1
|
Perfeito FG, Vilabril S, Cerqueira A, Oliveira MB, Mano JF. Spontaneous Formation of Solid Shell Polymeric Multicompartments at All-Aqueous Interfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402592. [PMID: 39366008 PMCID: PMC11615791 DOI: 10.1002/advs.202402592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/16/2024] [Indexed: 10/06/2024]
Abstract
Multicompartmental capsules have demonstrated value in fields ranging from drug release, mimetics of artificial cells, to energy conversion and storage. However, the fabrication of devices with different compartments usually requires the use of toxic solvents, and/or the adaptation of technically demanding methods, including precision microfluidics and multistep processes. The spontaneous formation of multi-core capsules resulting from polyelectrolyte complexation at the interface of a prototypic all-aqueous two-phase system is described here. The variation of polyelectrolyte concentration and complexation time are described as simple working parameters capable of driving the formation of compartments at different yields, as well as tailoring their morphology. The mild processing technology enables the encapsulation of animal cells, which are capable of invading capsule walls for specific processing conditions.
Collapse
Affiliation(s)
- Francisca G. Perfeito
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
| | - Sara Vilabril
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
| | - Andreia Cerqueira
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
| | - Mariana B. Oliveira
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
| | - João F. Mano
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
| |
Collapse
|
2
|
Yuan H, Jia L, Xie X, Li Q, Peng Y, Ma Q, Guo T, Meng T. Microbially Inspired Calcium Carbonate Precipitation Pathway Integrated Polyelectrolyte Capsules (MICPC) for Biomolecules Release. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306877. [PMID: 38415820 DOI: 10.1002/smll.202306877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/19/2024] [Indexed: 02/29/2024]
Abstract
Complexation between oppositely charged polyelectrolytes offers a facile single-step strategy for assembling functional micro-nano carriers for efficient drug and vaccine delivery. However, the stability of the delivery system within the physiological environment is compromised due to the swelling of the polyelectrolyte complex, driven by the charge shielding effect, and consequently leads to uncontrollable burst release, thereby limiting its potential applications. In a pioneering approach, cellular pathway-inspired calcium carbonate precipitation pathways are developed that are integrated into polyelectrolyte capsules (MICPC). These innovative capsules are fabricated at the interface of all-aqueous microfluidic droplets, resulting in a precisely controllable and sustained release profile in physiological conditions. Unlike single-step polyelectrolyte assembly capsules which always perform rapid burst release, the MICPC exhibits a sustainable and tunable release pattern, releasing biomolecules at an average rate of 3-10% per day. Remarkably, the degree of control over MICPC's release kinetics can be finely tuned by adjusting the quantity of synthesized calcium carbonate particles within the polyelectrolyte complex. This groundbreaking work not only deepens the insights into polyelectrolyte complexation but also significantly enhances the overall stability of these complexes, opening up new avenues for expanding the range of applications involving polyelectrolyte complex-related materials.
Collapse
Affiliation(s)
- Hao Yuan
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Lufan Jia
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xin Xie
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Qinyuan Li
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yali Peng
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao, 266071, P. R. China
| | - Ting Guo
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Tao Meng
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
3
|
Song Y. Liquid-liquid phase separation-inspired design of biomaterials. Biomater Sci 2024; 12:1943-1949. [PMID: 38465963 DOI: 10.1039/d3bm02008h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Liquid-liquid phase separation (LLPS) is a crucial biological process that governs biomolecular condensation, assembly, and functionality within phase-separated aqueous environments. This phenomenon serves as a source of inspiration for the creation of artificial designs in both structured and functional biomaterials, presenting novel strategies for manipulating the structures of functional protein aggregates in a wide range of biomedical applications. This mini review summarizes my past research endeavors, offering a panoramic overview of LLPS-inspired biomaterials utilized in the design of structured materials, the development of cell mimetics, and the advancement of intelligent biomaterials.
Collapse
Affiliation(s)
- Yang Song
- State Key Laboratory of Metal Matrix Composites, School of Material Science & Engineering, Shanghai Jiao Tong University, China.
| |
Collapse
|
4
|
Tan X, Sheng R, Liu Z, Li W, Yuan R, Tao Y, Yang N, Ge L. Assembly of Metal-Phenolic Networks onto Microbubbles for One-Step Generation of Functional Microcapsules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305325. [PMID: 37641191 DOI: 10.1002/smll.202305325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/11/2023] [Indexed: 08/31/2023]
Abstract
The one-step assembly of metal-phenolic networks (MPNs) onto particle templates can enable the facile, rapid, and robust construction of hollow microcapsules. However, the required template removal step may affect the refilling of functional species in the hollow interior space or the in situ encapsulation of guest molecules during the formation of the shells. Herein, a simple strategy for the one-step generation of functional MPNs microcapsules is proposed. This method uses bovine serum albumin microbubbles (BSA MBs) as soft templates and carriers, enabling the efficient pre-encapsulation of guest species by leveraging the coordination assembly of tannic acid (TA) and FeIII ions. The addition of TA and FeIII induces a change in the protein conformation of BSA MBs and produces semipermeable capsule shells, which allow gas to escape from the MBs without template removal. The MBs-templated strategy can produce highly biocompatible capsules with controllable structure and size, and it is applicable to produce other MPNs systems like BSA-TA-CuII and BSA-TA-NiII . Finally, those MBs-templated MPNs capsules can be further functionalized or modified for the loading of magnetic nanoparticles and the pre-encapsulation of model molecules through covalence or physical adsorption, exhibiting great promise in biomedical applications.
Collapse
Affiliation(s)
- Xin Tan
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Renwang Sheng
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Zonghao Liu
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Weikun Li
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Renqiang Yuan
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing, 210009, P. R. China
| | - Yinghua Tao
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Ning Yang
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Liqin Ge
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
5
|
Douliez JP. Double Emulsion Droplets as a Plausible Step to Fatty Acid Protocells. SMALL METHODS 2023; 7:e2300530. [PMID: 37574259 DOI: 10.1002/smtd.202300530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/07/2023] [Indexed: 08/15/2023]
Abstract
It is assumed that life originated on the Earth from vesicles made of fatty acids. These amphiphiles are the simplest chemicals, which can be present in the prebiotic soup, capable of self-assembling into compartments mimicking modern cells. Production of fatty acid vesicles is widely studied, as their growing and division. However, how prebiotic chemicals require to further yield living cells encapsulated within protocells remains unclear. Here, one suggests a scenario based on recent studies, which shows that phospholipid vesicles can form from double emulsions affording facile encapsulation of cargos. In these works, water-in-oil-in-water droplets are produced by microfluidics, having dispersed lipids in the oil. Dewetting of the oil droplet leaves the internal aqueous droplet covered by a lipid bilayer, entrapping cargos. In this review, formation of fatty acid protocells is briefly reviewed, together with the procedure for preparing double emulsions and vesicles from double emulsion and finally, it is proposed that double emulsion droplets formed in the deep ocean where undersea volcano expulsed materials, with fatty acids (under their carboxylic form) and alkanols as the oily phase, entrapping hydrosoluble prebiotic chemicals in a double emulsion droplet core. Once formed, double emulsion droplets can move up to the surface, where an increase of pH, variation of pressure and/or temperature may have allowed dewetting of the oily droplet, leaving a fatty acid vesicular protocell with encapsulated prebiotic materials.
Collapse
Affiliation(s)
- Jean-Paul Douliez
- Biologie du Fruit et Pathologie, UMR 1332, Institut National de Recherche Agronomique (INRAE), Université De Bordeaux, Villenave d'Ornon, F-33140, France
| |
Collapse
|
6
|
Douliez JP, Arlaut A, Beven L, Fameau AL, Saint-Jalmes A. One step generation of single-core double emulsions from polymer-osmose-induced aqueous phase separation in polar oil droplets. SOFT MATTER 2023; 19:7562-7569. [PMID: 37751151 DOI: 10.1039/d3sm00970j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Water-in-oil-in-water emulsions (W/O/W) are aqueous droplet(s) embedded within oil droplets dispersed in a continuous water phase. They are attracting interest due to their possible applications from cosmetic to food science since both hydrosoluble and liposoluble cargos can be encapsulated within. They are generally prepared using a one-step or a two-step method, phase inversion and also via spontaneous emulsification. Here, we describe a general and simple one-step method based on hydrophilic polymers dispersed in polar oils to generate osmose-induced diffusion of water into oil droplets, forming polymer-rich aqueous droplets inside the oil droplets. Polyethylene glycol, but also other hydrophilic polymers (branched polyethylene imine or polyvinyl pyrrolidone) were successfully dispersed in 1-octanol or other polar oils (oleic acid or tributyrin) to produce an O/W emulsion that spontaneously transformed into a W1/O/W2 emulsion, with the inner aqueous droplet (W1) only containing the hydrophilic polymer initially dispersed in oil. By combining single drop experiments, with macroscopic viscosity measurements, we demonstrated that the double emulsion resulted of water diffusion, which amplitude could be adjusted by the polymer concentration. The production of high internal phase emulsions was also achieved, together with a pH-induced transition from multiple to single core double emulsion. We expect this new method for producing double emulsions to find applications in domains of microencapsulation and materials chemistry.
