1
|
Zhang X, Huang H, Zhao C, Yuan J. Surface chemistry-engineered perovskite quantum dot photovoltaics. Chem Soc Rev 2025; 54:3017-3060. [PMID: 39962988 DOI: 10.1039/d4cs01107d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
The discovery and synthesis of colloidal quantum dots (QDs) was awarded the Nobel Prize in Chemistry in 2023. Recently, the development of bulk metal halide perovskite semiconductors has generated intense interest in their corresponding perovskite QDs. QDs, more broadly known as nanocrystals, constitute a new class of materials that differ from both molecular and bulk materials. They have rapidly advanced to the forefront of optoelectronic applications owing to their unique size-, composition-, surface- and process-dependent optoelectronic properties. More importantly, their ultrahigh surface-area-to-volume ratio enables various surface chemistry engineering strategies to tune and optimize their optoelectronic properties. Finally, three-dimensional confined QDs, offering nearly perfect photoluminescent quantum yield, slow hot-carrier cooling time, especially their colloidal synthesis and processing using industrially friendly solvents, have revolutionized the fields of electronics, photonics, and optoelectronics. Particularly, in emerging perovskite QD-based PVs, the advancement of surface chemistry has boosted the record power conversion efficiency (PCE) to 19.1% within a five-year period, surpassing all other colloidal QD photovoltaics (PVs). Given the rapid enhancement of device performances, perovskite QD PVs have attracted significant attention. Further study of semiconducting perovskite QDs will lead to advanced surface structures, a deeper understanding of halide perovskites, and enhanced PCE. In this review article, we comprehensively summarize and discuss the emerging perovskite QD PVs, providing insights into the impact of surface chemical design on their electronic coupling, dispersibility, stability and defect passivation. The limitations of current perovskite QDs mainly arise from their "soft" ionic nature and dynamic surface equilibrium, which lead to difficulties in the large-scale synthesis of monodispersed perovskite QDs and conductive inks for high-throughput printing techniques. We present that the development of surface chemistry is becoming a platform for further improving PCE, aiming to reach the 20% milestone. Additionally, we discuss integrating artificial intelligence to facilitate the mass-production of perovskite QDs for large-area, low-cost PV technology, which could help address significant energy challenges.
Collapse
Affiliation(s)
- Xuliang Zhang
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Hehe Huang
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Chenyu Zhao
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Jianyu Yuan
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
2
|
Suhail A, Beniwal S, Kumar R, Kumar A, Bag M. Hybrid halide perovskite quantum dots for optoelectronics applications: recent progress and perspective. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:163002. [PMID: 40014916 DOI: 10.1088/1361-648x/adbb47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/27/2025] [Indexed: 03/01/2025]
Abstract
Nanotechnology has transformed optoelectronics through quantum dots (QDs), particularly metal halide perovskite QDs (PQDs). PQDs boast high photoluminescent quantum yield, tunable emission, and excellent defect tolerance without extensive passivation. Quantum confinement effects, which refer to the phenomenon where the motion of charge carriers is restricted to a small region, produce discrete energy levels and blue shifts in these materials. They are ideal for next-generation optoelectronic devices prized for superior optical properties, low cost, and straightforward synthesis. In this review, along with the fundamental physics behind the phenomenon, we have covered advances in synthesis methods such as hot injection, ligand-assisted reprecipitation, ultrasonication, solvothermal, and microwave-assisted that enable precise control over size, shape, and stability, enhancing their suitability for LEDs, lasers, and photodetectors. Challenges include lead toxicity and cost, necessitating research into alternative materials and scalable manufacturing. Furthermore, strategies like doping and surface passivation that improve stability and emission control are discussed comprehensively, and how lead halide perovskites like CsPbBr3undergo phase transitions with temperature, impacting device performance, are also investigated. We have explored various characterization techniques, providing insights into nanocrystal properties and behaviors in our study. This review highlights PQDs' synthesis, physical and optoelectronic properties, and potential applications across diverse technologies.
