1
|
Lee S, Jin KH, Jung H, Fukutani K, Lee J, Kwon CI, Kim JS, Kim J, Yeom HW. Surface Doping and Dual Nature of the Band Gap in Excitonic Insulator Ta 2NiSe 5. ACS NANO 2024; 18:24784-24791. [PMID: 39178330 PMCID: PMC11394347 DOI: 10.1021/acsnano.4c02784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Excitons in semiconductors and molecules are widely utilized in photovoltaics and optoelectronics, and high-temperature coherent quantum states of excitons can be realized in artificial electron-hole bilayers and an exotic material of an excitonic insulator (EI). Here, we investigate the band gap evolution of a putative high-temperature EI Ta2NiSe5 upon surface doing by alkali adsorbates with angle-resolved photoemission and density functional theory (DFT) calculations. The conduction band of Ta2NiSe5 is filled by the charge transfer from alkali adsorbates, and the band gap decreases drastically upon the increase of metallic electron density. Our DFT calculation, however, reveals that there exist both structural and excitonic contributions to the band gap tuned. While electron doping reduces the band gap substantially, it alone is not enough to close the band gap. In contrast, the structural distortion induced by the alkali adsorbate plays a critical role in the gap closure. This work indicates a combined electronic and structural nature for the EI phase of the present system and the complexity of surface doping beyond charge transfer.
Collapse
Affiliation(s)
- Siwon Lee
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Kyung-Hwan Jin
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department of Physics and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hyunjin Jung
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Keisuke Fukutani
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Jinwon Lee
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2628 CJ, The Netherlands
| | - Chang Il Kwon
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jun Sung Kim
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jaeyoung Kim
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Han Woong Yeom
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
2
|
Zhou L, Huang Q, Xia Y. Plasmon-Induced Hot Electrons in Nanostructured Materials: Generation, Collection, and Application to Photochemistry. Chem Rev 2024; 124:8597-8619. [PMID: 38829921 PMCID: PMC11273350 DOI: 10.1021/acs.chemrev.4c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
Plasmon refers to the coherent oscillation of all conduction-band electrons in a nanostructure made of a metal or a heavily doped semiconductor. Upon excitation, the plasmon can decay through different channels, including nonradiative Landau damping for the generation of plasmon-induced energetic carriers, the so-called hot electrons and holes. The energetic carriers can be collected by transferring to a functional material situated next to the plasmonic component in a hybrid configuration to facilitate a range of photochemical processes for energy or chemical conversion. This article centers on the recent advancement in generating and utilizing plasmon-induced hot electrons in a rich variety of hybrid nanostructures. After a brief introduction to the fundamentals of hot-electron generation and decay in plasmonic nanocrystals, we extensively discuss how to collect the hot electrons with various types of functional materials. With a focus on plasmonic nanocrystals made of metals, we also briefly examine those based upon heavily doped semiconductors. Finally, we illustrate how site-selected growth can be leveraged for the rational fabrication of different types of hybrid nanostructures, with an emphasis on the parameters that can be experimentally controlled to tailor the properties for various applications.
Collapse
Affiliation(s)
- Li Zhou
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School
of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Qijia Huang
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Younan Xia
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
3
|
Timmer D, Gittinger M, Quenzel T, Cadore AR, Rosa BLT, Li W, Soavi G, Lünemann DC, Stephan S, Silies M, Schulz T, Steinhoff A, Jahnke F, Cerullo G, Ferrari AC, De Sio A, Lienau C. Ultrafast Coherent Exciton Couplings and Many-Body Interactions in Monolayer WS 2. NANO LETTERS 2024; 24:8117-8125. [PMID: 38901032 PMCID: PMC11229071 DOI: 10.1021/acs.nanolett.4c01991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Transition metal dichalcogenides (TMDs) are quantum confined systems with interesting optoelectronic properties, governed by Coulomb interactions in the monolayer (1L) limit, where strongly bound excitons provide a sensitive probe for many-body interactions. Here, we use two-dimensional electronic spectroscopy (2DES) to investigate many-body interactions and their dynamics in 1L-WS2 at room temperature and with sub-10 fs time resolution. Our data reveal coherent interactions between the strongly detuned A and B exciton states in 1L-WS2. Pronounced ultrafast oscillations of the transient optical response of the B exciton are the signature of a coherent 50 meV coupling and coherent population oscillations between the two exciton states. Supported by microscopic semiconductor Bloch equation simulations, these coherent dynamics are rationalized in terms of Dexter-like interactions. Our work sheds light on the role of coherent exciton couplings and many-body interactions in the ultrafast temporal evolution of spin and valley states in TMDs.
Collapse
Affiliation(s)
- Daniel Timmer
- Institut
für Physik, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
| | - Moritz Gittinger
- Institut
für Physik, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
| | - Thomas Quenzel
- Institut
für Physik, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
| | - Alisson R. Cadore
- Cambridge
Graphene Centre, University of Cambridge, CB3 0FA Cambridge, United Kingdom
| | - Barbara L. T. Rosa
- Cambridge
Graphene Centre, University of Cambridge, CB3 0FA Cambridge, United Kingdom
| | - Wenshan Li
- Cambridge
Graphene Centre, University of Cambridge, CB3 0FA Cambridge, United Kingdom
| | - Giancarlo Soavi
- Cambridge
Graphene Centre, University of Cambridge, CB3 0FA Cambridge, United Kingdom
| | - Daniel C. Lünemann
- Institut
für Physik, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
| | - Sven Stephan
- Institut
für Physik, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
| | - Martin Silies
- Institut
für Physik, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
| | - Tommy Schulz
- Institute
for Theoretical Physics and Bremen Center for Computational Materials
Science, University of Bremen, P.O. Box 330 440, 28334 Bremen, Germany
| | - Alexander Steinhoff
- Institute
for Theoretical Physics and Bremen Center for Computational Materials
Science, University of Bremen, P.O. Box 330 440, 28334 Bremen, Germany
| | - Frank Jahnke
- Institute
for Theoretical Physics and Bremen Center for Computational Materials
Science, University of Bremen, P.O. Box 330 440, 28334 Bremen, Germany
| | - Giulio Cerullo
- Dipartimento
di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
- Istituto
di Fotonica e Nanotecnologie-CNR, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Andrea C. Ferrari
- Cambridge
Graphene Centre, University of Cambridge, CB3 0FA Cambridge, United Kingdom
| | - Antonietta De Sio
- Institut
für Physik, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
- Center
for Nanoscale Dynamics (CENAD), Carl von
Ossietzky Universität Oldenburg, Institut für Physik, 26129 Oldenburg, Germany
| | - Christoph Lienau
- Institut
für Physik, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
- Center
for Nanoscale Dynamics (CENAD), Carl von
Ossietzky Universität Oldenburg, Institut für Physik, 26129 Oldenburg, Germany
| |
Collapse
|
4
|
Qi M, Tong T, Fan X, Li X, Wang S, Zhang G, Chen R, Hu J, Yang Z, Zeng G, Qin C, Xiao L, Jia S. Anomalous layer-dependent photoluminescence spectra of supertwisted spiral WS 2. OPTICS EXPRESS 2024; 32:10419-10428. [PMID: 38571254 DOI: 10.1364/oe.516177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/21/2024] [Indexed: 04/05/2024]
Abstract
Twisted stacking of two-dimensional materials with broken inversion symmetry, such as spiral MoTe2 nanopyramids and supertwisted spiral WS2, emerge extremely strong second- and third-harmonic generation. Unlike well-studied nonlinear optical effects in these newly synthesized layered materials, photoluminescence (PL) spectra and exciton information involving their optoelectronic applications remain unknown. Here, we report layer- and power-dependent PL spectra of the supertwisted spiral WS2. The anomalous layer-dependent PL evolutions that PL intensity almost linearly increases with the rise of layer thickness have been determined. Furthermore, from the power-dependent spectra, we find the power exponents of the supertwisted spiral WS2 are smaller than 1, while those of the conventional multilayer WS2 are bigger than 1. These two abnormal phenomena indicate the enlarged interlayer spacing and the decoupling interlayer interaction in the supertwisted spiral WS2. These observations provide insight into PL features in the supertwisted spiral materials and may pave the way for further optoelectronic devices based on the twisted stacking materials.
Collapse
|
5
|
Katiyar AK, Hoang AT, Xu D, Hong J, Kim BJ, Ji S, Ahn JH. 2D Materials in Flexible Electronics: Recent Advances and Future Prospectives. Chem Rev 2024; 124:318-419. [PMID: 38055207 DOI: 10.1021/acs.chemrev.3c00302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Flexible electronics have recently gained considerable attention due to their potential to provide new and innovative solutions to a wide range of challenges in various electronic fields. These electronics require specific material properties and performance because they need to be integrated into a variety of surfaces or folded and rolled for newly formatted electronics. Two-dimensional (2D) materials have emerged as promising candidates for flexible electronics due to their unique mechanical, electrical, and optical properties, as well as their compatibility with other materials, enabling the creation of various flexible electronic devices. This article provides a comprehensive review of the progress made in developing flexible electronic devices using 2D materials. In addition, it highlights the key aspects of materials, scalable material production, and device fabrication processes for flexible applications, along with important examples of demonstrations that achieved breakthroughs in various flexible and wearable electronic applications. Finally, we discuss the opportunities, current challenges, potential solutions, and future investigative directions about this field.
Collapse
Affiliation(s)
- Ajit Kumar Katiyar
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Anh Tuan Hoang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Duo Xu
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Juyeong Hong
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Beom Jin Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seunghyeon Ji
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
6
|
Obaidulla SM, Supina A, Kamal S, Khan Y, Kralj M. van der Waals 2D transition metal dichalcogenide/organic hybridized heterostructures: recent breakthroughs and emerging prospects of the device. NANOSCALE HORIZONS 2023; 9:44-92. [PMID: 37902087 DOI: 10.1039/d3nh00310h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The near-atomic thickness and organic molecular systems, including organic semiconductors and polymer-enabled hybrid heterostructures, of two-dimensional transition metal dichalcogenides (2D-TMDs) can modulate their optoelectronic and transport properties outstandingly. In this review, the current understanding and mechanism of the most recent and significant breakthrough of novel interlayer exciton emission and its modulation by harnessing the band energy alignment between TMDs and organic semiconductors in a TMD/organic (TMDO) hybrid heterostructure are demonstrated. The review encompasses up-to-date device demonstrations, including field-effect transistors, detectors, phototransistors, and photo-switchable superlattices. An exploration of distinct traits in 2D-TMDs and organic semiconductors delves into the applications of TMDO hybrid heterostructures. This review provides insights into the synthesis of 2D-TMDs and organic layers, covering fabrication techniques and challenges. Band bending and charge transfer via band energy alignment are explored from both structural and molecular orbital perspectives. The progress in emission modulation, including charge transfer, energy transfer, doping, defect healing, and phase engineering, is presented. The recent advancements in 2D-TMDO-based optoelectronic synaptic devices, including various 2D-TMDs and organic materials for neuromorphic applications are discussed. The section assesses their compatibility for synaptic devices, revisits the operating principles, and highlights the recent device demonstrations. Existing challenges and potential solutions are discussed. Finally, the review concludes by outlining the current challenges that span from synthesis intricacies to device applications, and by offering an outlook on the evolving field of emerging TMDO heterostructures.
Collapse
Affiliation(s)
- Sk Md Obaidulla
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India
| | - Antonio Supina
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
- Chair of Physics, Montanuniversität Leoben, Franz Josef Strasse 18, 8700 Leoben, Austria
| | - Sherif Kamal
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
| | - Yahya Khan
- Department of Physics, Karakoram International university (KIU), Gilgit 15100, Pakistan
| | - Marko Kralj
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
| |
Collapse
|
7
|
Tugchin BN, Doolaard N, Barreda AI, Zhang Z, Romashkina A, Fasold S, Staude I, Eilenberger F, Pertsch T. Photoluminescence Enhancement of Monolayer WS 2 by n-Doping with an Optically Excited Gold Disk. NANO LETTERS 2023; 23:10848-10855. [PMID: 37967849 PMCID: PMC10723068 DOI: 10.1021/acs.nanolett.3c03053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/08/2023] [Indexed: 11/17/2023]
Abstract
In nanophotonics and quantum optics, we aim to control and manipulate light with tailored nanoscale structures. Hybrid systems of nanostructures and atomically thin materials are of interest here, as they offer rich physics and versatility due to the interaction between photons, plasmons, phonons, and excitons. In this study, we explore the optical and electronic properties of a hybrid system, a naturally n-doped monolayer WS2 covering a gold disk. We demonstrate that the nonresonant excitation of the gold disk in the high absorption regime efficiently generates hot carriers via localized surface plasmon excitation, which n-dope the monolayer WS2 and enhance the photoluminescence emission by regulating the multiexciton population and stabilizing the neutral exciton emission. The results are relevant to the further development of nanotransistors in photonic circuits and optoelectronic applications.
