1
|
Lim MC, Kim TY, Ok G, Kim HJ, Choi YS, Kim YR. Concave Microwell Formation Induced by PDMS Water Vapor Permeability for Spheroid Generation. MICROMACHINES 2024; 15:1496. [PMID: 39770249 PMCID: PMC11679915 DOI: 10.3390/mi15121496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
This study introduces a novel method for the fabrication of concave microwells involving water vapor permeation through polydimethylsiloxane (PDMS). This method leverages the exceptional water vapor permeability of PDMS to enable a scalable and cost-effective fabrication process, addressing the limitations of existing techniques such as photolithography that are resource-intensive and complex. PDMS is more permeable to water vapor than to other gas molecules, resulting in the formation of microwells. Smooth-sloped concave microwells are formed by depositing droplets of 10% ethylene glycol on a PDMS substrate followed by curing at 70 °C and evaporation of water vapor. These microwells exhibit a unique structural gradient that is highly conducive for biological applications. Concave microwells were further used as a platform to generate animal cell spheroids, demonstrating their potential for three-dimensional cell culture. Unlike conventional methods, this approach allows precise control over microwell morphology by simply adjusting droplet size and curing conditions, offering enhanced tunability and reproducibility. The formation yield of these microwells is dependent on the volume of the water droplets, demonstrating the importance of droplet size in controlling microwell morphology. This approach provides a simple and effective method for creating microwells without complex lithographic processes, making it a highly promising tool for a range of biomedical applications, including tissue engineering, cancer research, and high-throughput drug screening.
Collapse
Affiliation(s)
- Min-Cheol Lim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Tai-Yong Kim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Gyeongsik Ok
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Hyun Jung Kim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Young-Rok Kim
- Institute of Life Science and Resources & Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
2
|
Manjeri A, George SD. Hydrogel-Embedded Polydimethylsiloxane Contact Lens for Ocular Drug Delivery. ACS APPLIED BIO MATERIALS 2024; 7:7324-7331. [PMID: 39425674 DOI: 10.1021/acsabm.4c00975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Topical administration is the commonly preferred method of administering ophthalmic formulations, with the majority of available medications in the form of eye drops or ointments. However, the topical application of ophthalmological medications has less bioavailability and a short residence time because of the physiological and anatomical constraints of the eye, making efficient ophthalmic drug delivery a challenging task. Microfluidic contact lenses have the advantage of delivering drugs into the eye in a controlled and on-demand manner. Here, we showcase the use of hydrogel-embedded microcavities on PDMS-based contact lenses for ocular drug delivery applications. The fabrication technique adopted here is the spontaneous formation of the spherical cavity by hydrogel monomer droplet, followed by the simultaneous thermal curing of hydrogel and PDMS, creating a spherical cavity as small as 150 μm. The spherical cavity is embedded with pH-responsive hydrogel for on-demand drug delivery. The drug loaded in the hydrogel matrix is released into the ocular environment by diffusion. The spherical cavity with a narrow opening restricts the diffusion to a minimum under normal ocular pH conditions(pH > 6). When the ocular pH reduces (pH < 6), the pH-responsive hydrogel inside the spherical cavity deswell and accelerates the drug release.
Collapse
Affiliation(s)
- Aravind Manjeri
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, India
| | - Sajan Daniel George
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, India
- Centre for Applied Nanosciences (CAN), Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
3
|
Han X, Zhang Q, Zhang G, Sun B, Wu L, Li G. Controllable Fabrication of Highly Ordered Spherical Microcavity Arrays by Replica Molding of In Situ Self-Emulsified Droplets. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26886-26898. [PMID: 38717383 DOI: 10.1021/acsami.4c02176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Ordered spherical hollow micro- and nanostructures hold great appeal in the fields of cell biology and optics. However, it is extremely challenging for standard lithography techniques to achieve spherical micro-/nanocavities. In this paper, we describe a simple, cost-effective, and scalable approach to fabricate highly ordered spherical microcavity arrays by replica molding of in situ self-emulsified droplets. The in situ self-emulsion involves a two-step process: discontinuous dewetting-induced liquid partition and interfacial tension-driven liquid spherical transformation. Subsequent replica molding of the droplets creates spherical microcavity arrays. The shapes and sizes of the microcavities can be easily modulated by varying the compositions of the droplet templates or utilizing an osmotically driven water permeation. To demonstrate the utility of this method, we employed it to create a spherical microwell array for the mass production of embryoid bodies with high viability and minimal loss. In addition, we also demonstrated the optical functions of the generated spherical microcavities by using them as microlenses. We believe that our proposed method will open exciting avenues in fields ranging from regenerative medicine and microchemistry to optical applications.
