A Alamri
- Department of Biology, College of Science, King Khalid University, Abha, P.O. Box 9004, Saudi Arabia
| | - Asmaa Zaghloul
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt
| | - Amal Emira
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Ibrahim El-Mehasseb
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt
| |
Collapse
|
30
|
Guo Z, Xiao Y, Wu W, Zhe M, Yu P, Shakya S, Li Z, Xing F. Metal-organic framework-based smart stimuli-responsive drug delivery systems for cancer therapy: advances, challenges, and future perspectives. J Nanobiotechnology 2025; 23:157. [PMID: 40022098 PMCID: PMC11871784 DOI: 10.1186/s12951-025-03252-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 02/18/2025] [Indexed: 03/03/2025] Open
Abstract
Cancer treatment is currently one of the most critical healthcare issues globally. A well-designed drug delivery system can precisely target tumor tissues, improve efficacy, and reduce damage to normal tissues. Stimuli-responsive drug delivery systems (SRDDSs) have shown promising application prospects. Intelligent nano drug delivery systems responsive to endogenous stimuli such as weak acidity, complex redox characteristics, hypoxia, active energy metabolism, as well as exogenous stimuli like high temperature, light, pressure, and magnetic fields are increasingly being applied in chemotherapy, radiotherapy, photothermal therapy, photodynamic therapy, and various other anticancer approaches. Metal-organic frameworks (MOFs) have become promising candidate materials for constructing SRDDSs due to their large surface area, tunable porosity and structure, ease of synthesis and modification, and good biocompatibility. This paper reviews the application of MOF-based SRDDSs in various modes of cancer therapy. It summarizes the key aspects, including the classification, synthesis, modifications, drug loading modes, stimuli-responsive mechanisms, and their roles in different cancer treatment modalities. Furthermore, we address the current challenges and summarize the potential applications of artificial intelligence in MOF synthesis. Finally, we propose strategies to enhance the efficacy and safety of MOF-based SRDDSs, ultimately aiming at facilitating their clinical translation.
Collapse
Affiliation(s)
- Ziliang Guo
- Division of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuzhen Xiao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Wenting Wu
- Department of Pediatric Surgery, Division of Orthopedic Surgery, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peiyun Yu
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Carl-Troll-Str. 31, 53115, Bonn, Germany
| | - Sujan Shakya
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhihui Li
- Division of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Fei Xing
- Department of Pediatric Surgery, Division of Orthopedic Surgery, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
31
|
Chen Y, Pan D, Zhu Q, Lu M, Zhang Y, Gao Z, Zhang L, Yi Y, Liu L, Liu Q, Li S, Shen C, Tang Q, Jiang C. Biomimetic metal-phenolic nanocarrier for co-delivery of multiple phytomedical bioactive components for anti-atherosclerotic therapy. Int J Pharm 2025; 671:125228. [PMID: 39832572 DOI: 10.1016/j.ijpharm.2025.125228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Atherosclerosis, a major cause of cardiovascular diseases, involves complex pathophysiological processes. The co-delivery of multiple bioactive components derived from phytomedicine to atherosclerotic plaque is challenging, especially for those with varied solubilities. This study introduces a novel metal-phenolic network-based core-shell recombinant high-density lipoprotein nanocarrier (SSPH-MPN@rHDL) for co-delivering multiple bioactive components from Salvia miltiorrhiza and Carthamus tinctorius, including salvianic acid A (SAA), salvianolic acid B (SAB), protocatechuic aldehyde (PCA), hydroxysafflor yellow A (HSYA), and tanshinone IIA (TS-IIA). These components have varied solubilities, presenting challenges for achieving synergistic therapeutic effects. The SSPH-MPN@rHDL system encapsulates the four hydrophilic components (i.e. SAA, SAB, PCA, HSYA) within a quaternary metal-phenolic network and a hydrophobic component (i.e. TS-IIA) in an outer lipid layer, facilitating targeted plaque delivery. In vitro and in vivo experimental results demonstrated that SSPH-MPN@rHDL enhanced anti-atherosclerotic efficacy through combined antioxidant, anti-inflammatory, and lipid-lowering actions. This approach offers new perspectives on using nanotechnology to optimize the delivery of phytomedicinal compounds for cardiovascular therapy.
Collapse
Affiliation(s)
- Yao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515 China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515 China
| | - Dongmei Pan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515 China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515 China
| | - Qinglan Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515 China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515 China
| | - Meiting Lu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515 China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515 China
| | - Ying Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515 China
| | - Ziting Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515 China
| | - Lu Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515 China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515 China
| | - Yankui Yi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515 China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515 China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515 China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515 China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515 China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515 China
| | - Shasha Li
- College of Pharmacy, Xinjiang Medical University, Urumqi, People's Republic of China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515 China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515 China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515 China.
| | - Qingfa Tang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515 China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515 China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515 China.
| | - Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515 China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515 China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515 China.