Collapse
Affiliation(s)
- Jean-Paul Douliez
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave dOrnon, France.
| | - Anais Arlaut
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes), UMR 6251, F-35000, Rennes, France.
| | - Laure Beven
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave dOrnon, France.
| | - Anne-Laure Fameau
- University Lille, CNRS, INRAE, Centrale Lille, UMET, 369 Rue Jules Guesde, F-59000 Lille, France
| | - Arnaud Saint-Jalmes
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes), UMR 6251, F-35000, Rennes, France.
| |
Collapse
|
7
|
Chen C, Zhu Z. Recent Advances in the Nanoshells Approach for Encapsulation of Single Probiotics. Drug Des Devel Ther 2023; 17:2763-2774. [PMID: 37705759 PMCID: PMC10497064 DOI: 10.2147/dddt.s419897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023] Open
Abstract
The intestine, often referred to as the "second brain" of the human body, houses a vast microbial community that plays a crucial role in maintaining the host's balance and directly impacting overall health. Probiotics, a type of beneficial microorganism, offer various health benefits when consumed. However, probiotics face challenges such as acidic conditions in the stomach, bile acids, enzymes, and other adverse factors before they can colonize the intestinal tissues. At present, pills, dry powder, encapsulation, chemically modified bacteria, and genetically engineered bacteria have emerged as the preferred method for the stable and targeted delivery of probiotics. In particular, the use of nanoshells on the surface of single probiotics has shown promise in regulating their growth and differentiation. These nanoshells can detach from the probiotics' surface upon reaching the intestine, facilitating direct contact between the probiotics and intestinal mucosa. In this perspective, we provide an overview of the current developments in the formation of nanoshells mediated by single probiotics. We also discuss the advantages and disadvantages of different nanocoating strategies and explore future trends in probiotic protection.
Collapse
Affiliation(s)
- Cheng Chen
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu Province, 212300, People’s Republic of China
| | - Ziyu Zhu
- The Affiliated Huai’an Hospital of Xuzhou Medical University and the Second People’s Hospital of Huai’an, Huai’an, 223002, People’s Republic of China
| |
Collapse
|
8
|
Elancheliyan R, Chauveau E, Truzzolillo D. Impact of polyelectrolyte adsorption on the rheology of concentrated poly( N-isopropylacrylamide) microgel suspensions. SOFT MATTER 2023. [PMID: 37318318 DOI: 10.1039/d3sm00317e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We explore the impact of three water-soluble polyelectrolytes (PEs) on the flow of concentrated suspensions of poly(N-isopropylacrylamide) (PNIPAm) microgels with thermoresponsive anionic charge density. By progressively adding the PEs to a jammed suspension of swollen microgels, we show that the rheology of the mixtures is remarkably influenced by the sign of the PE charge, PE concentration and hydrophobicity only when the temperature is increased above the microgel volume phase transition temperature Tc, namely when microgels collapse, they are partially hydrophobic and form a volume-spanning colloidal gel. We find that the original gel is strengthened close to the isoelectric point, attained when microgels are mixed with cationic PEs, while PE hydrophobicity rules the gel strengthening at very high PE concentrations. Surprisingly, we find that polyelectrolyte adsorption or partial embedding of PE chains inside the microgel periphery occurs also when anionic polymers of polystyrene sulfonate with a high degree of sulfonation are added. This gives rise to colloidal stabilization and to the melting of the original gel network above Tc. Contrastingly, the presence of polyelectrolytes in suspensions of swollen, jammed microgels results in a weak softening of the original repulsive glass, even when an apparent isoelectric condition is met. Our study puts forward the crucial role of electrostatics in thermosensitive microgels, unveiling an exciting new way to tailor the flow of these soft colloids and highlighting a largely unexplored path to engineer soft colloidal mixtures.
Collapse
Affiliation(s)
- Rajam Elancheliyan
- Laboratoire Charles Coulomb, UMR 5221, CNRS-Université de Montpellier, F-34095 Montpellier, France.
| | - Edouard Chauveau
- Laboratoire Charles Coulomb, UMR 5221, CNRS-Université de Montpellier, F-34095 Montpellier, France.
| | - Domenico Truzzolillo
- Laboratoire Charles Coulomb, UMR 5221, CNRS-Université de Montpellier, F-34095 Montpellier, France.
| |
Collapse
|
9
|
Li J, Parakhonskiy BV, Skirtach AG. A decade of developing applications exploiting the properties of polyelectrolyte multilayer capsules. Chem Commun (Camb) 2023; 59:807-835. [PMID: 36472384 DOI: 10.1039/d2cc04806j] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Transferring the layer-by-layer (LbL) coating approach from planar surfaces to spherical templates and subsequently dissolving these templates leads to the fabrication of polyelectrolyte multilayer capsules. The versatility of the coatings of capsules and their flexibility upon bringing in virtually any material into the coatings has quickly drawn substantial attention. Here, we provide an overview of the main developments in this field, highlighting the trends in the last decade. In the beginning, various methods of encapsulation and release are discussed followed by a broad range of applications, which were developed and explored. We also outline the current trends, where the range of applications is continuing to grow, including addition of whole new and different application areas.
Collapse
Affiliation(s)
- Jie Li
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Bogdan V Parakhonskiy
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Andre G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
10
|
Altam AA, Zhu L, Wang W, Yagoub H, Yang S. Stability improvement of carboxymethyl cellulose/chitosan complex beads by thermal treatment. Int J Biol Macromol 2022; 223:1278-1286. [PMID: 36379283 DOI: 10.1016/j.ijbiomac.2022.11.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/22/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
Abstract
Carboxymethyl cellulose (CMC) and chitosan (CHI) are two well-known natural polymer derivatives, as such the CMC@CHI complex beads fulfill many requirements for bio-related and safety-required applications. However, poor mechanical properties of CMC@CHI beads hinder their applications. We managed to improve the beads stability by a simple thermal treatment during the bead preparation. The effects of temperature, changing from 25 °C to 75 °C, on the stability of the formed beads were investigated. The morphology, diameter, shell thickness and structure of the beads treated at different temperature were analyzed using SEM, XPS and FTIR. The mechanical test and swelling experiments showed that the thermal treatment enhanced the bead's ability to withstand pressure and swelling. The beads treated at 75 °C showed the best pressure resistance, while the beads treated at 55 °C exhibited the highest swelling capability without losing integrity. This method is convenient to implement, not only improves the stability, but also controls the swelling capacity and mechanical properties of the beads, which are important for their potential applications in adsorption and controlled release. More importantly, this work offered insights on the effects of thermal treatment on the complexation process of the two polysaccharide molecular chains.
Collapse
Affiliation(s)
- Ali A Altam
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
| | - Liping Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China.
| | - Weijie Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
| | - Hajo Yagoub
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
| | - Shuguang Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China.
| |
Collapse
|
11
|
Mendez-Ortiz W, Stebe KJ, Lee D. Ionic Strength-Dependent Assembly of Polyelectrolyte-Nanoparticle Membranes via Interfacial Complexation at a Water-Water Interface. ACS NANO 2022; 16:21087-21097. [PMID: 36449948 DOI: 10.1021/acsnano.2c08916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Complexation between oppositely charged nanoparticles (NPs) and polyelectrolytes (PEs) is a scalable approach to assemble functional, stimuli-responsive membranes. Complexation at interfaces of aqueous two-phase systems (ATPSs) has emerged as a powerful method to assemble these functional structures. Membranes formed at these interfaces can grow continuously to thicknesses approaching several millimeters and display a high degree of tunability via modification of solution properties such as ionic strength. To identify the membrane assembly mechanism, we study interfacial assembly in a prototypical dextran/PEG ATPS, in which silica (SiO2) NPs suspended in the PEG phase undergo interfacial complexation with poly(diallyldimethylammonium chloride) (PDADMAC) supplied in the dextran phase. Using a microfluidic device that facilitates sequential insertion of fluorescent and nonfluorescent PDADMAC, we observe a transition in the membrane growth mechanism with ionic strength. In the absence of added salt ([NaCl] = 0 mM) PDADMAC chains permeate through the existing membrane to complex with NPs on the PEG side of the membrane, leading to the formation of well-stratified structures. At elevated ionic strength ([NaCl] = 500 mM), this permeation mechanism is lost. Rather, the complexing species incorporate uniformly across the membrane. We attribute this transition to a rapid exchange of PE-counterion, NP-counterion, and PE/NP binding sites facilitated by an increase in extrinsically compensated charged groups on the NPs and PEs at high salinity. These PDADMAC/SiO2 NP membranes have tremendous potential for the formation of functional membranes, offering control over the internal structure and serving as an ideal system for the generation of targeted release systems.