Collapse
Affiliation(s)
- Atif Suhail
- Advanced Research in Electrochemical Impedance Spectroscopy Laboratory, Indian Institute of Technology Roorkee, Roorkee 247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Shivang Beniwal
- Advanced Research in Electrochemical Impedance Spectroscopy Laboratory, Indian Institute of Technology Roorkee, Roorkee 247667, India
- Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, United Kingdom
| | - Ramesh Kumar
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE, 75120 Uppsala, Sweden
| | - Anjali Kumar
- Advanced Research in Electrochemical Impedance Spectroscopy Laboratory, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Monojit Bag
- Advanced Research in Electrochemical Impedance Spectroscopy Laboratory, Indian Institute of Technology Roorkee, Roorkee 247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
3
|
Jang KY, Chang SE, Kim DH, Yoon E, Lee TW. Nanocrystalline Perovskites for Bright and Efficient Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2415648. [PMID: 39972651 DOI: 10.1002/adma.202415648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/31/2024] [Indexed: 02/21/2025]
Abstract
Nanocrystalline perovskites have driven significant progress in metal halide perovskite light-emitting diodes (PeLEDs) over the past decade by enabling the spatial confinement of excitons. Consequently, three primary categories of nanocrystalline perovskites have emerged: nanoscale polycrystalline perovskites, quasi-2D perovskites, and perovskite nanocrystals. Each type has been developed to address specific challenges and enhance the efficiency and stability of PeLEDs. This review explores the representative material design strategies for these nanocrystalline perovskites, correlating them with exciton recombination dynamics and optical/electrical properties. Additionally, it summarizes the trends in progress over the past decade, outlining four distinct phases of nanocrystalline perovskite development. Lastly, this review addresses the remaining challenges and proposes a potential material design to further advance PeLED technology toward commercialization.
Collapse
Affiliation(s)
- Kyung Yeon Jang
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seong Eui Chang
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Dong-Hyeok Kim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Eojin Yoon
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Research Institute of Advanced Materials (RIAM), Institute of Engineering Research, Soft Foundry, Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- SN Display Co., Ltd., 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
4
|
Yang Z, Liu Y, Chen W. A Brief Review of Perovskite Quantum Dot Solar Cells: Synthesis, Property and Defect Passivation. CHEMSUSCHEM 2025; 18:e202401587. [PMID: 39289160 DOI: 10.1002/cssc.202401587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
Perovskite quantum dot solar cells (PQDSCs), as the promising candidate for the next generation of solar cell, have garnered the significant attention over the past decades. However, the performance and stability of PQDSCs are highly dependent on the properties of interfaces between the perovskite quantum dots (PQDs) and the other layers in the device. This work provides a brief overview of PQDSCs, including the synthesis of PQDs, the characteristics and preparation methods of PQDs, the photoelectric properties as the light absorption layer and optimization methods for PQDSCs with high efficiency. Future directions and potential applications are also highlighted.
Collapse
Affiliation(s)
- Zifan Yang
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, P. R. China
| | - Yueli Liu
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, P. R. China
| | - Wen Chen
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, P. R. China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
5
|
Litvin AP, Guo J, Wang J, Zhang X, Zheng W, Rogach AL. Systematic Study of the Synthesis of Monodisperse CsPbI 3 Perovskite Nanoplatelets for Efficient Color-Pure Light Emitting Diodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408422. [PMID: 39853893 DOI: 10.1002/smll.202408422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/03/2025] [Indexed: 01/26/2025]
Abstract
Metal halide perovskite nanoplatelets (NPls) possess ultra-narrow photoluminescence (PL) bands tunable over the entire visible spectral range, which makes them promising for utilization in light-emitting diodes (LEDs) with spectrally pure emission colors. This calls for development of synthetic methods toward perovskite NPls with a high degree of control over both their thickness and lateral dimensions. A general strategy is developed to obtain such monodisperse CsPbI3 NPls through the control over the halide-to-lead ratio during heating-up reaction. The excess of iodine precursor changes the chemical equilibrium, thus yielding monodisperse (3 monolayers in thickness) CsPbI3 NPls whose PL width constitutes ≈22 nm, while the lateral dimensions of NPls are determined by choice of precursor and by the reaction temperature. Postsynthetic cation exchange on the A-site of the perovskite lattice allows for the tuning of the PL peak position, while simultaneous removal of the excess ligands and the surface passivation allows for improvement of the PL quantum yield to 96% and ensures superior stability of optical properties upon storage. Electroluminescent LEDs with the peak values are fabricated for the external quantum efficiency and luminance being 9.45% and 29800 cd m-2, respectively, and a narrow (≈26 nm) electroluminescence peak at 601 nm.