Collapse
Affiliation(s)
- Xue Han
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
| | - Qi Zhang
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
| | - Guoyuan Zhang
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Bangyong Sun
- School of Future Technology, Xinjiang University, Urumqi 830017, China
| | - Lei Wu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Gang Li
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
4
|
Lee DH, Yea J, Ha J, Kim D, Kim S, Lee J, Park JU, Park T, Jang KI. Rugged Island-Bridge Inorganic Electronics Mounted on Locally Strain-Isolated Substrates. ACS NANO 2024; 18:13061-13072. [PMID: 38721824 DOI: 10.1021/acsnano.4c01759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Various strain isolation strategies that combine rigid and stretchable regions for stretchable electronics were recently proposed, but the vulnerability of inorganic materials to mechanical stress has emerged as a major impediment to their performance. We report a strain-isolation system that combines heteropolymers with different elastic moduli (i.e., hybrid stretchable polymers) and utilize it to construct a rugged island-bridge inorganic electronics system. Two types of prepolymers were simultaneously cross-linked to form an interpenetrating polymer network at the rigid-stretchable interface, resulting in a hybrid stretchable polymer that exhibited efficient strain isolation and mechanical stability. The system, including stretchable micro-LEDs and microheaters, demonstrated consistent operation under external strain, suggesting that the rugged island-bridge inorganic electronics mounted on a locally strain-isolated substrate offer a promising solution for replacing conventional stretchable electronics, enabling devices with a variety of form factors.
Collapse
Affiliation(s)
- Dae Hwan Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Junwoo Yea
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Jeongdae Ha
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Dohyun Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sungryong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Junwoo Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Taiho Park
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Kyung-In Jang
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
- ENSIDE Corporation, Daegu 42988, Republic of Korea
| |
Collapse
|
5
|
Han S, An HJ, Kwak T, Kim M, Kim D, Lee LP, Choi I. Plasmonic Optical Wells-Based Enhanced Rate PCR. NANO LETTERS 2024; 24:1738-1745. [PMID: 38286020 DOI: 10.1021/acs.nanolett.3c04615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Rapid, sensitive, inexpensive point-of-care molecular diagnostics are crucial for the efficient control of spreading viral diseases and biosecurity of global health. However, the gold standard, polymerase chain reaction (PCR) is time-consuming and expensive and needs specialized testing laboratories. Here, we report a low-cost yet fast, selective, and sensitive Plasmonic Optical Wells-Based Enhanced Rate PCR: POWER-PCR. We optimized the efficient optofluidic design of 3D plasmonic optical wells via the computational simulation of light-to-heat conversion and thermophoretic convection in a self-created plasmonic cavity. The POWER-PCR chamber with a self-passivation layer can concentrate incident light to accumulate molecules, generate rapid heat transfer and thermophoretic flow, and minimize the quenching effect on the naked Au surface. Notably, we achieved swift photothermal cycling of nucleic acid amplification in POWER-PCR on-a-chip in 4 min 24 s. The POWER-PCR will provide an excellent solution for affordable and sensitive molecular diagnostics for precision medicine and preventive global healthcare.