Collapse
Affiliation(s)
- Wilfredo Mendez-Ortiz
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kathleen J Stebe
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
12
|
Gonçalves RC, Vilabril S, Neves CMSS, Freire MG, Coutinho JAP, Oliveira MB, Mano JF. All-Aqueous Freeform Fabrication of Perfusable Self-Standing Soft Compartments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200352. [PMID: 35695028 DOI: 10.1002/adma.202200352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Compartmentalized structures obtained in all-aqueous settings have shown promising properties as cell encapsulation devices, as well as reactors for trans-membrane chemical reactions. While most approaches focus on the preparation of spherical devices, advances on the production of complex architectures have been enabled by the interfacial stability conferred by emulsion systems, namely mild aqueous two-phase systems (ATPS), or non-equilibrated analogues. However, the application of non-spherical structures has mostly been reported while keeping the fabricated materials at a stable interface, limiting the free-standing character, mobility and transposition of the obtained structures to different setups. Here, the fabrication of self-standing, malleable and perfusable tubular systems through all-aqueous interfacial assembly is shown, culminating in the preparation of independent objects with stability and homogeneity after disruption of the polymer-based aqueous separating system. Those hollow structures can be fabricated with a variety of widths, and rapidly printed as long structures at flow rates of 15 mm s-1 . The materials are used as compartments for cell culture, showcasing high cytocompatibility, and can be tailored to promote cell adhesion. Such structures may find application in fields that benefit from freeform tubular structures, including the biomedical field with, for example, cell encapsulation, and benchtop preparation of microfluidic devices.
Collapse
Affiliation(s)
- Raquel C Gonçalves
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Sara Vilabril
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Catarina M S S Neves
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Mara G Freire
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - João A P Coutinho
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
13
|
Chachanidze R, Xie K, Massaad H, Roux D, Leonetti M, de Loubens C. Structural characterization of the interfacial self-assembly of chitosan with oppositely charged surfactant. J Colloid Interface Sci 2022; 616:911-920. [DOI: 10.1016/j.jcis.2022.01.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/06/2022] [Accepted: 01/22/2022] [Indexed: 11/16/2022]
|
14
|
Kim H, Park D, Jiang Z, Wei Y, Woong Kim J. Microfluidic macroemulsion stabilization through in situ interfacial coacervation of associative nanoplatelets and polyelectrolytes. J Colloid Interface Sci 2022; 614:574-582. [PMID: 35121516 DOI: 10.1016/j.jcis.2022.01.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/24/2022]
Abstract
HYPOTHESIS Since macroemulsions tend to break down to lower free energy, they hardly retain their initial drop state. Therefore, studies are being conducted to overcome this based on advanced interface engineering techniques, but it is still challenging. Herein we hypothesize that the stability of giant droplets can be secured without chemical bonding through the interfacial coacervation of polyelectrolyte and associative nanoplatelets. EXPERIMENTS We synthesized associative silica nanoplates (ASNPs) via polypeptide-templated silicification and consecutive wettability adjustment. To produce monodisperse macrodroplets, the inner fluid containing partially positively charged ASNPs and the outer fluid dissolving negatively charged polyacrylic acid (PAA) were coflowed through a capillary-based microfluidic channel. FINDINGS Dynamic interfacial tension and interfacial rheology measurements revealed that the migration of ASNPs and PAA from each phase to the interface led to the formation of a complex bilayered thin membrane with an enhanced interfacial modulus. In addition, we demonstrated that adjusting the surface properties of ASNPs by coupling a fluorochemical enabled the production of monodisperse fluorocarbon-in-oil-in-water double macroemulsions. These results highlighted the applicability of our microfluidics-based interfacial coacervation technology in the development of complex fluid products with visual differentiation and drug encapsulation.
Collapse
Affiliation(s)
- Hajeong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Daehwan Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Zhiting Jiang
- BASF Advanced Chemicals CO., Ltd., Shanghai 200137, China
| | - Ying Wei
- BASF Advanced Chemicals CO., Ltd., Shanghai 200137, China
| | - Jin Woong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
15
|
Perro A, Coudon N, Chapel JP, Martin N, Béven L, Douliez JP. Building micro-capsules using water-in-water emulsion droplets as templates. J Colloid Interface Sci 2022; 613:681-696. [DOI: 10.1016/j.jcis.2022.01.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/11/2022]
|
16
|
Lu Z, Acter S, Teo BM, Tabor RF. Synthesis and characterisation of polynorepinephrine-shelled microcapsules via an oil-in-water emulsion templating route. J Mater Chem B 2021; 9:9575-9582. [PMID: 34766964 DOI: 10.1039/d1tb01786a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article, we present a facile and robust method for the surfactant-free preparation of polynorepinephrine stabilised microcapsules templated from an oil-in-water emulsion. The resulting microcapsule structures are dependent on the concentration of Cu2+ used to catalyse norepinephrine polymerisation. When the concentration of Cu2+ increases, the diameter of the microcapsules and the thickness of the shell increase correspondingly. The mechanical and chemical stability provided by the polynorepinephrine shell are explored using surface pressure measurements and atomic force microscopy, demonstrating that a rigid and robust polynorepinephrine shell is formed. In order to demonstrate potential application of the microcapsules in sustained release, Nile red stained squalane was encapsulated, and pH responsive release was monitored. It was seen that by controlling pH, the release profile could be controlled, with highest release efficacy achieved in alkaline conditions, offering a new pathway for development of encapsulation systems for the delivery of water insoluble actives.
Collapse
Affiliation(s)
- Zhenzhen Lu
- School of Chemistry, Monash University, Clayton VIC 3800, Australia.
| | - Shahinur Acter
- School of Chemistry, Monash University, Clayton VIC 3800, Australia.
| | - Boon M Teo
- School of Chemistry, Monash University, Clayton VIC 3800, Australia.
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton VIC 3800, Australia.
| |
Collapse
|
17
|
Yang S, Qin W, He F, Zhao X, Zhou Q, Lin F, Gong H, Zhang S, Yu G, Feng Y, Li J. Tuning Supramolecular Polymers' Amphiphilicity via Host-Guest Interfacial Recognition for Stabilizing Multiple Pickering Emulsions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51661-51672. [PMID: 34696581 DOI: 10.1021/acsami.1c13715] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Supramolecular host-guest chemistry bridging the adjustable amphiphilicity and macromolecular self-assembly is well advanced in aqueous media. However, the interfacial self-assembled behaviors have not been further exploited. Herein, we designed a β-cyclodextrin-grafted alginate/azobenzene-functionalized dodecyl (Alg-β-CD/AzoC12) supra-amphiphilic system that possessed tunable amphiphilicity by host-guest interfacial self-assembly. Especially, supra-amphiphilic aggregates could be utilized as highly efficient soft colloidal emulsifiers for stabilizing water-in-oil-water (W/O/W) Pickering emulsions due to the excellent interfacial activity. Meanwhile, the assembled particle structures could be modulated by adjusting the oil-water ratio, resulting from the tunable aggregation behavior of supra-amphiphilic macromolecules. Additionally, the interfacial adsorption films could be partially destroyed/reconstructed upon ultraviolet/visible irradiation due to the stimuli-altering balance of amphiphilicity of Alg-β-CD/AzoC12 polymers, further constructing the stimulus-responsive Pickering emulsions. Therefore, the supramolecular interfacial self-assembly-mediated approach not only technologically advances the continued development of creative templates to construct multifunctional soft materials with anisotropic structures but also serves as a creative bridge between supramolecular host-guest chemistry, colloidal interface science, and soft material technology.
Collapse
Affiliation(s)
- Shujuan Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Wenqi Qin
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Furui He
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Xinyu Zhao
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Qichang Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Feilin Lin
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Houkui Gong
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Siqi Zhang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Gaobo Yu
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Yuhong Feng
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Jiacheng Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| |
Collapse
|
18
|
Chen H, Wang L, Wang S, Li J, Li Z, Lin Y, Wang X, Huang X. Construction of Hybrid Bi‐microcompartments with Exocytosis‐Inspired Behavior toward Fast Temperature‐Modulated Transportation of Living Organisms. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Shengliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Junbo Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Zhenhui Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Youping Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
19
|
Park D, Kim H, Kim JW. Microfluidic production of monodisperse emulsions for cosmetics. BIOMICROFLUIDICS 2021; 15:051302. [PMID: 34733378 PMCID: PMC8550801 DOI: 10.1063/5.0057733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/11/2021] [Indexed: 05/06/2023]
Abstract
Droplet-based microfluidic technology has enabled the production of emulsions with high monodispersity in sizes ranging from a few to hundreds of micrometers. Taking advantage of this technology, attempts to generate monodisperse emulsion drops with high drug loading capacity, ordered interfacial structure, and multi-functionality have been made in the cosmetics industry. In this article, we introduce the practicality of the droplet-based microfluidic approach to the cosmetic industry in terms of innovation in productivity and marketability. Furthermore, we summarize some recent advances in the production of emulsion drops with enhanced mechanical interfacial stability. Finally, we discuss the future prospects of microfluidic technology in accordance with consumers' needs and industrial attributes.
