1
|
Saulais M, Salem S, Sillard C, Choisy P, Dufresne A. Green synthesis of sacrificial UV-sensitive core and biobased shell for obtaining optically hollow nanoparticles. J Colloid Interface Sci 2025; 678:971-983. [PMID: 39270397 DOI: 10.1016/j.jcis.2024.08.260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Hollow nanoparticles have been extensively studied in recent years. Obtaining such structures with biobased materials, following greener synthetic routes, is still challenging, especially if accurate particle dimensions are required. This work reports the use of an innovative hybrid silica core (Si@azo) containing UV-sensitive molecule, wrapped in biobased multilayer shell composed of polysaccharides. It is a promising strategy for obtaining optically hollow nanoparticles. Indeed, Si@azo cores have the ability to be partially degraded when irradiated with UV light. Combined with a well-controlled and monodisperse diameter, they provide a good basis for layer-by-layer assembly, leading to a multilayer shell with controlled composition and thickness. Finally, UV irradiation of such a core-shell structure is harmless to the polysaccharide shell, but does impact the hybrid silica core, as revealed by turbidity measurements, among other. Each step, i.e. core synthesis, shell addition, and core-shell irradiation, has been carefully characterized at the macro (Fourier-transform infrared spectroscopy - FTIR, Dynamic Light Scattering - DLS, Zeta-potential measurement, Surface Plasmon Resonance - SPR, turbidity) and microscale (Transmission and Scanning Electron Microscopies). Emphasis is put on how turbidity measurements can be related to the core refractive index (ncore), giving information on the state of core degradation and whether the core-shell particle is optically hollow.
Collapse
Affiliation(s)
- Marlène Saulais
- Univ. Grenoble Alpes, CNRS, Grenoble-INP, LGP2, F-38000 Grenoble, France
| | - Sara Salem
- Univ. Grenoble Alpes, CNRS, Grenoble-INP, LGP2, F-38000 Grenoble, France
| | - Cécile Sillard
- Univ. Grenoble Alpes, CNRS, Grenoble-INP, LGP2, F-38000 Grenoble, France.
| | | | - Alain Dufresne
- Univ. Grenoble Alpes, CNRS, Grenoble-INP, LGP2, F-38000 Grenoble, France.
| |
Collapse
|
2
|
Ci Y, Lv D, Yang X, Du H, Tang Y. High-performance cellulose/thermoplastic polyurethane composites enabled by interaction-modulated cellulose regeneration. Carbohydr Polym 2024; 346:122611. [PMID: 39245493 DOI: 10.1016/j.carbpol.2024.122611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/03/2024] [Accepted: 08/11/2024] [Indexed: 09/10/2024]
Abstract
Strong interfacial adhesion between cellulose and other polymers is critical to achieve the properties required for specific applications in composite materials. Here, we developed a method for the simultaneous homogeneous dissolution of cellulose and thermoplastic polyurethane (TPU) in 1,8-diazabicyclo (5.4.0) undec-7-ene levulinate/dimethyl sulfoxide ([DBUH]Lev/DMSO) solvent. This process is essential for preparing cellulose/TPU composite films and fibers through interaction-modulated cellulose regeneration. Both cellulose and TPU can be easily dissolved together in [DBUH]Lev/DMSO solvent under mild conditions. The resulting cellulose/TPU solutions exhibited strong temperature sensitivity, shear-thinning behavior and viscoelasticity, making them suitable for cast films and continuous spinning. More importantly, research findings, including density functional theory calculations and experimental characterization, confirmed the high compatibility and interaction modulability of cellulose and TPU in the composite films. The representative C90T10 sample (cellulose/TPU, 90/10) showed high transparency (90 % at 800 nm) and excellent mechanical properties (tensile strength: 176 MPa; elongation at break: 8.1 %). Additionally, the maximum tensile strength and elongation at the break of the composite fiber from C90T10 were 214 MPa and 48.1 %, respectively. This method may provide a feasible approach to design and produce homogeneous environmentally friendly composites of cellulose and other polymers at the molecular level.
Collapse
Affiliation(s)
- Yuhui Ci
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Dong Lv
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, PR China
| | - Xiangjian Yang
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Haishun Du
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Yanjun Tang
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
3
|
Chen L, Yu X, Gao M, Xu C, Zhang J, Zhang X, Zhu M, Cheng Y. Renewable biomass-based aerogels: from structural design to functional regulation. Chem Soc Rev 2024; 53:7489-7530. [PMID: 38894663 DOI: 10.1039/d3cs01014g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Global population growth and industrialization have exacerbated the nonrenewable energy crises and environmental issues, thereby stimulating an enormous demand for producing environmentally friendly materials. Typically, biomass-based aerogels (BAs), which are mainly composed of biomass materials, show great application prospects in various fields because of their exceptional properties such as biocompatibility, degradability, and renewability. To improve the performance of BAs to meet the usage requirements of different scenarios, a large number of innovative works in the past few decades have emphasized the importance of micro-structural design in regulating macroscopic functions. Inspired by the ubiquitous random or regularly arranged structures of materials in nature ranging from micro to meso and macro scales, constructing different microstructures often corresponds to completely different functions even with similar biomolecular compositions. This review focuses on the preparation process, design concepts, regulation methods, and the synergistic combination of chemical compositions and microstructures of BAs with different porous structures from the perspective of gel skeleton and pore structure. It not only comprehensively introduces the effect of various microstructures on the physical properties of BAs, but also analyzes their potential applications in the corresponding fields of thermal management, water treatment, atmospheric water harvesting, CO2 absorption, energy storage and conversion, electromagnetic interference (EMI) shielding, biological applications, etc. Finally, we provide our perspectives regarding the challenges and future opportunities of BAs. Overall, our goal is to provide researchers with a thorough understanding of the relationship between the microstructures and properties of BAs, supported by a comprehensive analysis of the available data.
Collapse
Affiliation(s)
- Linfeng Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Xiaoxiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Mengyue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Chengjian Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Junyan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Xinhai Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| |
Collapse
|
4
|
Zhang H, Hu Q, Si T, Tang X, Shan S, Gao X, Peng L, Chen K. All-cellulose air filter composed with regenerated nanocellulose prepared through a facile method with shear-induced. Int J Biol Macromol 2023; 228:548-558. [PMID: 36423811 DOI: 10.1016/j.ijbiomac.2022.11.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022]
Abstract
High-speed shear system is usually used for the dispersion improvement of slurry, nanomaterials preparation, and even two-dimensional materials production. However, there is barely study that focused on the regenerated cellulose (RC) which was coagulated with shear induced. In this work, a new type of all-cellulose air filter was fabricated through high-speed shear in aqueous regeneration system using parenchyma cellulose from corn stalk. The obtained RC were aggregated by ribbon-like fine cellulose and nanocellulose sheets. The study exhibited the micro-structure of RC displayed excellent unidirectional alignment and a relatively high crystallinity. All-cellulose air filter which was produced via RC presented excellent filtration efficiency (PM2.5 97.3 %, PM10.0 97.7 %) with slightly pressure drop (19 Pa). Therefore, this work provides a facile method to obtain a novel RC with nanocellulose particles used for air filtration, which gives an effective strategy application in the conversion of all-cellulose materials from agricultural waste.
Collapse
Affiliation(s)
- Heng Zhang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Qiuyue Hu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Tian Si
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Xiaoning Tang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Shaoyun Shan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Xin Gao
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, Zhejiang, China.
| | - Lincai Peng
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| | - Keli Chen
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| |
Collapse
|
5
|
Song X, Li C, Wu H, Guo S, Qiu J. In Situ Constructed Nanocrystal Structure and Its Contribution in Shape Memory Performance of Pure Polylactide. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xudong Song
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Chunhai Li
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Hong Wu
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Shaoyun Guo
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Jianhui Qiu
- Department of Mechanical Engineering, Faculty of Systems Science and Technology, Akita Prefectural University, Akita 015-0055, Japan
| |
Collapse
|
6
|
Moud AA. Fluorescence Recovery after Photobleaching in Colloidal Science: Introduction and Application. ACS Biomater Sci Eng 2022; 8:1028-1048. [PMID: 35201752 DOI: 10.1021/acsbiomaterials.1c01422] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
FRAP (fluorescence recovery after photo bleaching) is a method for determining diffusion in material science. In industrial applications such as medications, foods, Medtech, hygiene, and textiles, the diffusion process has a substantial influence on the overall qualities of goods. All these complex and heterogeneous systems have diffusion-based processes at the local level. FRAP is a fluorescence-based approach for detecting diffusion; in this method, a high-intensity laser is made for a brief period and then applied to the samples, bleaching the fluorescent chemical inside the region, which is subsequently filled up by natural diffusion. This brief Review will focus on the existing research on employing FRAP to measure colloidal system heterogeneity and explore diffusion into complicated structures. This description of FRAP will be followed by a discussion of how FRAP is intended to be used in colloidal science. When constructing the current Review, the most recent publications were reviewed for this assessment. Because of the large number of FRAP articles in colloidal research, there is currently a dearth of knowledge regarding the growth of FRAP's significance to colloidal science. Colloids make up only 2% of FRAP papers, according to ISI Web of Knowledge.
