1
|
Periz R, Geuß M, Mameka N, Markmann J, Steinhart M. High-Temperature Melt Stamping of Polymers Using Polymer/Nanoporous Gold Composite Stamps. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308478. [PMID: 38263727 DOI: 10.1002/smll.202308478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/05/2024] [Indexed: 01/25/2024]
Abstract
Parallel lithographic deposition of polymers onto counterpart substrates is a widely applied surface manufacturing operation. However, polymers may only be soluble in organic solvents or are insoluble at all. Solvent evaporation during stamping may trigger hardly controllable capillarity-driven flow processes or phase separation, and polymer solutions may spread on the counterpart substrates. Solvent-free stamping of melts prevents these drawbacks. Here, a stamp design for the deposition of melts is devised, which intrinsically circumvents ink depletion. The stamps' topographically patterned contact surfaces with protruding contact elements contacting the counterpart substrates consist of a nanoporous gold layer with a thickness of a few micrometers. The nanoporous gold layer is attached to a molten polymer layer, which is support for the nanoporous gold layer and ink reservoir at the same time. The nanoporous gold layer in turn stabilizes the topography of the stamps' contact surfaces. As examples, arrays of submicron microdots of polystyrene and poly(vinylidenefluoride-trifluoroethylene) (PVDF-TrFE) are manufactured. The P(VDF-TrFE) microdots are partially crystalline, ferroelectric, and can be locally poled. It is envisioned that the methodology reported here can be automatized and may be extended to functional low-molecular-mass compounds, such as active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Ruža Periz
- School of Biology and Chemistry and CellNanOs, Universität Osnabrück, Barbarastr. 7, 49076, Osnabrück, Germany
| | - Markus Geuß
- School of Biology and Chemistry and CellNanOs, Universität Osnabrück, Barbarastr. 7, 49076, Osnabrück, Germany
| | - Nadiia Mameka
- Helmholtz-Zentrum Hereon, Institute of Materials Mechanics, 21502, Geesthacht, Germany
| | - Jürgen Markmann
- Helmholtz-Zentrum Hereon, Institute of Materials Mechanics, 21502, Geesthacht, Germany
- Institute of Materials Physics and Technology, Hamburg University of Technology, 21073, Hamburg, Germany
| | - Martin Steinhart
- School of Biology and Chemistry and CellNanOs, Universität Osnabrück, Barbarastr. 7, 49076, Osnabrück, Germany
| |
Collapse
|
2
|
Smith PT, Ye Z, Pietryga J, Huang J, Wahl CB, Hedlund Orbeck JK, Mirkin CA. Molecular Thin Films Enable the Synthesis and Screening of Nanoparticle Megalibraries Containing Millions of Catalysts. J Am Chem Soc 2023. [PMID: 37311072 DOI: 10.1021/jacs.3c03910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Megalibraries are centimeter-scale chips containing millions of materials synthesized in parallel using scanning probe lithography. As such, they stand to accelerate how materials are discovered for applications spanning catalysis, optics, and more. However, a long-standing challenge is the availability of substrates compatible with megalibrary synthesis, which limits the structural and functional design space that can be explored. To address this challenge, thermally removable polystyrene films were developed as universal substrate coatings that decouple lithography-enabled nanoparticle synthesis from the underlying substrate chemistry, thus providing consistent lithography parameters on diverse substrates. Multi-spray inking of the scanning probe arrays with polymer solutions containing metal salts allows patterning of >56 million nanoreactors designed to vary in composition and size. These are subsequently converted to inorganic nanoparticles via reductive thermal annealing, which also removes the polystyrene to deposit the megalibrary. Megalibraries with mono-, bi-, and trimetallic materials were synthesized, and nanoparticle size was controlled between 5 and 35 nm by modulating the lithography speed. Importantly, the polystyrene coating can be used on conventional substrates like Si/SiOx, as well as substrates typically more difficult to pattern on, such as glassy carbon, diamond, TiO2, BN, W, or SiC. Finally, high-throughput materials discovery is performed in the context of photocatalytic degradation of organic pollutants using Au-Pd-Cu nanoparticle megalibraries on TiO2 substrates with 2,250,000 unique composition/size combinations. The megalibrary was screened within 1 h by developing fluorescent thin-film coatings on top of the megalibrary as proxies for catalytic turnover, revealing Au0.53Pd0.38Cu0.09-TiO2 as the most active photocatalyst composition.