Collapse
Affiliation(s)
- Daehwan Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hajeong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jin Woong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
20
|
Chen H, Wang L, Wang S, Li J, Li Z, Lin Y, Wang X, Huang X. Construction of Hybrid Bi-microcompartments with Exocytosis-Inspired Behavior toward Fast Temperature-Modulated Transportation of Living Organisms. Angew Chem Int Ed Engl 2021; 60:20795-20802. [PMID: 33908155 DOI: 10.1002/anie.202102846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/09/2021] [Indexed: 11/10/2022]
Abstract
Inspired by the unique characteristics of living cells, the creation of life-inspired functional ensembles is a rapidly expanding research topic, enabling transformative applications in various disciplines. Herein, we report a facile method for the fabrication of phospholipid and block copolymer hybrid bi-microcompartments via spontaneous asymmetric assembly at the water/tributyrin interface, whereby the temperature-mediated dewetting of the inner microcompartments allowed for exocytosis to occur in the constructed system. The exocytosis location and commencement time could be controlled by the buoyancy of the inner microcompartment and temperature, respectively. Furthermore, the constructed bi-microcompartments showed excellent biocompatibility and a universal loading capacity toward cargoes of widely ranging sizes; thus, the proliferation and temperature-programmed transportation of living organisms was achieved. Our results highlight opportunities for the development of complex mesoscale dynamic ensembles with life-inspired behaviors and provide a novel platform for on-demand transport of various living organisms.
Collapse
Affiliation(s)
- Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Shengliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Junbo Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhenhui Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Youping Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
21
|
Vilabril S, Nadine S, Neves CMSS, Correia CR, Freire MG, Coutinho JAP, Oliveira MB, Mano JF. One-Step All-Aqueous Interfacial Assembly of Robust Membranes for Long-Term Encapsulation and Culture of Adherent Stem/Stromal Cells. Adv Healthc Mater 2021; 10:e2100266. [PMID: 33764007 DOI: 10.1002/adhm.202100266] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 02/06/2023]
Abstract
The therapeutic effectiveness and biological relevance of technologies based on adherent cells depend on platforms that enable long-term culture in controlled environments. Liquid-core capsules have been suggested as semipermeable moieties with spatial homogeneity due to the high mobility of all components in their core. The lack of cell-adhesive sites in liquid-core structures often hampers their use as platforms for stem cell-based technologies for long-term survival and cell-directed self-organization. Here, the one-step fast formation of robust polymeric capsules formed by interfacial complexation of oppositely charged polyelectrolytes in an all-aqueous environment, compatible with the simultaneous encapsulation of mesenchymal stem/stromal cells (MSCs) and microcarriers, is described. The adhesion of umbilical cord MSCs to polymeric microcarriers enables their aggregation and culture for more than 21 days in capsules prepared either manually by dropwise addition, or by scalable electrohydrodynamic atomization, generating robust and stable capsules. Cell aggregation and secretion overtime can be tailored by providing cells with static or dynamic (bioreactor) environments.
Collapse
Affiliation(s)
- Sara Vilabril
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Aveiro 3810‐193 Portugal
| | - Sara Nadine
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Aveiro 3810‐193 Portugal
| | - Catarina M. S. S. Neves
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Aveiro 3810‐193 Portugal
| | - Clara R. Correia
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Aveiro 3810‐193 Portugal
| | - Mara G. Freire
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Aveiro 3810‐193 Portugal
| | - João A. P. Coutinho
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Aveiro 3810‐193 Portugal
| | - Mariana B. Oliveira
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Aveiro 3810‐193 Portugal
| | - João F. Mano
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Aveiro 3810‐193 Portugal
| |
Collapse
|
22
|
Abstract
Nano-drug delivery systems (NDDS) are functional drug-loaded nanocarriers widely applied in cancer therapy. Recently, layer-by-layer (LbL) assembled NDDS have been demonstrated as one of the most promising platforms in delivery of anticancer therapeutics. Here, a brief review of the LbL assembled NDDS for cancer treatment is presented. The fundamentals of the LbL assembled NDDS are first interpreted with an emphasis on the formation mechanisms. Afterwards, the tailored encapsulation of anticancer therapeutics in LbL assembled NDDS are summarized. The state-of-art targeted delivery of LbL assembled NDDS, with special attention to the elaborately control over the passive and active targeting delivery, are represented. Then the controlled release of LbL assembled NDDS with various stimulus responsiveness are systematically reviewed. Finally, conclusions and perspectives on further advancing the LbL assembled NDDS toward more powerful and versatile platforms for cancer therapy are discussed.
Collapse
Affiliation(s)
- Xinyi Zhang
- School of Pharmacy, Qingdao University, Qingdao, China
| | | | - Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao, China
| |
Collapse
|
23
|
Hwang J, Sung M, Seo B, Shin K, Lee JY, Park BJ, Kim JW. Energetically Preferred Bilayered Coacervation of Oppositely Charged ZrHP Nanoplatelets. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7664-7671. [PMID: 33533585 DOI: 10.1021/acsami.0c18116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A platform is introduced for bilayered coacervation of oppositely charged nanoplatelets (NPLs) at the oil-water interface. To this end, we synthesized two types of zirconium hydrogen phosphate (ZrHP) NPLs, cationically charged NPLs (CNPLs), and anionically charged NPLs (ANPLs) by conducting surface-initiated atom transfer radical polymerization. Taking advantage of the platelet geometry and controlled wettability, we demonstrated that ANPLs and CNPLs coacervate themselves to form a bilayered NPL membrane at the interface, which was directly confirmed by confocal laser scanning microscopy. Via theoretical consideration using the hit-and-miss Monte Carlo method, we determined that electrostatic attraction-driven coacervation of ANPLs and CNPLs at the interface shows a minimum attachment energy of ∼ -106 kBT, which is comparable to the cases where NPLs charged with the same type of ions are attached. Finally, this unique and novel interfacial coacervation behavior allowed us to develop a pH-responsive smart Pickering emulsion system.
Collapse
Affiliation(s)
- Jaemin Hwang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Minchul Sung
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bokgi Seo
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyounghee Shin
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- KIURI (Korea Initiative for fostering University of Research & Innovation) Research Group, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jin Yong Lee
- Department of Bionano Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Bum Jun Park
- Department of Chemical Engineering (BK21 FOUR Intergrated Engineering Program), Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jin Woong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
24
|
Dupré de Baubigny J, Perrin P, Pantoustier N, Salez T, Reyssat M, Monteux C. Growth Mechanism of Polymer Membranes Obtained by H-Bonding Across Immiscible Liquid Interfaces. ACS Macro Lett 2021; 10:204-209. [PMID: 35570784 DOI: 10.1021/acsmacrolett.0c00847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Complexation of polymers at liquid interfaces is an emerging technique to produce all-liquid printable and self-healing devices and membranes. It is crucial to control the assembly process, but the mechanisms at play remain unclear. Using two different reflectometric methods, we investigate the spontaneous growth of H-bonded PPO-PMAA (polypropylene oxide-polymetacrylic acid) membranes at a flat liquid-liquid interface. We find that the membrane thickness h grows with time t as h ∼ t1/2, which is reminiscent of a diffusion-limited process. However, counterintuitively, we observe that this process is faster as the PPO molar mass increases. We are able to rationalize these results with a model which considers the diffusion of the PPO chains within the growing membrane. The architecture of the latter is described as a gel-like porous network, with a pore size much smaller than the radius of the diffusing PPO chains, thus inducing entropic barriers that hinder the diffusion process. From the comparison between the experimental data and the result of the model, we extract some key piece of information about the microscopic structure of the membrane. This study opens the route toward the rational design of self-assembled membranes and capsules with optimal properties.
Collapse
Affiliation(s)
- Julien Dupré de Baubigny
- Sciences et Ingénierie de La Matière Molle, UMR 7615, ESPCI Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
| | - Patrick Perrin
- Sciences et Ingénierie de La Matière Molle, UMR 7615, ESPCI Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
| | - Nadège Pantoustier
- Sciences et Ingénierie de La Matière Molle, UMR 7615, ESPCI Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
| | - Thomas Salez
- Université Bordeaux, CNRS, LOMA, UMR 5798, 33405 Talence, France
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Mathilde Reyssat
- UMR CNRS 7083 Gulliver, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Cécile Monteux
- Sciences et Ingénierie de La Matière Molle, UMR 7615, ESPCI Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
25
|
Liu Y, Jiang S, Yan W, Qin J, He M, Qin S, Yu J. Enhanced mechanical and thermal properties of polyamide 6/p (N-(4-F-phenylmaleimide)–alt-styrene) composites based on interfacial complexation inducing crystal transformation. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123237] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
Navi M, Kieda J, Tsai SSH. Magnetic polyelectrolyte microcapsules via water-in-water droplet microfluidics. LAB ON A CHIP 2020; 20:2851-2860. [PMID: 32555881 DOI: 10.1039/d0lc00387e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Polyelectrolyte microcapsules (PEMCs) have biocompatible microcompartments. Therefore, PEMCs are useful for applications in cosmetics, food, pharmaceutics, and other industries. The fabrication of PEMCs often involves the use of harsh chemicals or cytotoxic organic phases that make biomedical applications of the microcapsules challenging. In this report, we present an all-aqueous droplet microfluidics platform for the generation of magnetic PEMCs. In the platform, we use an aqueous-two-phase system (ATPS) of polyethylene glycol (PEG) and dextran (Dex), to generate water-in-water droplets, which are magnetically functionalized with ferrofluid. Strong polyelectrolytes (PEs) with opposite charges are used in each ATPS phase. We make emulsion templates of magnetic Dex, containing the polycations, in a continuous phase of PEG. We then apply a magnetic field to move the magnetic droplets to a second PEG phase, which contains the polyanions. By careful tuning of the fluxes of the two PEs in their respective phases, we trigger the formation of a shell at the droplet interface. Owing to the presence of the ferrofluid, the resulting microcapsules are magnetically responsive. We show that the magnetic PEMCs are capable of passive release of large pseudo-drugs as well as triggered release using external stimuli such as osmotic shock and pH change. We expect that magnetic PEMCs from this biocompatible all-aqueous platform will find utility in the fabrication of functionalized drug carriers for targeted drug delivery.