Collapse
Affiliation(s)
- Aref Abbasi Moud
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
7
|
Chen R, Zhao C, Chen Z, Shi X, Zhu H, Bu Q, Wang L, Wang C, He H. A bionic cellulose nanofiber-based nanocage wound dressing for NIR-triggered multiple synergistic therapy of tumors and infected wounds. Biomaterials 2021; 281:121330. [PMID: 34973556 DOI: 10.1016/j.biomaterials.2021.121330] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 12/20/2022]
Abstract
Tumor recurrence and drug-resistant bacterial infection are the main reasons that wounds heal with difficulty after skin tumor treatment. The near infrared- (NIR-) and pH-responsive, bionic, cellulose nanofiber-based (CNF-based) nanocage wound dressing with biocompatibility, bioviscosity, and shape adaptability is designed for dual NIR-triggered photothermal therapy of tumor and infection-induced wound healing. The wound dressing with the intertwining three dimensional (3D) nanocage network structure is skillfully constructed using NIR-responsive cellulose nanofibers and pH-responsive cellulose nanofibers as the skeleton, which endows the dressing with a high drug-loading capacity of doxorubicin (400 mg·g-1), and indocyanine green (25 mg·g-1). Moreover, the NIR- and pH-responsive bionic "On/Off" switches of the dressing enable a controllable and efficient drug release onto the wound area. The dual NIR-triggered wound dressing with excellent photothermal conversion performance possesses good antibacterial properties against Escherichia coli, Staphylococcus aureus, and drug-resistant Staphylococcus aureus. It could effectively eliminate bacterial biofilms and kill A375 tumor cells. Interestingly, the bionic wound dressing with shape adaptability could adapt and treat irregular postoperative skin tumor wounds and drug-resistant bacterial infection via the synergistic therapy of photothermal, photodynamic, and chemotherapy, which provides an ideal strategy for clinical intervention.
Collapse
Affiliation(s)
- Rimei Chen
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, PR China
| | - Chao Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, PR China
| | - Zhiping Chen
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, PR China
| | - Xiaoyu Shi
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, PR China
| | - Hongxiang Zhu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, PR China
| | - Qing Bu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, PR China
| | - Lei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, PR China
| | - Chunfang Wang
- Affilated Hospital of You Jiang Medical College for Nationalities, Baise, 533099, PR China
| | - Hui He
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, PR China.
| |
Collapse
|
8
|
Shao R, Meng X, Shi Z, Zhong J, Cai Z, Hu J, Wang X, Chen G, Gao S, Song Y, Ye C. Marangoni Flow Manipulated Concentric Assembly of Cellulose Nanocrystals. SMALL METHODS 2021; 5:e2100690. [PMID: 34927964 DOI: 10.1002/smtd.202100690] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/16/2021] [Indexed: 06/14/2023]
Abstract
Tunable assembly of cellulose nanocrystals (CNCs) is important for a variety of emerging applications in optics, sensing, and security. Most exploited assembly and optical property of CNCs are cholesteric assembly and corresponding circular dichroism. However, it still remains challenge to obtain homogenous and high-resolution cholesteric assembly. Distinct assembly and optical property of CNCs are highly demanded for advanced photonic materials with novel functions. Herein, a facile and programmable approach for assembling CNCs into a novel concentric alignment using capillary flow and Marangoni effect, which is in strike contrast to conventional cholesteric assembly, is demonstrated. The concentric assembly, as quantitatively evidenced by polarized synchrotron radiation Fourier transform infrared imaging, demonstrates Maltese cross optical pattern with good uniformity and high resolution. Furthermore, this Maltese cross can be readily regulated to "on/off" states by temperature. By combining with 3D inkjet technology, a functional binary system composed of "on"/"off" CNCs optical patterns with high spatial resolution, fast printing speed, good repeatability, and precisely controllable optical property is established for information encryption and decryption. This concentric assembly of CNCs and corresponding tunable optical property emerge as a promising candidate for information security, anticounterfeiting technology, and advanced optics.
Collapse
Affiliation(s)
- Rongrong Shao
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Xiao Meng
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Zhaojie Shi
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Jiajia Zhong
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Zheren Cai
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junhao Hu
- School of Information Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Xiao Wang
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Gang Chen
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Shenghua Gao
- School of Information Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunhong Ye
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| |
Collapse
|
9
|
Momeni A, Walters CM, Xu YT, Hamad WY, MacLachlan MJ. Concentric chiral nematic polymeric fibers from cellulose nanocrystals. NANOSCALE ADVANCES 2021; 3:5111-5121. [PMID: 36132352 PMCID: PMC9416860 DOI: 10.1039/d1na00425e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/29/2021] [Indexed: 05/25/2023]
Abstract
Hierarchical biological materials, such as osteons and plant cell walls, are complex structures that are difficult to mimic. Here, we combine liquid crystal systems and polymerization techniques within confined systems to develop complex structures. A single-domain concentric chiral nematic polymeric fiber was obtained by confining cellulose nanocrystals (CNCs) and hydroxyethyl acrylate inside a capillary tube followed by UV-initiated polymerization. The concentric chiral nematic structure continues uniformly throughout the length of the fiber. The pitch of the chiral nematic structure could be controlled by changing the CNC concentration. We tracked the formation of the concentric structure over time and under different conditions with variation of the tube orientation, CNC concentration, CNC type, and capillary tube size. We show that the inner radius of the capillary tube is important and a single-domain structure was only obtained inside small-diameter tubes. At low CNC concentration, the concentric chiral nematic structure did not completely cover the cross-section of the fiber. The highly ordered structure was studied using imaging techniques and X-ray diffraction, and the mechanical properties and structure of the chiral nematic fiber were compared to a pseudo-nematic fiber. CNC polymeric fibers could become a platform for many applications from photonics to complex hierarchical materials.
Collapse
Affiliation(s)
- Arash Momeni
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Christopher M Walters
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Yi-Tao Xu
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Wadood Y Hamad
- Transformation and Interfaces Group, Bioproducts Innovation Centre of Excellence, FPInnovations 2665 East Mall Vancouver British Columbia V6T 1Z4 Canada
| | - Mark J MacLachlan
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
- Stewart Blusson Quantum Matter Institute 2355 East Mall Vancouver British Columbia V6T 1Z4 Canada
- WPI Nano Life Science Institute, Kanazawa University Kanazawa 920-1192 Japan
- UBC BioProducts Institute 2385 East Mall Vancouver British Columbia V6T 1Z4 Canada
| |
Collapse
|
10
|
|
11
|
Zhu Z, Fu S, Lavoine N, Lucia LA. Structural reconstruction strategies for the design of cellulose nanomaterials and aligned wood cellulose-based functional materials – A review. Carbohydr Polym 2020; 247:116722. [DOI: 10.1016/j.carbpol.2020.116722] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 11/29/2022]
|
12
|
Lombardo S, Villares A. Engineered Multilayer Microcapsules Based on Polysaccharides Nanomaterials. Molecules 2020; 25:E4420. [PMID: 32993007 PMCID: PMC7582779 DOI: 10.3390/molecules25194420] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022] Open
Abstract
The preparation of microcapsules composed by natural materials have received great attention, as they represent promising systems for the fabrication of micro-containers for controlled loading and release of active compounds, and for other applications. Using polysaccharides as the main materials is receiving increasing interest, as they constitute the main components of the plant cell wall, which represent an ideal platform to mimic for creating biocompatible systems with specific responsive properties. Several researchers have recently described methods for the preparation of microcapsules with various sizes and properties using cell wall polysaccharide nanomaterials. Researchers have focused mostly in using cellulose nanomaterials as structural components in a bio-mimetic approach, as cellulose constitutes the main structural component of the plant cell wall. In this review, we describe the microcapsules systems presented in the literature, focusing on the works where polysaccharide nanomaterials were used as the main structural components. We present the methods and the principles behind the preparation of these systems, and the interactions involved in stabilizing the structures. We show the specific and stimuli-responsive properties of the reported microcapsules, and we describe how these characteristics can be exploited for specific applications.
Collapse
|
13
|
Park SH, Shin SS, Park CH, Jeon S, Gwon J, Lee SY, Kim SJ, Kim HJ, Lee JH. Poly(acryloyl hydrazide)-grafted cellulose nanocrystal adsorbents with an excellent Cr(VI) adsorption capacity. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122512. [PMID: 32200239 DOI: 10.1016/j.jhazmat.2020.122512] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
In this study, we prepared poly(acryloyl hydrazide) (PAH)-grafted cellulose nanocrystal (CNC-PAH) particles via the atom transfer radical polymerization method for application to Cr(VI) adsorption. The closely-packed PAH chains grafted on the cellulose nanocrystal (CNC) surface provide a high density of amine groups that can adsorb Cr(VI) through strong electrostatic, hydrogen bonding and chelating interactions. CNC-PAH exhibited the optimum Cr(VI) adsorption capacity at the solution pH = 3, where its electrostatic attraction with Cr(VI) was maximized. Cr(VI) was chemisorbed in CNC-PAH by following the Langmuir isotherm mechanism (homogeneous monolayer adsorption). The Cr(VI) adsorption kinetics of CNC-PAH was controlled predominantly by intra-particle diffusion resistance imparted by the PAH shell layer. Thermodynamic analysis revealed that Cr(VI) adsorption of CNC-PAH is a spontaneous and endothermic process. Importantly, CNC-PAH grafted with the higher Mw (∼50 kg mol-1) PAH exhibited a rapid Cr(VI) adsorption rate and remarkably high Cr(VI) adsorption capacity (∼457.6 mg g-1 at 298.15 K), exceeding those of previously reported adsorbents owing to its numerous Cr(VI)-adsorptive amine groups provided by the closely-packed grafted PAH polymers. Furthermore, CNC-PAH showed excellent reusability to maintain its high adsorption ability during repeated adsorption-desorption cycles owing to the covalently binding nature of the PAH polymers.