Collapse
Affiliation(s)
- Seungyeon Han
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Hyun Ji An
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
- Harvard Medical School, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
| | - Taejin Kwak
- Department of Mechanical Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Miseol Kim
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Dongchoul Kim
- Department of Mechanical Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Luke P Lee
- Harvard Medical School, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, California 94720, United States
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Inhee Choi
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
- Department of Applied Chemistry, University of Seoul, Seoul, 02504, Republic of Korea
| |
Collapse
|
6
|
Gao A, Tang H, Wang D, Pang Z, Chen M, Wang B, Pan J, Zhou Q, Xia F. Plasmonic Cavity for Self-Powered Chemical Detection and Performance Boosted Surface-Enhanced Raman Scattering Detection. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37465919 DOI: 10.1021/acsami.3c05859] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
With the popularization of the Internet of Things, the application of chemical sensors has become more and more extensive. However, it is difficult for a single functional sensor to meet multiple needs at the same time. For the next generation of chemical sensors, in addition to rapid qualitative and quantitative detection, it is also necessary to solve the problem of a distributed sensor power supply. Triboelectric nanogenerator (TENG) and surface-enhanced Raman scattering (SERS) are two emerging technologies that can be used for chemical testing. The combination of TENG and SERS technology is proposed to be an attractive research strategy to implement qualitative and quantitative analysis, as well as self-powered detection in one device. Herein, the Ag nanoparticle (NP)@polydimethylsiloxane (PDMS) plasmonic cavity is demonstrated, which can be exploited not only as a SERS substrate for qualitative analysis of the target molecules but also as a TENG based self-powered chemical sensor for rapid quantitative analysis. More importantly, the as-designed plasmonic cavity enables prolonged triboelectric field generated by the phenomena of triboelectricity, which in turn enhances the "hot spot" intensities from Ag NPs in the cavity and boosts the SERS signals. In this way, the device can have good feasibility and versatility for chemical detection. Specifically, the measurement of the concentration of many analytes can be successfully realized, including ions and small molecules. The results verify that the proposed sensor system has the potential for self-powered chemical sensors for environmental monitoring and analytical chemistry.
Collapse
Affiliation(s)
- Along Gao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Haibin Tang
- Key Laboratory of Materials Physics, and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Dongran Wang
- Key Laboratory of Materials Physics, and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Zexu Pang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Mingyu Chen
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Boyou Wang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jing Pan
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Qitao Zhou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
7
|
Dief EM, Darwish N. SARS-CoV-2 spike proteins react with Au and Si, are electrically conductive and denature at 3 × 10 8 V m -1: a surface bonding and a single-protein circuit study. Chem Sci 2023; 14:3428-3440. [PMID: 37006686 PMCID: PMC10055994 DOI: 10.1039/d2sc06492h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/17/2023] [Indexed: 02/19/2023] Open
Abstract
Developing means to characterise SARS-CoV-2 and its new variants is critical for future outbreaks. SARS-CoV-2 spike proteins have peripheral disulfide bonds (S-S), which are common in all spike proteins of SARS-CoV-2 variants, in other types of coronaviruses (e.g., SARS-CoV and MERS-CoV) and are likely to be present in future coronaviruses. Here, we demonstrate that S-S bonds in the spike S1 protein of SARS-CoV-2 react with gold (Au) and silicon (Si) electrodes. Bonding to Si is induced by a spontaneous electrochemical reaction that involves oxidation of Si-H and the reduction of the S-S bonds. The reaction of the spike protein with Au enabled single-molecule protein circuits, by connecting the spike S1 protein between two Au nano-electrodes using the scanning tunnelling microscopy-break junction (STM-BJ) technique. The conductance of a single spike S1 protein was surprisingly high and ranged between two states of 3 × 10-4 G 0 and 4 × 10-6 G 0 (1G 0 = 77.5 μS). The two conductance states are governed by the S-S bonds reaction with Au which controls the orientation of the protein in the circuit, and via which different electron pathways are created. The 3 × 10-4 G 0 level is attributed to a single SARS-CoV-2 protein connecting to the two STM Au nano-electrodes from the receptor binding domain (RBD) subunit and the S1/S2 cleavage site. A lower 4 × 10-6 G 0 conductance is attributed to the spike protein connecting to the STM electrodes from the RBD subunit and the N-terminal domain (NTD). These conductance signals are only observed at electric fields equal to or lower than 7.5 × 107 V m-1. At an electric field of 1.5 × 108 V m-1, the original conductance magnitude decreases accompanied by a lower junction yield, suggesting a change in the structure of the spike protein in the electrified junction. Above an electric field of 3 × 108 V m-1, the conducting channels are blocked and this is attributed to the spike protein denaturing in the nano-gap. These findings open new venues for developing coronavirus-capturing materials and offer an electrical method for analysing, detecting and potentially electrically deactivating coronaviruses and their future variants.