Collapse
Affiliation(s)
- Maryam Navi
- Graduate Program in Biomedical Engineering, Ryerson University, Toronto M5B 2K3, Canada.
| | | | | |
Collapse
|
27
|
Chao Y, Hung LT, Feng J, Yuan H, Pan Y, Guo W, Zhang Y, Shum HC. Flower-like droplets obtained by self-emulsification of a phase-separating (SEPS) aqueous film. SOFT MATTER 2020; 16:6050-6055. [PMID: 32490476 DOI: 10.1039/d0sm00660b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-emulsification, referring to the spontaneous formation of droplets of one phase in another immiscible phase, is attracting growing interest because of its simplicity in creating droplets. Existing self-emulsification methods usually rely on phase inversion, temperature cycling, and solvent evaporation. However, achieving spatiotemporal control over the morphology of self-emulsified droplets remains challenging. In this work, a conceptually new approach of creating both simple and complex droplets by self-emulsification of a phase-separating (SEPS) aqueous film, is reported. The aqueous film is formed by depositing a surfactant-laden aqueous droplet onto an aqueous surface, and the fragmentation of the film into droplets is triggered by a wetting transition. Smaller and more uniform droplets can be achieved by introducing liquid-liquid phase separation (LLPS). Moreover, properly modulating quadruple LLPS and film fragmentation enables the creation of highly multicellular droplets such as flower-like droplets stabilized by the interfacial self-assembly of nanoparticles. This work provides a novel strategy to design aqueous droplets by LLPS, and it will inspire a wide range of applications such as membraneless organelle synthesis, cell mimics and delivery.
Collapse
Affiliation(s)
- Youchuang Chao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Lap Tak Hung
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Jie Feng
- Department of Mechanical Science and Engineering, University of Illinois at Urbana Champaign Urbana, Illinois 61801, USA
| | - Hao Yuan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China. and Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| | - Yi Pan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Wei Guo
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Yage Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
28
|
Xu R, Liu T, Sun H, Wang B, Shi S, Russell TP. Interfacial Assembly and Jamming of Polyelectrolyte Surfactants: A Simple Route To Print Liquids in Low-Viscosity Solution. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18116-18122. [PMID: 32091190 DOI: 10.1021/acsami.0c00577] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanoparticle surfactants (NPSs) assembled at the oil-water interface can significantly lower the interfacial tension and be used to structure liquids. However, to realize the three-dimensional printing of one liquid in another, high-viscosity liquids, for example, silicone oil, have been generally used. Here, we present a simple, low-cost approach to print water in low-viscosity toluene by using a new type of polyelectrolyte surfactant, sodium carboxymethyl cellulose surfactant (CMCS), that forms and assembles at the oil-water interface. The interfacial activity of CMCSs can be enhanced by tuning parameters, such as pH and concentration, and the incorporation of a rigid ligand affords excellent mechanical strength to the resultant assemblies. With CMCS jammed at the interface, liquids can be easily printed or molded to the desired shapes, with biocompatible walls that can be used to encapsulate and adsorb active materials. This study opens a new pathway to generate complex, all-liquid devices with a myriad of potential applications in biology, catalysis, and chemical separation.
Collapse
Affiliation(s)
- Ruiyan Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tan Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huilou Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Beibei Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Thomas P Russell
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
29
|
Qian B, Shi S, Wang H, Russell TP. Reconfigurable Liquids Stabilized by DNA Surfactants. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13551-13557. [PMID: 32091870 DOI: 10.1021/acsami.0c01487] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Polyelectrolyte microcapsules can be produced either by the layer-by-layer assembly technique or the formation of polyelectrolyte complexes at the liquid-liquid interface. Here, we describe the design and construction of DNA microcapsules using the cooperative assembly of DNA and amine-functionalized polyhedral oligomeric silsesquioxane (POSS-NH2) at the oil-water interface. "Janus-like" DNA surfactants (DNASs) assemble in situ at the interface, forming an elastic film. By controlling the jamming and unjamming behavior of DNASs, the interfacial assemblies can assume three different physical states: solid-like, elastomer-like, and liquid-like, similar to that seen with thermoplastics upon heating, that change from a glassy to a rubbery state, and then to a viscous liquid. By the interfacial jamming of DNASs, the liquid structures can be locked-in and reconfigured, showing promising potentials for drug delivery, biphasic reactors, and programmable liquid constructs.
Collapse
Affiliation(s)
- Bingqing Qian
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haiqiao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Thomas P Russell
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
30
|
Sarode A, Annapragada A, Guo J, Mitragotri S. Layered self-assemblies for controlled drug delivery: A translational overview. Biomaterials 2020; 242:119929. [PMID: 32163750 DOI: 10.1016/j.biomaterials.2020.119929] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022]
Abstract
Self-assembly is a prominent phenomenon observed in nature. Inspired by this thermodynamically favorable approach, several natural and synthetic materials have been investigated to develop functional systems for various biomedical applications, including drug delivery. Furthermore, layered self-assembled systems provide added advantages of tunability and multifunctionality which are crucial for controlled and targeted drug release. Layer-by-layer (LbL) deposition has emerged as one of the most popular, well-established techniques for tailoring such layered self-assemblies. This review aims to provide a brief overview of drug delivery applications using LbL deposition, along with a discussion of associated scalability challenges, technological innovations to overcome them, and prospects for commercial translation of this versatile technique. Additionally, alternative self-assembly techniques such as metal-phenolic networks (MPNs) and Liesegang rings are also reviewed in the context of their recent utilization for controlled drug delivery. Blending the sophistication of these self-assembly phenomena with material science and technological advances can provide a powerful tool to develop smart drug carriers in a scalable manner.
Collapse
Affiliation(s)
- Apoorva Sarode
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Akshaya Annapragada
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Junling Guo
- Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
31
|
Jun HM, Oh MJ, Lee JH, Yoo PJ. Microfluidic Synthesis of Carbon Nanotube-Networked Solid-Shelled Bubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:948-955. [PMID: 31917578 DOI: 10.1021/acs.langmuir.9b03268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbon nanotubes (CNTs) have attracted considerable attention because of their high electrical conductivity and outstanding mechanical properties. As such, there have been numerous attempts to form CNTs into diverse structures for use in a wide range of applications. However, the intrinsic high aspect ratios of CNTs and resulting deformability have prevented the fabrication of sophisticated CNT-based structures, especially for three-dimensional (3D) cellular architectures. To challenge this limitation, we present a novel method to fabricate a 3D CNT cellular network from the assembly of microfluidically synthesized CNT-shelled microbubbles. We successfully generated stable spherical CNT-shelled bubbles with excellent size and shape uniformity by precisely controlling bubble dimensions by varying microfluidic variables. We also developed a fundamental understanding of the bubble stability, which allowed us to suppress shrinkage-induced deformation. The synthesized CNT-shelled bubbles were assembled into a 3D close-packed structure, followed by treatment with thermal reduction to induce interfacial bonding and transformation into a closed cellular network structure. Overall, this work provides a new strategy of assembling 1D nanomaterials as the building blocks for well-regulated 3D closed cellular architectures with improved structural or physical properties.
Collapse
Affiliation(s)
- Hyun Min Jun
- School of Chemical Engineering and SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Min Jun Oh
- School of Chemical Engineering and SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Jun Hyuk Lee
- School of Chemical Engineering and SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Pil J Yoo
- School of Chemical Engineering and SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| |
Collapse
|
32
|
Balaj RV, Cho SW, Singh P, Zarzar LD. Polyelectrolyte hydrogel capsules as stabilizers for reconfigurable complex emulsions. Polym Chem 2020. [DOI: 10.1039/c9py00956f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyelectrolyte capsules stabilize biphasic oil droplets while preserving droplet reconfigurability in the presence of surfactants.