Collapse
Affiliation(s)
- Sang-Hee Park
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seung Su Shin
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Chan Hyung Park
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sungkwon Jeon
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jaegyoung Gwon
- Department of Forest Products, National Institute of Forest Science, Seoul, 02455, Republic of Korea
| | - Sun-Young Lee
- Department of Forest Products, National Institute of Forest Science, Seoul, 02455, Republic of Korea
| | - Sung-Jun Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea; Decommissioning Technology Research Division, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| | - Hyung-Ju Kim
- Decommissioning Technology Research Division, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| | - Jung-Hyun Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
14
|
Zhang S, Zhou S, Liu H, Xing M, Ding B, Li B. Pinecone-Inspired Nanoarchitectured Smart Microcages Enable Nano/Microparticle Drug Delivery. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2002434. [PMID: 32684911 PMCID: PMC7357249 DOI: 10.1002/adfm.202002434] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 05/22/2023]
Abstract
Drug delivery plays a vital role in medicine and health, but the on-demand delivery of large-sized drugs using stimuli-triggered carriers is extremely challenging. Most present capsules consist of polymeric dense shells with nanosized pores (<10 nm), thus typically lack permeability for nano/microparticle drugs. Here, a pinecone-inspired smart microcage with open network shells, assembled from cellulose nanofibrils (CNFs), is reported for nano/microparticle drug delivery. The approach allows the nanoarchitectured, functionalized CNFs to assemble into mechanically robust, haystack-like network shells with tunable large-through pores and polypeptide-anchored points on a large scale. Such open network shells can intelligently open/close triggered by lesion stimuli, making the therapy "always on-demand." The resulting pinecone-inspired microcages exhibit integrated properties of superior structural stability, superhydrophilicity, and pH-triggered, smart across-shell transport of emerging antimicrobial silver nanoparticles and bioactive silicate nanoplatelets (sizes of >100 nm), which enable both extraordinary anti-infection and bone regeneration. This work provides new insights into the design and development of multifunctional encapsulation and delivery carriers for medical and environmental applications.
Collapse
Affiliation(s)
- Shichao Zhang
- Department of OrthopedicsSchool of MedicineWest Virginia UniversityMorgantownWV26506USA
| | - Sheng Zhou
- Department of OrthopedicsSchool of MedicineWest Virginia UniversityMorgantownWV26506USA
| | - Hui Liu
- Innovation Center for Textile Science and TechnologyDonghua UniversityShanghai200051China
| | - Malcolm Xing
- Department of Mechanical EngineeringUniversity of ManitobaWinnipegMBR3T 2N2Canada
- The Children's Hospital Research Institute of ManitobaWinnipegMBR3E 3P4Canada
| | - Bin Ding
- Innovation Center for Textile Science and TechnologyDonghua UniversityShanghai200051China
| | - Bingyun Li
- Department of OrthopedicsSchool of MedicineWest Virginia UniversityMorgantownWV26506USA
| |
Collapse
|
15
|
Niinivaara E, Cranston ED. Bottom-up assembly of nanocellulose structures. Carbohydr Polym 2020; 247:116664. [PMID: 32829792 DOI: 10.1016/j.carbpol.2020.116664] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022]
Abstract
Nanocelluloses, both cellulose nanofibrils and cellulose nanocrystals, are gaining research traction due to their viability as key components in commercial applications and industrial processes. Significant efforts have been made to understand both the potential of assembling nanocelluloses, and the limits and prospectives of the resulting structures. This Review focuses on bottom-up techniques used to prepare nanocellulose-only structures, and details the intermolecular and surface forces driving their assembly. Additionally, the interactions that contribute to their structural integrity are discussed along with alternate pathways and suggestions for improved properties. Six categories of nanocellulose structures are presented: (1) powders, beads, and droplets; (2) capsules; (3) continuous fibres; (4) films; (5) hydrogels; and (6) aerogels and dried foams. Although research on nanocellulose assembly often focuses on fundamental science, this Review also provides insight on the potential utilization of such structures in a wide array of applications.
Collapse
Affiliation(s)
- Elina Niinivaara
- Department of Wood Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, FI-0076 Aalto, Espoo, Finland.
| | - Emily D Cranston
- Department of Wood Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
16
|
Chen K, Zhou J, Che X, Zhao R, Gao Q. One-step synthesis of core shell cellulose-silica/n-octadecane microcapsules and their application in waterborne self-healing multiple protective fabric coatings. J Colloid Interface Sci 2020; 566:401-410. [PMID: 32018180 DOI: 10.1016/j.jcis.2020.01.106] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 11/17/2022]
Abstract
Exploiting water-based fabric coatings outfitted with multiple protections (e.g., waterproofness, ultraviolet (UV) resistance and thermal insulation) are urgently demanded. Nevertheless, achieving the multifunction and durability poses the major challenge. In the present study, novel multifunctional cellulose/silica hybrid microcapsules were developed by one-step emulsion-solvent diffusion; these microcapsules were well dispersed into waterborne silicone resins to form waterborne multiple protective fabric coatings. Since the encapsulated phase change materials were in the core of capsules, and the hydrophobic coupling reagent and UV absorber were grafted onto the silicas in the shell of capsules, these fabric coatings exhibited high superhydrophobicity, UV protection and thermal insulation. Moreover, because hydrophobic coupling reagent and UV absorber in the shell-cellulose of capsules exhibited easy mobility, the fabric coatings displayed self-repairability of superhydrophobicity and UV protection even after being damaged chemically or mechanically. The fabric coating presented in this study could have a range of applications, covering special protective fabric, high-altitude garments as well as self-cleaning materials.
Collapse
Affiliation(s)
- Kunlin Chen
- Key Laboratory of Eco-Textile, Ministry of Education, School of Textiles and Clothing, Jiangnan University, Wuxi 214122, China.
| | - Jianlin Zhou
- Key Laboratory of Eco-Textile, Ministry of Education, School of Textiles and Clothing, Jiangnan University, Wuxi 214122, China
| | - Xiaogang Che
- Key Laboratory of Eco-Textile, Ministry of Education, School of Textiles and Clothing, Jiangnan University, Wuxi 214122, China
| | - Ruoyi Zhao
- Key Laboratory of Eco-Textile, Ministry of Education, School of Textiles and Clothing, Jiangnan University, Wuxi 214122, China
| | - Qiang Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
17
|
Miyashiro D, Hamano R, Umemura K. A Review of Applications Using Mixed Materials of Cellulose, Nanocellulose and Carbon Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E186. [PMID: 31973149 PMCID: PMC7074973 DOI: 10.3390/nano10020186] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
Carbon nanotubes (CNTs) have been extensively studied as one of the most interesting nanomaterials for over 25 years because they exhibit excellent mechanical, electrical, thermal, optical, and electrical properties. In the past decade, the number of publications and patents on cellulose and nanocellulose (NC) increased tenfold. Research on NC with excellent mechanical properties, flexibility, and transparency is accelerating due to the growing environmental problems surrounding us such as CO2 emissions, the accumulation of large amounts of plastic, and the depletion of energy resources such as oil. Research on mixed materials of cellulose, NC, and CNTs has been expanding because these materials exhibit various characteristics that can be controlled by varying the combination of cellulose, NC to CNTs while also being biodegradable and recyclable. An understanding of these mixed materials is required because these characteristics are diverse and are expected to solve various environmental problems. Thus far, many review papers on cellulose, NC or CNTs have been published. Although guidance for the suitable application of these mixed materials is necessary, there are few reviews summarizing them. Therefore, this review introduces the application and feature on mixed materials of cellulose, NC and CNTs.
Collapse
Affiliation(s)
- Daisuke Miyashiro
- Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (R.H.); (K.U.)
- ESTECH CORP., 2-7-31 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Ryo Hamano
- Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (R.H.); (K.U.)
| | - Kazuo Umemura
- Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (R.H.); (K.U.)
| |
Collapse
|
18
|
Song L, Shu L, Wang Y, Zhang XF, Wang Z, Feng Y, Yao J. Metal nanoparticle-embedded bacterial cellulose aerogels via swelling-induced adsorption for nitrophenol reduction. Int J Biol Macromol 2020; 143:922-927. [DOI: 10.1016/j.ijbiomac.2019.09.152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/11/2019] [Accepted: 09/22/2019] [Indexed: 02/05/2023]
|
19
|
Song K, Zhu X, Zhu W, Li X. Preparation and characterization of cellulose nanocrystal extracted from Calotropis procera biomass. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0279-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractCalotropis procera fiber (CPF) is the fruit fiber of C. procera and belongs to a typical cellulosic fiber. In this study, Calotropis procera fiber (CPF) was first purified in the pretreatment process including delignification and bleaching before the isolation of cellulose nanocrystal. Chemical composition of Calotropis procera fiber was determined according to TAPPI standard method. It was composed of 64.0 wt% cellulose, 19.5 wt% hemicelluloses, and 9.7 wt% of lignin. The morphology of the Calotropis procera fiber and fiber after each pretreatment process was also investigated. Cellulose nanocrystal was extracted by classical sulfuric acid hydrolysis of the pretreated Calotropis procera fiber. TEM and SEM were used to analyze the morphologies of the obtained CNC. The crystallinity, thermal stability and suspension stability of the CNC were also investigated. The interesting results proved that this under-utilized biomass could be exploited as a new source of cellulose raw material for the production of cellulose nanocrystal.