Collapse
Affiliation(s)
- Bayarjargal N. Tugchin
- Institute
of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Albert-Einstein-Straße 6, 07745 Jena, Germany
| | - Nathan Doolaard
- Institute
of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Albert-Einstein-Straße 6, 07745 Jena, Germany
| | - Angela I. Barreda
- Institute
of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Albert-Einstein-Straße 6, 07745 Jena, Germany
- Institute
of Solid State Physics, Friedrich Schiller
University Jena, Max-Wien-Platz 1, 07743 Jena, Germany
- Group
of Displays and Photonics Applications, Carlos III University of Madrid, Avda. de la Universidad, 30, Leganés, 28911 Madrid, Spain
| | - Zifei Zhang
- Institute
of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Albert-Einstein-Straße 6, 07745 Jena, Germany
| | - Anastasia Romashkina
- Institute
of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Albert-Einstein-Straße 6, 07745 Jena, Germany
| | - Stefan Fasold
- Institute
of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Albert-Einstein-Straße 6, 07745 Jena, Germany
- Vistec
Electron Beam GmbH, 07743 Jena, Germany
| | - Isabelle Staude
- Institute
of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Albert-Einstein-Straße 6, 07745 Jena, Germany
- Institute
of Solid State Physics, Friedrich Schiller
University Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - Falk Eilenberger
- Institute
of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Albert-Einstein-Straße 6, 07745 Jena, Germany
- Fraunhofer-Institute
for Applied Optics and Precision Engineering IOF, Albert-Einstein-Straße 7, 07745 Jena, Germany
| | - Thomas Pertsch
- Institute
of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Albert-Einstein-Straße 6, 07745 Jena, Germany
- Fraunhofer-Institute
for Applied Optics and Precision Engineering IOF, Albert-Einstein-Straße 7, 07745 Jena, Germany
| |
Collapse
|
8
|
Wang K, He T. Plasmon photocatalytic CO 2 reduction reactions over Au particles on various substrates. NANOSCALE 2023. [PMID: 37455632 DOI: 10.1039/d3nr02543h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Surface plasmonic effects have been widely used in photocatalytic reactions like CO2 conversion in the past decades. However, owing to the significant controversy in the physical processes of plasmon photocatalytic reactions and difficulty in realizing CO2 reduction, the influence mechanism of the plasmon effect on the CO2 photoreduction is still under debate. In this study, Au particles deposited on various substrates were employed to acquire insights into the plasmon photocatalytic CO2 reduction, including SiO2, n-Si, p-Si, TiO2-SiO2, TiO2-n-Si, and TiO2-p-Si. It was found that the plasmon resonant enhancement (PRE) effect of Au-SiO2 caused by the Au plasmon was stronger than that of Au-TiO2-SiO2 and Au-n-Si (Au-p-Si) in the visible-light range, while it was weaker for Au-n-Si (Au-p-Si) samples than Au-TiO2-n-Si (Au-TiO2-p-Si). The simulation results agree with the experimental conclusions. The photocatalytic results indicated that the catalytic activity of Au-n-Si (Au-p-Si) samples was lower than that of Au-TiO2-n-Si (Au-TiO2-p-Si), and Au-SiO2 was lower than Au-TiO2-SiO2 and Au-n-Si (Au-p-Si) samples, suggesting that the direct electron transfer (DET) mechanism was dominant here compared with the PRE mechanism.
Collapse
Affiliation(s)
- Kai Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao He
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Lee S, Seo D, Park SH, Izquierdo N, Lee EH, Younas R, Zhou G, Palei M, Hoffman AJ, Jang MS, Hinkle CL, Koester SJ, Low T. Achieving near-perfect light absorption in atomically thin transition metal dichalcogenides through band nesting. Nat Commun 2023; 14:3889. [PMID: 37393324 DOI: 10.1038/s41467-023-39450-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/14/2023] [Indexed: 07/03/2023] Open
Abstract
Near-perfect light absorbers (NPLAs), with absorbance, [Formula: see text], of at least 99%, have a wide range of applications ranging from energy and sensing devices to stealth technologies and secure communications. Previous work on NPLAs has mainly relied upon plasmonic structures or patterned metasurfaces, which require complex nanolithography, limiting their practical applications, particularly for large-area platforms. Here, we use the exceptional band nesting effect in TMDs, combined with a Salisbury screen geometry, to demonstrate NPLAs using only two or three uniform atomic layers of transition metal dichalcogenides (TMDs). The key innovation in our design, verified using theoretical calculations, is to stack monolayer TMDs in such a way as to minimize their interlayer coupling, thus preserving their strong band nesting properties. We experimentally demonstrate two feasible routes to controlling the interlayer coupling: twisted TMD bi-layers and TMD/buffer layer/TMD tri-layer heterostructures. Using these approaches, we demonstrate room-temperature values of [Formula: see text]=95% at λ=2.8 eV with theoretically predicted values as high as 99%. Moreover, the chemical variety of TMDs allows us to design NPLAs covering the entire visible range, paving the way for efficient atomically-thin optoelectronics.
Collapse
Affiliation(s)
- Seungjun Lee
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Dongjea Seo
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Sang Hyun Park
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Nezhueytl Izquierdo
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Eng Hock Lee
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Rehan Younas
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Guanyu Zhou
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Milan Palei
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Anthony J Hoffman
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Min Seok Jang
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Christopher L Hinkle
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Steven J Koester
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Tony Low
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
10
|
Bachu S, Kowalik M, Huet B, Nayir N, Dwivedi S, Hickey DR, Qian C, Snyder DW, Rotkin SV, Redwing JM, van Duin ACT, Alem N. Role of Bilayer Graphene Microstructure on the Nucleation of WSe 2 Overlayers. ACS NANO 2023. [PMID: 37368885 DOI: 10.1021/acsnano.2c12621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Over the past few years, graphene grown by chemical vapor deposition (CVD) has gained prominence as a template to grow transition metal dichalcogenide (TMD) overlayers. The resulting two-dimensional (2D) TMD/graphene vertical heterostructures are attractive for optoelectronic and energy applications. However, the effects of the microstructural heterogeneities of graphene grown by CVD on the growth of the TMD overlayers are relatively unknown. Here, we present a detailed investigation of how the stacking order and twist angle of CVD graphene influence the nucleation of WSe2 triangular crystals. Through the combination of experiments and theory, we correlate the presence of interlayer dislocations in bilayer graphene with how WSe2 nucleates, in agreement with the observation of a higher nucleation density of WSe2 on top of Bernal-stacked bilayer graphene versus twisted bilayer graphene. Scanning/transmission electron microscopy (S/TEM) data show that interlayer dislocations are present only in Bernal-stacked bilayer graphene but not in twisted bilayer graphene. Atomistic ReaxFF reactive force field molecular dynamics simulations reveal that strain relaxation promotes the formation of these interlayer dislocations with localized buckling in Bernal-stacked bilayer graphene, whereas the strain becomes distributed in twisted bilayer graphene. Furthermore, these localized buckles in graphene are predicted to serve as thermodynamically favorable sites for binding WSex molecules, leading to the higher nucleation density of WSe2 on Bernal-stacked graphene. Overall, this study explores synthesis-structure correlations in the WSe2/graphene vertical heterostructure system toward the site-selective synthesis of TMDs by controlling the structural attributes of the graphene substrate.
Collapse
Affiliation(s)
- Saiphaneendra Bachu
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Malgorzata Kowalik
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- 2D Crystal Consortium (2DCC), Materials Research Institute (MRI), The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Benjamin Huet
- 2D Crystal Consortium (2DCC), Materials Research Institute (MRI), The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Applied Research Laboratory (ARL), The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nadire Nayir
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- 2D Crystal Consortium (2DCC), Materials Research Institute (MRI), The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, Karamanoglu Mehmetbey University, Karaman, Turkey 7000
| | - Swarit Dwivedi
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- 2D Crystal Consortium (2DCC), Materials Research Institute (MRI), The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Danielle Reifsnyder Hickey
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- 2D Crystal Consortium (2DCC), Materials Research Institute (MRI), The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Chenhao Qian
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - David W Snyder
- Applied Research Laboratory (ARL), The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Slava V Rotkin
- Materials Research Institute and Department of Engineering Science & Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joan M Redwing
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- 2D Crystal Consortium (2DCC), Materials Research Institute (MRI), The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Adri C T van Duin
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- 2D Crystal Consortium (2DCC), Materials Research Institute (MRI), The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nasim Alem
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- 2D Crystal Consortium (2DCC), Materials Research Institute (MRI), The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
11
|
Asaithambi A, Kazemi Tofighi N, Ghini M, Curreli N, Schuck PJ, Kriegel I. Energy transfer and charge transfer between semiconducting nanocrystals and transition metal dichalcogenide monolayers. Chem Commun (Camb) 2023; 59:7717-7730. [PMID: 37199319 PMCID: PMC10281493 DOI: 10.1039/d3cc01125a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023]
Abstract
Nowadays, as a result of the emergence of low-dimensional hybrid structures, the scientific community is interested in their interfacial carrier dynamics, including charge transfer and energy transfer. By combining the potential of transition metal dichalcogenides (TMDs) and nanocrystals (NCs) with low-dimensional extension, hybrid structures of semiconducting nanoscale matter can lead to fascinating new technological scenarios. Their characteristics make them intriguing candidates for electronic and optoelectronic devices, like transistors or photodetectors, bringing with them challenges but also opportunities. Here, we will review recent research on the combined TMD/NC hybrid system with an emphasis on two major interaction mechanisms: energy transfer and charge transfer. With a focus on the quantum well nature in these hybrid semiconductors, we will briefly highlight state-of-the-art protocols for their structure formation and discuss the interaction mechanisms of energy versus charge transfer, before concluding with a perspective section that highlights novel types of interactions between NCs and TMDs.
Collapse
Affiliation(s)
- Aswin Asaithambi
- Functional Nanosystems, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
| | - Nastaran Kazemi Tofighi
- Functional Nanosystems, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
| | - Michele Ghini
- Functional Nanosystems, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
- Nanoelectronic Devices Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Nicola Curreli
- Functional Nanosystems, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Ilka Kriegel
- Functional Nanosystems, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
| |
Collapse
|
12
|
Grundmann A, Beckmann Y, Ghiami A, Bui M, Kardynal B, Patterer L, Schneider J, Kümmell T, Bacher G, Heuken M, Kalisch H, Vescan A. Impact of synthesis temperature and precursor ratio on the crystal quality of MOCVD WSe 2monolayers. NANOTECHNOLOGY 2023; 34:205602. [PMID: 36745916 DOI: 10.1088/1361-6528/acb947] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Structural defects in transition metal dichalcogenide (TMDC) monolayers (ML) play a significant role in determining their (opto)electronic properties, triggering numerous efforts to control defect densities during material growth or by post-growth treatments. Various types of TMDC have been successfully deposited by MOCVD (metal-organic chemical vapor deposition), which is a wafer-scale deposition technique with excellent uniformity and controllability. However, so far there are no findings on the extent to which the incorporation of defects can be controlled by growth parameters during MOCVD processes of TMDC. In this work, we investigate the effect of growth temperature and precursor ratio during MOCVD of tungsten diselenide (WSe2) on the growth of ML domains and their impact on the density of defects. The aim is to find parameter windows that enable the deposition of WSe2ML with high crystal quality, i.e. a low density of defects. Our findings confirm that the growth temperature has a large influence on the crystal quality of TMDC, significantly stronger than found for the W to Se precursor ratio. Raising the growth temperatures in the range of 688 °C to 791 °C leads to an increase of the number of defects, dominating photoluminescence (PL) at low temperatures (5.6 K). In contrast, an increase of the molar precursor ratio (DiPSe/WCO) from 1000 up to 100 000 leads to less defect-related PL at low temperatures.