Collapse
Affiliation(s)
- Aleksandr P Litvin
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, P. R. China
| | - Jie Guo
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, P. R. China
| | - Jianxun Wang
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, P. R. China
| | - Xiaoyu Zhang
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, P. R. China
| | - Weitao Zheng
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, P. R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
6
|
Wang S, Liu Y, Deng G, Long W, Chen H, Xiao Y, She Y, Fu H. Ligand-Engineered Hydrophilic Perovskite Enabling Surface Potential-Driven Anions Exchange for Multicolor Biosensing. Angew Chem Int Ed Engl 2025:e202501312. [PMID: 39891617 DOI: 10.1002/anie.202501312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/03/2025]
Abstract
The difficulty in designing zwitterionic ligands impedes the water-dispersed CsPbX3 perovskite nanocrystals (NCs) and their application as fast anion exchange (FAE) probes in biosensing. This study proposes a design paradigm for zwitterionic ligands predicated upon revealing the mechanism of the SN2 reaction between unsaturated alkylamines (Cn') and haloalkanoic acids (HAAs). Among them, the C=C bond can enhance the nucleophilicity of Cn' and promote the electrostatic adsorption of HAAs onto Cn', i.e., the geometric preorganization process, thereby initiating the SN2 reaction. Moreover, an appropriate "bridge" length enables HAAs to balance the geometric preorganization process and the Sigma hole intensity of the C-Br bond. Zwitterionic ligands derived from oleylamine (C18') and 5-bromovaleric acid (5-BVA) endow CsPbBr3 NCs with water dispersibility, an almost 100 % photoluminescence quantum yield, and enhanced surface potential, facilitating the capture of halide ions and driving the FAE reaction. Using AgI nanoparticles (NPs) as latent anion exchangers, a third FAE strategy is presented for multicolor biosensing. Such a robust biosensing strategy can generate wavelength shift and chromatic difference for biological target molecules, exemplified by H2S, and is ultimately applicable to multicolor assay in biological, environmental and food samples, demonstrating the immense potential of perovskite-based FAE probes in biosensing.
Collapse
Affiliation(s)
- Shuo Wang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Yi Liu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Gaoqiong Deng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Wanjun Long
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Hengye Chen
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Yuxiu Xiao
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| |
Collapse
|
7
|
Cao Y, Gao F, Yuan Y, Wang R, Xu S, Geng C. Zinc-halide/phenylbutyrate co-passivation of CsPbX 3 nanocrystals toward efficient and robust luminescence. J Colloid Interface Sci 2025; 679:1007-1015. [PMID: 39418888 DOI: 10.1016/j.jcis.2024.10.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Cesium lead halide perovskite nanocrystals (IPNCs) exhibit excellent optoelectronic properties but are susceptible to degradation in practical environments due to their ionic surface and unstable ligand capping. Here, we propose a post-synthesis surface passivation strategy for CsPbX3 (X = Br, I) IPNCs by employing combined zinc halide and zinc phenylbutyrate (Zn(PA)2) as surface ligands. ZnBr2 fills surface halide vacancies on IPNCs, resulting in high photoluminescence efficiency, whereas Zn(PA)2 stabilizes IPNCs by substituting surface ammonium ligands. Additionally, the -PA capping endows IPNCs with high solubility in polystyrene (PS), enabling the direct fabrication of highly efficient and uniform IPNCs-PS color conversion films through in situ polymerization of the IPNC-styrene solution. The resulting IPNCs-PS films displayed significantly enhanced stability, retaining excellent PL persistence after 1000 h of photoaging. This novel ligand and modification method presents a promising strategy for improving the efficiency and stability of IPNCs, facilitating their potential applications in display backlight and other optoelectronic applications.
Collapse
Affiliation(s)
- Yujie Cao
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Fei Gao
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yaqian Yuan
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Runchi Wang
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Shu Xu
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Chong Geng
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
8
|
Chen W, Hu L, Wang Y, Huang L, Wang Z, Tang X. Surface passivation strategies for CsPbBr 3 quantum dots aiming at nonradiative suppression and enhancement of electroluminescent light-emitting diodes. Dalton Trans 2025; 54:2156-2165. [PMID: 39711110 DOI: 10.1039/d4dt02705a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
With many fascinating characteristics, such as color-tunability, narrow-band emission, and low-cost solution processability, all-inorganic lead halide perovskite quantum dots (QDs) have attracted keen attention for electroluminescent light-emitting diodes (QLEDs) and display applications. However, the performance of perovskite QLED devices is intrinsically limited by the inefficient electrical carrier transport capacity. Herein, one facile but effective method is proposed to enhance the perovskite QLED performance by incorporating a short carbon chain ligand of 2-phenethylammonium bromide (PEABr) to passivate the CsPbBr3 QD surface. With the PEABr ligand, the Br- vacancies are passivated, which could eliminate nonradiative recombination of perovskite QDs; thus their optical properties are enhanced. Meanwhile, PEABr can interact with perovskite QDs to adjust the perovskite film morphology, resulting in low current leakage and efficient electron injection. After the PEABr treatment, the CsPbBr3 QD film exhibits strong green emission located at 516 nm, with an average photoluminescence lifetime of 45.71 ns and a photoluminescence quantum yield of up to 78.64%. In addition, the surface roughness of the CsPbBr3 QD film is reduced from 3.61 nm to 1.38 nm, which is essential to prepare a QD film with high surface coverage. As a result, the QLED device with PEABr treated CsPbBr3 QDs exhibits a maximum current efficiency of 32.69 cd A-1 corresponding to an external quantum efficiency of 9.67%, 3.88-fold higher than that of the control device (pure QDs as an emission layer). This research provides an effective strategy for the improvement of the perovskite QLED performance and may be helpful for extending their actual applications.