Collapse
|
20
|
Khine YY, Batchelor R, Raveendran R, Stenzel MH. Photo‐Induced Modification of Nanocellulose: The Design of Self‐Fluorescent Drug Carriers. Macromol Rapid Commun 2019; 41:e1900499. [DOI: 10.1002/marc.201900499] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/02/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Yee Yee Khine
- Center for Advanced Macromolecular DesignSchool of ChemistryThe University of New South Wales Sydney 2052 Australia
| | - Rhiannon Batchelor
- Center for Advanced Macromolecular DesignSchool of ChemistryThe University of New South Wales Sydney 2052 Australia
| | - Radhika Raveendran
- Center for Advanced Macromolecular DesignSchool of ChemistryThe University of New South Wales Sydney 2052 Australia
| | - Martina H. Stenzel
- Center for Advanced Macromolecular DesignSchool of ChemistryThe University of New South Wales Sydney 2052 Australia
| |
Collapse
|
21
|
Meng X, Crestini C, Ben H, Hao N, Pu Y, Ragauskas AJ, Argyropoulos DS. Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy. Nat Protoc 2019; 14:2627-2647. [PMID: 31391578 DOI: 10.1038/s41596-019-0191-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022]
Abstract
The analysis of chemical structural characteristics of biorefinery product streams (such as lignin and tannin) has advanced substantially over the past decade, with traditional wet-chemical techniques being replaced or supplemented by NMR methodologies. Quantitative 31P NMR spectroscopy is a promising technique for the analysis of hydroxyl groups because of its unique characterization capability and broad potential applicability across the biorefinery research community. This protocol describes procedures for (i) the preparation/solubilization of lignin and tannin, (ii) the phosphitylation of their hydroxyl groups, (iii) NMR acquisition details, and (iv) the ensuing data analyses and means to precisely calculate the content of the different types of hydroxyl groups. Compared with traditional wet-chemical techniques, the technique of quantitative 31P NMR spectroscopy offers unique advantages in measuring hydroxyl groups in a single spectrum with high signal resolution. The method provides complete quantitative information about the hydroxyl groups with small amounts of sample (~30 mg) within a relatively short experimental time (~30-120 min).
Collapse
Affiliation(s)
- Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, USA
| | - Claudia Crestini
- Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Venice, Italy.
| | - Haoxi Ben
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, China
| | - Naijia Hao
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, USA
| | - Yunqiao Pu
- Center for Bioenergy Innovation (CBI), Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, USA. .,Center for Bioenergy Innovation (CBI), Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA. .,Department of Forestry, Wildlife and Fisheries, Center of Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN, USA.
| | - Dimitris S Argyropoulos
- Departments of Chemistry and Forest Biomaterials, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
22
|
Zlenko DV, Nikolsky SN, Vedenkin AS, Politenkova GG, Skoblin AA, Melnikov VP, Michaleva MM, Stovbun SV. Twisting of Fibers Balancing the Gel⁻Sol Transition in Cellulose Aqueous Suspensions. Polymers (Basel) 2019; 11:polym11050873. [PMID: 31086088 PMCID: PMC6571874 DOI: 10.3390/polym11050873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/08/2019] [Accepted: 04/28/2019] [Indexed: 11/16/2022] Open
Abstract
Cellulose hydrogels and films are advantageous materials that are applied in modern industry and medicine. Cellulose hydrogels have a stable scaffold and never form films upon drying, while viscous cellulose hydrosols are liquids that could be used for film production. So, stabilizing either a gel or sol state in cellulose suspensions is a worthwhile challenge, significant for the practical applications. However, there is no theory describing the cellulose fibers' behavior and processes underlying cellulose-gel-scaffold stabilizing. In this work, we provide a phenomenological mechanism explaining the transition between the stable-gel and shapeless-sol states in a cellulose suspension. We suppose that cellulose macromolecules and nanofibrils under strong dispersing treatment (such as sonication) partially untwist and dissociate, and then reassemble in a 3D scaffold having the individual elements twisted in the nodes. The latter leads to an exponential increase in friction forces between the fibers and to the corresponding fastening of the scaffold. We confirm our theory by the data on the circular dichroism of the cellulose suspensions, as well as by the direct scanning electron microscope (SEM) observations and theoretical assessments.
Collapse
Affiliation(s)
- Dmitry V Zlenko
- Faculty of Biology, M.V. Lomonosov Moscow State University, Lenin Hills 1/12, 119192 Moscow, Russia.
- N.N. Semenov Institute of Chemical Physics, RAS. Kosygina 4, 119991 Moscow, Russia.
| | - Sergey N Nikolsky
- N.N. Semenov Institute of Chemical Physics, RAS. Kosygina 4, 119991 Moscow, Russia.
| | - Alexander S Vedenkin
- N.N. Semenov Institute of Chemical Physics, RAS. Kosygina 4, 119991 Moscow, Russia.
| | - Galina G Politenkova
- N.N. Semenov Institute of Chemical Physics, RAS. Kosygina 4, 119991 Moscow, Russia.
| | - Aleksey A Skoblin
- N.N. Semenov Institute of Chemical Physics, RAS. Kosygina 4, 119991 Moscow, Russia.
| | - Valery P Melnikov
- N.N. Semenov Institute of Chemical Physics, RAS. Kosygina 4, 119991 Moscow, Russia.
| | - Marya M Michaleva
- N.N. Semenov Institute of Chemical Physics, RAS. Kosygina 4, 119991 Moscow, Russia.
| | - Sergey V Stovbun
- N.N. Semenov Institute of Chemical Physics, RAS. Kosygina 4, 119991 Moscow, Russia.
| |
Collapse
|
23
|
Niu X, Liu Y, King AWT, Hietala S, Pan H, Rojas OJ. Plasticized Cellulosic Films by Partial Esterification and Welding in Low-Concentration Ionic Liquid Electrolyte. Biomacromolecules 2019; 20:2105-2114. [PMID: 30983326 PMCID: PMC6550441 DOI: 10.1021/acs.biomac.9b00325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Alternatives
to petroleum-based plastics are of great significance
not only from the point of view of their scientific and practical
impact but to reduce the environmental footprint. Inspired by the
composition and structure of wood’s cell walls, we used phenolic
acids to endow cellulosic fibers with new properties. The fiber dissolution
and homogeneous modification were performed with a recyclable ionic
liquid (IL) (tetrabutylammonium acetate ([N4444][OAc]):dimethyl
sulfoxide) to attain different levels of reaction activity for three
phenolic acids (p-hydroxybenzoic acid, vanillic acid,
and syringic acid). The successful autocatalytic Fischer esterification
reaction was thoroughly investigated by Fourier transform infrared
spectroscopy, X-ray photoelectron spectroscopy, elemental analysis,
and nuclear magnetic resonance spectroscopy (13C CP-MAS,
diffusion-edited 1H NMR and multiplicity-edited heteronuclear
single quantum coherence). Control of the properties of cellulose
in the dispersed state, welding, and IL plasticization were achieved
during casting and recrystallization to the cellulose II crystalline
allomorph. Films of cellulose carrying grafted acids were characterized
with respect to properties relevant to packaging materials. Most notably,
despite the low degree of esterification (DS < 0.25), the films
displayed a remarkable strength (3.5 GPa), flexibility (strains up
to 35%), optical transparency (>90%), and water resistance (WCA
∼
90°). Moreover, the measured water vapor barrier was found to
be similar to that of poly(lactic acid) composite films. Overall,
the results contribute to the development of the next-generation green,
renewable, and biodegradable films for packaging applications.