Collapse
Affiliation(s)
- Essam M Dief
- School of Molecular and Life Sciences, Curtin University Bentley WA 6102 Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin University Bentley WA 6102 Australia
| |
Collapse
|
8
|
Oh E, Lee Y, Shim H, Son H, Byun E, Yoon C, Song SH. Light responsive plasmonic silicone elastomer/hydrogel soft actuator. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:2540-2543. [PMID: 36086195 DOI: 10.1109/embc48229.2022.9871272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soft robots offer unique advantages in their ability to interact with fragile organisms. Light responsive soft actuators are promising for the development of the untethered soft robots. However, this requires a mechanism for converting the externally applied light into mechanical actuation. We designed, fabricated, and tested a light responsive soft actuator consist of silicone elastomer with plasmonic metal nanoparticle embedment and temperature sensitive hydrogel. We found that the selection of the carrier solvent for the metal nanoparticle embedment in silicone elastomer to be crucial. The fabricated soft actuator showed a relatively fast response time (< 5 min) under light illumination.
Collapse
|
9
|
Hu W, Xia L, Hu Y, Li G. Recent progress on three-dimensional substrates for surface-enhanced Raman spectroscopic analysis. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Capocefalo A, Quintiero E, Conti C, Ghofraniha N, Viola I. Droplet Lasers for Smart Photonic Labels. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51485-51494. [PMID: 34666483 PMCID: PMC9296018 DOI: 10.1021/acsami.1c14972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Microscopic lasers represent a promising tool for the development of cutting-edge photonic devices thanks to their ability to enhance light-matter interaction at the microscale. In this work, we realize liquid microlasers with tunable emission by exploiting the self-formation of three-dimensional liquid droplets into a polymeric matrix driven by viscoelastic dewetting. We design a flexible device to be used as a smart photonic label which is detachable and reusable on various types of substrates such as paper or fabric. The innovative lasing emission mechanism proposed here is based on whispering gallery mode emission coupled to random lasing, the latter prompted by the inclusion of dielectric compounds into the active gain medium. The wide possibility of modulating the emission wavelength of the microlasers by acting on different parameters, such as the cavity size, type and volume fraction of the dielectrics, and gain medium, offers a multitude of spectroscopic encoding schemes for the realization of photonic barcodes and labels to be employed in anticounterfeiting applications and multiplexed bioassays.
Collapse
Affiliation(s)
- A. Capocefalo
- CNR
ISC, Istituto dei Sistemi Complessi, c/o Università Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - E. Quintiero
- CNR
NANOTEC, Istituto di Nanotecnologia, c/o Università Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - C. Conti
- CNR
ISC, Istituto dei Sistemi Complessi, c/o Università Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - N. Ghofraniha
- CNR
ISC, Istituto dei Sistemi Complessi, c/o Università Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - I. Viola
- CNR
NANOTEC, Istituto di Nanotecnologia, c/o Università Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| |
Collapse
|
11
|
An HJ, Kim HS, Kwon JA, Song J, Choi I. Adjustable and Versatile 3D Tumor Spheroid Culture Platform with Interfacial Elastomeric Wells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6924-6932. [PMID: 31958950 DOI: 10.1021/acsami.9b21471] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Three-dimensional (3D) cell culture platforms have recently received a great deal of attention, as these systems are able to recapitulate the in vivo microenvironment of tissues or tumors. Herein, we describe adjustable and versatile elastomeric well structures for spheroid formation and their use for in situ analyses as a tunable 3D cell culture platform. Elastomeric spherical wells are fabricated using a one-step interfacial reaction between aqueous droplets on immiscible liquid polydimethylsiloxane (PDMS) without any template or expensive equipment. Because of their differing surface tensions, spherical wells are spontaneously formed on liquid PDMS with various sizes and curvatures that are easily controlled. Using arrays of these optimized wells, single tumor spheroids within each well were successfully formed at high efficiency (up to 97%) by coculturing tumor cells and fibroblasts to reflect the complex microenvironment of cancer tissue. Moreover, the tumor spheroids formed within the interfacial wells were directly applied for observing drug responses and monitoring reactive oxygen species (ROS) to investigate tumor cell responses to drugs or their 3D microenvironment. We believe that our proposed platform provides a significant contribution to the multimodal analyses of anticancer therapeutics and the tumor microenvironment.