| |
Collapse
|
32
|
Li Y, Liu F, Cai Q, Deng L, Ouyang Q, Zhang XHF, Zheng J. Invasion and metastasis in cancer: molecular insights and therapeutic targets. Signal Transduct Target Ther 2025; 10:57. [PMID: 39979279 PMCID: PMC11842613 DOI: 10.1038/s41392-025-02148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/24/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
The progression of malignant tumors leads to the development of secondary tumors in various organs, including bones, the brain, liver, and lungs. This metastatic process severely impacts the prognosis of patients, significantly affecting their quality of life and survival rates. Research efforts have consistently focused on the intricate mechanisms underlying this process and the corresponding clinical management strategies. Consequently, a comprehensive understanding of the biological foundations of tumor metastasis, identification of pivotal signaling pathways, and systematic evaluation of existing and emerging therapeutic strategies are paramount to enhancing the overall diagnostic and treatment capabilities for metastatic tumors. However, current research is primarily focused on metastasis within specific cancer types, leaving significant gaps in our understanding of the complex metastatic cascade, organ-specific tropism mechanisms, and the development of targeted treatments. In this study, we examine the sequential processes of tumor metastasis, elucidate the underlying mechanisms driving organ-tropic metastasis, and systematically analyze therapeutic strategies for metastatic tumors, including those tailored to specific organ involvement. Subsequently, we synthesize the most recent advances in emerging therapeutic technologies for tumor metastasis and analyze the challenges and opportunities encountered in clinical research pertaining to bone metastasis. Our objective is to offer insights that can inform future research and clinical practice in this crucial field.
Collapse
Affiliation(s)
- Yongxing Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fengshuo Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA
- Graduate School of Biomedical Science, Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX, USA
| | - Qingjin Cai
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lijun Deng
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
33
|
Zhang S, You H, Fan H, Chen Y, Song H, Zhao Z, Chen Q, Wang Y, Tian Z, Wu Y, Zhou Z, Guo Y, Su B, Li X, Jia R, Fang M, Jiang C, Sun T. Transcytosis-Triggering Nanoparticles for Overcoming Stromal Barriers and Reversing Immunosuppression in Pancreatic Cancer Combinatorial Therapy. NANO LETTERS 2025; 25:2949-2959. [PMID: 39914891 DOI: 10.1021/acs.nanolett.4c06372] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
In pancreatic ductal adenocarcinoma (PDAC), stromal cells and matrix proteins form a dense physical barrier that, while preventing the outward spread of tumor cells, also limits the penetration of drugs and CD8+ T cells inward. Additionally, the overactivated TGF-β/SMAD signaling pathway further promotes matrix proliferation and immune suppression. Therefore, crossing the stromal barrier while preserving the integrity of the stroma, releasing drugs intratumorally, remodeling the stroma, and activating the immune system is a promising drug delivery strategy. In this work, a type of enamine N-oxides modified nanoparticle was prepared, with stearic acid-modified gemcitabine prodrug (GemC18) and pSMAD2/3 inhibitor galunisertib encapsulated. The peripheral enamine N-oxides can trigger transcytosis and then respond to hypoxia and acidic microenvironments, turning the surface charge of the nanoparticles to a positive charge and enhancing penetration. The released galunisertib inhibits the TGF-β/SMAD signaling pathway, reshapes the matrix, activates antitumor immunity, and combines with gemcitabine (Gem) to kill tumor cells.
Collapse
Affiliation(s)
- Shilin Zhang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Haoyu You
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hongrui Fan
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yun Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Haolin Song
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhenhao Zhao
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qinjun Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yu Wang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zonghua Tian
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yuxing Wu
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zheng Zhou
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yun Guo
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Boyu Su
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xuwen Li
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ru Jia
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mingzhu Fang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
- Department of Digestive Diseases, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
- Quzhou Fudan Institute, Quzhou 324003, China
| |
Collapse
|
34
|
Chen L, Yang J, Su F, Liu Z, Huang S, Zhang J, Li J, Mao W. A novel cyanine photosensitizer for sequential dual-site GSH depletion and ROS-potentiated cancer photodynamic therapy. Eur J Med Chem 2025; 283:117165. [PMID: 39689415 DOI: 10.1016/j.ejmech.2024.117165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024]
Abstract
The efficacy of photodynamic therapy (PDT) is often limited by the reductive microenvironment in tumor cells due to the high level of glutathione (GSH) and glutathione peroxidase 4 (GPX4), which maintain redox homeostasis. Therefore, designing a GSH-responsive photosensitizer that depletes intracellular GSH is a promising strategy to enhance PDT selectivity and efficacy. Herein, we present a GSH-selective sequentially responsive theranostic photosensitizer, Cy-Res. This cyanine agent targeting mitochondria effectively depletes two GSH molecules, leading to the generation of abundant ROS and exacerbating oxidative stress. Additionally, it achieves an 80-fold fluorescence enhancement upon response to GSH, enabling selective imaging of tumor cells. By mitigating GSH's impact on PDT, Cy-ResNPs achieves synergistic and efficient PDT treatment of invasive melanoma under low-power irradiation (808 nm, 80 mW/cm2). The inhibitory processes downregulate GPX4, increase apoptotic proteins like Bax, and promote mixed cell death involving both ferroptosis and apoptosis. Overall, this study offers new insights and strategies for the development of GSH-responsive theranostic agents, highlighting their potential for application in tumor diagnosis and therapy.