Collapse
Affiliation(s)
- Weiwei Chen
- College of Optoelectronic Engineering, Chongqing University of Post and Telecommunications, 400065, People's Republic of China.
| | - Lin Hu
- Chongqing Hongyu Precision Industry Group Co., Ltd, 400799, People's Republic of China.
| | - Yi Wang
- College of Optoelectronic Engineering, Chongqing University of Post and Telecommunications, 400065, People's Republic of China.
| | - Lei Huang
- College of Optoelectronic Engineering, Chongqing University of Post and Telecommunications, 400065, People's Republic of China.
| | - Zhen Wang
- College of Optoelectronic Engineering, Chongqing University of Post and Telecommunications, 400065, People's Republic of China.
| | - Xiaosheng Tang
- College of Optoelectronic Engineering, Chongqing University of Post and Telecommunications, 400065, People's Republic of China.
| |
Collapse
|
9
|
Que M, Xu Y, Wu Q, Chen J, Gao L, Liu SF. Application of advanced quantum dots in perovskite solar cells: synthesis, characterization, mechanism, and performance enhancement. MATERIALS HORIZONS 2025. [PMID: 39820201 DOI: 10.1039/d4mh01478b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Quantum dots have garnered significant interest in perovskite solar cells (PSCs) due to their stable chemical properties, high carrier mobility, and unique features such as multiple exciton generation and excellent optoelectronic characteristics resulting from quantum confinement effects. This review explores quantum dot properties and their applications in photoelectronic devices, including their synthesis and deposition processes. This sets the stage for discussing their diverse roles in the carrier transport, absorber, and interfacial layers of PSCs. We thoroughly examine advances in defect passivation, energy band alignment, perovskite crystallinity, device stability, and broader light absorption. In particular, novel approaches to enhance the photoelectric conversion efficiency (PCE) of quantum dot-enhanced perovskite solar cells are highlighted. Lastly, based on a comprehensive overview, we provide a forward-looking outlook on advanced quantum dot fabrication and its impact on enhancing the photovoltaic performance of solar cells. This review offers insights into fundamental mechanisms that endorse quantum dots for improved PSC performance, paving the way for further development of quantum dot-integrated PSCs.
Collapse
Affiliation(s)
- Meidan Que
- School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuan Xu
- School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qizhao Wu
- School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jin Chen
- School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lili Gao
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Shengzhong Frank Liu
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
- CNNP Optoelectronics Technology, 2828 Canghai Road, Lingang, Shanghai, 201306, P. R. China
| |
Collapse
|
10
|
Hassan MS, Basera P, Khan B, Portniagin AS, Vighnesh K, Wu Y, Rusanov DA, Babak M, He JH, Bajdich M, Rogach AL. Bidentate Lewis Base Ligand-Mediated Surface Stabilization and Modulation of the Electronic Structure of CsPbBr 3 Perovskite Nanocrystals. J Am Chem Soc 2025; 147:862-873. [PMID: 39705016 DOI: 10.1021/jacs.4c13724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The desorption of conventional ligands from the surface of halide perovskite nanocrystals (NCs) often causes their structural instability and deterioration of the optoelectronic properties. To address this challenge, we present an approach of using a bidentate Lewis base ligand, namely, 1,4-bis(diphenylphosphino)butane (DBPP), for the synthesis of CsPbBr3 NCs. The phosphine group of DBPP has a strong interaction with the PbBr2 precursor, forming a highly crystalline intermediate complex during the reaction. In the presence of oleic acid, the uncoordinated phosphine group of DBPP is converted into the phosphonium cation, which strongly binds to the surface bromide of the formed CsPbBr3 NCs through hydrogen bonding. Density functional theory calculations suggest that DBPP can strongly bind to the undercoordinated lead and surface bromide ions of CsPbBr3 NCs through its unprotonated and protonated phosphine groups, respectively. The robust binding of DBPP to the surface of perovskite NCs helps to preserve their structural integrity under various environmental stresses. Moreover, the electron density and energy levels are regulated in DBPP-capped CsPbBr3 NCs by the donation of electrons from the ligands to the NCs, resulting in their improved photocatalytic CO2 reduction performance. Our study highlights the potential of using bidentate ligands to stabilize the surface of perovskite NCs and modulate their optical and electronic properties.