Collapse
Affiliation(s)
- Xun Niu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering , Nanjing Forestry University , 159# Longpan Road , Nanjing 210037 , P. R. China.,Department of Bioproducts and Biosystems, School of Chemical Engineering , Aalto University , PO Box 16300, FIN-00076 Aalto , Espoo , Finland
| | - Yating Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering , Nanjing Forestry University , 159# Longpan Road , Nanjing 210037 , P. R. China
| | - Alistair W T King
- Materials Chemistry, Department of Chemistry, Faculty of Science , University of Helsinki , A.I. Virtasen aukio 1 , PO Box 55, FIN-00014 , Finland
| | - Sami Hietala
- Materials Chemistry, Department of Chemistry, Faculty of Science , University of Helsinki , A.I. Virtasen aukio 1 , PO Box 55, FIN-00014 , Finland
| | - Hui Pan
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering , Nanjing Forestry University , 159# Longpan Road , Nanjing 210037 , P. R. China
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering , Aalto University , PO Box 16300, FIN-00076 Aalto , Espoo , Finland
| |
Collapse
|
24
|
Paulraj T, Wennmalm S, Riazanova AV, Wu Q, Crespo GA, Svagan AJ. Porous Cellulose Nanofiber-Based Microcapsules for Biomolecular Sensing. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41146-41154. [PMID: 30412378 DOI: 10.1021/acsami.8b16058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cellulose nanofibers (CNFs) have recently attracted a lot of attention in sensing because of their multifunctional character and properties such as renewability, nontoxicity, biodegradability, printability, and optical transparency in addition to unique physicochemical, barrier, and mechanical properties. However, the focus has exclusively been devoted toward developing two-dimensional sensing platforms in the form of nanopaper or nanocellulose-based hydrogels. To improve the flexibility and sensing performance in situ, for example, to detect biomarkers in vivo for early disease diagnostics, more advanced CNF-based structures are needed. Here, we developed porous and hollow, yet robust, CNF-based microcapsules using only the primary plant cell wall components, CNF, pectin, and xyloglucan, to assemble the capsule wall. The fluorescein isothiocyanate-labeled dextrans with MW of 70 and 2000 kDa could enter the hollow capsules at a rate of 0.13 ± 0.04 and 0.014 ± 0.009 s-1, respectively. This property is very attractive because it minimizes the influence of mass transport through the capsule wall on the response time. As a proof of concept, glucose oxidase (GOx) enzyme was loaded (and cross-linked) in the microcapsule interior with an encapsulation efficiency of 68 ± 2%. The GOx-loaded microcapsules were immobilized on a variety of surfaces (here, inside a flow channel, on a carbon-coated sensor or a graphite rod) and glucose concentrations up to 10 mM could successfully be measured. The present concept offers new opportunities in the development of simple, more efficient, and disposable nanocellulose-based analytical devices for several sensing applications including environmental monitoring, healthcare, and diagnostics.
Collapse
Affiliation(s)
- Thomas Paulraj
- Department of Fibre and Polymer Technology , KTH Royal Institute of Technology , Teknikringen 56 , SE-100 44 Stockholm , Sweden
| | - Stefan Wennmalm
- SciLifeLab, Department of Applied Physics, Experimental Biomolecular Physics , KTH Royal Institute of Technology , Tomtebodavägen 23a , 171 65 Solna , Sweden
| | - Anastasia V Riazanova
- Department of Fibre and Polymer Technology , KTH Royal Institute of Technology , Teknikringen 56 , SE-100 44 Stockholm , Sweden
| | - Qiong Wu
- Department of Fibre and Polymer Technology , KTH Royal Institute of Technology , Teknikringen 56 , SE-100 44 Stockholm , Sweden
| | - Gaston A Crespo
- Applied Physical Chemistry Division, Department of Chemistry , KTH Royal Institute of Technology , Teknikringen 30 , SE-100 44 Stockholm , Sweden
| | - Anna J Svagan
- Department of Fibre and Polymer Technology , KTH Royal Institute of Technology , Teknikringen 56 , SE-100 44 Stockholm , Sweden
| |
Collapse
|
25
|
Thomas B, Raj MC, B AK, H RM, Joy J, Moores A, Drisko GL, Sanchez C. Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications. Chem Rev 2018; 118:11575-11625. [PMID: 30403346 DOI: 10.1021/acs.chemrev.7b00627] [Citation(s) in RCA: 570] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
With increasing environmental and ecological concerns due to the use of petroleum-based chemicals and products, the synthesis of fine chemicals and functional materials from natural resources is of great public value. Nanocellulose may prove to be one of the most promising green materials of modern times due to its intrinsic properties, renewability, and abundance. In this review, we present nanocellulose-based materials from sourcing, synthesis, and surface modification of nanocellulose, to materials formation and applications. Nanocellulose can be sourced from biomass, plants, or bacteria, relying on fairly simple, scalable, and efficient isolation techniques. Mechanical, chemical, and enzymatic treatments, or a combination of these, can be used to extract nanocellulose from natural sources. The properties of nanocellulose are dependent on the source, the isolation technique, and potential subsequent surface transformations. Nanocellulose surface modification techniques are typically used to introduce either charged or hydrophobic moieties, and include amidation, esterification, etherification, silylation, polymerization, urethanization, sulfonation, and phosphorylation. Nanocellulose has excellent strength, high Young's modulus, biocompatibility, and tunable self-assembly, thixotropic, and photonic properties, which are essential for the applications of this material. Nanocellulose participates in the fabrication of a large range of nanomaterials and nanocomposites, including those based on polymers, metals, metal oxides, and carbon. In particular, nanocellulose complements organic-based materials, where it imparts its mechanical properties to the composite. Nanocellulose is a promising material whenever material strength, flexibility, and/or specific nanostructuration are required. Applications include functional paper, optoelectronics, and antibacterial coatings, packaging, mechanically reinforced polymer composites, tissue scaffolds, drug delivery, biosensors, energy storage, catalysis, environmental remediation, and electrochemically controlled separation. Phosphorylated nanocellulose is a particularly interesting material, spanning a surprising set of applications in various dimensions including bone scaffolds, adsorbents, and flame retardants and as a support for the heterogenization of homogeneous catalysts.
Collapse
Affiliation(s)
- Bejoy Thomas
- Department of Chemistry , Newman College, Thodupuzha , 685 585 Thodupuzha , Kerala , India
| | - Midhun C Raj
- Department of Chemistry , Newman College, Thodupuzha , 685 585 Thodupuzha , Kerala , India
| | - Athira K B
- Department of Chemistry , Newman College, Thodupuzha , 685 585 Thodupuzha , Kerala , India
| | - Rubiyah M H
- Department of Chemistry , Newman College, Thodupuzha , 685 585 Thodupuzha , Kerala , India
| | - Jithin Joy
- Department of Chemistry , Newman College, Thodupuzha , 685 585 Thodupuzha , Kerala , India.,International and Interuniversity Centre for Nanoscience and Nanotechnology (IIUCNN), Mahatma Gandhi University , 686 560 Kottayam , Kerala , India
| | - Audrey Moores
- Centre in Green Chemistry and Catalysis, Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada
| | - Glenna L Drisko
- CNRS, ICMCB, Université de Bordeaux, UMR 5026 , F-33600 Pessac , France
| | - Clément Sanchez
- UPMC Université Paris 06, CNRS, UMR 7574 Laboratoire Chimie de la Matière Condensée de Paris, Collège de France , 11 place, Marcelin Berthelot , F-75005 , Paris , France
| |
Collapse
|
26
|
Korolovych VF, Cherpak V, Nepal D, Ng A, Shaikh NR, Grant A, Xiong R, Bunning TJ, Tsukruk VV. Cellulose nanocrystals with different morphologies and chiral properties. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.04.064] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
27
|
Xiong R, Kim HS, Zhang L, Korolovych VF, Zhang S, Yingling YG, Tsukruk VV. Wrapping Nanocellulose Nets around Graphene Oxide Sheets. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rui Xiong
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0245 USA
| | - Ho Shin Kim
- Department of Materials Science and Engineering North Carolina State University Raleigh NC 27695-7907 USA
| | - Lijuan Zhang
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0245 USA
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - Volodymyr F. Korolovych
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0245 USA
| | - Shuaidi Zhang
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0245 USA
| | - Yaroslava G. Yingling
- Department of Materials Science and Engineering North Carolina State University Raleigh NC 27695-7907 USA
| | - Vladimir V. Tsukruk
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0245 USA
| |
Collapse
|
28
|
Xiong R, Kim HS, Zhang L, Korolovych VF, Zhang S, Yingling YG, Tsukruk VV. Wrapping Nanocellulose Nets around Graphene Oxide Sheets. Angew Chem Int Ed Engl 2018; 57:8508-8513. [DOI: 10.1002/anie.201803076] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Rui Xiong
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0245 USA
| | - Ho Shin Kim
- Department of Materials Science and Engineering North Carolina State University Raleigh NC 27695-7907 USA
| | - Lijuan Zhang
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0245 USA
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - Volodymyr F. Korolovych
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0245 USA
| | - Shuaidi Zhang
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0245 USA
| | - Yaroslava G. Yingling
- Department of Materials Science and Engineering North Carolina State University Raleigh NC 27695-7907 USA
| | - Vladimir V. Tsukruk
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0245 USA
| |
Collapse
|
29
|
Paulraj T, Riazanova AV, Svagan AJ. Bioinspired capsules based on nanocellulose, xyloglucan and pectin - The influence of capsule wall composition on permeability properties. Acta Biomater 2018; 69:196-205. [PMID: 29341931 DOI: 10.1016/j.actbio.2018.01.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 01/01/2018] [Accepted: 01/08/2018] [Indexed: 01/22/2023]
Abstract
Materials based on renewable biopolymers, selective permeability and stimuli-responsive release/loading properties play an important role in biomedical applications. Here, in order to mimic the plant primary cell-wall, microcapsules have been fabricated using cell wall polysaccharides, namely pectin, xyloglucan and cellulose nanofibers. For the first time, a large amount of xyloglucan was successfully included in such capsules. These capsules demonstrated stimuli-responsive (ON/OFF) permeability and biocompatibility. The live cell staining revealed that the microcapsules' surface enhanced cell growth and also the non-toxic nature of the microcapsules. In water, the microcapsules were completely and partially permeable to fluorescent dextrans with an average molecular weight of 70 kDa (hydrodynamic diameter of ca. 12 nm) and 2000 kDa (ca. 54 nm), respectively. On the other hand, the permeability dropped quickly when the capsules were exposed to 250 mM NaCl solution, trapping a fraction of the 70 kDa dextrans in the capsule interior. The decrease in permeability was a direct consequence of the capsule-wall composition, i.e. the presence of xyloglucan and a low amount of charged molecules such as pectin. The low permeability of capsules in saline conditions (and in a model biological medium), combined with a capsule wall that is made from dietary fibers only, potentially enables their use in biological applications, such as colon targeted delivery in the gastro-intestinal tract. STATEMENT OF SIGNIFICANCE For the first time, microcapsules have been prepared that possess capsule walls that mimic the primary cell wall found in natural plant cells. The capsules were assembled using pectin, xyloglucan and cellulose in the form of cellulose nanofibers. The capsules demonstrated stimuli-responsive (ON/OFF) permeability and biocompatibility. The low permeability of capsules in saline conditions (and in a model biological medium), combined with a capsule wall that is made from dietary fibers only, potentially enables their use in biological applications, such as colon targeted delivery in the gastro-intestinal tract. Such model plant cell capsules might also further improve the understanding for the digestion and release of nutrients from natural plant cells found in vegetables and fruits.