Collapse
Affiliation(s)
- Annika Grundmann
- Compound Semiconductor Technology, RWTH Aachen University, D-52074 Aachen, Germany
| | - Yannick Beckmann
- Werkstoffe der Elektrotechnik and CENIDE, University of Duisburg-Essen, D-47057 Duisburg, Germany
| | - Amir Ghiami
- Compound Semiconductor Technology, RWTH Aachen University, D-52074 Aachen, Germany
| | - Minh Bui
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, D-52425 Jülich, Germany
- Department of Physics, RWTH Aachen University, D-52074 Aachen, Germany
| | - Beata Kardynal
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, D-52425 Jülich, Germany
- Department of Physics, RWTH Aachen University, D-52074 Aachen, Germany
| | - Lena Patterer
- Materials Chemistry, RWTH Aachen University, D-52074 Aachen, Germany
| | - Jochen Schneider
- Materials Chemistry, RWTH Aachen University, D-52074 Aachen, Germany
| | - Tilmar Kümmell
- Werkstoffe der Elektrotechnik and CENIDE, University of Duisburg-Essen, D-47057 Duisburg, Germany
| | - Gerd Bacher
- Werkstoffe der Elektrotechnik and CENIDE, University of Duisburg-Essen, D-47057 Duisburg, Germany
| | - Michael Heuken
- Compound Semiconductor Technology, RWTH Aachen University, D-52074 Aachen, Germany
- AIXTRON SE, D-52134 Herzogenrath, Germany
| | - Holger Kalisch
- Compound Semiconductor Technology, RWTH Aachen University, D-52074 Aachen, Germany
| | - Andrei Vescan
- Compound Semiconductor Technology, RWTH Aachen University, D-52074 Aachen, Germany
| |
Collapse
|
13
|
Lunardon M, Kosmala T, Ghorbani-Asl M, Krasheninnikov AV, Kolekar S, Durante C, Batzill M, Agnoli S, Granozzi G. Catalytic Activity of Defect-Engineered Transition Me tal Dichalcogenides Mapped with Atomic-Scale Precision by Electrochemical Scanning Tunneling Microscopy. ACS ENERGY LETTERS 2023; 8:972-980. [PMID: 36816778 PMCID: PMC9926491 DOI: 10.1021/acsenergylett.2c02599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Unraveling structure-activity relationships is a key objective of catalysis. Unfortunately, the intrinsic complexity and structural heterogeneity of materials stand in the way of this goal, mainly because the activity measurements are area-averaged and therefore contain information coming from different surface sites. This limitation can be surpassed by the analysis of the noise in the current of electrochemical scanning tunneling microscopy (EC-STM). Herein, we apply this strategy to investigate the catalytic activity toward the hydrogen evolution reaction of monolayer films of MoSe2. Thanks to atomically resolved potentiodynamic experiments, we can evaluate individually the catalytic activity of the MoSe2 basal plane, selenium vacancies, and different point defects produced by the intersections of metallic twin boundaries. The activity trend deduced by EC-STM is independently confirmed by density functional theory calculations, which also indicate that, on the metallic twin boundary crossings, the hydrogen adsorption energy is almost thermoneutral. The micro- and macroscopic measurements are combined to extract the turnover frequency of different sites, obtaining for the most active ones a value of 30 s-1 at -136 mV vs RHE.
Collapse
Affiliation(s)
- Marco Lunardon
- Department
of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Tomasz Kosmala
- Department
of Chemical Sciences, University of Padova, Padova 35131, Italy
- Institute
of Experimental Physics, University of Wrocław, Wrocław 50-204, Poland
| | - Mahdi Ghorbani-Asl
- Institute
of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf Dresden 01328, Germany
| | - Arkady V. Krasheninnikov
- Institute
of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf Dresden 01328, Germany
- Department
of Applied Physics, Aalto University, 00076 Aalto, Finland
| | - Sadhu Kolekar
- Department
of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Christian Durante
- Department
of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Matthias Batzill
- Department
of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Stefano Agnoli
- Department
of Chemical Sciences, University of Padova, Padova 35131, Italy
- INSTM
Research
Unit, University of Padova, Padova 35131, Italy
| | - Gaetano Granozzi
- Department
of Chemical Sciences, University of Padova, Padova 35131, Italy
- INSTM
Research
Unit, University of Padova, Padova 35131, Italy
| |
Collapse
|
14
|
Kim H, Im J, Nam K, Han GH, Park JY, Yoo S, Haddadnezhad M, Park S, Park W, Ahn JS, Park D, Jeong MS, Choi S. Plasmon-exciton couplings in the MoS 2/AuNP plasmonic hybrid structure. Sci Rep 2022; 12:22252. [PMID: 36564476 PMCID: PMC9789063 DOI: 10.1038/s41598-022-26485-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The understanding and engineering of the plasmon-exciton coupling are necessary to control the innovative optoelectronic device platform. In this study, we investigated the intertwined mechanism of each plasmon-exciton couplings in monolayer molybdenum disulfide (MoS2) and plasmonic hybrid structure. The results of absorption, simulation, electrostatics, and emission spectra show that interaction between photoexcited carrier and exciton modes are successfully coupled by energy transfer and exciton recombination processes. Especially, neutral exciton, trion, and biexciton can be selectively enhanced by designing the plasmonic hybrid platform. All of these results imply that there is another degree of freedom to control the individual enhancement of each exciton mode in the development of nano optoelectronic devices.
Collapse
Affiliation(s)
- Hyuntae Kim
- grid.412977.e0000 0004 0532 7395Department of Physics, Incheon National University, Incheon, 22012 Republic of Korea
| | - Jaeseung Im
- grid.412977.e0000 0004 0532 7395Department of Physics, Incheon National University, Incheon, 22012 Republic of Korea
| | - Kiin Nam
- grid.412977.e0000 0004 0532 7395Department of Physics, Incheon National University, Incheon, 22012 Republic of Korea
| | - Gang Hee Han
- grid.412977.e0000 0004 0532 7395Department of Physics, Incheon National University, Incheon, 22012 Republic of Korea
| | - Jin Young Park
- grid.412977.e0000 0004 0532 7395Department of Physics, Incheon National University, Incheon, 22012 Republic of Korea
| | - Sungjae Yoo
- grid.264381.a0000 0001 2181 989XDepartment of Chemistry, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - MohammadNavid Haddadnezhad
- grid.264381.a0000 0001 2181 989XDepartment of Chemistry, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - Sungho Park
- grid.264381.a0000 0001 2181 989XDepartment of Chemistry, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - Woongkyu Park
- grid.482524.d0000 0004 0614 4232Medical and Bio Photonics Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju, 61007 Republic of Korea
| | - Jae Sung Ahn
- grid.482524.d0000 0004 0614 4232Medical and Bio Photonics Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju, 61007 Republic of Korea
| | - Doojae Park
- grid.256753.00000 0004 0470 5964Department of Applied Optics and Physics, Hallym University, Chuncheon, 24252 Republic of Korea
| | - Mun Seok Jeong
- grid.49606.3d0000 0001 1364 9317Department of Physics, Hanyang University, Seoul, 04763 Republic of Korea ,grid.49606.3d0000 0001 1364 9317Department of Energy Engineering, Hanyang University, Seoul, 04763 Republic of Korea
| | - Soobong Choi
- grid.412977.e0000 0004 0532 7395Department of Physics, Incheon National University, Incheon, 22012 Republic of Korea
| |
Collapse
|
15
|
Pan Y, Rahaman M, He L, Milekhin I, Manoharan G, Aslam MA, Blaudeck T, Willert A, Matković A, Madeira TI, Zahn DRT. Exciton tuning in monolayer WSe 2 via substrate induced electron doping. NANOSCALE ADVANCES 2022; 4:5102-5108. [PMID: 36504751 PMCID: PMC9680939 DOI: 10.1039/d2na00495j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
We report large exciton tuning in WSe2 monolayers via substrate induced non-degenerate doping. We observe a redshift of ∼62 meV for the A exciton together with a 1-2 orders of magnitude photoluminescence (PL) quenching when the monolayer WSe2 is brought in contact with highly oriented pyrolytic graphite (HOPG) compared to dielectric substrates such as hBN and SiO2. As the evidence of doping from HOPG to WSe2, a drastic increase of the intensity ratio of trions to neutral excitons was observed. Using a systematic PL and Kelvin probe force microscopy (KPFM) investigation on WSe2/HOPG, WSe2/hBN, and WSe2/graphene, we conclude that this unique excitonic behavior is induced by electron doping from the substrate. Our results propose a simple yet efficient way for exciton tuning in monolayer WSe2, which plays a central role in the fundamental understanding and further device development.
Collapse
Affiliation(s)
- Yang Pan
- Semiconductor Physics, Institute of Physics, Chemnitz University of Technology Chemnitz Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology Chemnitz Germany
| | - Mahfujur Rahaman
- Department of Electrical and Systems Engineering, University of Pennsylvania Philadelphia PA USA
| | - Lu He
- Semiconductor Physics, Institute of Physics, Chemnitz University of Technology Chemnitz Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology Chemnitz Germany
| | - Ilya Milekhin
- Semiconductor Physics, Institute of Physics, Chemnitz University of Technology Chemnitz Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology Chemnitz Germany
| | - Gopinath Manoharan
- Center for Microtechnologies, Chemnitz University of Technology Chemnitz Germany
| | | | - Thomas Blaudeck
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology Chemnitz Germany
- Center for Microtechnologies, Chemnitz University of Technology Chemnitz Germany
- Fraunhofer Institute for Electronic Nano Systems Chemnitz Germany
| | - Andreas Willert
- Fraunhofer Institute for Electronic Nano Systems Chemnitz Germany
| | | | - Teresa I Madeira
- Semiconductor Physics, Institute of Physics, Chemnitz University of Technology Chemnitz Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology Chemnitz Germany
| | - Dietrich R T Zahn
- Semiconductor Physics, Institute of Physics, Chemnitz University of Technology Chemnitz Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology Chemnitz Germany
| |
Collapse
|
16
|
Poudel Y, Seetharaman S, Kar S, D’Souza F, Neogi A. Plasmon-Induced Enhanced Light Emission and Ultrafast Carrier Dynamics in a Tunable Molybdenum Disulfide-Gallium Nitride Heterostructure. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7422. [PMID: 36363015 PMCID: PMC9657517 DOI: 10.3390/ma15217422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The effect of localized plasmon on the photoemission and absorption in hybrid molybdenum disulfide-Gallium nitride (MoS2-GaN) heterostructure has been studied. Localized plasmon induced by platinum nanoparticles was resonantly coupled to the bandedge states of GaN to enhance the UV emission from the hybrid semiconductor system. The presence of the platinum nanoparticles also increases the effective absorption and the transient gain of the excitonic absorption in MoS2. Localized plasmons were also resonantly coupled to the defect states of GaN and the exciton states using gold nanoparticles. The transfer of hot carriers from Au plasmons to the conduction band of MoS2 and the trapping of excited carriers in MoS2 within GaN defects results in transient plasmon-induced transparency at ~1.28 ps. Selective optical excitation of the specific resonances in the presence of the localized plasmons can be used to tune the absorption or emission properties of this layered 2D-3D semiconductor material system.
Collapse
Affiliation(s)
- Yuba Poudel
- Department of Physics, University of North Texas, Denton, TX 76203, USA
| | | | - Swastik Kar
- Department of Physics, Northeastern University Boston, Boston, MA 02115, USA
| | - Francis D’Souza
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| | - Arup Neogi
- Department of Physics, University of North Texas, Denton, TX 76203, USA
- Institute for Fundamental and Frontier Sciences, University of Electronic Science and Technology, Chengdu 610056, China
| |
Collapse
|
17
|
Optical Response of CVD-Grown ML-WS2 Flakes on an Ultra-Dense Au NP Plasmonic Array. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10030120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The combination of metallic nanostructures with two-dimensional transition metal dichalcogenides is an efficient way to make the optical properties of the latter more appealing for opto-electronic applications. In this work, we investigate the optical properties of monolayer WS2 flakes grown by chemical vapour deposition and transferred onto a densely-packed array of plasmonic Au nanoparticles (NPs). The optical response was measured as a function of the thickness of a dielectric spacer intercalated between the two materials and of the system temperature, in the 75–350 K range. We show that a weak interaction is established between WS2 and Au NPs, leading to temperature- and spacer-thickness-dependent coupling between the localized surface plasmon resonance of Au NPs and the WS2 exciton. We suggest that the closely-packed morphology of the plasmonic array promotes a high confinement of the electromagnetic field in regions inaccessible by the WS2 deposited on top. This allows the achievement of direct contact between WS2 and Au while preserving a strong connotation of the properties of the two materials also in the hybrid system.
Collapse
|
18
|
Huang L, Krasnok A, Alú A, Yu Y, Neshev D, Miroshnichenko AE. Enhanced light-matter interaction in two-dimensional transition metal dichalcogenides. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:046401. [PMID: 34939940 DOI: 10.1088/1361-6633/ac45f9] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 12/16/2021] [Indexed: 05/27/2023]
Abstract
Two-dimensional (2D) transition metal dichalcogenide (TMDC) materials, such as MoS2, WS2, MoSe2, and WSe2, have received extensive attention in the past decade due to their extraordinary electronic, optical and thermal properties. They evolve from indirect bandgap semiconductors to direct bandgap semiconductors while their layer number is reduced from a few layers to a monolayer limit. Consequently, there is strong photoluminescence in a monolayer (1L) TMDC due to the large quantum yield. Moreover, such monolayer semiconductors have two other exciting properties: large binding energy of excitons and valley polarization. These properties make them become ideal materials for various electronic, photonic and optoelectronic devices. However, their performance is limited by the relatively weak light-matter interactions due to their atomically thin form factor. Resonant nanophotonic structures provide a viable way to address this issue and enhance light-matter interactions in 2D TMDCs. Here, we provide an overview of this research area, showcasing relevant applications, including exotic light emission, absorption and scattering features. We start by overviewing the concept of excitons in 1L-TMDC and the fundamental theory of cavity-enhanced emission, followed by a discussion on the recent progress of enhanced light emission, strong coupling and valleytronics. The atomically thin nature of 1L-TMDC enables a broad range of ways to tune its electric and optical properties. Thus, we continue by reviewing advances in TMDC-based tunable photonic devices. Next, we survey the recent progress in enhanced light absorption over narrow and broad bandwidths using 1L or few-layer TMDCs, and their applications for photovoltaics and photodetectors. We also review recent efforts of engineering light scattering, e.g., inducing Fano resonances, wavefront engineering in 1L or few-layer TMDCs by either integrating resonant structures, such as plasmonic/Mie resonant metasurfaces, or directly patterning monolayer/few layers TMDCs. We then overview the intriguing physical properties of different van der Waals heterostructures, and their applications in optoelectronic and photonic devices. Finally, we draw our opinion on potential opportunities and challenges in this rapidly developing field of research.