Collapse
Affiliation(s)
- Hyun Ji An
- Department of Life Science , University of Seoul , Seoul 02504 , Republic of Korea
| | - Hyo Sil Kim
- Department of Life Science , University of Seoul , Seoul 02504 , Republic of Korea
| | - Jung A Kwon
- Department of Life Science , University of Seoul , Seoul 02504 , Republic of Korea
| | - Jihwan Song
- Department of Mechanical Engineering , Hanbat National University , Daejeon 34158 , Republic of Korea
| | - Inhee Choi
- Department of Life Science , University of Seoul , Seoul 02504 , Republic of Korea
| |
Collapse
|
12
|
Lee Y, Lee S, Kim HS, Moon JT, Joo JB, Choi I. Multifunctional and recyclable TiO2 hybrid sponges for efficient sorption, detection, and photocatalytic decomposition of organic pollutants. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Chang J, Lee J, Georgescu A, Huh D, Kang T. Generalized On-Demand Production of Nanoparticle Monolayers on Arbitrary Solid Surfaces via Capillarity-Mediated Inverse Transfer. NANO LETTERS 2019; 19:2074-2083. [PMID: 30785755 DOI: 10.1021/acs.nanolett.9b00248] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Century-old Langmuir monolayer deposition still represents the most convenient approach to the production of monolayers of colloidal nanoparticles on solid substrates for practical biological and chemical-sensing applications. However, this approach simply yields arbitrarily shaped large monolayers on a flat surface and is strongly limited by substrate topography and interfacial energy. Here, we describe a generalized and facile method of rapidly producing uniform monolayers of various colloidal nanoparticles on arbitrary solid substrates by using an ordinary capillary tube. Our method is based on an interesting finding of inversion phenomenon of a nanoparticle-laden air-water interface by flowing through a capillary tube in a manner that prevents the particles from adhesion to the capillary sidewall, thereby presenting the nanoparticles face-first at the tube's opposite end for direct and one-step deposition onto a substrate. We show that our method not only allows the placement of a nanoparticle monolayer at target locations of solid substrates regardless of their surface geometry and adhesion but also enables the production of monolayers containing nanoparticles with different size, shape, surface charge, and composition. To explore the potential of our approach, we demonstrate the facile integration of gold nanoparticle monolayers into microfluidic devices for the real-time monitoring of molecular Raman signals under dynamic flow conditions. Moreover, we successfully extend the use of our method to developing on-demand Raman sensors that can be built directly on the surface of consumer products for practical chemical sensing and fingerprinting. Specifically, we achieve both the pinpoint deposition of gold nanoparticle monolayers and sensitive molecular detection from the deposited region on clothing fabric for the detection of illegal drug substances, a single grain of rice and an orange for pesticide monitoring, and a $100 bill as a potential anti-counterfeit measure, respectively. We believe that our method will provide unique opportunities to expand the utility of colloidal nanoparticles and to greatly improve the accessibility of nanoparticle-based sensing technologies.