Collapse
Affiliation(s)
- T Paulraj
- Wallenberg Wood Science Center and Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - A V Riazanova
- Wallenberg Wood Science Center and Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - A J Svagan
- Wallenberg Wood Science Center and Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
30
|
Nypelö T, Amer H, Konnerth J, Potthast A, Rosenau T. Self-Standing Nanocellulose Janus-Type Films with Aldehyde and Carboxyl Functionalities. Biomacromolecules 2018; 19:973-979. [DOI: 10.1021/acs.biomac.7b01751] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tiina Nypelö
- Division of Applied Chemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Hassan Amer
- Department of Natural and Microbial Products Chemistry, National Research Centre, Dokki, Giza, Egypt 12622
| | | | | | | |
Collapse
|
31
|
Hadidi L, Mahmoud AYF, Purkait TK, McDermott MT, Veinot JGC. Cellulose nanocrystal-derived hollow mesoporous carbon spheres and their application as a metal-free catalyst. NANOTECHNOLOGY 2017; 28:505606. [PMID: 29064372 DOI: 10.1088/1361-6528/aa95a2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this contribution, we demonstrate the fabrication of hollow mesoporous carbon spheres (HCSs) derived from cellulose nanocrystals (CNCs). The HCSs were prepared by templating CNCs onto sacrificial silica spheres followed by heat treatment. Mesoporous carbon spheres result from the removal of the silica spheres by etching. The walls of the HCSs are approximately 4 nm thick and are composed of amorphous and graphitic carbon. The catalytic activity of the HCSs was investigated for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride (NaBH4). The present investigation reveals the outstanding catalytic activity of these particles. The reaction rate followed pseudo-first order kinetics with k value of 4.72 × 10-3 s-1 and activity parameter of 52.2 s-1 g-1, which showed superior performance compared to that of metal nanoparticle and metal nanoparticle-carbon hybrid based catalysts.
Collapse
Affiliation(s)
- Lida Hadidi
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | | | | | | | | |
Collapse
|
32
|
Jia C, Bian H, Gao T, Jiang F, Kierzewski IM, Wang Y, Yao Y, Chen L, Shao Z, Zhu JY, Hu L. Thermally Stable Cellulose Nanocrystals toward High-Performance 2D and 3D Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2017; 9:28922-28929. [PMID: 28766931 DOI: 10.1021/acsami.7b08760] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Cellulose nanomaterials have attracted much attention in a broad range of fields such as flexible electronics, tissue engineering, and 3D printing for their excellent mechanical strength and intriguing optical properties. Economic, sustainable, and eco-friendly production of cellulose nanomaterials with high thermal stability, however, remains a tremendous challenge. Here versatile cellulose nanocrystals (DM-OA-CNCs) are prepared through fully recyclable oxalic acid (OA) hydrolysis along with disk-milling (DM) pretreatment of bleached kraft eucalyptus pulp. Compared with the commonly used cellulose nanocrystals from sulfuric acid hydrolysis, DM-OA-CNCs show several advantages including large aspect ratio, carboxylated surface, and excellent thermal stability along with high yield. We also successfully demonstrate the fabrication of high-performance films and 3D-printed patterns using DM-OA-CNCs. The high-performance films with high transparency, ultralow haze, and excellent thermal stability have the great potential for applications in flexible electronic devices. The 3D-printed patterns with porous structures can be potentially applied in the field of tissue engineering as scaffolds.
Collapse
Affiliation(s)
- Chao Jia
- Department of Materials Science and Engineering, University of Maryland College Park , College Park, Maryland 20742, United States
- School of Materials Science and Engineering, Beijing Institute of Technology , Beijing 100081, China
- Forest Products Laboratory, USDA Forest Service , Madison, Wisconsin 53726, United States
| | - Huiyang Bian
- Forest Products Laboratory, USDA Forest Service , Madison, Wisconsin 53726, United States
| | - Tingting Gao
- Department of Materials Science and Engineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Feng Jiang
- Department of Materials Science and Engineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Iain Michael Kierzewski
- Department of Materials Science and Engineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Yilin Wang
- Department of Materials Science and Engineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Yonggang Yao
- Department of Materials Science and Engineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Liheng Chen
- Forest Products Laboratory, USDA Forest Service , Madison, Wisconsin 53726, United States
| | - Ziqiang Shao
- School of Materials Science and Engineering, Beijing Institute of Technology , Beijing 100081, China
| | - J Y Zhu
- Forest Products Laboratory, USDA Forest Service , Madison, Wisconsin 53726, United States
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland College Park , College Park, Maryland 20742, United States
| |
Collapse
|
33
|
|
34
|
Dang X, Cao X, Ke L, Ma Y, An J, Wang F. Combination of cellulose nanofibers and chain-end-functionalized polyethylene and their applications in nanocomposites. J Appl Polym Sci 2017. [DOI: 10.1002/app.45387] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Xiaofei Dang
- Beijing National Laboratory of Molecular Sciences, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 People's Republic of China
- University of Chinese Academy of Sciences; Beijing 100049 People's Republic of China
| | - Xinyu Cao
- Beijing National Laboratory of Molecular Sciences, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 People's Republic of China
| | - Linnan Ke
- National Institutes for Food and Drug Control; Beijing 10050 People's Republic of China
| | - Yongmei Ma
- Beijing National Laboratory of Molecular Sciences, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 People's Republic of China
| | - Jingjing An
- Beijing National Laboratory of Molecular Sciences, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 People's Republic of China
| | - Fosong Wang
- Beijing National Laboratory of Molecular Sciences, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 People's Republic of China
| |
Collapse
|
35
|
Zhang H, Yang M, Luan Q, Tang H, Huang F, Xiang X, Yang C, Bao Y. Cellulose Anionic Hydrogels Based on Cellulose Nanofibers As Natural Stimulants for Seed Germination and Seedling Growth. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3785-3791. [PMID: 28436656 DOI: 10.1021/acs.jafc.6b05815] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cellulose anionic hydrogels were successfully prepared by dissolving TEMPO-oxidized cellulose nanofibers in NaOH/urea aqueous solution and being cross-linked with epichlorohydrin. The hydrogels exhibited microporous structure and high hydrophilicity, which contribute to the excellent water absorption property. The growth indexes, including the germination rate, root length, shoot length, fresh weight, and dry weight of the seedlings, were investigated. The results showed that cellulose anionic hydrogels with suitable carboxylate contents as plant growth regulators could be beneficial for seed germination and growth. Moreover, they presented preferable antifungal activity during the breeding and growth of the sesame seed breeding. Thus, the cellulose anionic hydrogels with suitable carboxylate contents could be applied as soilless culture mediums for plant growth. This research provided a simple and effective method for the fabrication of cellulose anionic hydrogel and evaluated its application in agriculture.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Product Processing and Nutriology, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Ministry of Agriculture Key Laboratory of Oil Crops Biology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062, China
| | - Minmin Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Sesame Genetic Improvement Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062, China
| | - Qian Luan
- Department of Product Processing and Nutriology, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Ministry of Agriculture Key Laboratory of Oil Crops Biology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062, China
| | - Hu Tang
- Department of Product Processing and Nutriology, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Ministry of Agriculture Key Laboratory of Oil Crops Biology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062, China
| | - Fenghong Huang
- Department of Product Processing and Nutriology, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Ministry of Agriculture Key Laboratory of Oil Crops Biology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062, China
| | - Xia Xiang
- Department of Product Processing and Nutriology, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Ministry of Agriculture Key Laboratory of Oil Crops Biology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062, China
| | - Chen Yang
- Department of Product Processing and Nutriology, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Ministry of Agriculture Key Laboratory of Oil Crops Biology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062, China
| | - Yuping Bao
- Department of Product Processing and Nutriology, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Ministry of Agriculture Key Laboratory of Oil Crops Biology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062, China
| |
Collapse
|
36
|
Hong CY, Wu SX, Li SH, Liang H, Chen S, Li J, Yang HH, Tan W. Semipermeable Functional DNA-Encapsulated Nanocapsules as Protective Bioreactors for Biosensing in Living Cells. Anal Chem 2017; 89:5389-5394. [DOI: 10.1021/acs.analchem.7b00081] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Cheng-Yi Hong
- MOE
Key Laboratory for Analytical Science of Food Safety and Biology,
Fujian Provincial Key Laboratory of Analysis and Detection Technology
for Food Safety, State Key Laboratory of Photocatalysis on Energy
and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
- Department
of Chemistry and Department of Physiology and Functional Genomics,
Center for Research at the Bio/Nano Interface, UF Health Cancer Center, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Shu-Xian Wu
- MOE
Key Laboratory for Analytical Science of Food Safety and Biology,
Fujian Provincial Key Laboratory of Analysis and Detection Technology