Collapse
Affiliation(s)
- Md Samim Hassan
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, P. R. China
| | - Pooja Basera
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis and SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Bilawal Khan
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, P. R. China
| | - Arsenii S Portniagin
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, P. R. China
| | - Kunnathodi Vighnesh
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, P. R. China
| | - Ye Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, P. R. China
| | - Daniil A Rusanov
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, P. R. China
| | - Maria Babak
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, P. R. China
| | - Jr-Hau He
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, P. R. China
| | - Michal Bajdich
- SUNCAT Center for Interface Science and Catalysis and SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Andrey L Rogach
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, P. R. China
| |
Collapse
|
11
|
Li Y, Wang Y, Sun Q, Ning J, Li L, Liu J, Zhang D, Yao KX. Enabling Multicolor Information Encryption: Oleylammonium-Halide-Assisted Reversible Phase Conversion between Cs 4PbX 6 and CsPbX 3 Nanocrystals. ACS APPLIED MATERIALS & INTERFACES 2025; 17:1596-1604. [PMID: 39723895 DOI: 10.1021/acsami.4c17833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Recently, halide perovskites have been recognized for their thermochromic characteristics, showing significant potential in information encryption applications. However, the limited luminescence color gamut hinders the encryption of complex multicolor information. Herein, for the first time, multicolor thermochromic perovskites with luminescence covering the entire visible spectrum have been designed. Oleylammonium halide salts facilitate a reversible phase transformation between nonluminescent Cs4PbX6 nanocrystals (NCs) and luminescent CsPbX3 NCs upon heating or cooling. This process occurs without the need for external addition or removal of ligands or metal salts, enabling efficient and intelligent information encryption. A proof-of-concept demonstration successfully encrypts and decrypts multicolor digital information. This work not only advances the understanding of phase transformations in perovskites but also highlights their significant potential for information encryption applications.
Collapse
Affiliation(s)
- Yongfei Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Chemistry and Chemical Engineering, Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 400044, China
| | - Yujiao Wang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Chemistry and Chemical Engineering, Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 400044, China
| | - Qing Sun
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Chemistry and Chemical Engineering, Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 400044, China
| | - Jiaoyi Ning
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Chemistry and Chemical Engineering, Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 400044, China
| | - Liang Li
- Department of Sciences and Engineering, Sorbonne University Abu Dhabi, P.O. Box 38044, Abu Dhabi 25586, UAE
| | - Jiakai Liu
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Daliang Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Chemistry and Chemical Engineering, Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 400044, China
| | - Ke Xin Yao
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Chemistry and Chemical Engineering, Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 400044, China
| |
Collapse
|
12
|
Filippi U, Toso S, Zaffalon ML, Pianetti A, Li Z, Marras S, Goldoni L, Meinardi F, Brovelli S, Baranov D, Manna L. Cooling-Induced Order-Disorder Phase Transition in CsPbBr 3 Nanocrystal Superlattices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410949. [PMID: 39568247 PMCID: PMC11756043 DOI: 10.1002/adma.202410949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Perovskite nanocrystal superlattices are being actively studied after reports have emerged on collective excitonic properties at cryogenic temperatures, where energetic disorder is minimized due to the frozen lattice vibrations. However, an important issue related to structural disorder of superlattices at low temperatures has received little attention to date. In this work, it is shown that CsPbBr3 nanocrystal superlattices undergo a reversible order-disorder transition upon cooling to 90 K. The transition consists of the loss of structural coherence, that is, increased nanocrystal misalignment, and contraction of the superlattices, as revealed by temperature-dependent X-ray diffraction, and is ascribed to the solidification of ligands (on the basis of Raman spectroscopy). Introducing shorter amines on the nanocrystal surface allows to mitigate these changes, improve order, and shorten interparticle distance. It is demonstrated that the low temperature phase of the short ligand-capped nanocrystal superlattices is characterized by a strong exciton migration observable in the photoluminescence decay, which is due to the shrinkage of the inter-nanocrystal distance.