Collapse
Affiliation(s)
- Jeehan Chang
- Department of Chemical and Biomolecular Engineering , Sogang University , Seoul 04107 , Korea
| | - Jaekyeong Lee
- Department of Chemical and Biomolecular Engineering , Sogang University , Seoul 04107 , Korea
| | - Andrei Georgescu
- Department of Bioengineering, School of Engineering and Applied Science , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Dongeun Huh
- Department of Bioengineering, School of Engineering and Applied Science , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering , Sogang University , Seoul 04107 , Korea
| |
Collapse
|
14
|
Lee S, Choi I. Fabrication Strategies of 3D Plasmonic Structures for SERS. BIOCHIP JOURNAL 2019. [DOI: 10.1007/s13206-019-3105-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
Park K, Woo MA, Lim JA, Kim YR, Choi SW, Lim MC. In situ synthesis of directional gold nanoparticle arrays along ridge cracks of PDMS wrinkles. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.08.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Song J, Kim D. Tunable Quasi‐Plasticity of Microscale Shape Memory Alloys. ADVANCED THEORY AND SIMULATIONS 2018. [DOI: 10.1002/adts.201800147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jihwan Song
- Department of Mechanical EngineeringHanbat National University Daejeon 34158 Republic of Korea
| | - Dongchoul Kim
- Department of Mechanical EngineeringSogang University Seoul 04107 Republic of Korea
| |
Collapse
|
17
|
Lee Y, Lee S, Jin CM, Kwon JA, Kang T, Choi I. Facile Fabrication of Large-Scale Porous and Flexible Three-Dimensional Plasmonic Networks. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28242-28249. [PMID: 30052422 DOI: 10.1021/acsami.8b11055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Assembling metallic nanoparticles and trapping target molecules within the probe volume of the incident light are important in plasmonic detection. Porous solid structures with three-dimensionally integrated metal nanoparticles would be very beneficial in achieving these objectives. Currently, porous inorganic oxides are being prepared under stringent conditions and further subjected to either physical or chemical attachment of metal nanoparticles. In this study, we propose a facile method to fabricate large-scale porous and flexible three-dimensional (3D) plasmonic networks. Initially, uncured polydimethylsiloxane (PDMS), in which metal ions are dissolved, diffuses spontaneously into the simple sugar crystal template via capillary action. As PDMS is cured, metal ions are automatically reduced to form a dense array of metal nanoparticles. After curing, the sugar template is easily removed by water treatment to obtain porous 3D plasmonic networks. We controlled the far-field scattering and near-field enhancement of the network by changing either the metal ion precursor or its concentration. To demonstrate the key advantages of our 3D plasmonic networks, such as simple fabrication, optical signal enhancement, and molecular trapping, we conducted sensitive Raman detection of several important molecules, including adenine, humidifier disinfectants, and volatile organic compounds.
Collapse
Affiliation(s)
- Yunjeong Lee
- Department of Life Science , University of Seoul , Seoul 130-743 , Republic of Korea
| | - Seungki Lee
- Department of Life Science , University of Seoul , Seoul 130-743 , Republic of Korea
| | - Chang Min Jin
- Department of Life Science , University of Seoul , Seoul 130-743 , Republic of Korea
| | - Jung A Kwon
- Department of Life Science , University of Seoul , Seoul 130-743 , Republic of Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering , Sogang University , Seoul 121-742 , Republic of Korea
| | - Inhee Choi
- Department of Life Science , University of Seoul , Seoul 130-743 , Republic of Korea
| |
Collapse
|
18
|
Kuo CT, Lu SR, Chen WM, Wang JY, Lee SC, Chang HH, Wo AM, Chen BPC, Lee H. Facilitating tumor spheroid-based bioassays and in vitro blood vessel modeling via bioinspired self-formation microstructure devices. LAB ON A CHIP 2018; 18:2453-2465. [PMID: 30019734 DOI: 10.1039/c8lc00423d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Non-planar microstructure-based tissue culture devices have emerged as powerful tools to mimic in vivo physiological microenvironments in a wide range of medical applications. Here we report a spontaneous aqueous molding approach - inspired by Stenocara gracilipes beetles - to rapidly fabricate non-planar microstructure devices for facilitating tissue-based bioassays. The device fabrication is determined from the self-assembled liquid morphology, which is induced by condensation or guided by surface tension. Through experiments and modeling, we reveal that the molding mainly comprises two typical circular and striped domains, highlighting versatile applications for bioengineering. In addition, the molding characteristic is dependent on the geometry of the patterned wetting surfaces, the working volume of the liquid, and the interaction between the liquid and the substrate. The theoretical model, based on the geometry of the patterned liquid, is highly consistent with experimental data. We also demonstrate that our approach can facilitate the culturing of tumor spheroids incorporated with biomimic nano-cilia, rapid high-throughput drug screening, tumor spheroid migration assay, and in vitro modeling of blood vessels. Remarkably, the delivery of multiple concentrations of drugs and their associate mixtures (a total of 25 test spots in one device) can be carried out simultaneously within seconds. Taken together, these insights may offer new opportunities to tailor non-planar microstructures, and our proposed methodology can be applicable for the emerging needs in tumor cell biology and tissue engineering.