Collapse
Affiliation(s)
- Rebecca V. Balaj
- Department of Chemistry
- The Pennsylvania State University
- University Park
- USA 16802
| | - Seung Wook Cho
- Department of Materials Science and Engineering
- The Pennsylvania State University
- University Park
- USA 16802
| | - Prachi Singh
- Department of Materials Science and Engineering
- The Pennsylvania State University
- University Park
- USA 16802
| | - Lauren D. Zarzar
- Department of Chemistry
- The Pennsylvania State University
- University Park
- USA 16802
- Department of Materials Science and Engineering
| |
Collapse
|
33
|
Demulsification-induced Fast Solidification: a Novel Strategy for Preparation of Polymer Encapsulations. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-9167-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Ali M, Meaney SP, Abedin MJ, Holt P, Majumder M, Tabor RF. Graphene oxide–silica hybrid capsules for sustained fragrance release. J Colloid Interface Sci 2019; 552:528-539. [DOI: 10.1016/j.jcis.2019.05.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/12/2019] [Accepted: 05/19/2019] [Indexed: 10/26/2022]
|
35
|
Tan C, Arshadi M, Lee MC, Godec M, Azizi M, Yan B, Eskandarloo H, Deisenroth TW, Darji RH, Pho TV, Abbaspourrad A. A Robust Aqueous Core-Shell-Shell Coconut-like Nanostructure for Stimuli-Responsive Delivery of Hydrophilic Cargo. ACS NANO 2019; 13:9016-9027. [PMID: 31343860 DOI: 10.1021/acsnano.9b03049] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Conventional delivery systems for hydrophilic material still face critical challenges toward practical applications, including poor retention abilities, lack of stimulus responsiveness, and low bioavailability. Here, we propose a robust encapsulation strategy for hydrophilic cargo to produce a wide class of aqueous core-shell-shell coconut-like nanostructures featuring excellent stability and multifunctionality. The numerous active groups (-SH, -NH2, and -COOH) of the protein-polysaccharide wall material enable the formation of shell-cross-linked nanocapsules enclosing a liquid water droplet during acoustic cavitation. A subsequent pH switch can trigger the generation of an additional shell through the direct deposition of non-cross-linked protein back onto the cross-linked surface. Using anthocyanin as a model hydrophilic bioactive, these nanocapsules show high encapsulation efficiency, loading content, tolerance to environmental stresses, biocompatibility, and high cellular uptake. Moreover, the composite double shells driven by both covalent bonding and electrostatics provide the nanocapsules with pH/redox dual stimuli-responsive behavior. Our approach is also feasible for any shell material that can be cross-linked via ultrasonication, offering the potential to encapsulate diverse hydrophilic functional components, including bioactive molecules, nanocomplexes, and water-dispersible inorganic nanomaterials. Further development of this strategy should hold promise for designing versatile nanoengineered core-shell-shell nanoplatforms for various applications, such as the oral absorption of hydrophilic drugs/nutraceuticals and the smart delivery of therapeutics.
Collapse
Affiliation(s)
- Chen Tan
- Department of Food Science , Cornell University , Stocking Hall, Ithaca , New York 14853 , United States
| | - Mohammad Arshadi
- Department of Food Science , Cornell University , Stocking Hall, Ithaca , New York 14853 , United States
| | - Michelle C Lee
- Department of Food Science , Cornell University , Stocking Hall, Ithaca , New York 14853 , United States
| | - Mary Godec
- Department of Food Science , Cornell University , Stocking Hall, Ithaca , New York 14853 , United States
| | - Morteza Azizi
- Department of Food Science , Cornell University , Stocking Hall, Ithaca , New York 14853 , United States
| | - Bing Yan
- Department of Food Science , Cornell University , Stocking Hall, Ithaca , New York 14853 , United States
| | - Hamed Eskandarloo
- Department of Food Science , Cornell University , Stocking Hall, Ithaca , New York 14853 , United States
| | - Ted W Deisenroth
- BASF Corporation , 500 White Plains Road , Tarrytown , New York 10591 , United States
| | - Rupa Hiremath Darji
- BASF Corporation , 500 White Plains Road , Tarrytown , New York 10591 , United States
| | - Toan Van Pho
- BASF Corporation , 500 White Plains Road , Tarrytown , New York 10591 , United States
| | - Alireza Abbaspourrad
- Department of Food Science , Cornell University , Stocking Hall, Ithaca , New York 14853 , United States
| |
Collapse
|
36
|
McCall PM, Srivastava S, Perry SL, Kovar DR, Gardel ML, Tirrell MV. Partitioning and Enhanced Self-Assembly of Actin in Polypeptide Coacervates. Biophys J 2019; 114:1636-1645. [PMID: 29642033 DOI: 10.1016/j.bpj.2018.02.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 01/17/2018] [Accepted: 02/20/2018] [Indexed: 01/25/2023] Open
Abstract
Biomolecules exist and function in cellular microenvironments that control their spatial organization, local concentration, and biochemical reactivity. Due to the complexity of native cytoplasm, the development of artificial bioreactors and cellular mimics to compartmentalize, concentrate, and control the local physico-chemical properties is of great interest. Here, we employ self-assembling polypeptide coacervates to explore the partitioning of the ubiquitous cytoskeletal protein actin into liquid polymer-rich droplets. We find that actin spontaneously partitions into coacervate droplets and is enriched by up to ∼30-fold. Actin polymerizes into micrometer-long filaments and, in contrast to the globular protein BSA, these filaments localize predominately to the droplet periphery. We observe up to a 50-fold enhancement in the actin filament assembly rate inside coacervate droplets, consistent with the enrichment of actin within the coacervate phase. Together these results suggest that coacervates can serve as a versatile platform in which to localize and enrich biomolecules to study their reactivity in physiological environments.
Collapse
Affiliation(s)
- Patrick M McCall
- Department of Physics, The University of Chicago, Chicago, Illinois; James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Samanvaya Srivastava
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois; Argonne National Laboratory, Argonne, Illinois
| | - Sarah L Perry
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Margaret L Gardel
- Department of Physics, The University of Chicago, Chicago, Illinois; James Franck Institute, The University of Chicago, Chicago, Illinois; Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois.
| | - Matthew V Tirrell
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois; Argonne National Laboratory, Argonne, Illinois.
| |
Collapse
|
37
|
Deng Y, Ma Q, Yuan H, Lum GC, Shum HC. Development of dual-component protein microparticles in all-aqueous systems for biomedical applications. J Mater Chem B 2019. [DOI: 10.1039/c8tb03074j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Protein microparticles assisted by an emulsion droplet template have shown great promise in drug/cell delivery and tissue engineering, as well as diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Yi Deng
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
- Department of Mechanical Engineering
| | - Qingming Ma
- Department of Pharmaceutics
- School of Pharmacy
- Qingdao University
- Qingdao 266021
- China
| | - Hao Yuan
- Department of Mechanical Engineering
- University of Hong Kong
- Hong Kong SAR
- China
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI)
| | - Galen Chit Lum
- Department of Mechanical and Industrial Engineering
- University of Toronto
- Toronto
- Canada
| | - Ho Cheung Shum
- Department of Mechanical Engineering
- University of Hong Kong
- Hong Kong SAR
- China
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI)
| |
Collapse
|
38
|
Lee H, Kim WI, Youn W, Park T, Lee S, Kim TS, Mano JF, Choi IS. Iron Gall Ink Revisited: In Situ Oxidation of Fe(II)-Tannin Complex for Fluidic-Interface Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1805091. [PMID: 30302842 DOI: 10.1002/adma.201805091] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/15/2018] [Indexed: 06/08/2023]
Abstract
The ancient wisdom found in iron gall ink guides this work to a simple but advanced solution to the molecular engineering of fluidic interfaces. The Fe(II)-tannin coordination complex, a precursor of the iron gall ink, transforms into interface-active Fe(III)-tannin species, by oxygen molecules, which form a self-assembled layer at the fluidic interface spontaneously but still controllably. Kinetic studies show that the oxidation rate is directed by the counteranion of Fe(II) precursor salts, and FeCl2 is found to be more effective than FeSO4 -an ingredient of iron gall ink-in the interfacial-film fabrication. The optimized protocol leads to the formation of micrometer-thick, free-standing films at the air-water interface by continuously generating Fe(III)-tannic acid complexes in situ. The durable films formed are transferable, self-healable, pliable, and postfunctionalizable, and are hardened further by transfer to the basic buffer. This O2 -instructed film formation can be applied to other fluidic interfaces that have high O2 level, demonstrated by emulsion stabilization and concurrent capsule formation at the oil-water interface with no aid of surfactants. The system, inspired by the iron gall ink, provides new vistas on interface engineering and related materials science.
Collapse
Affiliation(s)
- Hojae Lee
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Won Il Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Wongu Youn
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Taegyun Park
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Sangmin Lee
- Department of Mechanical Engineering, KAIST, Daejeon, 34141, Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, KAIST, Daejeon, 34141, Korea
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| |
Collapse
|
39
|
Li W, Zhang L, Ge X, Xu B, Zhang W, Qu L, Choi CH, Xu J, Zhang A, Lee H, Weitz DA. Microfluidic fabrication of microparticles for biomedical applications. Chem Soc Rev 2018; 47:5646-5683. [PMID: 29999050 PMCID: PMC6140344 DOI: 10.1039/c7cs00263g] [Citation(s) in RCA: 329] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Droplet microfluidics offers exquisite control over the flows of multiple fluids in microscale, enabling fabrication of advanced microparticles with precisely tunable structures and compositions in a high throughput manner. The combination of these remarkable features with proper materials and fabrication methods has enabled high efficiency, direct encapsulation of actives in microparticles whose features and functionalities can be well controlled. These microparticles have great potential in a wide range of bio-related applications including drug delivery, cell-laden matrices, biosensors and even as artificial cells. In this review, we briefly summarize the materials, fabrication methods, and microparticle structures produced with droplet microfluidics. We also provide a comprehensive overview of their recent uses in biomedical applications. Finally, we discuss the existing challenges and perspectives to promote the future development of these engineered microparticles.