Collapse
Affiliation(s)
- Li Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital of Sichuan University, Chengdu, 610041, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jun Yang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Feijing Su
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Zihang Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Shuai Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Jinqi Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
35
|
Huang G, Zhang L, Feng J, Wu D, Wu L, Pan W, Jiang Y, Chen M, Chen J, Shui P. Hypoxia-Responsive Covalent Organic Framework Nanoplatform for Breast-Cancer-Targeted Cocktail Immunotherapy via Triple Therapeutic Switch Mechanisms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407553. [PMID: 39797461 DOI: 10.1002/smll.202407553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/23/2024] [Indexed: 01/13/2025]
Abstract
Covalent organic frameworks (COFs), known for their exceptional in situ encapsulation and precise release capabilities, are emerging as pioneering drug delivery systems. This study introduces a hypoxia-responsive COF designed to encapsulate the chemotherapy drug gambogic acid (GA) in situ. Bimetallic gold-palladium islands were grown on UiO-66-NH2 (UiO) to form UiO@Au-Pdislands (UAPi), which were encapsulated with GA through COF membrane formation, resulting in a core-shell structure (UAPiGC). Further modification with hyaluronic acid (HA) created UiO@Au-Pdislands@GA-COF@HA (UAPiGCH) for enhanced tumor targeting. In the hypoxic tumor microenvironment, the COF collapses, releasing GA and UAPi, initiating a triple therapeutic response: nanozyme-catalyzed therapy, near-infrared II (NIR-II) mild photothermal therapy (mild-PTT), and chemotherapy. UAPi exhibits catalase (CAT)-like and peroxidase (POD)-like activities, generating oxygen to alleviate hypoxia and reactive oxygen species (ROS) for tumor destruction. GA acts as a chemotherapeutic agent and inhibits heat shock protein 90 (HSP90), enhancing photothermal sensitivity. In vitro and in vivo studies confirm UAPiGCH's ability to induce pyroptosis, stimulate dendritic cell maturation, and boost T cell infiltration, demonstrating its potential as a precise therapeutic nanoplatform. This strategy integrates multiple therapies into a hypoxia-responsive system, offering promising applications in cancer treatment.
Collapse
Affiliation(s)
- Guoqin Huang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Lianying Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jiahao Feng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Dan Wu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Libo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Weilun Pan
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yu Jiang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Ming Chen
- The People's Hospital of Gaozhou, Maoming, 525200, China
| | - Jinxiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Pixian Shui
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| |
Collapse
|
36
|
Mansur AAP, Carvalho SM, Lobato ZIP, Leite MF, Krambrock K, Mansur HS. Bioengineering stimuli-responsive organic-inorganic nanoarchitetures based on carboxymethylcellulose-poly-l-lysine nanoplexes: Unlocking the potential for bioimaging and multimodal chemodynamic-magnetothermal therapy of brain cancer cells. Int J Biol Macromol 2025; 290:138985. [PMID: 39706409 DOI: 10.1016/j.ijbiomac.2024.138985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/08/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Regrettably, glioblastoma multiforme (GBM) remains the deadliest form of brain cancer, where the early diagnosis plays a pivotal role in the patient's therapy and prognosis. Hence, we report for the first time the design, synthesis, and characterization of new hybrid organic-inorganic stimuli-responsive nanoplexes (NPX) for bioimaging and killing brain cancer cells (GBM, U-87). These nanoplexes were built through coupling two nanoconjugates, produced using a facile, sustainable, green aqueous colloidal process ("bottom-up"). One nanocomponent was based on cationic epsilon-poly-l-lysine polypeptide (εPL) conjugated with ZnS quantum dots (QDs) acting as chemical ligand and cell-penetrating peptide (CPP) for bioimaging of cancer cells (QD@εPL). The second nanocomponent was based on anionic carboxymethylcellulose (CMC) polysaccharide surrounding superparamagnetic magnetite "nanozymes" (MNZ) behaving as a capping macromolecular shell (MNZ@CMC) for killing cancer cells through chemodynamic therapy (CDT) and magnetohyperthermia (MHT). The results demonstrated the effective production of supramolecular aqueous colloidal nanoplexes (QD@εPL_MNZ@CMC, NPX) integrated into single nanoplatforms, mainly electrostatically stabilized by εPL/CMC biomolecules with anticancer activity against U-87 cells using 2D and 3D spheroid models. They displayed nanotheranostics (i.e., diagnosis and therapy) behavior credited to the photonic activity of QD@εPL with luminescent intracellular bioimaging, amalgamated with a dual-mode killing effect of GBM cancer cells through CDT by nanozyme-induced biocatalysis and as "nanoheaters" by magnetically-responsive hyperthermia therapy.
Collapse
Affiliation(s)
- Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil
| | - Sandhra M Carvalho
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil
| | - Zélia I P Lobato
- Department of Preventive Veterinary Medicine School of Veterinary, Federal University of Minas Gerais, UFMG, Brazil
| | - M Fátima Leite
- Department of Physiology and Biophysics, Institute of Biological Sciences-ICB, Federal University of Minas Gerais - UFMG, Brazil
| | - Klaus Krambrock
- Departament of Physics, Federal University of Minas Gerais - UFMG, Brazil
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil.
| |
Collapse
|
37
|
Jia W, Wu Y, Xie Y, Yu M, Chen Y. Advanced Polymeric Nanoparticles for Cancer Immunotherapy: Materials Engineering, Immunotherapeutic Mechanism and Clinical Translation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413603. [PMID: 39797474 DOI: 10.1002/adma.202413603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/13/2024] [Indexed: 01/13/2025]
Abstract
Cancer immunotherapy, which leverages immune system components to treat malignancies, has emerged as a cornerstone of contemporary therapeutic strategies. Yet, critical concerns about the efficacy and safety of cancer immunotherapies remain formidable. Nanotechnology, especially polymeric nanoparticles (PNPs), offers unparalleled flexibility in manipulation-from the chemical composition and physical properties to the precision control of nanoassemblies. PNPs provide an optimal platform to amplify the potency and minimize systematic toxicity in a broad spectrum of immunotherapeutic modalities. In this comprehensive review, the basics of polymer chemistry, and state-of-the-art designs of PNPs from a physicochemical standpoint for cancer immunotherapy, encompassing therapeutic cancer vaccines, in situ vaccination, adoptive T-cell therapies, tumor-infiltrating immune cell-targeted therapies, therapeutic antibodies, and cytokine therapies are delineated. Each immunotherapy necessitates distinctively tailored design strategies in polymeric nanoplatforms. The extensive applications of PNPs, and investigation of their mechanisms of action for enhanced efficacy are particularly focused on. The safety profiles of PNPs and clinical research progress are discussed. Additionally, forthcoming developments and emergent trends of polymeric nano-immunotherapeutics poised to transform cancer treatment paradigms into clinics are explored.