Collapse
Affiliation(s)
- Peter T Smith
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Zihao Ye
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Jacob Pietryga
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jin Huang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Carolin B Wahl
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jenny K Hedlund Orbeck
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
3
|
Chang B, Zhao D, Sun H. Plasma-Assisted Microcontact Printing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23944-23950. [PMID: 35543581 DOI: 10.1021/acsami.2c02123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microcontact printing, polymer pen lithography, and their variations have attracted interests from a broad spectrum of research fields as a result of the feasibility of defining patterns in micro- and nanoscales. In this work, we have proposed and demonstrated a novel lithography method, named plasma-assisted microcontact printing (PA-μCP). Unlike the previous printing methods, where a direct contact is normally required for the transport of liquid-phase inks, plasma-deposited fluorocarbon (FC) has been employed in PA-μCP as the ink material, which can be transferred from the stamp to substrates through a thermal evaporation process. The geometry of the patterns can be modified by adjusting the design of stamp patterns and the contact time, and transferred FC patterns can be used directly as an etch mask to create microstructures in the substrate materials. We have demonstrated the possibility of performing multi-patterning with PA-μCP, where FC patterns can be generated conformally on structured substrates. Because the height of FC patterns is closely related to the local pattern designs, PA-μCP can be used for grayscale patterning. As a proof of concept, Fabry-Perot planar cavities are fabricated with grayscale PA-μCP for structure color printing. We believe PA-μCP is distinguished from conventional techniques by its printing mechanism, which can pave the way for convenient fabrication of photonic, electronic, and biological devices.
Collapse
Affiliation(s)
- Bingdong Chang
- DTU Nanolab, Technical University of Denmark, Ørsteds Plads, Building 347, 2800 Kongens Lyngby, Denmark
| | - Ding Zhao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, People's Republic of China
| | - Hongyu Sun
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei 066004, People's Republic of China
| |
Collapse
|
4
|
Arrabito G, Gulli D, Alfano C, Pignataro B. "Writing biochips": high-resolution droplet-to-droplet manufacturing of analytical platforms. Analyst 2022; 147:1294-1312. [PMID: 35275148 DOI: 10.1039/d1an02295d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The development of high-resolution molecular printing allows the engineering of analytical platforms enabling applications at the interface between chemistry and biology, i.e. in biosensing, electronics, single-cell biology, and point-of-care diagnostics. Their successful implementation stems from the combination of large area printing at resolutions from sub-100 nm up to macroscale, whilst controlling the composition and volume of the ink, and reconfiguring the deposition features in due course. Similar to handwriting pens, the engineering of continuous writing systems tackles the issue of the tedious ink replenishment between different printing steps. To this aim, this review article provides an unprecedented analysis of the latest continuous printing methods for bioanalytical chemistry, focusing on ink deposition systems based on specific sets of technologies that have been developed to this aim, namely nanofountain probes, microcantilever spotting, capillary-based polymer pens and continuous 3D printing. Each approach will be discussed revealing the most important applications in the fields of biosensors, lab-on-chips and diagnostics.