for Food Safety, State Key Laboratory of Photocatalysis on Energy
and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Shi-Hua Li
- MOE
Key Laboratory for Analytical Science of Food Safety and Biology,
Fujian Provincial Key Laboratory of Analysis and Detection Technology
for Food Safety, State Key Laboratory of Photocatalysis on Energy
and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Hong Liang
- MOE
Key Laboratory for Analytical Science of Food Safety and Biology,
Fujian Provincial Key Laboratory of Analysis and Detection Technology
for Food Safety, State Key Laboratory of Photocatalysis on Energy
and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Shan Chen
- MOE
Key Laboratory for Analytical Science of Food Safety and Biology,
Fujian Provincial Key Laboratory of Analysis and Detection Technology
for Food Safety, State Key Laboratory of Photocatalysis on Energy
and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Juan Li
- MOE
Key Laboratory for Analytical Science of Food Safety and Biology,
Fujian Provincial Key Laboratory of Analysis and Detection Technology
for Food Safety, State Key Laboratory of Photocatalysis on Energy
and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
- Molecular
Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering and
College of Biology, Collaborative Innovation Center for Molecular
Engineering and Theranostics, Hunan University, Changsha 410082, China
| | - Huang-Hao Yang
- MOE
Key Laboratory for Analytical Science of Food Safety and Biology,
Fujian Provincial Key Laboratory of Analysis and Detection Technology
for Food Safety, State Key Laboratory of Photocatalysis on Energy
and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Weihong Tan
- Molecular
Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering and
College of Biology, Collaborative Innovation Center for Molecular
Engineering and Theranostics, Hunan University, Changsha 410082, China
- Department
of Chemistry and Department of Physiology and Functional Genomics,
Center for Research at the Bio/Nano Interface, UF Health Cancer Center, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
37
|
Zhao Y, Moser C, Lindström ME, Henriksson G, Li J. Cellulose Nanofibers from Softwood, Hardwood, and Tunicate: Preparation-Structure-Film Performance Interrelation. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13508-13519. [PMID: 28350431 DOI: 10.1021/acsami.7b01738] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This work reveals the structural variations of cellulose nanofibers (CNF) prepared from different cellulose sources, including softwood (Picea abies), hardwood (Eucalyptus grandis × E. urophylla), and tunicate (Ciona intestinalis), using different preparation processes and their correlations to the formation and performance of the films prepared from the CNF. Here, the CNF are prepared from wood chemical pulps and tunicate isolated cellulose by an identical homogenization treatment subsequent to either an enzymatic hydrolysis or a 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-mediated oxidation. They show a large structural diversity in terms of chemical, morphological, and crystalline structure. Among others, the tunicate CNF consist of purer cellulose and have a degree of polymerization higher than that of wood CNF. Introduction of surface charges via the TEMPO-mediated oxidation is found to have significant impacts on the structure, morphology, optical, mechanical, thermal, and hydrophobic properties of the prepared films. For example, the film density is closely related to the charge density of the used CNF, and the tensile stress of the films is correlated to the crystallinity index of the CNF. In turn, the CNF structure is determined by the cellulose sources and the preparation processes. This study provides useful information and knowledge for understanding the importance of the raw material for the quality of CNF for various types of applications.
Collapse
Affiliation(s)
- Yadong Zhao
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, Royal Institute of Technology, KTH , Teknikringen 56-58, 10044 Stockholm, Sweden
| | - Carl Moser
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, Royal Institute of Technology, KTH , Teknikringen 56-58, 10044 Stockholm, Sweden
- Valmet AB , 85194 Sundsvall, Sweden
| | - Mikael E Lindström
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, Royal Institute of Technology, KTH , Teknikringen 56-58, 10044 Stockholm, Sweden
| | - Gunnar Henriksson
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, Royal Institute of Technology, KTH , Teknikringen 56-58, 10044 Stockholm, Sweden
| | - Jiebing Li
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, Royal Institute of Technology, KTH , Teknikringen 56-58, 10044 Stockholm, Sweden
- Research Institute of Sweden, RISE, Bioeconomy/Biorefinery and Energy , Drottning Kristinas väg 61, 11486 Stockholm, Sweden
| |
Collapse
|
38
|
Zhang S, Jiang Z, Qian W, Shi J, Wang X, Tang L, Zou H, Liu H. Preparation of Ultrathin, Robust Nanohybrid Capsules through a "Beyond Biomineralization" Method. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12841-12850. [PMID: 28322056 DOI: 10.1021/acsami.7b00308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Herein, a facile and generic method is developed to prepare ultrathin, robust nanohybrid capsules by manipulating the dynamic structure of supramolecular nanocoatings on CaCO3 sacrificial templates by incorporating a multivalent-anion substitution process into biomineralization. Above the biomineralization level, multivalent anions, for example, phosphate, sulfate, or citrate, are used to initiate the assembly of polyamine into continuous (nonsegregated) polyamine-anion supramolecular nanocoatings on CaCO3 sacrificial templates. When contacting with the sodium silicate solution, the multivalent anions in the supramolecular nanocoatings are substituted by silicate because of the difference in dissociation behavior, facilitating the structure-reconstruction of supramolecular nanocoatings. At the biomineralization level, the substituted silicate can not only bind to the polyamine through electrostatic and hydrogen bonding interactions but also undergo silicification to generate an interpenetrating silica framework. After dissolution of CaCO3, polyamine-silica nanohybrid capsules bearing an ultrathin wall of ∼10-17 nm in thickness are formed, which exhibit a super-high mechanical strength of ∼2337 MPa in elasticity modulus. The capsules are then utilized for bioreactor construction by encapsulating glucose oxidase. The ultrathin capsule wall facilitates the diffusion of substrates/products and elevates the conversion efficiency, whereas the high mechanical strength ensures the structural integrity of the capsules during multiple-cycle reactions. This method can also be applied for the preparation of ultrathin films on planar substrates, which would open a feasible way to prepare nanohybrid materials with different compositions and shapes.
Collapse
Affiliation(s)
- Shaohua Zhang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | - Zhongyi Jiang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | - Weilun Qian
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | | | - Xiaoli Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science , Tianjin 300192, China
| | - Lei Tang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | - Hongjian Zou
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | - Hua Liu
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| |
Collapse
|
39
|
Paulraj T, Riazanova AV, Yao K, Andersson RL, Müllertz A, Svagan AJ. Bioinspired Layer-by-Layer Microcapsules Based on Cellulose Nanofibers with Switchable Permeability. Biomacromolecules 2017; 18:1401-1410. [DOI: 10.1021/acs.biomac.7b00126] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Thomas Paulraj
- Wallenberg
Wood Science Center and Department of Fiber and Polymer Technology and ∥Fiber and Polymer
Technology, School of Chemical Science and Engineering, Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Anastasia V. Riazanova
- Wallenberg
Wood Science Center and Department of Fiber and Polymer Technology and ∥Fiber and Polymer
Technology, School of Chemical Science and Engineering, Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Kun Yao
- School
of Biotechnology, Royal Institute of Technology, Alba Nova University Centre, 10691, Stockholm, Sweden
| | | | - Anette Müllertz
- Department
of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Anna J. Svagan
- Wallenberg
Wood Science Center and Department of Fiber and Polymer Technology and ∥Fiber and Polymer
Technology, School of Chemical Science and Engineering, Royal Institute of Technology, SE-10044 Stockholm, Sweden
| |
Collapse
|
40
|
Gorgieva S, Girandon L, Kokol V. Mineralization potential of cellulose-nanofibrils reinforced gelatine scaffolds for promoted calcium deposition by mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 73:478-489. [PMID: 28183635 DOI: 10.1016/j.msec.2016.12.092] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/30/2016] [Accepted: 12/19/2016] [Indexed: 11/20/2022]
Abstract
Cellulose-nanofibrils (CNFs) enriched gelatine (GEL) scaffolds were fabricated in-situ by the combined freeze-thawing process and carbodiimide crosslinking chemistry. The original- and variously surface anionised CNFs (carboxylated/CNF-COOH/, and phosphonated with 3-AminoPropylphosphoric Acid/CNF-COOH-ApA/) were used in order to tune the scaffolds' biomimetic structure towards a more intensive mineralization process. The pore size reduction (from 208±35μm to 91±35μm) after 50% v/v of CNFs addition to GEL was identified, while separated pore-walls' alignment vs. shorter, dense and elongated pores are observed when using 80% v/v of original-CNFs vs. anionised-CNFs, all of them possessed osteoid-like compressive strength (0.025-0.40MPa) and elasticity (0.04-0.15MPa). While randomly distributed Ca2+-deficient hydroxyapatite/HAp/(Ca/P≈1.4) aggregates were identified in the case of original-CNF prevalent scaffolds after four weeks of incubation in SBF, the more uniform and intensified deposition with HAp-like (Ca/P≈1.69) structures were established using CNF-COOH-Apa. The growth of Mesenchymal Stem Cells (MSCs) was observed on all CNF-containing scaffolds, resulting in more extensive Ca2+ deposition compared to the positive control or pure GEL scaffold. Among them, the scaffold prepared with the 50% v/v CNF-COOH-ApA showed significantly increased mineralization kinetic as well as the capacity for bone-like patterning in bone tissue regeneration.