Collapse
Affiliation(s)
- Ching-Te Kuo
- Department of Electrical Engineering, Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yao Y, Ji J, Zhang H, Zhang K, Liu B, Yang P. Three-Dimensional Plasmonic Trap Array for Ultrasensitive Surface-Enhanced Raman Scattering Analysis of Single Cells. Anal Chem 2018; 90:10394-10399. [PMID: 30075082 DOI: 10.1021/acs.analchem.8b02252] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yuanyuan Yao
- Department of Chemistry, Shanghai Stomatological Hospital, Institute of Biomedical Sciences, and State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, People’s Republic of China
| | - Ji Ji
- Department of Chemistry, Shanghai Stomatological Hospital, Institute of Biomedical Sciences, and State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, People’s Republic of China
| | - Hongding Zhang
- Department of Chemistry, Shanghai Stomatological Hospital, Institute of Biomedical Sciences, and State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, People’s Republic of China
| | - Kun Zhang
- Department of Chemistry, Shanghai Stomatological Hospital, Institute of Biomedical Sciences, and State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, People’s Republic of China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, Institute of Biomedical Sciences, and State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, People’s Republic of China
| | - Pengyuan Yang
- Department of Chemistry, Shanghai Stomatological Hospital, Institute of Biomedical Sciences, and State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
20
|
Kwon JA, Jin CM, Shin Y, Kim HY, Kim Y, Kang T, Choi I. Tunable Plasmonic Cavity for Label-free Detection of Small Molecules. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13226-13235. [PMID: 29569438 DOI: 10.1021/acsami.8b01550] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Owing to its high sensitivity and high selectivity along with rapid response time, plasmonic detection has gained considerable interest in a wide variety of sensing applications. To improve the fieldwork applicability and reliability of plasmonic detection, the integration of plasmonic nanoparticles into optical devices is desirable. Herein, we propose an integrated label-free detection platform comprising a plasmonic cavity that allows sensitive molecular detection via either surface-enhanced Raman scattering (SERS) or plasmon resonance energy transfer (PRET). A small droplet of metal ion solution spontaneously produces a plasmonic cavity on the surface of uncured poly(dimethylsiloxane) (PDMS), and as PDMS is cured, the metal ions are reduced to form a plasmonic antennae array on the cavity surface. Unique spherical feature and the integrated metallic nanoparticles of the cavity provide excellent optical functions to focus the incident light in the cavity and to rescatter the light absorbed by the nanoparticles. The optical properties of the plasmonic cavity for SERS or PRET are optimized by controlling the composition, size, and density of the metal nanoparticles. By using the cavity, we accomplish both 1000-fold sensitive detection and real-time monitoring of reactive oxygen species secreted by live cells via PRET. In addition, we achieve sensitive detection of trace amounts of toxic environmental molecules such as 5-chloro-2-methyl-4-isothiazolin-3-one/2-methyl-4-isothiazol-3-one (CMIT/MIT) and bisphenol A, as well as several small biomolecules such as glucose, adenine, and tryptophan, via SERS.