Collapse
Affiliation(s)
- Wencong Jia
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Ye Wu
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- Shanghai Institute of Materdicine, Shanghai, 200051, China
| |
Collapse
|
38
|
Yang EL, Wang WY, Liu YQ, Yi H, Lei A, Sun ZJ. Tumor-Targeted Catalytic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413210. [PMID: 39676382 DOI: 10.1002/adma.202413210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Indexed: 12/17/2024]
Abstract
Cancer immunotherapy holds significant promise for improving cancer treatment efficacy; however, the low response rate remains a considerable challenge. To overcome this limitation, advanced catalytic materials offer potential in augmenting catalytic immunotherapy by modulating the immunosuppressive tumor microenvironment (TME) through precise biochemical reactions. Achieving optimal targeting precision and therapeutic efficacy necessitates a thorough understanding of the properties and underlying mechanisms of tumor-targeted catalytic materials. This review provides a comprehensive and systematic overview of recent advancements in tumor-targeted catalytic materials and their critical role in enhancing catalytic immunotherapy. It highlights the types of catalytic reactions, the construction strategies of catalytic materials, and their fundamental mechanisms for tumor targeting, including passive, bioactive, stimuli-responsive, and biomimetic targeting approaches. Furthermore, this review outlines various tumor-specific targeting strategies, encompassing tumor tissue, tumor cell, exogenous stimuli-responsive, TME-responsive, and cellular TME targeting strategies. Finally, the discussion addresses the challenges and future perspectives for transitioning catalytic materials into clinical applications, offering insights that pave the way for next-generation cancer therapies and provide substantial benefits to patients in clinical settings.
Collapse
Affiliation(s)
- En-Li Yang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Wu-Yin Wang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Ying-Qi Liu
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430079, China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430079, China
| | - Zhi-Jun Sun
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
39
|
Lv MY, Hou DY, Liu SW, Cheng DB, Wang H. Strategy and Design of In Situ Activated Protein Hydrolysis Targeted Chimeras. ACS NANO 2025; 19:101-119. [PMID: 39731609 DOI: 10.1021/acsnano.4c11903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
Protein hydrolysis targeted chimeras (PROTACs) represent a different therapeutic approach, particularly relevant for overcoming challenges associated with traditional small molecule inhibitors. These challenges include targeting difficult proteins that are often deemed "undruggable" and addressing issues of acquired resistance. PROTACs employ the body's own E3 ubiquitin ligases to induce the degradation of specific proteins of interest (POIs) through the ubiquitin-proteasome pathway. This process is cyclical, allowing for broad applicability, potent protein degradation, and selective targeting. Despite their effectiveness, PROTACs can inadvertently target and degrade nonspecific proteins, potentially resulting in significant side effects and off-target toxicity. To address this concern, researchers have created stimuli-activated PROTACs that enhance targeted protein degradation while minimizing potential harm to healthy cells. These advanced PROTACs aim to improve the precision of degradation in both time and space. This article reviews the strategies for in situ activated PROTACs, highlighting key compounds and research advancements associated with various mechanisms of action. The insights presented here aim to guide further exploration in the field of activated PROTACs.
Collapse
Affiliation(s)
- Mei-Yu Lv
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin 150001, China
| | - Da-Yong Hou
- Department of PET-CT/MRI, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin 150001, China
| | - Shao-Wei Liu
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, P. R. China
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, P. R. China
| | - Haoran Wang
- Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518100, P. R. China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
| |
Collapse
|
40
|
Sun H, Zhong Z. Bioresponsive Polymeric Nanoparticles: From Design, Targeted Therapy to Cancer Immunotherapy. Biomacromolecules 2025; 26:33-42. [PMID: 39667037 DOI: 10.1021/acs.biomac.4c01257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Bioresponsive polymeric nanoparticles (NPs) that are capable of delivering and releasing therapeutics and biotherapeutics to target sites have attracted vivid interest in cancer therapy and immunotherapy. In contrast to enthusiastic evolution in the academic world, the clinical translation of these smart systems is scarce, partly due to concerns about safety, stability, complexity, and scalability. The moderate targetability, responsivity, and benefits are other concerns. In the past 17 years, we have devoted ourselves to exploring elegant strategies to address the above basic and translational problems by introducing diverse functional groups and/or targeting ligands to safe biomedical materials, such as biodegradable polymers and water-soluble polymers. This minimal modification is critical for further clinical translation. We have tailor-made various bioresponsive NPs including shell-sheddable and/or acid-sensitive biodegradable NPs, disulfide-cross-linked biodegradable micelles and polymersomes, and blood-brain barrier (BBB)-permeable NPs, to target different tumors. This perspective provides an overview of our work path toward targeted nanomedicines and personalized vaccines, which might inspire clinical translation and future research on cancer therapy.