Collapse
Affiliation(s)
- Umberto Filippi
- Istituto Italiano di TecnologiaVia Morego 30Genova16136Italy
- International Doctoral Program in ScienceUniversità Cattolica del Sacro CuoreBrescia25121Italy
| | - Stefano Toso
- Istituto Italiano di TecnologiaVia Morego 30Genova16136Italy
| | - Matteo L. Zaffalon
- Department of Materials ScienceUniversity of Milano‐BicoccaVia R. Cozzi 55Milano20125Italy
| | - Andrea Pianetti
- Center for Nano Science and TechnologyIstituto Italiano di Tecnologiavia Rubattino 81Milano20134Italy
| | - Zhanzhao Li
- Istituto Italiano di TecnologiaVia Morego 30Genova16136Italy
| | - Sergio Marras
- Istituto Italiano di TecnologiaVia Morego 30Genova16136Italy
| | - Luca Goldoni
- Istituto Italiano di TecnologiaVia Morego 30Genova16136Italy
| | - Francesco Meinardi
- Department of Materials ScienceUniversity of Milano‐BicoccaVia R. Cozzi 55Milano20125Italy
| | - Sergio Brovelli
- Department of Materials ScienceUniversity of Milano‐BicoccaVia R. Cozzi 55Milano20125Italy
| | - Dmitry Baranov
- Division of Chemical Physics and NanoLundDepartment of ChemistryLund UniversityP.O. Box, 124LundSE‐221 00Sweden
| | - Liberato Manna
- Istituto Italiano di TecnologiaVia Morego 30Genova16136Italy
| |
Collapse
|
13
|
Behera RK, Banerjee S, Kharbanda N, Sachdeva M, Nasipuri D, Ghosh HN, Pradhan N. CsPbBr 3-PbSe Perovskite-Chalcogenide Epitaxial Nanocrystal Heterostructures and Their Charge Carrier Dynamics. J Am Chem Soc 2024; 146:31177-31185. [PMID: 39491972 DOI: 10.1021/jacs.4c11172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Lead halide perovskite and chalcogenide heterostructures which share the ionic and covalent interface bonding may be the possible materials in bringing phase stability to these emerging perovskite nanocrystals. However, in spite of significant successes in the development of halide perovskite nanocrystals, their epitaxial heterostructures with appropriate chalcogenide nanomaterials have largely remained unexplored. Keeping the importance of these materials in mind, herein, epitaxial nanocrystal heterostructures of CsPbBr3-PbSe are reported. The shape remained rhombic dodecahedral-tetrahedral, and the phase retained orthorhombic-cubic for CsPbBr3 and PbSe nanocrystals, respectively. These are synthesized following the standard classical approach of heteronucleations of chalcogenide PbSe with CsPbBr3 perovskite nanostructures and characterized with high-resolution electron microscopic imaging. With an ultrafast study, the hot charge transfer from CsPbBr3 to PbSe is also established. As these are first of its kind nanostructures which are obtained with heteronucleation and growth of chalcogenides on halide perovskites, this finding is expected to open the roadmap for designing other heterostructures which are important for catalysis and photovoltaic applications.
Collapse
Affiliation(s)
- Rakesh Kumar Behera
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, Odisha 752050, India
| | - Souvik Banerjee
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Nitika Kharbanda
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Manvi Sachdeva
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Diptam Nasipuri
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Hirendra N Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, Odisha 752050, India
| | - Narayan Pradhan
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
14
|
Xie L, Qiu H, Chen Y, Lu Y, Chen Y, Chen L, Hu S. Construction of a zero-dimensional halide perovskite in micron scale towards a deeper understanding of phase transformation mechanism and fluorescence applications. RSC Adv 2024; 14:35490-35497. [PMID: 39507690 PMCID: PMC11539010 DOI: 10.1039/d4ra06404f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
Zero-dimensional (0D) halide perovskites have garnered significant interest due to their novel properties in optoelectronic and energy applications. However, the mechanisms underlying their phase transformations and fluorescence properties remain poorly understood. In this study, we have synthesized a micron-scale 0D perovskite observable under confocal laser scanning microscopy (CLSM). This approach enables us to trace the phase transformation process from 0D to three-dimensional (3D) structures, offering a deeper understanding of the underlying mechanisms. Remarkably, we discovered that this in situ transformation is highly sensitive to water, allowing for label-free fluorescent analysis of trace amounts of water in organic solvents through the phase transformation process. Additionally, we have designed a reusable paper strip for humidity analysis leveraging this sensitivity as an application of the micron scale material. Our findings not only elucidate the physicochemical properties of perovskites but also expand the potential of halide perovskite materials in analytical chemistry.