Collapse
Affiliation(s)
- Giuseppe Arrabito
- Department of Physics and Chemistry (DiFC) Emilio Segrè, University of Palermo, Building 17, V.le delle Scienze, Palermo 90128, Italy.
| | - Daniele Gulli
- Department of Physics and Chemistry (DiFC) Emilio Segrè, University of Palermo, Building 17, V.le delle Scienze, Palermo 90128, Italy.
| | - Caterina Alfano
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, Palermo 90133, Italy
| | - Bruno Pignataro
- Department of Physics and Chemistry (DiFC) Emilio Segrè, University of Palermo, Building 17, V.le delle Scienze, Palermo 90128, Italy.
| |
Collapse
|
5
|
Liu H, Zhang L, Huang J, Mao J, Chen Z, Mao Q, Ge M, Lai Y. Smart surfaces with reversibly switchable wettability: Concepts, synthesis and applications. Adv Colloid Interface Sci 2022; 300:102584. [PMID: 34973464 DOI: 10.1016/j.cis.2021.102584] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
As a growing hot research topic, manufacturing smart switchable surfaces has attracted much attention in the past a few years. The state-of-the-art study on reversibly switchable wettability of smart surfaces has been presented in this systematic review. External stimuli are brought about to render the alteration in chemical conformation and surface morphology to drive the wettability switch. Here, starting from the fundamental theories related to the surfaces wetting principles, highlights on different triggers for switchable wettability, such as pH, light, ions, temperature, electric field, gas, mechanical force, and multi-stimuli are discussed. Different applications that have various wettability requirement are targeted, including oil-water separation, droplets manipulation, patterning, liquid transport, and so on. This review aims to provide a deep insight into responsive interfacial science and offer guidance for smart surface engineering. It ends with a summary of current challenges, future opportunities, and potential solutions on smart switch of wettability on superwetting surfaces.
Collapse
Affiliation(s)
- Hui Liu
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile & Clothing, Nantong University, Nantong 226019, PR China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Taian 271000, PR China
| | - Li Zhang
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile & Clothing, Nantong University, Nantong 226019, PR China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Taian 271000, PR China
| | - Jianying Huang
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou 350116, PR China
| | - Jiajun Mao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, PR China
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore
| | - Qinghui Mao
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile & Clothing, Nantong University, Nantong 226019, PR China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Taian 271000, PR China.
| | - Mingzheng Ge
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile & Clothing, Nantong University, Nantong 226019, PR China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Taian 271000, PR China.
| | - Yuekun Lai
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou 350116, PR China.
| |
Collapse
|
6
|
Liu G, Petrosko SH, Zheng Z, Mirkin CA. Evolution of Dip-Pen Nanolithography (DPN): From Molecular Patterning to Materials Discovery. Chem Rev 2020; 120:6009-6047. [DOI: 10.1021/acs.chemrev.9b00725] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Guoqiang Liu
- Laboratory for Advanced Interfacial Materials and Devices, Research Centre for Smart Wearable Technology, Institute of Textile and Clothing, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Sarah Hurst Petrosko
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, Research Centre for Smart Wearable Technology, Institute of Textile and Clothing, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Chad A. Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
7
|
Brown KA, Hedrick JL, Eichelsdoerfer DJ, Mirkin CA. Nanocombinatorics with Cantilever-Free Scanning Probe Arrays. ACS NANO 2019; 13:8-17. [PMID: 30561191 DOI: 10.1021/acsnano.8b08185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The effectiveness of combinatorial experiments is determined by the rate at which distinct experimental conditions can be prepared and interrogated. This has been particularly limiting at the intersection of nanotechnology and soft materials research, where structures are difficult to reliably prepare and materials are incompatible with conventional lithographic techniques. For example, studying nanoparticle-based heterogeneous catalysis or the interaction between biological cells and abiotic surfaces requires precise tuning of materials composition on the nanometer scale. Scanning probe techniques are poised to be major players in the combinatorial nanoscience arena because they allow one to directly deposit materials at high resolution without any harsh processing steps that limit material compatibility. The chief limitation of scanning probe techniques is throughput, as patterning with single probes is prohibitively slow in the context of large-scale combinatorial experiments. A recent paradigm shift circumvents this problem by fundamentally altering the architecture of scanning probes by replacing the conventionally used cantilever with a soft compliant film on a rigid substrate, a substitution that allows a densely packed array of probes to function in parallel in an inexpensive format. This is a major lithographic advance in terms of scalability, throughput, and versatility that, when combined with the development of approaches to actuate individual probes in cantilever-free arrays, sets the stage for scanning-probe-based tools to address scientific questions through nanocombinatorial studies in biology and materials science. In this review, we outline the development of cantilever-free scanning probe lithography and prospects for nanocombinatorial studies enabled by these tools.