Collapse
Affiliation(s)
- Lujun Huang
- School of Engineering and Information Technology, University of New South Wales, Canberra, ACT, 2600, Australia
| | - Alex Krasnok
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, United States of America
| | - Andrea Alú
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY 10031, United States of America
- Physics Program, Graduate Center, City University of New York, New York, NY 10016, United States of America
| | - Yiling Yu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
| | - Dragomir Neshev
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - Andrey E Miroshnichenko
- School of Engineering and Information Technology, University of New South Wales, Canberra, ACT, 2600, Australia
| |
Collapse
|
19
|
Ji C, Jia H, zhou C, Wang Q, Xue W. Surface plasmon enhancement in the different spatial distributions of nanowire and two-dimensional material. Phys Chem Chem Phys 2022; 24:8296-8302. [DOI: 10.1039/d1cp05982c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface plasmon (SP) nanostructures have been widely researched to improve the low light absorption of two-dimensional transition metal dichalcogenides (TMDCs). However, the impact of the different coupling forms of them,...
Collapse
|
20
|
Joseph T, Ghorbani-Asl M, Batzill M, Krasheninnikov AV. Water dissociation and association on mirror twin boundaries in two-dimensional MoSe 2: insights from density functional theory calculations. NANOSCALE ADVANCES 2021; 3:6992-7001. [PMID: 36132369 PMCID: PMC9419107 DOI: 10.1039/d1na00429h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/21/2021] [Indexed: 06/07/2023]
Abstract
The adsorption and dissociation of water molecules on two-dimensional transition metal dichalcogenides (TMDs) is expected to be dominated by point defects, such as vacancies, and edges. At the same time, the role of grain boundaries, and particularly, mirror twinboundaries (MTBs), whose concentration in TMDs can be quite high, is not fully understood. Using density functional theory calculations, we investigate the interaction of water, hydroxyl groups, as well as oxygen and hydrogen molecules with MoSe2 monolayers when MTBs of various types are present. We show that the adsorption of all species on MTBs is energetically favorable as compared to that on the basal plane of pristine MoSe2, but the interaction with Se vacancies is stronger. We further assess the energetics of various surface chemical reactions involving oxygen and hydrogen atoms. Our results indicate that water dissociation on the basal plane should be dominated by vacancies even when MTBs are present, but they facilitate water clustering through hydroxyl groups at MTBs, which can anchor water molecules and give rise to the decoration of MTBs with water clusters. Also, the presence of MTBs affects oxygen reduction reaction (ORR) on the MoSe2 monolayer. Unlike Se vacancies which inhibit ORR due to a high overpotential, it is found that the ORR process on MTBs is more efficient, indicating their important role in the catalytic activity of MoSe2 monolayer and likely other TMDs.
Collapse
Affiliation(s)
- T Joseph
- Institute of Ion Beam Physics and Materials Research Helmholtz-Zentrum Dresden-Rossendorf 01328 Dresden Germany
| | - M Ghorbani-Asl
- Department of Physics, University of South Florida Tampa FL 33620 USA
| | - M Batzill
- Department of Applied Physics, Aalto University P.O. Box 11100 00076 Aalto Finland
| | - Arkady V Krasheninnikov
- Institute of Ion Beam Physics and Materials Research Helmholtz-Zentrum Dresden-Rossendorf 01328 Dresden Germany
| |
Collapse
|
21
|
Yu W, Dong Z, Abdelwahab I, Zhao X, Shi J, Shao Y, Li J, Hu X, Li R, Ma T, Wang Z, Xu QH, Tang DY, Song Y, Loh KP. High-Yield Exfoliation of Monolayer 1T'-MoTe 2 as Saturable Absorber for Ultrafast Photonics. ACS NANO 2021; 15:18448-18457. [PMID: 34714041 DOI: 10.1021/acsnano.1c08093] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liquid-phase exfoliation can be developed for the large-scale production of two-dimensional materials for photonic applications. Although atomically thin 2D transition metal dichalcogenides (TMDs) show enhanced nonlinear optical properties or photoluminescence quantum yield relative to the bulk phase, these properties are weak in the absolute sense due to the ultrashort optical path, and they are also sensitive to layer-dependent symmetry properties. Another practical issue is that the chemical stability of some TMDs (e.g., Weyl semimetals) decreases dramatically as the thickness scales down to monolayer, precluding application as optical components in air. To address these issues, a way of exfoliating TMDs that ensures instantaneous passivation needs to be developed. Here, we employed a polymer-assisted electrochemical exfoliation strategy to synthesize PVP-passivated TMDs monolayers that could be spin coated and restacked into organic-inorganic superlattices with well-defined X-ray diffraction patterns. The segregation of restacked TMDs (e.g., MoS2) by PVP allows the inversion asymmetry of individual layers to be maintained in these superlattices, which allows second harmonic generation and photoluminescence to be linearly scaled with thickness. PVP-passivated monolayer 1T'-MoTe2 saturable absorber fabricated from these flakes exhibits fast response and recovery time (<150 fs) and pulse stability. Continuous-wave mode-locking based on 1T'-MoTe2 saturable absorber in a fiber ring laser cavity has been realized, attaining a fundamental repetition rate of 3.15 MHz and pulse duration as short as 867 fs at 1563 nm.
Collapse
Affiliation(s)
- Wei Yu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zikai Dong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Faculty of Science, Beijing University of Technology, 100124 Beijing, China
| | - Ibrahim Abdelwahab
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jia Shi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yan Shao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jing Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Xiao Hu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Runlai Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Teng Ma
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zhe Wang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
| | - Qing-Hua Xu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Ding Yuan Tang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yanrong Song
- Faculty of Science, Beijing University of Technology, 100124 Beijing, China
| | - Kian Ping Loh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
22
|
Kim H, Moon S, Kim J, Nam SH, Kim DH, Lee JS, Kim KH, Kang ESH, Ahn KJ, Kim T, Shin C, Suh YD. Purcell-enhanced photoluminescence of few-layer MoS 2 transferred on gold nanostructure arrays with plasmonic resonance at the conduction band edge. NANOSCALE 2021; 13:5316-5323. [PMID: 33656502 DOI: 10.1039/d0nr08158b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plasmonic coupling of metallic nanostructures with two-dimensional molybdenum disulfide (MoS2) atomic layers is an important topic because it provides a pathway to manipulate the optoelectronic properties and to overcome the limited optical cross-section of the materials. Plasmonic enhanced light-matter interaction of a MoS2 layer is known to be mainly governed by optical field enhancement and the Purcell effect, while the discrimination of the contribution from each mechanism to the plasmonic enhancement is challenging. Here, we investigate photoluminescence (PL) enhancement from few-layer MoS2 transferred on Au nanostructure arrays with controlled localized surface plasmon resonance (LSPR) spectral positions that were detuned from the excitation wavelengths. Two distinctive regimes in LSPR mode-dependent PL enhancement were revealed showing a maximum enhancement (∼40-fold) with zero detuning and a modest enhancement (∼10-fold) with the red-shift detuned LSPR from the excitation wavelength, which were attributed to LSPR-induced optical field enhancement and the Purcell effect, respectively. By applying the experimental parameters into the Purcell effect formalism, an effective mode volume of ∼0.016λ03 was estimated. Our work provides an insight into how to utilize few-layer MoS2 as a base material for optoelectronics by harnessing Purcell-enhanced optical responsivity.
Collapse
Affiliation(s)
- Hyunwoo Kim
- Laboratory for Advanced Molecular Probing (LAMP), Korea Research Institute of Chemical Technology, Daejeon 34114, South Korea.
| | - Seunghyun Moon
- Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science, Daejeon 34113, South Korea.
| | - Jongwoo Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, South Korea
| | - Sang Hwan Nam
- Laboratory for Advanced Molecular Probing (LAMP), Korea Research Institute of Chemical Technology, Daejeon 34114, South Korea.
| | - Dong Hwan Kim
- Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science, Daejeon 34113, South Korea.
| | - Jeong Seop Lee
- Department of Physics, Chungbuk National University, Cheongju, Chungbuk 28644, South Korea
| | - Kyoung-Ho Kim
- Department of Physics, Chungbuk National University, Cheongju, Chungbuk 28644, South Korea
| | - Evan S H Kang
- Department of Physics, Chungbuk National University, Cheongju, Chungbuk 28644, South Korea
| | - Kwang Jun Ahn
- Department of Energy Systems Research/Department of Physics, Ajou University, Suwon-si, 16499, South Korea
| | - Taewan Kim
- Department of Electrical Engineering and Smart Grid Research Center, Jeonbuk National University, Jeonju, 54896, South Korea.
| | - ChaeHo Shin
- Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science, Daejeon 34113, South Korea.
| | - Yung Doug Suh
- Laboratory for Advanced Molecular Probing (LAMP), Korea Research Institute of Chemical Technology, Daejeon 34114, South Korea. and School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
23
|
Ye T, Zhou B, Liu Z, Li Y, Shen H, Ning CZ, Li D. Room-Temperature Exciton-Based Optoelectronic Switch. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005918. [PMID: 33432674 DOI: 10.1002/smll.202005918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Excitons, bound pairs of electrons and holes, could act as an intermediary between electronic signal processing and optical transmission, thus speeding up the interconnection of photoelectric communication. However, up to date, exciton-based logic devices such as switches that work at room temperature are still lacking. This work presents a prototype of a room-temperature optoelectronic switch based on excitons in WSe2 monolayer. The emission intensity of WSe2 stacked on Au and SiO2 substrates exhibits completely opposite behaviors upon applying gate voltages. Such observation can be ascribed to different doping behaviors of WSe2 caused by charge-transfer and chemical-doping effect at WSe2 /Au and WSe2 /SiO2 interfaces, respectively, together with the charge-drift effect. These interesting features can be utilized for optoelectronic switching, confirmed by the cyclic PL switching test for a long time exceeding 4000 s. This study offers a universal and reliable approach for the fabrication of exciton-based optoelectronic switches, which would be essential in integrated nanophotonics.
Collapse
Affiliation(s)
- Tong Ye
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Boxuan Zhou
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zeyi Liu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yongzhuo Li
- Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China
- Frontier Science Center for Quantum Information, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology, Beijing, 100084, China
| | - Hongzhi Shen
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Cun-Zheng Ning
- Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China
- Frontier Science Center for Quantum Information, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology, Beijing, 100084, China
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Dehui Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
24
|
Huang L, Su H, Hu G, Wu S, Wang Y, Chen B, Wang Q, Deng C, Yun B, Zhang R, Cui Y. Highly efficient and controllable photoluminescence emission on a suspended MoS 2-based plasmonic grating. NANOTECHNOLOGY 2020; 31:505201. [PMID: 32996469 DOI: 10.1088/1361-6528/abb1ea] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Being a new class of materials, transition metal dichalcogenides are paving the way for applications in atomically thin optoelectronics. However, the intrinsically weak light-matter interaction and the lack of manipulation ability has lead to poor light emission and tunable behavior. Here, we investigate the fluorescence characteristic of monolayer molybdenum disulfide on a metal narrow-slit grating, where a highly efficient, 471 times photoluminescence enhancement are realized, based on the hybrid surface plasmon polaritons resonances and the decreased influence of substrate. Moreover, the emitted intensity and polarization are controllable due to the polarization-dependent characteristic and anisotropy of grating. The manipulations of light-matter interactions in this special system provide a new insight into the fluorescent emission process and open a new avenue for high-performance low dimensional materials devices designs.