Collapse
Affiliation(s)
- Wen Li
- School of Materials Science & Engineering, Department of Polymer Materials, Shanghai University, 333 Nanchen Street, Shanghai 200444, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Werner JG, Nawar S, Solovev AA, Weitz DA. Hydrogel Microcapsules with Dynamic pH-Responsive Properties from Methacrylic Anhydride. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00843] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
41
|
Sharratt WN, Brooker A, Robles ESJ, Cabral JT. Microfluidic solvent extraction of poly(vinyl alcohol) droplets: effect of polymer structure on particle and capsule formation. SOFT MATTER 2018; 14:4453-4463. [PMID: 29697110 DOI: 10.1039/c7sm02488f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We investigate the formation of poly(vinyl alcohol) microparticles by the selective extraction of aqueous polymer solution droplets, templated by microfluidics and subsequently immersed in a non-solvent bath. The role of polymer molecular mass (18-105 kg mol-1), degree of hydrolysis (88-99%) and thus solubility, and initial solution concentration (0.01-10% w/w) are quantified. Monodisperse droplets with radii ranging from 50 to 500 μm were produced at a flow-focusing junction with carrier phase hexadecane and extracted into ethyl acetate. Solvent exchange and extraction result in droplet shrinkage, demixing, coarsening and phase-inversion, yielding polymer microparticles with well-defined dimensions and internal microstructure. Polymer concentration, varied from below the overlap concentration c* to above the concentrated crossover c**, as estimated by viscosity measurements, was found to have the largest impact on the final particle size and extraction timescale, while polymer mass and hydrolysis played a secondary role. These results are consistent with the observation that the average polymer concentration upon solidification greatly exceeds c**, and that the internal microparticle porosity is largely unchanged. However, reducing the initial polymer concentration to well below c* (approximately 100×) and increasing droplet size yields thin-walled (100's of nm) capsules which controllably crumple upon extraction. The symmetry of the process can be readily broken by imposing extraction conditions at an impermeable surface, yielding large, buckled, cavity morphologies. Based on these results, we establish robust design criteria for polymer capsules and particles, demonstrated here for poly(vinyl alcohol), with well-defined shape, dimensions and internal microstructure.
Collapse
Affiliation(s)
- W N Sharratt
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.
| | | | | | | |
Collapse
|
42
|
Wang X, Liu J, Wang P, deMello A, Feng L, Zhu X, Wen W, Kodzius R, Gong X. Synthesis of Biomaterials Utilizing Microfluidic Technology. Genes (Basel) 2018; 9:E283. [PMID: 29874840 PMCID: PMC6027171 DOI: 10.3390/genes9060283] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 12/16/2022] Open
Abstract
Recently, microfluidic technologies have attracted an enormous amount of interest as potential new tools for a large range of applications including materials synthesis, chemical and biological detection, drug delivery and screening, point-of-care diagnostics, and in-the-field analysis. Their ability to handle extremely small volumes of fluids is accompanied by additional benefits, most notably, rapid and efficient mass and heat transfer. In addition, reactions performed within microfluidic systems are highly controlled, meaning that many advanced materials, with uniform and bespoke properties, can be synthesized in a direct and rapid manner. In this review, we discuss the utility of microfluidic systems in the synthesis of materials for a variety of biological applications. Such materials include microparticles or microcapsules for drug delivery, nanoscale materials for medicine or cellular assays, and micro- or nanofibers for tissue engineering.
Collapse
Affiliation(s)
- Xiaohong Wang
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| | - Jinfeng Liu
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| | - Peizhou Wang
- Advanced Placement of Chemistry Program, International Department, Huzhou New Century Foreign Language School, Huzhou 313100, China.
| | | | - Lingyan Feng
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| | - Xiaoli Zhu
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Weijia Wen
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| | - Rimantas Kodzius
- Mathematics and Natural Sciences Department, the American University of Iraq, Sulaimani, Sulaymaniyah 46001, Iraq.
- Faculty of Medicine, Ludwig Maximilian University of Munich (LMU), 80539 Munich, Germany.
- Faculty of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany.
| | - Xiuqing Gong
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| |
Collapse
|
43
|
Kim BJ, Cho H, Park JH, Mano JF, Choi IS. Strategic Advances in Formation of Cell-in-Shell Structures: From Syntheses to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706063. [PMID: 29441678 DOI: 10.1002/adma.201706063] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/12/2017] [Indexed: 05/24/2023]
Abstract
Single-cell nanoencapsulation, forming cell-in-shell structures, provides chemical tools for endowing living cells, in a programmed fashion, with exogenous properties that are neither innate nor naturally achievable, such as cascade organic-catalysis, UV filtration, immunogenic shielding, and enhanced tolerance in vitro against lethal factors in real-life settings. Recent advances in the field make it possible to further fine-tune the physicochemical properties of the artificial shells encasing individual living cells, including on-demand degradability and reconfigurability. Many different materials, other than polyelectrolytes, have been utilized as a cell-coating material with proper choice of synthetic strategies to broaden the potential applications of cell-in-shell structures to whole-cell catalysis and sensors, cell therapy, tissue engineering, probiotics packaging, and others. In addition to the conventional "one-time-only" chemical formation of cytoprotective, durable shells, an approach of autonomous, dynamic shellation has also recently been attempted to mimic the naturally occurring sporulation process and to make the artificial shell actively responsive and dynamic. Here, the recent development of synthetic strategies for formation of cell-in-shell structures along with the advanced shell properties acquired is reviewed. Demonstrated applications, such as whole-cell biocatalysis and cell therapy, are discussed, followed by perspectives on the field of single-cell nanoencapsulation.
Collapse
Affiliation(s)
- Beom Jin Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Hyeoncheol Cho
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Ji Hun Park
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| |
Collapse
|
44
|
Ma Q, Yuan H, Song Y, Chao Y, Mak SY, Shum HC. Partitioning-dependent conversion of polyelectrolyte assemblies in an aqueous two-phase system. SOFT MATTER 2018; 14:1552-1558. [PMID: 29443349 DOI: 10.1039/c7sm02275a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Partitioning refers to the distribution of solute molecules in the two immiscible phases of a mixture of two solutions, such as an aqueous two-phase system (ATPS). The partitioning of RNA and peptide has been adjusted in situ to facilitate their assembly into intracellular membraneless organelles. Despite the immense potential of this approach in artificial systems, a partitioning-dependent assembly of macromolecules has been limited, due to the sophisticated processing associated with their in situ modification. Here we demonstrate an approach to direct the assembly of polyelectrolytes in an ATPS through varying their partitioning via pH changes. Microcapsules can be converted to microgel particles as the polyelectrolytes selectively partition to different emulsion phases when changing pH. Such partitioning-dependence can also be equally applied for complexing hydrophilic nanoparticles with polyelectrolytes in an ATPS. By enabling access of hydrophilic materials across the aqueous interface freely, the ATPS allows modification of their intrinsic properties in situ; this advantage will inspire more versatile control over the partitioning of hydrophilic materials and will create new multi-functional biomaterials.
Collapse
Affiliation(s)
- Qingming Ma
- Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | | | | | | | | | | |
Collapse
|
45
|
de Silva UK, Choudhuri K, Bryant-Friedrich AC, Lapitsky Y. Customizing polyelectrolyte complex shapes through photolithographic directed assembly. SOFT MATTER 2018; 14:521-532. [PMID: 29300411 DOI: 10.1039/c7sm02022h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polyelectrolyte complexes (PECs) form through the association of oppositely charged polymers and, due to their attractive properties, such as their mild/simple preparation and stimulus-sensitivity, attract widespread interest. The diverse applications of these materials often require control over PEC shapes. As a versatile approach to achieving such control, we report a new photolithographic directed assembly method for tailoring their structure. This method uses aqueous solutions of a polyelectrolyte, an oppositely charged monomer and a photoinitiator. Irradiation of these mixtures leads to site-specific polymerization of the ionic monomer into a polymer and, through this localized polyanion/polycation mixture formation, results in the assembly of PECs with 2-D and 3-D shapes that reflect the photoirradiation pattern. In addition to generating macroscopic PECs using photomasks, this photodirected PEC assembly method can be combined with multiphoton lithography, which enables the preparation of custom-shaped PECs with microscopic dimensions. Like other PECs, the custom-shaped structures formed through this photodirected assembly approach are stimulus-responsive, and can be made to switch shape or dissolve in response to changes in their external environments. This control over PEC shape and stimulus-sensitivity suggests the photopolymerization-based directed PEC assembly method as a potentially attractive route to stimulus-responsive soft device fabrication (e.g., preparation of intricately shaped, function-specific PECs through photolithographic 3-D printing).