Collapse
Affiliation(s)
- Keith A Brown
- Department of Mechanical Engineering, Division of Materials Science & Engineering, and Physics Department , Boston University , 110 Cummington Mall , Boston , Massachusetts 02215 , United States
| | | | | | - Chad A Mirkin
- Department of Mechanical Engineering, Division of Materials Science & Engineering, and Physics Department , Boston University , 110 Cummington Mall , Boston , Massachusetts 02215 , United States
| |
Collapse
|
8
|
Philippi M, You C, Richter CP, Schmidt M, Thien J, Liße D, Wollschläger J, Piehler J, Steinhart M. Close-packed silane nanodot arrays by capillary nanostamping coupled with heterocyclic silane ring opening. RSC Adv 2019; 9:24742-24750. [PMID: 35528685 PMCID: PMC9069738 DOI: 10.1039/c9ra03440d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/29/2019] [Indexed: 11/21/2022] Open
Abstract
We report the parallel generation of close-packed ordered silane nanodot arrays with nanodot diameters of few 100 nm and nearest-neighbor distances in the one-micron range.
Collapse
Affiliation(s)
- Michael Philippi
- Institute for Chemistry of New Materials
- Center for Cellular Nanoanalytics (CellNanOs)
- Universität Osnabrück
- 49076 Osnabrück
- Germany
| | - Changjiang You
- Department of Biology
- Center for Cellular Nanoanalytics (CellNanOs)
- Universität Osnabrück
- 49076 Osnabrück
- Germany
| | - Christian P. Richter
- Department of Biology
- Center for Cellular Nanoanalytics (CellNanOs)
- Universität Osnabrück
- 49076 Osnabrück
- Germany
| | - Mercedes Schmidt
- Institute for Chemistry of New Materials
- Center for Cellular Nanoanalytics (CellNanOs)
- Universität Osnabrück
- 49076 Osnabrück
- Germany
| | - Jannis Thien
- Department of Physics
- Universität Osnabrück
- 49076 Osnabrück
- Germany
| | - Domenik Liße
- Department of Biology
- Center for Cellular Nanoanalytics (CellNanOs)
- Universität Osnabrück
- 49076 Osnabrück
- Germany
| | | | - Jacob Piehler
- Department of Biology
- Center for Cellular Nanoanalytics (CellNanOs)
- Universität Osnabrück
- 49076 Osnabrück
- Germany
| | - Martin Steinhart
- Institute for Chemistry of New Materials
- Center for Cellular Nanoanalytics (CellNanOs)
- Universität Osnabrück
- 49076 Osnabrück
- Germany
| |
Collapse
|
9
|
Abstract
The nanomaterial landscape is so vast that a high-throughput combinatorial approach is required to understand structure-function relationships. To address this challenge, an approach for the synthesis and screening of megalibraries of unique nanoscale features (>10,000,000) with tailorable location, size, and composition has been developed. Polymer pen lithography, a parallel lithographic technique, is combined with an ink spray-coating method to create pen arrays, where each pen has a different but deliberately chosen quantity and composition of ink. With this technique, gradients of Au-Cu bimetallic nanoparticles have been synthesized and then screened for activity by in situ Raman spectroscopy with respect to single-walled carbon nanotube (SWNT) growth. Au3Cu, a composition not previously known to catalyze SWNT growth, has been identified as the most active composition.