Collapse
Affiliation(s)
- Lei Huang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu 210096 People's Republic of China
| | - Huanhuan Su
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 People's Republic of China
| | - Guohua Hu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu 210096 People's Republic of China
| | - Shan Wu
- Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutes, Fuyang Normal University, Fuyang 236037 People's Republic of China
| | - Yongkang Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189 People's Republic of China
| | - Boyu Chen
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu 210096 People's Republic of China
| | - Qianjin Wang
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 People's Republic of China
| | - Chunyu Deng
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu 210096 People's Republic of China
| | - Binfeng Yun
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu 210096 People's Republic of China
| | - Ruohu Zhang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu 210096 People's Republic of China
| | - Yiping Cui
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu 210096 People's Republic of China
| |
Collapse
|
25
|
Du L, Sun N, Chen Z, Li Y, Liu X, Zhong X, Wu X, Xie Y, Liu Q. Depletion-Mediated Uniform Deposition of Nanorods with Patterned, Multiplexed Assembly. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49200-49209. [PMID: 33048523 DOI: 10.1021/acsami.0c13409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Device-scale, uniform, and controllable deposition of nanoparticles on various substrates is fundamentally important not only for the fabrication of thin-film devices but also for the large sample statistics of single-particle performances. However, it is challenging to obtain such predefined depositions using a simple and efficient method. Here, we present a novel strategy for obtaining the uniform and particle density/spacing-tunable deposition of nanorods on a linker-free substrate. The deposition is driven by the tailored particle-substrate depletion attraction owing to the size-matched design of the substrate roughness and the nanorod diameter. Both gold nanorods and upconversion nanorods were applied to demonstrate the generality of the method. The high particle density of more than 21 per μm2 and correspondingly the small particle spacing of fewer than 0.3 μm were achieved on a scalable substrate template. On this basis, orientational ordering and pattern-selective deposition of nanorods were realized by controlling the liquid flow rate and employing the substrate with patterned roughness areas, respectively. With the roughness-directed density-tunable depositions of nanorods integrated onto a single platform, multiplexed gold nanorod assembly and programmable surface-enhanced Raman mapping were achieved, with a promising prospect in information encoding by using the Raman signals as the translation units. The thermal stability and related transition temperature of about 160 °C of gold nanorods were also revealed as an application of single-particle statistics. This practical method could be extended to wide ranges of potential applications in plasmonic coupling devices, cryptography, or single-particle performance statistics with the feature of the high-throughput, low-cost, and scalable fabrication.
Collapse
Affiliation(s)
- Lena Du
- Key Laboratory of Micro-Nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics, Beihang University, Beijing 102206, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Ningfei Sun
- Key Laboratory of Micro-Nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics, Beihang University, Beijing 102206, China
| | - Ziyu Chen
- Key Laboratory of Micro-Nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics, Beihang University, Beijing 102206, China
| | - Yuanyuan Li
- Key Laboratory of Micro-Nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics, Beihang University, Beijing 102206, China
| | - Xiaoduo Liu
- Key Laboratory of Micro-Nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics, Beihang University, Beijing 102206, China
| | - Xiaolan Zhong
- Key Laboratory of Micro-Nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics, Beihang University, Beijing 102206, China
| | - Xiaochun Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yong Xie
- Key Laboratory of Micro-Nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics, Beihang University, Beijing 102206, China
- Key Laboratory of Intelligent Systems and Equipment Electromagnetic Environment Effect (Ministry of Industry and Information Technology), School of Electronics and Information Engineering, Beihang University, Beijing 100191, China
| | - Qian Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
26
|
Kim JH, Lee HS, An GH, Lee J, Oh HM, Choi J, Lee YH. Dielectric Nanowire Hybrids for Plasmon-Enhanced Light-Matter Interaction in 2D Semiconductors. ACS NANO 2020; 14:11985-11994. [PMID: 32840363 DOI: 10.1021/acsnano.0c05158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Monolayer transition metal dichalcogenides (TMDs) with a direct band gap are suitable for various optoelectronic applications such as ultrathin light emitters and absorbers. However, their weak light absorption caused by the atomically thin layer hinders more versatile applications for high optical gains. Although plasmonic hybridization with metal nanostructures significantly enhances light-matter interactions, the corrosion, instability of the metal nanostructures, and the undesired effects of direct metal-semiconductor contact act as obstacles to its practical application. Herein, we propose a dielectric nanostructure for plasmon-enhanced light-matter interaction of TMDs. TiO2 nanowires (NWs), as an example, are hybridized with a MoS2 monolayer on various substrates. The structure is implemented by placing a monolayer MoS2 between a TiO2 NW for a photonic scattering effect and metallic substrates with a spacer for the plasmonic Purcell effect. Here, the thin dielectric spacer is aimed at minimizing emission quenching from direct metal contact, while maximizing optical field localization in ultrathin MoS2 near the TiO2 NW. An effective emission enhancement factor of ∼22 is attained for MoS2 near the NW of the hybrid structure compared to the one without NWs. Our work is expected to facilitate a hybridized platform based on 2D semiconductors for high-performance and robust optoelectronics via engineering dielectric nanostructures with plasmonic materials.
Collapse
Affiliation(s)
- Jung Ho Kim
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun Seok Lee
- Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Gwang Hwi An
- Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jubok Lee
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hye Min Oh
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Jihoon Choi
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Young Hee Lee
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
27
|
Deng M, Li Z, Rong X, Luo Y, Li B, Zheng L, Wang X, Lin F, Meixner AJ, Braun K, Zhu X, Fang Z. Light-Controlled Near-Field Energy Transfer in Plasmonic Metasurface Coupled MoS 2 Monolayer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003539. [PMID: 32964680 DOI: 10.1002/smll.202003539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/18/2020] [Indexed: 06/11/2023]
Abstract
The energy transfer from plasmonic nanostructures to semiconductors has been extensively studied to enhance light-harvesting and tailor light-matter interactions. In this study, the efficient energy transfer from an Au metasurface to monolayered MoS2 within a near-field coupling regime is reported. The metasurface is designed and fabricated to demonstrate strong photoluminescence (PL) and cathodoluminescence (CL) emission spectra. In the coupled heterostructure of MoS2 with a metasurface, both the Raman shift and absorption spectral intensities of monolayered MoS2 are affected. The spectral profile and PL peak position can be tailored owing to the energy transfer between plasmonic nanostructures and semiconductors. This is confirmed by ultrafast lifetime measurement. A theoretical model of two coupled oscillators is proposed, where the expanded general solutions (EGS) of such a model result in a series of eigenvalues that correspond to the renormalization of energy levels in modulated MoS2. The model can predict the peak shift up to tens of nanometers in hybrid structures and hence provides an alternative method to describe energy transfer between metallic structures and two-dimensional (2D) semiconductors. A viable approach for studying light-matter interactions in 2D semiconductors via near-field energy transfer is presented, which may stimulate the applications of functional nanophotonic devices.
Collapse
Affiliation(s)
- Miaoyi Deng
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Nano-optoelectronics Frontier Center of Ministry of Education, Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, P. R. China
| | - Ziwei Li
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xin Rong
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Nano-optoelectronics Frontier Center of Ministry of Education, Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, P. R. China
| | - Yang Luo
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Nano-optoelectronics Frontier Center of Ministry of Education, Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, P. R. China
| | - Bowen Li
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Nano-optoelectronics Frontier Center of Ministry of Education, Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, P. R. China
| | - Liheng Zheng
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Nano-optoelectronics Frontier Center of Ministry of Education, Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, P. R. China
| | - Xiao Wang
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Feng Lin
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Nano-optoelectronics Frontier Center of Ministry of Education, Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, P. R. China
| | - Alfred J Meixner
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Tübingen, 72076, Germany
| | - Kai Braun
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Tübingen, 72076, Germany
| | - Xing Zhu
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Nano-optoelectronics Frontier Center of Ministry of Education, Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, P. R. China
| | - Zheyu Fang
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Nano-optoelectronics Frontier Center of Ministry of Education, Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
28
|
Luo Z, Jia H, Lv L, Wang Q, Yan X. Gate-tunable trion binding energy in monolayer MoS 2 with plasmonic superlattice. NANOSCALE 2020; 12:17754-17761. [PMID: 32815964 DOI: 10.1039/d0nr02104k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two-dimensional transition metal dichalcogenides exhibit promising potential and attract the attention of the world in the application of optoelectronic devices owing to their distinctive physical and chemical properties. The real-time control of light-matter interactions in semiconductor devices through an external optical resonant cavity is crucial for designing next-generation optoelectronic devices. Here, we report the spectroscopic identification of trion binding energy in monolayer MoS2 field-effect transistors with plasmonic nanoresonators. In consequence, the binding energy could be regulated dynamically through an external electric field. In addition, after increasing the carrier injection, the evidence of the enhanced trion binding energy can also be observed, which can be utilized for researching magneto-plasmons. The ability to dynamically control the optical properties by electrostatic doping opens a platform for designing next-generation optoelectronic and valleytronic applications in two-dimensional crystals with accurate and precise tailored responses.
Collapse
Affiliation(s)
- Zhuang Luo
- Zhenjiang Key Laboratory of Advanced Sensing Materials and Devices, Jiangsu University, Zhenjiang 212013, P. R. China.
| | | | | | | | | |
Collapse
|
29
|
Guan J, Xia S, Zhang Z, Wu J, Meng H, Yue J, Zhai X, Wang L, Wen S. Two Switchable Plasmonically Induced Transparency Effects in a System with Distinct Graphene Resonators. NANOSCALE RESEARCH LETTERS 2020; 15:142. [PMID: 32621110 PMCID: PMC7347741 DOI: 10.1186/s11671-020-03374-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
General plasmonic systems to realize plasmonically induced transparency (PIT) effect only exist one single PIT mainly because they only allow one single coupling pathway. In this study, we propose a distinct graphene resonator-based system, which is composed of graphene nanoribbons (GNRs) coupled with dielectric grating-loaded graphene layer resonators, to achieve two switchable PIT effects. By designing crossed directions of the resonators, the proposed system exists two different PIT effects characterized by different resonant positions and linewidths. These two PIT effects result from two separate and polarization-selective coupling pathways, allowing us to switch the PIT from one to the other by simply changing the polarization direction. Parametric studies are carried to demonstrate the coupling effects whereas the two-particle model is applied to explain the physical mechanism, finding excellent agreements between the numerical and theoretical results. Our proposal can be used to design switchable PIT-based plasmonic devices, such as tunable dual-band sensors and perfect absorbers.
Collapse
Affiliation(s)
- Jingrui Guan
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Shengxuan Xia
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, 410082, China.
| | - Zeyan Zhang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Jing Wu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Haiyu Meng
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Jing Yue
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Xiang Zhai
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Lingling Wang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Shuangchun Wen
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| |
Collapse
|
30
|
Epstein I, Terrés B, Chaves AJ, Pusapati VV, Rhodes DA, Frank B, Zimmermann V, Qin Y, Watanabe K, Taniguchi T, Giessen H, Tongay S, Hone JC, Peres NMR, Koppens FHL. Near-Unity Light Absorption in a Monolayer WS 2 Van der Waals Heterostructure Cavity. NANO LETTERS 2020; 20:3545-3552. [PMID: 32283034 DOI: 10.1021/acs.nanolett.0c00492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Excitons in monolayer transition-metal-dichalcogenides (TMDs) dominate their optical response and exhibit strong light-matter interactions with lifetime-limited emission. While various approaches have been applied to enhance light-exciton interactions in TMDs, the achieved strength have been far below unity, and a complete picture of its underlying physical mechanisms and fundamental limits has not been provided. Here, we introduce a TMD-based van der Waals heterostructure cavity that provides near-unity excitonic absorption, and emission of excitonic complexes that are observed at ultralow excitation powers. Our results are in full agreement with a quantum theoretical framework introduced to describe the light-exciton-cavity interaction. We find that the subtle interplay between the radiative, nonradiative and dephasing decay rates plays a crucial role, and unveil a universal absorption law for excitons in 2D systems. This enhanced light-exciton interaction provides a platform for studying excitonic phase-transitions and quantum nonlinearities and enables new possibilities for 2D semiconductor-based optoelectronic devices.
Collapse
Affiliation(s)
- Itai Epstein
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Bernat Terrés
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - André J Chaves
- Grupo de Materiais Semicondutores e Nanotecnologia and Departamento de Física, Instituto Tecnológico de Aeronáutica, DCTA, 12228-900 São José dos Campos,Brazil
| | - Varun-Varma Pusapati
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Daniel A Rhodes
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Bettina Frank
- Fourth Physics Institute and Research Center SCoPE, University of Stuttgart, 70569 Stuttgart, Germany
| | - Valentin Zimmermann
- Fourth Physics Institute and Research Center SCoPE, University of Stuttgart, 70569 Stuttgart, Germany
| | - Ying Qin
- School for Engineering of Matter Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Kenji Watanabe
- National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Harald Giessen
- Fourth Physics Institute and Research Center SCoPE, University of Stuttgart, 70569 Stuttgart, Germany
| | - Sefaattin Tongay
- School for Engineering of Matter Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - James C Hone
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Nuno M R Peres
- Centro de Física and Departamento de Física and QuantaLab, Universidade do Minho, P-4710-057 Braga, Portugal
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, 4715-330 Braga, Portugal
| | - Frank H L Koppens
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
31
|
Sriram P, Manikandan A, Chuang FC, Chueh YL. Hybridizing Plasmonic Materials with 2D-Transition Metal Dichalcogenides toward Functional Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904271. [PMID: 32196957 DOI: 10.1002/smll.201904271] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Recently, 2D transition metal dichalcogenides (TMDs) have become intriguing materials in the versatile field of photonics and optoelectronics because of their strong light-matter interaction that stems from the atomic layer thickness, broadband optical response, controllable optoelectronic properties, and high nonlinearity, as well as compatibility. Nevertheless, the low optical cross-section of 2D-TMDs inhibits the light-matter interaction, resulting in lower quantum yield. Therefore, hybridizing the 2D-TMDs with plasmonic nanomaterials has become one of the promising strategies to boost the optical absorption of thin 2D-TMDs. The appeal of plasmonics is based on their capability to localize and enhance the electromagnetic field and increase the optical path length of light by scattering and injecting hot electrons to TMDs. In this regard, recent achievements with respect to hybridization of the plasmonic effect in 2D-TMDs systems and its augmented optical and optoelectronic properties are reviewed. The phenomenon of plasmon-enhanced interaction in 2D-TMDs is briefly described and state-of-the-art hybrid device applications are comprehensively discussed. Finally, an outlook on future applications of these hybrid devices is provided.