Collapse
Affiliation(s)
- Jung A Kwon
- Department of Life Science , University of Seoul , Seoul 130-743 , Republic of Korea
| | - Chang Min Jin
- Department of Life Science , University of Seoul , Seoul 130-743 , Republic of Korea
| | - Yonghee Shin
- Department of Chemical and Biomolecular Engineering , Sogang University , Seoul 121-742 , Republic of Korea
| | - Hye Young Kim
- Department of Life Science , University of Seoul , Seoul 130-743 , Republic of Korea
| | - Yura Kim
- Department of Life Science , University of Seoul , Seoul 130-743 , Republic of Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering , Sogang University , Seoul 121-742 , Republic of Korea
| | - Inhee Choi
- Department of Life Science , University of Seoul , Seoul 130-743 , Republic of Korea
| |
Collapse
|
21
|
Jin CM, Joo JB, Choi I. Facile Amplification of Solution-State Surface-Enhanced Raman Scattering of Small Molecules Using Spontaneously Formed 3D Nanoplasmonic Wells. Anal Chem 2018; 90:5023-5031. [DOI: 10.1021/acs.analchem.7b04674] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Chang Min Jin
- Department of Life Science, University of Seoul, 163 Siripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Ji Bong Joo
- Department of Chemical Engineering, Konkuk University, Seoul, 05029, South Korea
| | - Inhee Choi
- Department of Life Science, University of Seoul, 163 Siripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| |
Collapse
|
22
|
Design of a Porous Cathode for Ultrahigh Performance of a Li-ion Battery: An Overlooked Pore Distribution. Sci Rep 2017; 7:42521. [PMID: 28211894 PMCID: PMC5304199 DOI: 10.1038/srep42521] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/11/2017] [Indexed: 11/20/2022] Open
Abstract
Typical cathode materials of Li-ion battery suffer from a severe loss in specific capacity, and this problem is regarded as a major obstacle in the expansion of newer applications. To overcome this, porous cathodes are being extensively utilized. However, although it seems that the porosity in the cathode would be a panacea for high performance of LIBs, there is a blind point in the cathode consisting of porous structures, which makes the porous design to be a redundant. Here, we report the importance of designing the porosity of a cathode in obtaining ultrahigh performance with the porous design or a degraded performance even with increase of porosity. Numerical simulations show that the cathode with 40% porosity has 98% reduction in the loss of specific capacity when compared to the simple spherical cathode when the C-rate increases from 2.5 to 80 C. In addition, the loss over total cycles decreases from 30% to only about 1% for the cathode with 40% porosity under 40 C. Interestingly, however, the specific capacity could be decreased even with the increase in porosity unless the pores were evenly distributed in the cathode. The present analysis provides an important insight into the design of ultrahigh performance cathodes.
Collapse
|
23
|
Lim MC, Kim SH, Park K, Kim YR, Kim JH, Ok G, Choi SW. Facile synthesis of self-aligned gold nanoparticles by crack templated reduction lithography. RSC Adv 2017. [DOI: 10.1039/c7ra00768j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Crack templated reduction lithography for the facile synthesis of self-aligned gold nanoparticles.
Collapse
Affiliation(s)
- Min-Cheol Lim
- Food Safety Research Group
- Korea Food Research Institute
- Sungnam 13539
- Korea
| | - Sae-Hyung Kim
- Department of Molecular Science and Technology
- Ajou University
- Suwon 16499
- Korea
| | - Kisang Park
- Food Safety Research Group
- Korea Food Research Institute
- Sungnam 13539
- Korea
- Department of Molecular Science and Technology
| | - Young-Rok Kim
- Graduate School of Biotechnology
- Department of Food Science and Biotechnology
- Kyung Hee University
- Yongin 17104
- Korea
| | - Jae-Ho Kim
- Department of Molecular Science and Technology
- Ajou University
- Suwon 16499
- Korea
| | - Gyeongsik Ok
- Food Safety Research Group
- Korea Food Research Institute
- Sungnam 13539
- Korea
| | - Sung-Wook Choi
- Food Safety Research Group
- Korea Food Research Institute
- Sungnam 13539
- Korea
| |
Collapse
|