Collapse
|
10
|
Ma H, Jiang Z, Xie X, Huang L, Huang W. Multiplexed Biomolecular Arrays Generated via Parallel Dip-Pen Nanolithography. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25121-25126. [PMID: 29986136 DOI: 10.1021/acsami.8b07369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The capability of transferring target materials especially functionality-reliable biomolecules, into specific locations and with arbitrarily designed patterns are of critical importance for high-throughput disease diagnosis, multiplexing, and drug screening. Herein, we report the simultaneous patterning of two types of biomolecules using the parallel dip-pen nanolithography technology where an array of the atomic force microscope (AFM) tips can be selectively and alternately coated with target biomolecules via a specially designed inkwell array. Moreover, mixing target biomolecules at a proper volumetric ratio with polyethylene glycol dissolved in PBS buffer solution that works as an ink carrier can not only facilitate the smooth transfer of ink materials from the AFM tip to the substrate, it can also help to adjust the ink diffusion constant of different biomolecules to be highly similar so that the multiplexed biofunctional dot and/or line arrays at similar sizes can be reliably generated.
Collapse
Affiliation(s)
- Hui Ma
- Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , China
| | - Zhang Jiang
- Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , China
| | - Xiaoji Xie
- Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , China
| | - Ling Huang
- Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , China
| | - Wei Huang
- Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , China
| |
Collapse
|
11
|
Liu X, Carbonell C, Braunschweig AB. Towards scanning probe lithography-based 4D nanoprinting by advancing surface chemistry, nanopatterning strategies, and characterization protocols. Chem Soc Rev 2018; 45:6289-6310. [PMID: 27460011 DOI: 10.1039/c6cs00349d] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biointerfaces direct some of the most complex biological events, including cell differentiation, hierarchical organization, and disease progression, or are responsible for the remarkable optical, electronic, and biological behavior of natural materials. Chemical information encoded within the 4D nanostructure of biointerfaces - comprised of the three Cartesian coordinates (x, y, z), and chemical composition of each molecule within a given volume - dominates their interfacial properties. As such, there is a strong interest in creating printing platforms that can emulate the 4D nanostructure - including both the chemical composition and architectural complexity - of biointerfaces. Current nanolithography technologies are unable to recreate 4D nanostructures with the chemical or architectural complexity of their biological counterparts because of their inability to position organic molecules in three dimensions and with sub-1 micrometer resolution. Achieving this level of control over the interfacial structure requires transformational advances in three complementary research disciplines: (1) the scope of organic reactions that can be successfully carried out on surfaces must be increased, (2) lithography tools are needed that are capable of positioning soft organic and biologically active materials with sub-1 micrometer resolution over feature diameter, feature-to-feature spacing, and height, and (3) new techniques for characterizing the 4D structure of interfaces should be developed and validated. This review will discuss recent advances in these three areas, and how their convergence is leading to a revolution in 4D nanomanufacturing.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Carlos Carbonell
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA and Advanced Science Research Center (ASRC), City University of New York, New York, New York 10031, USA
| | - Adam B Braunschweig
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA and Advanced Science Research Center (ASRC), City University of New York, New York, New York 10031, USA and Department of Chemistry and Biochemistry, City University of New York, Hunter College, 695 Park Avenue, New York, New York 10065, USA.