Collapse
Affiliation(s)
- Pavithra Sriram
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Arumugam Manikandan
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Feng-Chuan Chuang
- Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Physics Division, The National Center for Theoretical Science, Hsinchu, 30013, Taiwan
| | - Yu-Lun Chueh
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
32
|
Xia S, Zhai X, Wang L, Wen S. Plasmonically induced transparency in in-plane isotropic and anisotropic 2D materials. OPTICS EXPRESS 2020; 28:7980-8002. [PMID: 32225433 DOI: 10.1364/oe.389573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
General two-dimensional (2D) material-based systems that achieve plasmonically induced transparency (PIT) are limited to isotropic graphene only through unidirectional bright-dark mode interaction. Moreover, it is challenging to extend these devices to anisotropic 2D films. In this study, we exploit surface plasmons excited at two crossed grating layers, which can be formed either by dielectric gratings or by the 2D sheet itself, to achieve dynamically tunable PIT in both isotropic and anisotropic 2D materials. Here, each grating simultaneously acts as both bright and dark modes. By taking isotropic graphene and anisotropic black phosphorus (BP) as proofs of concept, we reveal that this PIT can result from either unidirectional bright-dark or bidirectional bright-bright and bright-dark mode hybridized couplings when the incident light is parallelly/perpendicularly or obliquely polarized to the gratings, respectively. Identical grating parameters in isotropic (crossed lattice directions in anisotropic) layers produce polarization-independent single-window PIT, whereas different grating parameters (coincident lattice directions) yield polarization-sensitive double-window PIT. The proposed technique is examined by a two-particle model, showing excellent agreement between the theoretical and numerical results. This study provides insight into the physical mechanisms of PIT and advances the applicability and versatility of 2D material-based PIT devices.
Collapse
|
33
|
Guo W, Dong Z, Xu Y, Liu C, Wei D, Zhang L, Shi X, Guo C, Xu H, Chen G, Wang L, Zhang K, Chen X, Lu W. Sensitive Terahertz Detection and Imaging Driven by the Photothermoelectric Effect in Ultrashort-Channel Black Phosphorus Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902699. [PMID: 32154074 PMCID: PMC7055554 DOI: 10.1002/advs.201902699] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/28/2019] [Indexed: 05/29/2023]
Abstract
Terahertz (THz) photon detection is of particular appealing for myriad applications, but it still lags behind efficient manipulation with electronics and photonics due to the lack of a suitable principle satisfying both high sensitivity and fast response at room temperature. Here, a new strategy is proposed to overcome these limitations by exploring the photothermoelectric (PTE) effect in an ultrashort (down to 30 nm) channel with black phosphorus as a photoactive material. The preferential flow of hot carriers is enabled by the asymmetric Cr/Au and Ti/Au metallization with the titled-angle evaporation technique. Most intriguingly, orders of magnitude field-enhancement beyond the skin-depth limit and photon absorption across a broadband frequency can be achieved. The PTE detector has excellent sensitivity of 297 V W-1, noise equivalent power less than 58 pW/Hz0.5, and response time below 0.8 ms, which is superior to other thermal-based detectors at room temperature. A rigorous comparison with existing THz detectors, together with verification by further optical-pumping and imaging experiments, substantiates the importance of the localized field effect in the skin-depth limit. The results allow solid understanding on the role of PTE effect played in the THz photoresponse, opening up new opportunities for developing highly sensitive THz detectors for addressing targeted applications.
Collapse
Affiliation(s)
- Wanlong Guo
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of Sciences500 Yu‐Tian RoadShanghai200083China
- University of Chinese Academy of SciencesNo. 19A Yuquan RoadBeijing100049China
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Zhuo Dong
- CAS Key Laboratory of Nano‐Bio Interface and Key Laboratory of Nanodevices and Applicationsi‐LabSuzhou Institute of Nano‐Tech and Nano‐Bionics (SINANO)Chinese Academy of SciencesRuoshui Road 398SuzhouJiangsu215123China
- School of Nano Technology and Nano BionicsUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026China
| | - Yijun Xu
- CAS Key Laboratory of Nano‐Bio Interface and Key Laboratory of Nanodevices and Applicationsi‐LabSuzhou Institute of Nano‐Tech and Nano‐Bionics (SINANO)Chinese Academy of SciencesRuoshui Road 398SuzhouJiangsu215123China
| | - Changlong Liu
- Zhejiang LabArtificial Intelligence TownNo.1818 Wenyixi RoadHangzhou311100China
| | - Dacheng Wei
- Institute of Molecular Materials and DevicesDepartment of Material Sciences and Department of Macromolecular SciencesFudan UniversityShanghai200433China
| | - Libo Zhang
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of Sciences500 Yu‐Tian RoadShanghai200083China
- University of Chinese Academy of SciencesNo. 19A Yuquan RoadBeijing100049China
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Xinyao Shi
- CAS Key Laboratory of Nano‐Bio Interface and Key Laboratory of Nanodevices and Applicationsi‐LabSuzhou Institute of Nano‐Tech and Nano‐Bionics (SINANO)Chinese Academy of SciencesRuoshui Road 398SuzhouJiangsu215123China
| | - Cheng Guo
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of Sciences500 Yu‐Tian RoadShanghai200083China
- University of Chinese Academy of SciencesNo. 19A Yuquan RoadBeijing100049China
| | - Huang Xu
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of Sciences500 Yu‐Tian RoadShanghai200083China
- University of Chinese Academy of SciencesNo. 19A Yuquan RoadBeijing100049China
| | - Gang Chen
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of Sciences500 Yu‐Tian RoadShanghai200083China
- University of Chinese Academy of SciencesNo. 19A Yuquan RoadBeijing100049China
| | - Lin Wang
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of Sciences500 Yu‐Tian RoadShanghai200083China
- University of Chinese Academy of SciencesNo. 19A Yuquan RoadBeijing100049China
| | - Kai Zhang
- CAS Key Laboratory of Nano‐Bio Interface and Key Laboratory of Nanodevices and Applicationsi‐LabSuzhou Institute of Nano‐Tech and Nano‐Bionics (SINANO)Chinese Academy of SciencesRuoshui Road 398SuzhouJiangsu215123China
| | - Xiaoshuang Chen
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of Sciences500 Yu‐Tian RoadShanghai200083China
- University of Chinese Academy of SciencesNo. 19A Yuquan RoadBeijing100049China
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Wei Lu
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of Sciences500 Yu‐Tian RoadShanghai200083China
- University of Chinese Academy of SciencesNo. 19A Yuquan RoadBeijing100049China
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
| |
Collapse
|
34
|
Ghose S, Singh S, Bhattacharya TS. Charge Transfer-Mediated Blue Luminescence in Plasmonic Ag-Cu 2O Quantum Nanoheterostructures. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7727-7735. [PMID: 31950822 DOI: 10.1021/acsami.9b19626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metal-semiconductor hybrid nanoheterostructures have the possibility to exhibit new synergic properties other than the combination of properties from discrete components due to the interaction of metal and semiconductor components at the interfaces. Here, we have synthesized Ag-Cu2O eyeball-shaped quantum nanoheterostructures with diameter ranging between 8 and 12 nm using a single-step low-cost solvothermal process. It is observed that the presence of a minimum 3% of Ag is required for the formation of Ag-Cu2O quantum nanoheterostructures. The formation of nanoheterostructures has introduced new synergic properties like intense blue luminescence and surface-enhanced Raman scattering due to the interactions between Ag and Cu2O atoms at the interfaces. The significant presence of charge transfer through the interfaces is identified from the peak shift of Raman modes. The increase in the electron density at the metal surface due to the charge transfer and the recombination of these electrons with sp- or d-band holes of Ag could be the effective mechanism of the observed blue luminescence. The blue luminescence of Ag-Cu2O quantum nanoheterostructures together with its low band gap value (≈2.3 eV) is believed to have important applications in optoelectronic devices.
Collapse
Affiliation(s)
- Srabantika Ghose
- Department of Condensed Matter Physics and Material Sciences , S. N. Bose National Centre for Basic Sciences , JD Block, Sector III , Salt Lake City, Kolkata 700106 , India
| | - Sudarshan Singh
- Department of Physics and Meteorology , Indian Institute of Technology , Kharagpur 721302 , India
| | | |
Collapse
|
35
|
Han C, Ye J. Polarized resonant emission of monolayer WS 2 coupled with plasmonic sawtooth nanoslit array. Nat Commun 2020; 11:713. [PMID: 32024841 PMCID: PMC7002612 DOI: 10.1038/s41467-020-14597-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/17/2020] [Indexed: 11/09/2022] Open
Abstract
Transition metal dichalcogenide (TMDC) monolayers have enabled important applications in light emitting devices and integrated nanophotonics because of the direct bandgap, spin-valley locking and highly tunable excitonic properties. Nevertheless, the photoluminescence polarization is almost random at room temperature due to the valley decoherence. Here, we show the room temperature control of the polarization states of the excitonic emission by integrating WS2 monolayers with a delicately designed metasurface, i.e. a silver sawtooth nanoslit array. The random polarization is transformed to linear when WS2 excitons couple with the anisotropic resonant transmission modes that arise from the surface plasmon resonance in the metallic nanostructure. The coupling is found to enhance the valley coherence that contributes to ~30% of the total linear dichroism. Further modulating the transmission modes by optimizing metasurfaces, the total linear dichroism of the plasmon-exciton hybrid system can approach 80%, which prompts the development of photonic devices based on TMDCs. Here the authors show that WS2 coupled with a plasmonic sawtooth nanoslit array is an efficient exciton-plasmon hybrid system which enables polarization modulation of the excitonic emission at the nanoscale up to 80% and observation of valley coherence at room temperature.
Collapse
Affiliation(s)
- Chunrui Han
- Institute of Microelectronics, Chinese Academy of Sciences, 100029, Beijing, China. .,Device Physics of Complex Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - Jianting Ye
- Device Physics of Complex Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
36
|
Patsha A, Sheff V, Ismach A. Seeded-growth of WS 2 atomic layers: the effect on chemical and optical properties. NANOSCALE 2019; 11:22493-22503. [PMID: 31746901 DOI: 10.1039/c9nr06515f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The growth of high quality materials from well-defined seeds is a well-established and beneficial procedure, as it enables the control of the crystal orientation, domain size, phase and chemical composition of nanocrystals, thin films and 3D crystals. The seeded-growth approach for 2D transition metal dichalcogenides (TMDs) is investigated, envisaging that seeds have a great impact on the chemical composition of the grown layers and thus, on their chemical and optical properties. The controlled nucleation and narrow domain size distribution of single crystalline WS2 atomic layers are demonstrated by employing the seeded-growth approach. The growth of single layer WS2 domains from well-defined Au seeds leads to nanoparticle (NP) decoration over the domain in a very peculiar way that might be related to the growth mechanism of such atomic-layers. The segmentation in Raman enhancement and photoluminescence maps of exciton and trion emissions well correlate with the presence of Au NPs observed in electron microscopy and chemical maps obtained by time-of-flight secondary ion mass spectroscopic imaging. This work emphasizes the importance of the seed material and its effect on the grown 2D material and may lead to novel methodologies for controlled growth, doping and the formation of hybrid materials to be used in catalysis, sensors and optoelectronics.
Collapse
Affiliation(s)
- Avinash Patsha
- Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel.
| | | | | |
Collapse
|
37
|
Highly Transparent and Surface-Plasmon-Enhanced Visible-Photodetector Based on Zinc Oxide Thin-Film Transistors with Heterojunction Structure. MATERIALS 2019; 12:ma12213639. [PMID: 31694214 PMCID: PMC6862527 DOI: 10.3390/ma12213639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 01/13/2023]
Abstract
Highly transparent zinc oxide (ZnO)-based thin-film transistors (TFTs) with gold nanoparticles (AuNPs) capable of detecting visible light were fabricated through spray pyrolysis on a fluorine-doped tin oxide substrate. The spray-deposited channel layer of ZnO had a thickness of approximately 15 nm, and the thickness exhibited a linear increase with an increasing number of sprays. Furthermore, the ZnO thin-film exhibited a markedly smoother channel layer with a significantly lower surface roughness of 1.84 nm when the substrate was 20 cm from the spray nozzle compared with when it was 10 cm away. Finally, a ZnO and Au-NP heterojunction nanohybrid structure using plasmonic energy detection as an electrical signal, constitutes an ideal combination for a visible-light photodetector. The ZnO-based TFTs convert localized surface plasmon energy into an electrical signal, thereby extending the wide band-gap of materials used for photodetectors to achieve visible-light wavelength detection. The photo-transistors demonstrate an elevated on-current with an increase of the AuNP density in the concentration of 1.26, 12.6, and 126 pM and reach values of 3.75, 5.18, and 9.79 × 10−7 A with applied gate and drain voltages. Moreover, the threshold voltage (Vth) also drifts to negative values as the AuNP density increases.