Collapse
Affiliation(s)
- Huanli Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, PR China
- International College of Pharmaceutical Innovation, Soochow University, Suzhou, 215222, PR China
| |
Collapse
|
41
|
Zhao Z, Du R, Feng X, Wang Z, Wang T, Xie Z, Yuan H, Tan Y, Ou H. Regulating Triplet Excitons of Organic Luminophores for Promoted Bioimaging. Curr Med Chem 2025; 32:322-342. [PMID: 38468516 DOI: 10.2174/0109298673301552240305064259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
Afterglow materials with organic room temperature phosphorescence (RTP) or thermally activated delayed fluorescence (TADF) exhibit significant potential in biological imaging due to their long lifetime. By utilizing time-resolved technology, interference from biological tissue fluorescence can be mitigated, enabling high signal-tobackground ratio imaging. Despite the continued emergence of individual reports on RTP or TADF in recent years, comprehensive reviews addressing these two materials are rare. Therefore, this review aims to provide a comprehensive overview of several typical molecular designs for organic RTP and TADF materials. It also explores the primary methods through which triplet excitons resist quenching by water and oxygen. Furthermore, we analyze the principal challenges faced by afterglow materials and discuss key directions for future research with the hope of inspiring developments in afterglow imaging.
Collapse
Affiliation(s)
- Zhipeng Zhao
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308, Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Rui Du
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308, Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Xiaodi Feng
- Qingdao Hiser Hospital Affiliated to Qingdao University (Qingdao Traditional Chinese Medicine Hospital), No. 4, Renmin Rd., Shibei District, Qingdao, 266033, China
| | - Zhengshuo Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308, Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Tianjie Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308, Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Zongzhao Xie
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308, Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Hua Yuan
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308, Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Yeqiang Tan
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308, Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Hanlin Ou
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308, Ningxia Rd., Shinan District, Qingdao, 266071, China
| |
Collapse
|
42
|
Hou DY, You Q, Zhang P, Li XP, Wu JC, Wang Y, You HH, Lv MY, Wu G, Liu X, Guo P, Cheng DB, Chen X, Xu W. Cascade-Activatable Nanoprodrug System Augments Sonochemotherapy of Bladder Cancer. ACS NANO 2024; 18:35507-35519. [PMID: 39686741 DOI: 10.1021/acsnano.4c12967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Sonochemotherapy (SCT) has emerged as a powerful modality for cancer treatment by triggering excessive production of reactive oxygen species (ROS) and controlled release of chemotherapeutic agents under ultrasound. However, achieving spatiotemporally controlled release of chemotherapeutic agents during ROS generation is still an enormous challenge. In this work, we developed a cascade-activated nanoprodrug (CAN) system that utilizes a reversible covalent Schiff base mixed with a hypoxia-activatable camptothecin (CPT) prodrug. Briefly, the designed fluorinated CAN system is self-assembled into nanoparticles under aqueous conditions, which could penetrate deep tumors to offer sufficient oxygen for ultrasound-triggered ROS production. Consequently, the nanoparticles substantially exacerbated the hypoxia of the tumor microenvironment (TME) by elevating oxygen consumption. The aggravated hypoxia in turn served as a positive amplifier to boost the tumor-specific CPT release of Azo-CPT prodrug, which made up for the insufficient treatment efficacy of sonodynamic therapy (SDT). On this basis, we observed a substantial reduction, approximately 3.5-fold, in the half-maximal inhibitory concentration (IC50) of the CAN system compared to that of free CPT in bladder cancer cell lines (T24). Furthermore, the CAN system demonstrated potent antitumor efficacy with reduced side effects, resulting in regression and eradication of T24 tumors in various mouse models. In summary, the CAN system can be easily extended by incorporating different chemotherapeutic agents, showing great potential to revolutionize the clinical management paradigm of bladder cancer.
Collapse
Affiliation(s)
- Da-Yong Hou
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
- Department of PET-CT/MRI, Harbin Medical University Cancer Hospital, Harbin 150001, China
| | - Qing You
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Peng Zhang
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
| | - Xiang-Peng Li
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
| | - Jiong-Cheng Wu
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
| | - Yueze Wang
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
| | - Hui-Hui You
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
| | - Mei-Yu Lv
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
| | - Gege Wu
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Xiao Liu
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
| | - Pengyu Guo
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, PR China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Wanhai Xu
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
| |
Collapse
|
43
|
Yang J, Tan S, Ge S, Yang M, Liu H, Liu W, Zhang K, Zhang Z, Wang ZH, Shi J, Liu J. Cyanobacteria-probiotics symbionts for modulation of intestinal inflammation and microbiome dysregulation in colitis. Proc Natl Acad Sci U S A 2024; 121:e2403417121. [PMID: 39680761 PMCID: PMC11670216 DOI: 10.1073/pnas.2403417121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 11/05/2024] [Indexed: 12/18/2024] Open
Abstract
Inflammatory bowel disease (IBD) is often associated with excessive inflammatory response and highly dysregulated gut microbiota. Traditional treatments utilize drugs to manage inflammation, potentially with probiotic therapy as an adjuvant. However, current standard practices often suffer from detrimental side effects, low bioavailability, and unsatisfactory therapeutic outcomes. Microbial complexes characterized by mutually beneficial symbiosis hold great promise for IBD therapy. Here, we aggregated Synechocystis sp. PCC6803 (Sp) with Bacillus subtilis (BS) by biomimetic mineralization to form cyanobacteria-probiotics symbionts (ASp@BS), which reshaped a healthy immune system and gut microbiota in a murine model of acute colitis. The symbionts exhibited excellent tolerance to the harsh environment of the gastrointestinal tract. Importantly, probiotics within the symbionts created a local anaerobic environment to activate the [NiFe]-hydrogenase enzyme of cyanobacteria, facilitating the production of hydrogen gas (H2) to persistently scavenge elevated reactive oxygen species and alleviate inflammatory factors. The resulting reduced inflammation improves the viability of the probiotics to efficiently regulate the gut microbiota and reshape the intestinal barrier functions. Our research elucidates that ASp@BS leverages the synergistic interaction between Sp and BS to create a therapeutic platform that addresses multiple aspects of IBD, offering a promising and comprehensive solution for IBD treatment.