| |
Collapse
|
12
|
Zhang S, Geryak R, Geldmeier J, Kim S, Tsukruk VV. Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chem Rev 2017; 117:12942-13038. [DOI: 10.1021/acs.chemrev.7b00088] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shuaidi Zhang
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Ren Geryak
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Jeffrey Geldmeier
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Sunghan Kim
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Vladimir V. Tsukruk
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
13
|
Xie Z, Gordiichuk P, Lin QY, Meckes B, Chen PC, Sun L, Du JS, Zhu J, Liu Y, Dravid VP, Mirkin CA. Solution-Phase Photochemical Nanopatterning Enabled by High-Refractive-Index Beam Pen Arrays. ACS NANO 2017; 11:8231-8241. [PMID: 28617585 DOI: 10.1021/acsnano.7b03282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A high-throughput, solution-based, scanning-probe photochemical nanopatterning approach, which does not require the use of probes with subwavelength apertures, is reported. Specifically, pyramid arrays made from high-refractive-index polymeric materials were constructed and studied as patterning tools in a conventional liquid-phase beam pen lithography experiment. Two versions of the arrays were explored with either metal-coated or metal-free tips. Importantly, light can be channeled through both types of tips and the appropriate solution phase (e.g., H2O or CH3OH) and focused on subwavelength regions of a substrate to effect a photoreaction in solution that results in localized patterning of a self-assembled monolayer (SAM)-coated Au thin film substrate. Arrays with as many as 4500 pyramid-shaped probes were used to simultaneously initiate thousands of localized free-radical photoreactions (decomposition of a lithium acylphosphinate photoinitiator in an aqueous solution) that result in oxidative removal of the SAM. The technique is attractive since it allows one to rapidly generate features less than 200 nm in diameter, and the metal-free tips afford more than 10-fold higher intensity than the tips with nanoapertures over a micrometer propagation length. In principle, this mask-free method can be utilized as a versatile tool for performing a wide variety of photochemistries across multiple scales that may be important in high-throughput combinatorial screening applications related to chemistry, biology, and materials science.
Collapse
Affiliation(s)
| | | | - Qing-Yuan Lin
- Department of Materials Science and Engineering, Northwestern University , 2220 Campus Drive, Evanston, Illinois 60208, United States
| | | | - Peng-Cheng Chen
- Department of Materials Science and Engineering, Northwestern University , 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Lin Sun
- Department of Materials Science and Engineering, Northwestern University , 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Jingshan S Du
- Department of Materials Science and Engineering, Northwestern University , 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Jinghan Zhu
- Department of Materials Science and Engineering, Northwestern University , 2220 Campus Drive, Evanston, Illinois 60208, United States
| | | | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University , 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Materials Science and Engineering, Northwestern University , 2220 Campus Drive, Evanston, Illinois 60208, United States
| |
Collapse
|
14
|
He Q, Tan C, Zhang H. Recent Advances in Cantilever-Free Scanning Probe Lithography: High-Throughput, Space-Confined Synthesis of Nanostructures and Beyond. ACS NANO 2017; 11:4381-4386. [PMID: 28532155 DOI: 10.1021/acsnano.7b03143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Scalability is the major challenge for scanning probe lithography (SPL). Recently developed cantilever-free scanning probe technologies provide a solution to the issue of scalability by incorporating massive arrays of polymer pens, which fundamentally overcome the low-throughput nature of SPL. The further development of cantilever-free SPL brings up a variety of applications in electronics, biology, and chemical synthesis. In this Perspective, we highlight the space-confined synthesis of complex nanostructures enabled by different types of cantilever-free SPL technologies.
Collapse
Affiliation(s)
- Qiyuan He
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
| | - Chaoliang Tan
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
| | - Hua Zhang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
| |
Collapse
|
15
|
Abstract
Tip-based nanofabrication (TBN) is a family of emerging nanofabrication techniques that use a nanometer scale tip to fabricate nanostructures. In this review, we first introduce the history of the TBN and the technology development. We then briefly review various TBN techniques that use different physical or chemical mechanisms to fabricate features and discuss some of the state-of-the-art techniques. Subsequently, we focus on those TBN methods that have demonstrated potential to scale up the manufacturing throughput. Finally, we discuss several research directions that are essential for making TBN a scalable nano-manufacturing technology.