Collapse
|
38
|
Fu X, Zhang L, Cho HD, Kang TW, Fu D, Lee D, Lee SW, Li L, Qi T, Chan AS, Yunusov ZA, Panin GN. Molybdenum Disulfide Nanosheet/Quantum Dot Dynamic Memristive Structure Driven by Photoinduced Phase Transition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903809. [PMID: 31539209 DOI: 10.1002/smll.201903809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/31/2019] [Indexed: 06/10/2023]
Abstract
MoS2 2D nanosheets (NS) with intercalated 0D quantum dots (QDs) represent promising structures for creating low-dimensional (LD) resistive memory devices. Nonvolatile memristors based 2D materials demonstrate low power consumption and ultrahigh density. Here, the observation of a photoinduced phase transition in the 2D NS/0D QDs MoS2 structure providing dynamic resistive memory is reported. The resistive switching of the MoS2 NS/QD structure is observed in an electric field and can be controlled through local QD excitations. Photoexcitation of the LD structure at different laser power densities leads to a reversible MoS2 2H-1T phase transition and demonstrates the potential of the LD structure for implementing a new dynamic ultrafast photoresistive memory. The dynamic LD photomemristive structure is attractive for real-time pattern recognition and photoconfiguration of artificial neural networks in a wide spectral range of sensitivity provided by QDs.
Collapse
Affiliation(s)
- Xiao Fu
- Nano Information Technology Academy, Quantum-Functional Semiconductor Research Center, Department of Physics, Dongguk University, 3-26 Pildong, Jung-Gu, Seoul, 04620, Republic of Korea
| | - Lei Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, No. 368, Friendship Avenue, Wuhan, 430061, P. R. China
| | - Hak D Cho
- Nano Information Technology Academy, Quantum-Functional Semiconductor Research Center, Department of Physics, Dongguk University, 3-26 Pildong, Jung-Gu, Seoul, 04620, Republic of Korea
| | - Tae Won Kang
- Nano Information Technology Academy, Quantum-Functional Semiconductor Research Center, Department of Physics, Dongguk University, 3-26 Pildong, Jung-Gu, Seoul, 04620, Republic of Korea
| | - Dejun Fu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and Hubei Key Laboratory of Nuclear Solid Physics, School of Physics and Technology, Wuhan University, Bayi Road 299, Wuhan, 430072, China
| | - Dongjin Lee
- Nano Information Technology Academy, Quantum-Functional Semiconductor Research Center, Department of Physics, Dongguk University, 3-26 Pildong, Jung-Gu, Seoul, 04620, Republic of Korea
| | - Sang Wuk Lee
- Nano Information Technology Academy, Quantum-Functional Semiconductor Research Center, Department of Physics, Dongguk University, 3-26 Pildong, Jung-Gu, Seoul, 04620, Republic of Korea
| | - Luying Li
- Center for Nanoscale Characterization & Devices Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Tianyu Qi
- Center for Nanoscale Characterization & Devices Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Abdul S Chan
- Electrical Engineering Department, Sukkur IBA University, Airport Road, Sukkur, 65200, Pakistan
| | - Ziyodbek A Yunusov
- Nano Information Technology Academy, Quantum-Functional Semiconductor Research Center, Department of Physics, Dongguk University, 3-26 Pildong, Jung-Gu, Seoul, 04620, Republic of Korea
| | - Gennady N Panin
- Nano Information Technology Academy, Quantum-Functional Semiconductor Research Center, Department of Physics, Dongguk University, 3-26 Pildong, Jung-Gu, Seoul, 04620, Republic of Korea
- Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences, Chernogolovka, Moscow district, 142432, Russia
| |
Collapse
|
39
|
Taniguchi T, Li S, Nurdiwijayanto L, Kobayashi Y, Saito T, Miyata Y, Obata S, Saiki K, Yokoi H, Watanabe K, Taniguchi T, Tsukagoshi K, Ebina Y, Sasaki T, Osada M. Tunable Chemical Coupling in Two-Dimensional van der Waals Electrostatic Heterostructures. ACS NANO 2019; 13:11214-11223. [PMID: 31580052 DOI: 10.1021/acsnano.9b04256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Heterostructures of two-dimensional (2D) atomic crystals provide fascinating molecular-scale design elements for emergent physical phenomena and functional materials, as integrating distinct monolayers into vertical heterostructures can afford coupling between disparate properties. However, the available examples have been limited to either van der Waals (vdW) or electrostatic (ES) heterostructures that are solely composed of noncharged and charged monolayers, respectively. Here, we propose a "vdW-ES heterostructure" chemical design in which charge-neutral and charged monolayer-building blocks with highly disparate chemical and physical properties are conjugated vertically through asymmetrically charged interfaces. We demonstrate vdW-ES heteroassembly of semiconducting MoS2 and dielectric Ca2Nb3O10- (CNO) monolayers using an amphipathic molecular starch, resulting in the emergence of trion luminescence observed at the lowest energy among MoS2-related materials, probably due to interfacial confinement effects given by vdW-ES dual interactions. In addition, interface engineering leads to tailored exciton of the vdW/ES heterostructures owing to the pronounced dielectric proximity effects, bringing an intriguing interlayer chemistry to modify 2D materials. Furthermore, the current approach was successfully extended to create a graphene/CNO heterostructure, which verifies the versatility of the preparative method.
Collapse
Affiliation(s)
- Takaaki Taniguchi
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science(NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Shisheng Li
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science(NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Leanddas Nurdiwijayanto
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science(NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Yu Kobayashi
- Department of Physics , Tokyo Metropolitan University , Hachioji , Tokyo 192-0397 , Japan
| | - Tetsuki Saito
- Department of Physics , Tokyo Metropolitan University , Hachioji , Tokyo 192-0397 , Japan
| | - Yasumitsu Miyata
- Department of Physics , Tokyo Metropolitan University , Hachioji , Tokyo 192-0397 , Japan
| | - Seiji Obata
- Department of Complexity Science and Engineering , Graduate School of Frontier Sciences, The University of Tokyo , Kashiwa , Chiba 277-8561 , Japan
| | - Koichiro Saiki
- Department of Complexity Science and Engineering , Graduate School of Frontier Sciences, The University of Tokyo , Kashiwa , Chiba 277-8561 , Japan
| | - Hiroyuki Yokoi
- Faculty of Advanced Science and Technology , Kumamoto University , Kumamoto 860-8555 , Japan
| | - Kenji Watanabe
- Research Center for Functional Materials , National Institute for Materials Science(NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Takashi Taniguchi
- Research Center for Functional Materials , National Institute for Materials Science(NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Kazuhito Tsukagoshi
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science(NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Yasuo Ebina
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science(NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Takayoshi Sasaki
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science(NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Minoru Osada
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science(NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
- Institute of Materials and Systems for Sustainability , Nagoya University , Furocho, Chikusa-ku, Nagoya 464-8603 , Japan
| |
Collapse
|
40
|
All-silicon reconfigurable metasurfaces for multifunction and tunable performance at optical frequencies based on glide symmetry. Sci Rep 2019; 9:13641. [PMID: 31541128 PMCID: PMC6754409 DOI: 10.1038/s41598-019-49395-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/21/2019] [Indexed: 11/08/2022] Open
Abstract
Dielectric metasurfaces have opened promising possibilities to enable a versatile platform in the miniaturization of optical elements at visible and infrared frequencies. Due to high efficiency and compatibility with CMOS fabrication technology, silicon-based metasurfaces have a remarkable potential for a wide variety of optical devices. Adding tunability mechanisms to metasurfaces could be beneficial for their application in areas such as communications, imaging and sensing. In this paper, we propose an all-silicon reconfigurable metasurface based on the concept of glide symmetry. The reconfigurability is achieved by a phase modulation of the transmitted wave activated by a lateral displacement of the layers. The misalignment between the layers creates a new inner periodicity which leads to the formation of a metamolecule with a new sort of near-field interaction. The proposed approach is highly versatile for developing multifunctional and tunable metadevices at optical frequencies. As a proof of concept, in this paper, we design a bifunctional metadevice, as well as a tunable lens and a controllable beam deflector operating at 1.55 μm.
Collapse
|
41
|
Miao R, Shu Z, Hu Y, Tang Y, Hao H, You J, Zheng X, Cheng X, Duan H, Jiang T. Ultrafast nonlinear absorption enhancement of monolayer MoS 2 with plasmonic Au nanoantennas. OPTICS LETTERS 2019; 44:3198-3201. [PMID: 31259920 DOI: 10.1364/ol.44.003198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
In this work, we experimentally study the nonlinear absorption enhancement of saturable absorption and two-photon absorption on a hybrid structure comprising a monolayer MoS2 and Au nanoantennas via femtosecond I-scan measurement. Specifically, a 13-fold increment in the linear absorption coefficient is attained at 1.85 eV, along with an 8-fold enhancement of the two-photon absorption coefficient at 1.65 eV, which is attributed to exciton-plasmon coupling resonance and plasmonic hot electron transfer. The exciton-plasmon coupling effect is characterized by stable photoluminescence experiments. Furthermore, the exciton recombination time is extracted from the pump-probe measurement, whose value in the hybrid structure is shortened from 18.5 ps (pure MoS2) to 1.84 ps. Our findings facilitate a new perspective to modulate the nonlinear optical response and to promote the performance of nonlinear photonic devices.
Collapse
|
42
|
Duan Y, Zhu Y, Li K, Wang Q, Wang P, Yu H, Yan Z, Zhao X. Cu 2O-Au nanowire field-effect phototransistor for hot carrier transfer enhanced photodetection. NANOTECHNOLOGY 2019; 30:245202. [PMID: 30865937 DOI: 10.1088/1361-6528/ab0f4d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In metal-semiconductor hybrid nanostructures, metal absorbs incident photons and generates hot carriers. The hot carriers are injected into the adjacent semiconductor and subsequently contribute to photocurrent. This process increases the conversion efficiency of optoelectronic devices and provides a new path of photodetectors. In this work, we report an enhanced photodetector by hot holes transfer, which is based on Au nanoparticles decorated p-type Cu2O nanowires. The photodetector achieves an enhanced photo-responsivity up to 0.314 A W-1, a higher detectivity of 3.7 × 1010 Jones. The response time and external quantum efficiency of the Cu2O-Au nanowires photodetector are 3.7 times faster and 18.2 times higher than that of the Cu2O nanowires, respectively. The findings indicate that Cu2O-Au nanowires would be a promising candidate in developing novel plasmonic hot carrier devices.
Collapse
Affiliation(s)
- Yongsheng Duan
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Goswami T, Rani R, Hazra KS, Ghosh HN. Ultrafast Carrier Dynamics of the Exciton and Trion in MoS 2 Monolayers Followed by Dissociation Dynamics in Au@MoS 2 2D Heterointerfaces. J Phys Chem Lett 2019; 10:3057-3063. [PMID: 31117684 DOI: 10.1021/acs.jpclett.9b01022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Many-body states like excitons, biexcitons, and trions play an important role in optoelectronic and photovoltaic applications in 2D materials. Herein, we studied carrier dynamics of excitons and trions in monolayer MoS2 deposited on a SiO2/Si substrate, before and after Au NP deposition, using femtosecond transient absorption spectroscopy. Luminescence measurements confirm the presence of both an exciton and trion in MoS2, which are drastically quenched after deposition of Au NPs, indicating electron transfer from photoexcited MoS2 to Au. Ultrafast study reveals that photogenerated free carriers form excitons with a time scale of ∼500 fs and eventually turn into trions within ∼1.2 ps. Dissociation of excitons and trions has been observed in the presence of Au, with time scales of ∼600 fs and ∼3.7 ps, respectively. Understanding the formation and dissociation dynamics of the exciton and trion in monolayer MoS2 is going to help immensely to design and develop many new 2D devices.