Collapse
Affiliation(s)
- Lili Xie
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University Fuzhou Fujian 350122 P.R. China
| | - Haiyan Qiu
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University Fuzhou Fujian 350122 P.R. China
| | - Yuxin Chen
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University Fuzhou Fujian 350122 P.R. China
| | - Yingxue Lu
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University Fuzhou Fujian 350122 P.R. China
| | - Yanyan Chen
- College of Chemistry, Key Laboratory of Analysis and Detecting Technology, Food Safety MOE, Fuzhou University Fuzhou 350002 Fujian P.R. China
| | - Lanlan Chen
- College of Chemistry, Key Laboratory of Analysis and Detecting Technology, Food Safety MOE, Fuzhou University Fuzhou 350002 Fujian P.R. China
| | - Shanwen Hu
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University Fuzhou Fujian 350122 P.R. China
| |
Collapse
|
15
|
Liu M, Matta SK, Said TA, Liu J, Matuhina A, Al-Anesi B, Ali-Löytty H, Lahtonen K, Russo SP, Vivo P. Lattice Engineering via Transition Metal Ions for Boosting Photoluminescence Quantum Yields of Lead-Free Layered Double Perovskite Nanocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401051. [PMID: 38809083 DOI: 10.1002/smll.202401051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Lead-free layered double perovskite nanocrystals (NCs), i.e., Cs4M(II)M(III)2Cl12, have recently attracted increasing attention for potential optoelectronic applications due to their low toxicity, direct bandgap nature, and high structural stability. However, the low photoluminescence quantum yield (PLQY, <1%) or even no observed emissions at room temperature have severely blocked the further development of this type of lead-free halide perovskites. Herein, two new layered perovskites, Cs4CoIn2Cl12 (CCoI) and Cs4ZnIn2Cl12 (CZnI), are successfully synthesized at the nanoscale based on previously reported Cs4CuIn2Cl12 (CCuI) NCs, by tuning the M(II) site with different transition metal ions for lattice tailoring. Benefiting from the formation of more self-trapped excitons (STEs) in the distorted lattices, CCoI and CZnI NCs exhibit significantly strengthened STE emissions toward white light compared to the case of almost non-emissive CCuI NCs, by achieving PLQYs of 4.3% and 11.4% respectively. The theoretical and experimental results hint that CCoI and CZnI NCs possess much lower lattice deformation energies than that of reference CCuI NCs, which are favorable for the recombination of as-formed STEs in a radiative way. This work proposes an effective strategy of lattice engineering to boost the photoluminescent properties of lead-free layered double perovskites for their future warm white light-emitting applications.
Collapse
Affiliation(s)
- Maning Liu
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, Lund, 22100, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Chemistry, Lund University, Lund, 22100, Sweden
- NanoLund, Lund University, Lund, 22100, Sweden
- Hybrid Solar Cells, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33014, Finland
| | - Sri Kasi Matta
- JSPS International Research Fellow (Center for Computational Sciences), University of Tsukuba, Tsukuba, 305-8577, Japan
- Australian Research Council (ARC) Centre of Excellence for Exciton Science, RMIT University, Melbourne, 3000, Australia
| | - Tarek Al Said
- Department Spins in Energy Conversion and Quantum Information Science, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 16, 12489, Berlin, Germany
| | - Jiatu Liu
- MAX IV Laboratory, Fotongatan 2, Lund, 224 84, Sweden
| | - Anastasia Matuhina
- Hybrid Solar Cells, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33014, Finland
| | - Basheer Al-Anesi
- Hybrid Solar Cells, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33014, Finland
| | - Harri Ali-Löytty
- Surface Science Group, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 692, Tampere, FI-33014, Finland
| | - Kimmo Lahtonen
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 692, Tampere, FI-33014, Finland
| | - Slavy P Russo
- Theoretical Condensed Matter Physics Laboratory, Australian Research Council (ARC) Centre of Excellence for Exciton Science, RMIT University, Melbourne, 3000, Australia
| | - Paola Vivo
- Hybrid Solar Cells, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33014, Finland
| |
Collapse
|
16
|
Li X, Aftab S, Mukhtar M, Kabir F, Khan MF, Hegazy HH, Akman E. Exploring Nanoscale Perovskite Materials for Next-Generation Photodetectors: A Comprehensive Review and Future Directions. NANO-MICRO LETTERS 2024; 17:28. [PMID: 39343866 PMCID: PMC11439866 DOI: 10.1007/s40820-024-01501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/05/2024] [Indexed: 10/01/2024]
Abstract
The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications. These materials are promising candidates for next-generation photodetectors (PDs) due to their unique optoelectronic properties and flexible synthesis routes. This review explores the approaches used in the development and use of optoelectronic devices made of different nanoscale perovskite architectures, including quantum dots, nanosheets, nanorods, nanowires, and nanocrystals. Through a thorough analysis of recent literature, the review also addresses common issues like the mechanisms underlying the degradation of perovskite PDs and offers perspectives on potential solutions to improve stability and scalability that impede widespread implementation. In addition, it highlights that photodetection encompasses the detection of light fields in dimensions other than light intensity and suggests potential avenues for future research to overcome these obstacles and fully realize the potential of nanoscale perovskite materials in state-of-the-art photodetection systems. This review provides a comprehensive overview of nanoscale perovskite PDs and guides future research efforts towards improved performance and wider applicability, making it a valuable resource for researchers.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei, 230037, Anhui, People's Republic of China
- Anhui Laboratory of Advanced Laser Technology, Hefei, 230037, Anhui, People's Republic of China
- Nanhu Laser Laboratory, Changsha, 410015, Hunan, People's Republic of China
| | - Sikandar Aftab
- Department of Semiconductor Systems Engineering and Clean Energy, Sejong University, Seoul, 05006, Republic of Korea.