Collapse
Affiliation(s)
- Jiali Yang
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou450001, People’s Republic of China
- Department of Neuroscience, Institute of Brain Science and Disease, Qingdao Medical College of Qingdao University, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao266021, People’s Republic of China
| | - Shaochong Tan
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou450001, People’s Republic of China
| | - Shengchan Ge
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou450001, People’s Republic of China
| | - Mingzhu Yang
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou450001, People’s Republic of China
| | - Hua Liu
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou450001, People’s Republic of China
| | - Wei Liu
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou450001, People’s Republic of China
| | - Kaixiang Zhang
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou450001, People’s Republic of China
| | - Zhenzhong Zhang
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou450001, People’s Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou450001, People’s Republic of China
| | - Zhi-Hao Wang
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou450001, People’s Republic of China
| | - Jinjin Shi
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou450001, People’s Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou450001, People’s Republic of China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou450001, People’s Republic of China
| | - Junjie Liu
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou450001, People’s Republic of China
| |
Collapse
|
44
|
Wen L, Wang M. Functionalities of pH-responsive DNA nanostructures in tumor-targeted strategies. J Mater Chem B 2024; 12:12174-12190. [PMID: 39523975 DOI: 10.1039/d4tb01883d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Nanostructures integrating pH-sensitive DNA motifs have emerged as versatile platforms for active tumor targeting, owing to their ability to undergo conformation changes in response to the common acidic environment of the tumor extracellular matrix and endocytosis pathway. This review summarizes the latest advances in the design and application of various pH-responsive DNA nanostructures for tumor-targeted strategies, including tumor recognition, cell imaging, dynamic nanocarrier construction, and controlled drug release. A comprehensive framework for pH-controlled multi-stage tumor targeting is introduced, addressing the divergences in targeting strategies for extracellular and intracellular environments. The unique attributes, practical performance and application challenges of pH-responsive DNA nanostructures are also critically discussed to provide guidance for future development in this field.
Collapse
Affiliation(s)
- Liyue Wen
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, China.
| | - Min Wang
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, China.
| |
Collapse
|
45
|
Wei G, Zong B, He Q, Su S, Li Y, Zheng J, Qian Y, Cao P, Li Z. A Thin Polymer Layer Enables Peptide-Polycation Complexes with Ultrahigh Efficient Encapsulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405948. [PMID: 39358966 DOI: 10.1002/smll.202405948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/31/2024] [Indexed: 10/04/2024]
Abstract
A monolayer encapsulation is a new opportunity for engineering a system with high drug loading, but immobilizing polymer molecules on the surface of individual peptide nanoparticles is still an ongoing challenge. Herein, an individual peptide nanoparticle encapsulation strategy is proposed via surface adsorption, in which peptide molecules undergo granulation and subsequently aggregate with polymer molecules, forming a network via electrostatic interactions. Under the water phase, surplus polymer molecules dissolve, leading to a single nanoparticle encapsulation with a core-shell structure. As expected, the dense interfacial layer on the peptide nanoparticle surface achieves a superior loading degree of up to 95.4%. What's more, once the core-shell structure is established, the peptide mass fraction in individual encapsulation always exceeds 90% even under fierce external force. Following the individual nanoparticle encapsulation, the insulin-polycation complex (InsNp@PEI) reduces the inflammation from polymer and displays an effective glycemic control in type 1 diabetes. Overall, the newly developed single surface decoration encapsulates peptides with ultrahigh efficiency and opens up the possibility for further encapsulation.
Collapse
Affiliation(s)
- Guangfei Wei
- Clinical Medical Research Center, Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, 212004, China
- Affiliated Zhenjiang Integrated Hospital of Traditional Chinese and Western Medicine of Xinglin College, Nantong University, Zhenjiang, 212004, China
| | - Bin Zong
- Clinical Medical Research Center, Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, 212004, China
- Affiliated Zhenjiang Integrated Hospital of Traditional Chinese and Western Medicine of Xinglin College, Nantong University, Zhenjiang, 212004, China
| | - Quan He
- Clinical Medical Research Center, Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, 212004, China
- Affiliated Zhenjiang Integrated Hospital of Traditional Chinese and Western Medicine of Xinglin College, Nantong University, Zhenjiang, 212004, China
| | - Shiying Su
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Yu Li
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Jiawen Zheng
- Clinical Medical Research Center, Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, 212004, China
- Affiliated Zhenjiang Integrated Hospital of Traditional Chinese and Western Medicine of Xinglin College, Nantong University, Zhenjiang, 212004, China
| | - Yuanxia Qian
- Clinical Medical Research Center, Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, 212004, China
- Affiliated Zhenjiang Integrated Hospital of Traditional Chinese and Western Medicine of Xinglin College, Nantong University, Zhenjiang, 212004, China
| | - Peng Cao
- Clinical Medical Research Center, Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, 212004, China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Shandong Academy of Chinese Medicine, Jinan, 250014, China
| | - Zhongxing Li
- Clinical Medical Research Center, Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, 212004, China
- Affiliated Zhenjiang Integrated Hospital of Traditional Chinese and Western Medicine of Xinglin College, Nantong University, Zhenjiang, 212004, China
| |
Collapse
|
46
|
Cui M, Tang D, Zhang H, Liang G, Xu C, Xiao H. NIR-II Fluorescent Nanotheranostics with a Switchable Irradiation Mode for Immunogenic Sonodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411328. [PMID: 39420648 DOI: 10.1002/adma.202411328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/22/2024] [Indexed: 10/19/2024]
Abstract
Nanotheranostics, which integrate diagnostic and therapeutic functionalities, offer significant potential for tumor treatment. However, current nanotheranostic systems typically involve multiple molecules, each providing a singular diagnostic or therapeutic function, leading to challenges such as complex structural composition, poor targeting efficiency, lack of spatiotemporal control, and dependence on a single therapeutic modality. This study introduces NPRBOXA, a nanoparticle functionalized with surface-bound cRGD for targeted delivery to αvβ3/αvβ5 receptors on tumor cells, achieving theranostic integration by sequentially switching its irradiation modes. Under 808 nm laser irradiation, NPRBOXA emits NIR-II fluorescence, which aids in identifying the nanoparticle's location and fluorescence intensity, thereby determining the optimal treatment window. Following this, the irradiation mode switches to ultrasound irradiation at the optimal treatment window. Ultrasound irradiation induces NPRBOXA to generate reactive oxygen species, promoting the reduction of OXA-IV to OXA-II, which in turn triggers immunogenic cell death. This mechanism enables a combination of sonodynamic therapy, chemotherapy, and immunotherapy for tumor treatment. The versatile design of NPRBOXA holds promise for advancing precision oncology through enhanced therapeutic efficacy and real-time imaging guidance.