Collapse
Affiliation(s)
- Udaka K de Silva
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio 43606, USA.
| | | | | | | |
Collapse
|
46
|
Duan G, Haase MF, Stebe KJ, Lee D. One-Step Generation of Salt-Responsive Polyelectrolyte Microcapsules via Surfactant-Organized Nanoscale Interfacial Complexation in Emulsions (SO NICE). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:847-853. [PMID: 28609107 DOI: 10.1021/acs.langmuir.7b01526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polyelectrolyte microcapsules are versatile compartments for encapsulation, protection, and controlled/triggered release of active agents. Conventional methods of polyelectrolyte microcapsule preparation require multiple steps or do not allow for efficient encapsulation of active agents in the lumen of the microcapsule. In this work, we present the fabrication of hollow polyelectrolyte microcapsules with a salt-responsive property based on surfactant organized nanoscale interfacial complexation in emulsions (SO NICE). In SO NICE, polyelectrolyte microcapsules are templated by water-in-oil-in-water (W/O/W) double emulsions. One polyelectrolyte is dissolved in the inner water droplet of the W/O/W double emulsions, whereas the second polyelectrolyte is dissolved in the organic phase by hydrophobic ion paring with an oppositely charged hydrophobic surfactant. Interfacial complexation of the two polyelectrolytes generates a few hundred-nanometer thick film at the inner water-oil interface of the W/O/W double emulsions. SO NICE microcapsules can be triggered to release their cargo by increasing the ionic strength of the solution, which is a hallmark of polyelectrolyte-based microcapsules. By enabling dissolution and interfacial complexation of polyelectrolytes in organic solvents, SO NICE widens the pallet of polymers that can be used to generate functional polyelectrolyte microcapsules with high encapsulation efficiency for applications in encapsulation and controlled/triggered release.
Collapse
Affiliation(s)
- Gang Duan
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Martin F Haase
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Kathleen J Stebe
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
47
|
Kim CB, You NH, Goh M. Hollow polymer microcapsule embedded transparent and heat-insulating film. RSC Adv 2018; 8:9480-9486. [PMID: 35541891 PMCID: PMC9078636 DOI: 10.1039/c8ra00801a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/27/2018] [Indexed: 11/21/2022] Open
Abstract
We herein report a facile and scalable approach to manufacturing optically transparent and heat-insulating films by incorporating hollow poly(methyl methacrylate) microcapsules into a transparent polymeric matrix. The microcapsule was prepared via emulsion polymerization. The size of the microcapsules could be easily controlled from ∼1 to 3 μm by varying the polymerization time in a narrow size distribution. The microcapsules were then mixed with a UV-curable transparent liquid resin and cured by a subsequent light irradiation. The current approach could enhance the thermal barrier property of the films without a significant reduction in the optical transparency. The solid film possessing 30 wt% microcapsules, for example, exhibited a high visible light transmittance (∼80% as measured by UV-vis spectroscopy) and the thermal conductivity was reduced to 0.06 W mK−1, corresponding to 46% of the capsule free film. To quantify and verify this result, theoretical models describing a heat transfer in a hollow microsphere composite were used, and the model showed a good agreement with our experimental observations. Highly transparent, heat-insulating films were manufactured by incorporating hollow poly(methyl methacrylate) microcapsules into a transparent polymeric film.![]()
Collapse
Affiliation(s)
- Chae Bin Kim
- Institute of Advanced Composite Materials
- Korea Institute of Science and Technology (KIST)
- Wanju-gun
- Korea
| | - Nam-Ho You
- Institute of Advanced Composite Materials
- Korea Institute of Science and Technology (KIST)
- Wanju-gun
- Korea
| | - Munju Goh
- Institute of Advanced Composite Materials
- Korea Institute of Science and Technology (KIST)
- Wanju-gun
- Korea
| |
Collapse
|
48
|
Xue N, Zhang G, Zhang X, Yang H. A reinforced Pickering emulsion for cascade reactions. Chem Commun (Camb) 2018; 54:13014-13017. [DOI: 10.1039/c8cc07644h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Based on an interfacial sol–gel process, a novel reinforced Pickering emulsion has been developed successfully for one-pot cascade reactions involving incompatible catalysts.
Collapse
Affiliation(s)
- Nan Xue
- School of Chemistry and Chemical Engineering, Shanxi University
- Taiyuan 030006
- China
| | - Gaihong Zhang
- School of Chemistry and Chemical Engineering, Shanxi University
- Taiyuan 030006
- China
| | - Xiaoming Zhang
- School of Chemistry and Chemical Engineering, Shanxi University
- Taiyuan 030006
- China
| | - Hengquan Yang
- School of Chemistry and Chemical Engineering, Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
49
|
Locatelli-Champagne C, Suau JM, Guerret O, Pellet C, Cloitre M. Versatile Encapsulation Technology Based on Tailored pH-Responsive Amphiphilic Polymers: Emulsion Gels and Capsules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14020-14028. [PMID: 29144757 DOI: 10.1021/acs.langmuir.7b02689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a multipurpose technology to encapsulate hydrophobic substances in micron-sized emulsion droplets and capsules. The encapsulating agent is a comblike stimuli-responsive copolymer comprising side-chain surfactants attached to a methacrylic acid/ethyl acrylate polyelectrolyte backbone. The composition and structure of the hydrophobic moieties of the side chains are customized to tune the particle morphology and the processing conditions. The technology exploits the synergy of properties provided by the copolymer: interfacial activity, pH responsiveness, and viscoelasticity. A one-pot process produces emulsion gels or capsule dispersions consisting of a hydrophobic liquid core surrounded by a polymer shell. The dispersions resist high ionic strengths and exhibit long-term stability. The versatility of the method is demonstrated by encapsulating various hydrophobic substances covering a broad range of viscosities and polarities-conventional and technical oils, perfumes, and alkyd paints-with a high degree of morphological and rheological control.
Collapse
Affiliation(s)
- Clémentine Locatelli-Champagne
- Soft Matter and Chemistry, CNRS, ESPCI Paris, PSL Research University , 10 rue Vauquelin, 75005 Paris, France
- Coatex SAS , 35 Rue Ampère, 69730 Genay, France
| | | | - Olivier Guerret
- Coatex SAS , 35 Rue Ampère, 69730 Genay, France
- M2i Life Sciences , 1 Rue Royale, 92210 Saint Cloud, France
| | - Charlotte Pellet
- Soft Matter and Chemistry, CNRS, ESPCI Paris, PSL Research University , 10 rue Vauquelin, 75005 Paris, France
| | - Michel Cloitre
- Soft Matter and Chemistry, CNRS, ESPCI Paris, PSL Research University , 10 rue Vauquelin, 75005 Paris, France
| |
Collapse
|
50
|
Steinschulte AA, Gelissen AP, Jung A, Brugnoni M, Caumanns T, Lotze G, Mayer J, Pergushov DV, Plamper FA. Facile Screening of Various Micellar Morphologies by Blending Miktoarm Stars and Diblock Copolymers. ACS Macro Lett 2017; 6:711-715. [PMID: 35650875 DOI: 10.1021/acsmacrolett.7b00328] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A time-saving phase-diagram screening is introduced for the self-assembly of miktoarm star polymers with different arm numbers for the insoluble part. Agreeing with theory, all conventional micellar morphologies (spherical star-like micelles, cylindrical micelles and vesicles) can be accessed by adjusting the average arm number when blending miktoarm stars with diblock copolymers (at constant arm/block lengths). Additionally, a rare clustered vesicle phase is detected. Hence, this approach permits an easy tuning of the equilibrium morphology and the size of the solvophobic domain. Such screening by scattering, ultracentrifugation, and electron microscopy techniques assists the targeted synthesis of miktoarm stars with a well-defined arm number, aimed at the morphology control of the nanostructures without blending. Specifically, we demonstrate a systematic variation of all classical micellar morphologies based on interpolyelectrolyte complexes (IPECs), consisting of a water-insoluble part formed by electrostatically coupled poly(styrenesulfonate) chains/quaternized poly(2-(dimethylamino)ethyl methacrylate) blocks, being stabilized by hydrophilic poly(ethylene oxide) blocks.
Collapse
Affiliation(s)
| | - Arjan P.H. Gelissen
- Institute
of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany
| | - Andre Jung
- Institute
of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany
| | - Monia Brugnoni
- Institute
of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany
| | - Tobias Caumanns
- GFE
Central Facility for Electron Microscopy, RWTH Aachen University, Ahornstraße 55, D-52074 Aachen, Germany
| | - Gudrun Lotze
- ESRF −
The European Synchrotron Radiation Facility, ID02 - Time-Resolved
Ultra Small-Angle X-Ray Scattering, 71, Avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France
| | - Joachim Mayer
- GFE
Central Facility for Electron Microscopy, RWTH Aachen University, Ahornstraße 55, D-52074 Aachen, Germany
| | - Dmitry V. Pergushov
- Department
of Chemistry, M.V. Lomonosov Moscow State University, Leninskie
Gory 1/3, 119991 Moscow, Russian Federation
| | - Felix A. Plamper
- Institute
of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany
| |
Collapse
|