Collapse
Affiliation(s)
- Selestina Gorgieva
- University of Maribor, Institute of Engineering Materials and Design, Maribor, Slovenia
| | | | - Vanja Kokol
- University of Maribor, Institute of Engineering Materials and Design, Maribor, Slovenia.
| |
Collapse
|
41
|
Zhang S, Jiang Z, Shi J, Wang X, Han P, Qian W. An Efficient, Recyclable, and Stable Immobilized Biocatalyst Based on Bioinspired Microcapsules-in-Hydrogel Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25152-25161. [PMID: 27602594 DOI: 10.1021/acsami.6b09483] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Design and preparation of high-performance immobilized biocatalysts with exquisite structures and elucidation of their profound structure-performance relationship are highly desired for green and sustainable biotransformation processes. Learning from nature has been recognized as a shortcut to achieve such an impressive goal. Loose connective tissue, which is composed of hierarchically organized cells by extracellular matrix (ECM) and is recognized as an efficient catalytic system to ensure the ordered proceeding of metabolism, may offer an ideal prototype for preparing immobilized biocatalysts with high catalytic activity, recyclability, and stability. Inspired by the hierarchical structure of loose connective tissue, we prepared an immobilized biocatalyst enabled by microcapsules-in-hydrogel (MCH) scaffolds via biomimetic mineralization in agarose hydrogel. In brief, the in situ synthesized hybrid microcapsules encapsulated with glucose oxidase (GOD) are hierarchically organized by the fibrous framework of agarose hydrogel, where the fibers are intercalated into the capsule wall. The as-prepared immobilized biocatalyst shows structure-dependent catalytic performance. The porous hydrogel permits free diffusion of glucose molecules (diffusion coefficient: ∼6 × 10(-6) cm(2) s(-1), close to that in water) and retains the enzyme activity as much as possible after immobilization (initial reaction rate: 1.5 × 10(-2) mM min(-1)). The monolithic macroscale of agarose hydrogel facilitates the easy recycling of the immobilized biocatalyst (only by using tweezers), which contributes to the nonactivity decline during the recycling test. The fiber-intercalating structure elevates the mechanical stability of the in situ synthesized hybrid microcapsules, which inhibits the leaching and enhances the stability of the encapsulated GOD, achieving immobilization efficiency of ∼95%. This study will, therefore, provide a generic method for the hierarchical organization of (bio)active materials and the rational design of novel (bio)catalysts.
Collapse
Affiliation(s)
- Shaohua Zhang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | - Zhongyi Jiang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | - Jiafu Shi
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | - Xueyan Wang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | - Pingping Han
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | - Weilun Qian
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| |
Collapse
|
42
|
Xiong R, Hu K, Zhang S, Lu C, Tsukruk VV. Ultrastrong Freestanding Graphene Oxide Nanomembranes with Surface-Enhanced Raman Scattering Functionality by Solvent-Assisted Single-Component Layer-by-Layer Assembly. ACS NANO 2016; 10:6702-6715. [PMID: 27331853 DOI: 10.1021/acsnano.6b02012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report single-component ultrathin reduced graphene oxide (rGO) nanomembranes fabricated via nonconventional layer-by-layer assembly (LbL) of graphene oxide flakes, using organic solvent instead of water to provide strong complementary interactions and to ensure the uniform layered growth. This unique approach does not require regular polymeric from the assembly process or intermediate surface chemical modification. The resulting ultrastrong freestanding graphene oxide (rGO) LbL nanomembranes with a very low thickness of 3 nm (three GO monolayers) can be transferred over a large surface area across tens of square centimeters by using a facile surface-tension-assisted release technique. These uniform and ultrasmooth nanomembranes with high transparency (up to 93% at 550 nm) and high electrical conductivity (up to 3000 S/m) also exhibit outstanding mechanical strength of 0.5 GPa and a Young's modulus of 120 GPa, which are several times higher than that of other reported regular rGO films. Furthermore, up to 94 wt % of silver nanoplates can be sandwiched between 5 nm GO layers to construct a flexible freestanding protected noble metal monolayer with surface-enhanced Raman scattering properties. These flexible rGO/Ag/rGO nanomembranes can be transferred and conformally coat complex surfaces and show a cleaner Raman signature, enhanced wet stability, and lower oxidation compared to bare Ag nanostructures.
Collapse
Affiliation(s)
- Rui Xiong
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University , Chengdu 610065, China
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0245, United States
| | - Kesong Hu
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0245, United States
| | - Shuaidi Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0245, United States
| | - Canhui Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University , Chengdu 610065, China
| | - Vladimir V Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
43
|
Kim S, Xiong R, Tsukruk VV. Probing Flexural Properties of Cellulose Nanocrystal-Graphene Nanomembranes with Force Spectroscopy and Bulging Test. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5383-5393. [PMID: 27149011 DOI: 10.1021/acs.langmuir.6b01079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The flexural properties of ultrathin freely standing composite nanomembranes from reduced graphene oxide (rGO) and cellulose nanocrystals (CNC) have been probed by combining force spectroscopy for local nanomechanical properties and bulging test for global mechanical properties. We observed that the flexural properties of these rGO-CNC nanomembranes are controlled by rGO content and deformational regimes. The nanomembranes showed the enhanced mechanical properties due to the strong interfacial interactions between interwoven rGO and CNC components. The presence of weak interfacial interactions resulted in time-dependent behavior with the relaxation time gradually decreased with increasing the deformational rate owing to the reducing viscous damping at faster probing regimes close to 10 Hz. We observed that the microscopic elastic bending modulus of 141 GPa from local force spectroscopy is close to the elastic tensile modulus evaluated from macroscopic bulging test, indicating the consistency of both approaches for analyzing the ultrathin nanomembranes at different spatial scales of deformation. We showed that the flexible rGO-CNC nanomembranes are very resilient in terms of their capacity to recover back into original shape.
Collapse
Affiliation(s)
- Sunghan Kim
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Rui Xiong
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Vladimir V Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
44
|
Shen P, Gao J, Cong J, Liu Z, Li C, Yao J. Synthesis of Cellulose-Based Carbon Dots for Bioimaging. ChemistrySelect 2016. [DOI: 10.1002/slct.201600216] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Peilian Shen
- The Key laboratory of Advanced Textile; Materials and Manufacturing Technology of Ministry of Education; National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang); College of Materials and Textiles; Zhejiang Sci-Tech University; Hangzhou 310018 P. R. China
| | - Junkuo Gao
- The Key laboratory of Advanced Textile; Materials and Manufacturing Technology of Ministry of Education; National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang); College of Materials and Textiles; Zhejiang Sci-Tech University; Hangzhou 310018 P. R. China
| | - Jingkun Cong
- The Key laboratory of Advanced Textile; Materials and Manufacturing Technology of Ministry of Education; National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang); College of Materials and Textiles; Zhejiang Sci-Tech University; Hangzhou 310018 P. R. China
| | - Ziwei Liu
- The Key laboratory of Advanced Textile; Materials and Manufacturing Technology of Ministry of Education; National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang); College of Materials and Textiles; Zhejiang Sci-Tech University; Hangzhou 310018 P. R. China
| | - Changqing Li
- The Key laboratory of Advanced Textile; Materials and Manufacturing Technology of Ministry of Education; National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang); College of Materials and Textiles; Zhejiang Sci-Tech University; Hangzhou 310018 P. R. China
| | - Juming Yao
- The Key laboratory of Advanced Textile; Materials and Manufacturing Technology of Ministry of Education; National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang); College of Materials and Textiles; Zhejiang Sci-Tech University; Hangzhou 310018 P. R. China
| |
Collapse
|
45
|
Xiong R, Hu K, Grant AM, Ma R, Xu W, Lu C, Zhang X, Tsukruk VV. Ultrarobust Transparent Cellulose Nanocrystal-Graphene Membranes with High Electrical Conductivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:1501-9. [PMID: 26643976 DOI: 10.1002/adma.201504438] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/09/2015] [Indexed: 05/19/2023]
Abstract
Ultra-robust nanomembranes possessing high mechanical strength combined with excellent stiffness and toughness rarely achieved in nanocomposite materials are presented. These are fabricated by alternately depositing 1D cellulose nanocrystals and 2D graphene oxide nanosheets by using a spin assisted layer-by-layer assembly technique. Such a unique combination of 1D and 2D reinforcing nanostructures results in layered nanomaterials.
Collapse
Affiliation(s)
- Rui Xiong
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Kesong Hu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Anise M Grant
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Ruilong Ma
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Weinan Xu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Canhui Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Vladimir V Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| |
Collapse
|