Collapse
Affiliation(s)
- Minhui Cui
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ganghao Liang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chun Xu
- Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
47
|
Hu D, Li Y, Li R, Wang M, Zhou K, He C, Wei Q, Qian Z. Recent advances in reactive oxygen species (ROS)-responsive drug delivery systems for photodynamic therapy of cancer. Acta Pharm Sin B 2024; 14:5106-5131. [PMID: 39807318 PMCID: PMC11725102 DOI: 10.1016/j.apsb.2024.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 01/16/2025] Open
Abstract
Reactive oxygen species (ROS)-responsive drug delivery systems (DDSs) have garnered significant attention in cancer research because of their potential for precise spatiotemporal drug release tailored to high ROS levels within tumors. Despite the challenges posed by ROS distribution heterogeneity and endogenous supply constraints, this review highlights the strategic alliance of ROS-responsive DDSs with photodynamic therapy (PDT), enabling selective drug delivery and leveraging PDT-induced ROS for enhanced therapeutic efficacy. This review delves into the biological importance of ROS in cancer progression and treatment. We elucidate in detail the operational mechanisms of ROS-responsive linkers, including thioether, thioketal, selenide, diselencide, telluride and aryl boronic acids/esters, as well as the latest developments in ROS-responsive nanomedicines that integrate with PDT strategies. These insights are intended to inspire the design of innovative ROS-responsive nanocarriers for enhanced cancer PDT.
Collapse
Affiliation(s)
- Danrong Hu
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yicong Li
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ran Li
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Wang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kai Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengqi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Quan Wei
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyong Qian
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
48
|
Zhao J, Wang D, Zhang X, Di Y, Yang S, Yan L. Preparation of Disulfide/Trisulfide Core-Cross-Linked Polycarbonate Nanocarriers for Intracellular Reduction-Triggered Drug Release. ACS Macro Lett 2024; 13:1433-1441. [PMID: 39383241 DOI: 10.1021/acsmacrolett.4c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Polymeric nanocarriers have attracted significant attention in the field of anticancer drug delivery due to their unique advantages. However, designing nanocarriers that can maintain stability in the bloodstream while achieving specific drug release within tumor cells remains a major challenge. To address this issue, constructing reversible cross-linked polymeric nanocarriers that are sensitive to the intracellular reducible glutathione (GSH) characteristic of the tumor microenvironment is a promising strategy. Based on this, we designed and synthesized two novel six-membered bicyclic carbonate monomers containing disulfide (DSBC) and trisulfide (TSBC) bonds. Through a one-step ring-opening polymerization, a series of reduction-sensitive polycarbonate copolymers (i.e., PEG-PDSBC and PEG-PTSBC) were prepared, and doxorubicin (DOX)-loaded nanoparticles were fabricated using a nanoprecipitation method. The in vitro drug release behaviors of these nanoparticles were systematically investigated. The results showed that these polymers, due to the cross-linked structure formed by the ring-opening polymerization of their bicyclic monomers, could self-assemble into stable nanoparticles. Under different concentrations of glutathione, DOX-loaded PEG-PTSBC nanoparticles demonstrated faster drug release, indicating more optimized intracellular drug release properties. Further cytotoxicity experiments revealed that both types of blank nanoparticles exhibited good biocompatibility with the 4T1 and NIH-3T3 cells. Fluorescence microscopy and flow cytometry results further indicated that DOX-loaded PEG-PTSBC nanoparticles released more drugs in 4T1 cells, significantly inhibiting tumor cell growth compared with DOX-loaded PEG-PDSBC nanoparticles, with no noticeable difference in NIH-3T3 normal cells. In conclusion, this study suggests that trisulfide cross-linked polycarbonate-based nanocarriers hold promise as an anticancer drug delivery system that combines stability in the bloodstream with specific intracellular drug release, offering new insights for the development of novel, efficient, and safe anticancer nanomedicines.