Collapse
Affiliation(s)
- Tanmay Goswami
- Institute of Nano Science and Technology , Mohali , Punjab 160062 , India
| | - Renu Rani
- Institute of Nano Science and Technology , Mohali , Punjab 160062 , India
| | | | - Hirendra N Ghosh
- Institute of Nano Science and Technology , Mohali , Punjab 160062 , India
- Radiation and Photochemistry Division , Bhabha Atomic Research Centre , Mumbai 400085 , India
| |
Collapse
|
44
|
Zhang X, Zhang F, Wang Y, Schulman DS, Zhang T, Bansal A, Alem N, Das S, Crespi VH, Terrones M, Redwing JM. Defect-Controlled Nucleation and Orientation of WSe 2 on hBN: A Route to Single-Crystal Epitaxial Monolayers. ACS NANO 2019; 13:3341-3352. [PMID: 30758945 DOI: 10.1021/acsnano.8b09230] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A defect-controlled approach for the nucleation and epitaxial growth of WSe2 on hBN is demonstrated. The WSe2 domains exhibit a preferred orientation of over 95%, leading to a reduced density of inversion domain boundaries (IDBs) upon coalescence. First-principles calculations and experimental studies as a function of growth conditions and substrate pretreatment confirm that WSe2 nucleation density and orientation are controlled by the hBN surface defect density rather than thermodynamic factors. Detailed transmission electron microscopy analysis provides support for the role of single-atom vacancies on the hBN surface that trap W atoms and break surface symmetry leading to a reduced formation energy for one orientation of WSe2 domains. Through careful control of nucleation and extended lateral growth time, fully coalesced WSe2 monolayer films on hBN were achieved. Low-temperature photoluminescence (PL) measurements and transport measurements of back-gated field-effect transistor devices fabricated on WSe2/hBN films show improved optical and electrical properties compared to films grown on sapphire under similar conditions. Our results reveal an important nucleation mechanism for the epitaxial growth of van der Waals heterostructures and demonstrate hBN as a superior substrate for single-crystal transition-metal dichalcogenide (TMD) films, resulting in a reduced density of IDBs and improved properties. The results motivate further efforts focused on the development of single crystal hBN substrates and epilayers for synthesis of wafer-scale single crystal TMD films.
Collapse
|
45
|
Ashalley E, Gryczynski K, Wang Z, Salamo G, Neogi A. Plasmonically-powered hot carrier induced modulation of light emission in a two-dimensional GaAs semiconductor quantum well. NANOSCALE 2019; 11:3827-3836. [PMID: 30633286 DOI: 10.1039/c8nr07489e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A hot-electron-enabled route to controlling light with dissipative loss compensation in semiconductor quantum light emitters has been realized for tunable quantum optoelectronic devices via a two-species plasmon system. The dual species nano-plasmonic system is achieved by combining UV-plasmonic gallium metal nanoparticles (GaNPs) with visible-plasmonic gold metal nanoparticles (AuNPs) on a near-infrared two-dimensional GaAs/AlGaAs quantum well emitter. It has been demonstrated that while hot carrier-powered charge-transfer processes can result in semiconductor doping and increased optical absorption, photo-generated carrier density in the quantum well can also be modulated by off-resonant plasmonic interaction without thermal dissipation. Merging these essential emitter-friendly optical characteristics in the two-species plasmon system, we effectively modulate the frequency of the emitted light. The wavelength of the emitted light is tuned by the plasmonically powered hot electron process induced by the AuNPs with a 10-fold emission enhancement induced by the GaNPs. The additional plasmonic element provides functionality to achieving an active plasmonic light emitter that is otherwise far from reach with conventional single plasmonic material-based semiconductors.
Collapse
Affiliation(s)
- Eric Ashalley
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Karol Gryczynski
- Department of Physics, University of North Texas, Denton, Texas 76203, USA.
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Gregory Salamo
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, USA
| | - Arup Neogi
- Department of Physics, University of North Texas, Denton, Texas 76203, USA.
| |
Collapse
|
46
|
Moe YA, Sun Y, Ye H, Liu K, Wang R. Probing Evolution of Local Strain at MoS 2-Metal Boundaries by Surface-Enhanced Raman Scattering. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40246-40254. [PMID: 30360611 DOI: 10.1021/acsami.8b13241] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Strain usually exists in two-dimensional (2D) materials and devices, and its presence drastically modulates their properties. When 2D materials interface with noble metals, local strain and surface plasmon can couple at the metal-2D material boundaries, delivering a lot of intriguing phenomena. Current studies are mostly focused on the explanations of these strain-related phenomena based on a static point of view. Although strain can typically be relaxed in many environments, the time evolution of strain at metal-2D material interfaces remains largely unknown. In this work, we investigate the evolution of local strain at Ag-MoS2 boundaries by surface-enhanced Raman scattering. With the split of MoS2 Raman peaks as an indicator of local strain, it is found that the originally localized strain at Ag-MoS2 boundaries evolves and relaxes with time into a delocalized strain in MoS2 plane. The time to start the strain relaxation depends on the number of layers of MoS2 flakes, suggesting that the relaxation may result from the mechanical instability of the interface between the topmost MoS2 layer and the underlying materials. The relaxation occurs in a certain period of time, i.e., ∼70 days for 1L and ∼30 days for 3L. Accompanying the strain relaxation, surface sulfurization of Ag also occurs, a process that reduces the strength of locally enhanced electric field. Our results not only provide a deep understanding of strain evolution at metal-MoS2 interfaces but also shed light on the optimization of MoS2-based device fabrications.
Collapse
Affiliation(s)
- Yan Aung Moe
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| | - Yinghui Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| | - Huanyu Ye
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| | - Kai Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Rongming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| |
Collapse
|
47
|
Luong DH, Lee HS, Ghimire G, Lee J, Kim H, Yun SJ, An GH, Lee YH. Enhanced Light-Matter Interactions in Self-Assembled Plasmonic Nanoparticles on 2D Semiconductors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802949. [PMID: 30303606 DOI: 10.1002/smll.201802949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Two-dimensional (2D) transition-metal dichalcogenide (TMD) monolayers of versatile material library are spotlighted for numerous unexplored research fields. While monolayer TMDs exhibit an efficient excitonic emission, the weak light absorption arising from their low dimensionality limits potential applications. To enhance the light-matter interactions of TMDs, while various plasmonic hybridization methods have been intensively studied, controlling plasmonic nanostructures via self-assembly processes remains challenging. Herein, strong light-matter interactions are reported in plasmonic Ag nanoparticles (NPs) hybridized on TMDs via an aging-based self-assembly process at room temperature. This hybridization is implemented by transferring MoS2 monolayers grown via chemical vapor deposition onto thin-spacer-covered Ag films. After a few weeks of aging in a vacuum desiccator, the Ag atoms in the heterolayered film diffuse to the MoS2 layers through a SiO2 spacer and self-cluster onto MoS2 point defects, resulting in the formation of Ag-NPs with an estimated diameter of ≈50 nm. The photoluminescence intensities for the Ag-NP/MoS2 hybrids are enhanced up to 35-fold compared with bare MoS2 owing to the local field enhancement near the plasmonic Ag-NPs. The localized surface plasmon resonances modes of this hybrid are systematically investigated via numerical simulations and dark-field scattering microscopy.
Collapse
Affiliation(s)
- Dinh Hoa Luong
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyun Seok Lee
- Department of Physics, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Ganesh Ghimire
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jubok Lee
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyun Kim
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok Joon Yun
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Gwang Hwi An
- Department of Physics, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Young Hee Lee
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
48
|
Dixit T, Arora A, Krishnan A, Ganapathi KL, Nayak PK, Rao MSR. Near Infrared Random Lasing in Multilayer MoS 2. ACS OMEGA 2018; 3:14097-14102. [PMID: 31458102 PMCID: PMC6645098 DOI: 10.1021/acsomega.8b01287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/02/2018] [Indexed: 05/22/2023]
Abstract
We demonstrated room temperature near infrared (NIR) region random lasing (RL) (800-950 nm), with a threshold of nearly 500 μW, in ∼200 nm thick MoS2/Au nanoparticles (NPs)/ZnO heterostructures using photoluminescence spectroscopy. The RL in the above system arises mainly due to the following three reasons: (1) enhanced multiple scattering because of Au/ZnO disordered structure, (2) exciton-plasmon coupling because of Au NPs, and (3) enhanced charge transfer from ZnO to thick MoS2 flakes. RL has recently attracted tremendous interest because of its wide applications in the field of telecommunication, spectroscopy, and specifically in biomedical tissue imaging. This work provides new dimensions toward realization of low power on-chip NIR random lasers made up of biocompatible materials.
Collapse
Affiliation(s)
- Tejendra Dixit
- Department of Physics and Materials Science Research
Centre, Centre for NEMS
and Nano Photonics (CNNP), Department of Electrical Engineering, and Nano Functional
Materials Technology Centre, Indian Institute
of Technology Madras, Chennai 600 036, India
| | - Ankit Arora
- Department of Physics and Materials Science Research
Centre, Centre for NEMS
and Nano Photonics (CNNP), Department of Electrical Engineering, and Nano Functional
Materials Technology Centre, Indian Institute
of Technology Madras, Chennai 600 036, India
| | - Ananth Krishnan
- Department of Physics and Materials Science Research
Centre, Centre for NEMS
and Nano Photonics (CNNP), Department of Electrical Engineering, and Nano Functional
Materials Technology Centre, Indian Institute
of Technology Madras, Chennai 600 036, India
| | - K. Lakshmi Ganapathi
- Department of Physics and Materials Science Research
Centre, Centre for NEMS
and Nano Photonics (CNNP), Department of Electrical Engineering, and Nano Functional
Materials Technology Centre, Indian Institute
of Technology Madras, Chennai 600 036, India
| | - Pramoda K. Nayak
- Department of Physics and Materials Science Research
Centre, Centre for NEMS
and Nano Photonics (CNNP), Department of Electrical Engineering, and Nano Functional
Materials Technology Centre, Indian Institute
of Technology Madras, Chennai 600 036, India
| | - M. S. Ramachandra Rao
- Department of Physics and Materials Science Research
Centre, Centre for NEMS
and Nano Photonics (CNNP), Department of Electrical Engineering, and Nano Functional
Materials Technology Centre, Indian Institute
of Technology Madras, Chennai 600 036, India
| |
Collapse
|
49
|
Wang H, Zhu D, Jiang F, Zhao P, Wang H, Zhang Z, Chen X, Jin C. Revealing the microscopic CVD growth mechanism of MoSe 2 and the role of hydrogen gas during the growth procedure. NANOTECHNOLOGY 2018; 29:314001. [PMID: 29745368 DOI: 10.1088/1361-6528/aac397] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding the microscopic mechanisms for the nucleation and growth of two-dimensional molybdenum diselenide (2D MoSe2) via chemical vapor deposition (CVD) is crucial towards the precisely controlled growth of the 2D material. In this work, we employed a joint use of transmission electron microscopy and CVD, in which the 2D MoSe2 were directly grown on a graphene membrane based on grids, that enables the microstructural characterization of as-grown MoSe2 flakes. We further explore the role of hydrogen gas and find: in an argon ambient, the primary products are few-layer MoSe2 flakes, along with MoO x nanoparticles; while with the introduction of H2, single-layer MoSe2 became the dominant product during the CVD growth. Quantitative analysis of the effects of H2 flow rate on the flake sizes, and areal coverage was also given. Nevertheless, we further illuminated the evolution of shape morphology and edge structures of single-layer MoSe2, and proposed the associated growth routes during a typical CVD process.
Collapse
Affiliation(s)
- Hulian Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China. State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Sarkar R, Habib M, Pal S, Prezhdo OV. Ultrafast, asymmetric charge transfer and slow charge recombination in porphyrin/CNT composites demonstrated by time-domain atomistic simulation. NANOSCALE 2018; 10:12683-12694. [PMID: 29946626 DOI: 10.1039/c8nr02544d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The versatile photochemical properties of porphyrin molecules make them excellent candidates for solar energy applications. Carbon nanotubes (CNTs) exhibit superior charge conductivity and have been combined with porphyrins to achieve efficient and ultrafast charge separation. Experiments show that the charge separated state lives less than 10 ps, which is too short for applications. Using real-time time-dependent tight binding density functional theory (DFTB) combined with non-adiabatic molecular dynamics (NAMD), we model photo-induced charge separation and recombination in two porphyrin/CNT composites. Having achieved excellent agreement with the experiment for the electron transfer from the porphyrins to the CNT, we demonstrate that hole transfer can be achieved upon CNT excitation, although in a less efficient way. By exciting the CNT one can extend light harvesting into lower energies of the solar spectrum and increase solar light conversion efficiency. We also show that the charge separated state can live over 1 ns. The two orders of magnitude difference from the experimental lifetime could arise due to the presence of defects or metallic tubes in the samples. The charge separated state is long-lived because the non-adiabatic electron-phonon coupling is very small, less than 1 meV, and the quantum coherence is short, 15-20 fs. The excited states in the isolated porphyrins and CNT live around 100 ps, in agreement with experiments as well. The porphyrin/CNT interaction occurs through the π-electron systems of the two species. The non-radiative relaxation is promoted by both high and low frequency phonons, with higher frequency phonons playing more important roles in electron relaxation than in hole relaxation. Low frequency phonons contribute significantly to the decay of the charge separated state, because they modulate the relative positions of the porphyrins and the CNT. The time-domain atomistic simulations provide a detailed understanding of the charge separation and recombination mechanisms, and generate valuable guidelines for the optimization of photovoltaic efficiency in modern nanoscale materials.
Collapse
Affiliation(s)
- Ritabrata Sarkar
- Department of Chemistry, University of Gour Banga, Malda, 732103, India.
| | | | | | | |
Collapse
|