Collapse
|
16
|
He Y, Chen Y, Xu Q, Xu J, Weng J. Assembly of Ultrathin Gold Nanowires into Honeycomb Macroporous Pattern Films with High Transparency and Conductivity. ACS APPLIED MATERIALS & INTERFACES 2017; 9:7826-7833. [PMID: 28151636 DOI: 10.1021/acsami.6b15016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Because of its promising properties, honeycomb macroporous pattern (HMP) film has attracted increasing attention. It has been realized in many artificial nanomaterials, but the formation of these HMPs was attributed to templates or polymer/supermolecule/surfactant assistant assembly. Pure metal HMP film has been difficult to produce using a convenient colloidal template-free method. In this report, a unique template-free approach for preparation of Au HMP film with high transparency and conductivity is presented. Ultrathin Au nanowires, considered a linear polymer analogue, are directly assembled into HMP film on various substrates using a traditional static breath figure method. Subsequent chemical cross-linking and oxygen plasma treatment greatly enhance the stability and conductivity of the HMP film. The resulting HMP film exhibits great potential as an ideal candidate for transparent flexible conductive nanodevices.
Collapse
Affiliation(s)
- Ying He
- Department of Biomaterials, College of Materials, Xiamen University , Xiamen 361005, China
| | - Yuan Chen
- Department of Biomaterials, College of Materials, Xiamen University , Xiamen 361005, China
| | - Qingchi Xu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University , Xiamen 361005, China
| | - Jun Xu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University , Xiamen 361005, China
| | - Jian Weng
- Department of Biomaterials, College of Materials, Xiamen University , Xiamen 361005, China
| |
Collapse
|
17
|
Manabe K, Matsubayashi T, Tenjimbayashi M, Moriya T, Tsuge Y, Kyung KH, Shiratori S. Controllable Broadband Optical Transparency and Wettability Switching of Temperature-Activated Solid/Liquid-Infused Nanofibrous Membranes. ACS NANO 2016; 10:9387-9396. [PMID: 27662461 DOI: 10.1021/acsnano.6b04333] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Inspired by biointerfaces, such as the surfaces of lotus leaves and pitcher plants, researchers have developed innovative strategies for controlling surface wettability and transparency. In particular, great success has been achieved in obtaining low adhesion and high transmittance via the introduction of a liquid layer to form liquid-infused surfaces. Furthermore, smart surfaces that can change their surface properties according to external stimuli have recently attracted substantial interest. As some of the best-performing smart surface materials, slippery liquid-infused porous surfaces (SLIPSs), which are super-repellent, demonstrate the successful achievement of switchable adhesion and tunable transparency that can be controlled by a graded mechanical stimulus. However, despite considerable efforts, producing temperature-responsive, super-repellent surfaces at ambient temperature and pressure remains difficult because of the use of nonreactive lubricant oil as a building block in previously investigated repellent surfaces. Therefore, the present study focused on developing multifunctional materials that dynamically adapt to temperature changes. Here, we demonstrate temperature-activated solidifiable/liquid paraffin-infused porous surfaces (TA-SLIPSs) whose transparency and control of water droplet movement at room temperature can be simultaneously controlled. The solidification of the paraffin changes the surface morphology and the size of the light-transmission inhibitor in the lubricant layer; as a result, the control over the droplet movement and the light transmittance at different temperatures is dependent on the solidifiable/liquid paraffin mixing ratio. Further study of such temperature-responsive, multifunctional systems would be valuable for antifouling applications and the development of surfaces with tunable optical transparency for innovative medical applications, intelligent windows, and other devices.
Collapse
Affiliation(s)
- Kengo Manabe
- Center for Material Design Science, School of Integrated Design Engineering, Keio University , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takeshi Matsubayashi
- Center for Material Design Science, School of Integrated Design Engineering, Keio University , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Mizuki Tenjimbayashi
- Center for Material Design Science, School of Integrated Design Engineering, Keio University , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takeo Moriya
- Center for Material Design Science, School of Integrated Design Engineering, Keio University , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yosuke Tsuge
- Center for Material Design Science, School of Integrated Design Engineering, Keio University , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Kyu-Hong Kyung
- SNT Co., Ltd., 7-1 Shinkawasaki, Saiwai-ku, Kawasaki, Kanagawa 212-0032, Japan
| | - Seimei Shiratori
- Center for Material Design Science, School of Integrated Design Engineering, Keio University , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|