Collapse
Affiliation(s)
- Jiye Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
- Wuhan University of Technology Advanced Engineering Technology Research Institute of Zhongshan City, Zhongshan 528400, China
| | - Dongdong Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Xi Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Yaodong Di
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Shuai Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Lesan Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
- Wuhan University of Technology Advanced Engineering Technology Research Institute of Zhongshan City, Zhongshan 528400, China
| |
Collapse
|
49
|
Braga CB, Perli G, Fonseca R, Grigolo TA, Ionta M, Ornelas C, Pilli RA. Enhanced Synergistic Efficacy Against Breast Cancer Cells Promoted by Co-Encapsulation of Piplartine and Paclitaxel in Acetalated Dextran Nanoparticles. Mol Pharm 2024; 21:5577-5597. [PMID: 39365693 DOI: 10.1021/acs.molpharmaceut.4c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Malignant breast tumors constitute the most frequent cancer diagnosis among women. Notwithstanding the progress in treatments, this condition persists as a major public health issue. Paclitaxel (PTX) is a first-line classical chemotherapeutic drug used as a single active pharmaceutical ingredient (API) or in combination therapy for breast cancer (BC) treatment. Adverse effects, poor water solubility, and inevitable susceptibility to drug resistance seriously limit its therapeutic efficacy in the clinic. Piplartine (PPT), an alkaloid extracted from Piper longum L., has been shown to inhibit cancer cell proliferation in several cell lines due to its pro-oxidant activity. However, PPT has low water solubility and bioavailability in vivo, and new strategies should be developed to optimize its use as a chemotherapeutic agent. In this context, the present study aimed to synthesize a series of acetalated dextran nanoparticles (Ac-Dex NPs) encapsulating PPT and PTX to overcome the limitations of PPT and PTX, maximizing their therapeutic efficacy and achieving prolonged and targeted codelivery of these anticancer compounds into BC cells. Biodegradable, pH-responsive, and biocompatible Ac-Dex NPs with diameters of 100-200 nm and spherical morphologies were formulated using a single emulsion method. Selected Ac-Dex NPs containing only PPT or PTX as well as those coloaded with PPT and PTX achieved excellent drug-loading capabilities (PPT, ca. 11-33%; PTX, ca. 2-14%) and high encapsulation efficiencies (PPT, ∼57-98%; PTX, ∼80-97%). Under physiological conditions (pH 7.4), these NPs exhibited excellent colloidal stability and were capable of protecting drug release, while under acidic conditions (pH 5.5) they showed structural collapse, releasing the therapeutics in an extended manner. Cytotoxicity results demonstrated that the encapsulation in Ac-Dex NPs had a positive effect on the activities of both PPT and PTX against the MCF-7 human breast cancer cell line after 48 h of treatment, as well as toward MDA-MB-231 triple-negative BC cells. PPT/PTX@Ac-Dex NPs were significantly more cytotoxic (IC50/PPT = 0.25-1.77 μM and IC50/PTX = 0.07-0.75 μM) and selective (SI = 2.9-6.7) against MCF-7 cells than all the control therapeutic agents: free PPT (IC50 = 4.57 μM; SI = 1.2), free PTX (IC50 = 0.97 μM; SI = 1.0), the single-drug-loaded Ac-Dex NPs, and the physical mixture of both free drugs. All combinations of PPT and PTX resulted in pronounced synergistic antiproliferative effects in MCF-7 cells, with an optimal molar ratio of PPT to PTX of 2.3:1. PPT/PTX-2@Ac-Dex NPs notably promoted apoptosis, cell cycle arrest at the G2/M, accumulation of intracellular reactive oxygen species (ROS), and combined effects from both PPT and PTX on the microtubule network of MCF-7 cells. Overall, the combination of PTX and PPT in pH-responsive Ac-Dex NPs may offer great potential to improve the therapeutic efficacy, overcome the limitations, and provide effective simultaneous delivery of these therapeutics for BC treatment.
Collapse
Affiliation(s)
- Carolyne Brustolin Braga
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
| | - Gabriel Perli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, 20018 Donostia-San Sebastián Spain
| | - Rafael Fonseca
- Institute of Biomedical Sciences, Federal University of Alfenas, UNIFAL-MG, 37130-001 Alfenas, Minas Gerais, Brazil
| | - Thiago Augusto Grigolo
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas, UNIFAL-MG, 37130-001 Alfenas, Minas Gerais, Brazil
| | - Catia Ornelas
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
- R&D Department, ChemistryX, R&D and Consulting Company, 9000 Funchal, Portugal
- R&D Department, Dendriwave, Research & Development Start-Up Company, 9000 Funchal, Portugal
| | - Ronaldo A Pilli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
| |
Collapse
|
50
|
Han B, Liu Y, Zhou Q, Yu Y, Liu X, Guo Y, Zheng X, Zhou M, Yu H, Wang W. The advance of ultrasound-enabled diagnostics and therapeutics. J Control Release 2024; 375:1-19. [PMID: 39208935 DOI: 10.1016/j.jconrel.2024.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/27/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Point-of-care ultrasound demonstrates significant potential in biomedical research due to its noninvasive, real-time visualization, cost-effectiveness, and other biological benefits. Ultrasound irradiation can precisely control the mechanical and physicochemical effects on pathogenic lesions, enabling real-time visualization, tunable tissue penetration depth, and therapeutic applications. This review summarizes recent advancements in ultrasound-enabled diagnostics and therapeutics, focusing on mechanochemical effects that can be directly integrated into biomedical applications. Additionally, the structure-functionality relationships of sonotheranostic nanoplatforms are systematically discussed, providing insights into the underlying biological effects. Finally, the limitations of current ultrasonic medicine are discussed, along with potential expansions to facilitate patient-centered translations.
Collapse
Affiliation(s)
- Biying Han
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yan Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Qianqian Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yuting Yu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Xingxing Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yu Guo
- State Key Laboratory of Chemical Biology & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Mengjiao Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Haijun Yu
- State Key Laboratory of Chemical Biology & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|