- Department of Artificial Intelligence and Robotics, Sejong University, Seoul, 05006, Republic of Korea.
| | - Maria Mukhtar
- Department of Semiconductor Systems Engineering and Clean Energy, Sejong University, Seoul, 05006, Republic of Korea
- Department of Artificial Intelligence and Robotics, Sejong University, Seoul, 05006, Republic of Korea
| | - Fahmid Kabir
- School of Engineering Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Muhammad Farooq Khan
- Department of Electrical Engineering, Sejong University, Seoul, 05006, South Korea
| | - Hosameldin Helmy Hegazy
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
- Central Labs, King Khalid University, AlQura'a, P.O. Box 960, 61413, Abha, Saudi Arabia
| | - Erdi Akman
- Scientific and Technological Research and Application Center, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| |
Collapse
|
17
|
Dinda TK, Manna A, Nayek P, Mandal B, Mal P. Ultrasmall CsPbBr 3 Nanocrystals as a Recyclable Heterogeneous Photocatalyst in 100% E- and Anti-Markovnikov Sulfinylsulfonation of Terminal Alkynes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49411-49427. [PMID: 39238429 DOI: 10.1021/acsami.4c10579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The precise synthesis of ultrasmall, monodisperse CsPbBr3 nanocrystals is crucial due to their enhanced photophysical properties resulting from strong quantum confinement effects. Traditional methods struggle with size control, complicating synthesis. Although CsPbBr3 nanocrystals find applications in LEDs and photovoltaics, their use in photocatalysis for organic reactions remains limited. Our study introduces ultrasmall TBIA-CsPbBr3 nanocrystals (∼5.6 nm), synthesized via a three-precursor hot injection method using tribromoisocyanuric acid (TBIA) as a bromine precursor for the first time. These nanocrystals exhibit a near-unity photoluminescence quantum yield (PLQY) of 0.99 and an elevated oxidation potential of +1.80 V. We demonstrate their efficacy as recyclable heterogeneous photocatalysts in a one-pot, 100% E-selective, anti-Markovnikov sulfinylsulfonation of terminal alkynes under visible light, achieving a high product conversion rate (PCR) of 62,500 μmol g-1 h-1 and recyclability for up to five cycles. Density functional theory (DFT) calculations support the exclusive formation of the E-isomer. TBIA-CsPbBr3 outperforms other CsPbBr3 perovskites in photocatalysis, with superior efficiency attributed to their extended excited-state lifetime and higher surface area, which accelerates the organic transformation process.
Collapse
Affiliation(s)
- Tarun Kumar Dinda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Anupam Manna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Pravat Nayek
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Bikash Mandal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|
18
|
Calvin JJ, Sedlak AB, Brewer AS, Kaufman TM, Alivisatos AP. Evidence and Structural Insights into a Ligand-Mediated Phase Transition in the Solvated Ligand Shell of Quantum Dots. ACS NANO 2024; 18:25257-25270. [PMID: 39186512 DOI: 10.1021/acsnano.4c08439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
As synthesized, nanocrystal surfaces are typically covered in coordinating organic ligands, and the degree of packing and order of these ligands are ongoing questions in the field of colloidal nanocrystals, particularly in the solution state. Recently, isothermal titration calorimetry coupled with 1H NMR has been used to probe ligand exchanges on colloidal quantum dots, revealing the importance of the composition of the ligand shell on exchange thermodynamics. Previous work has shown that the geometry and length of a ligand's aliphatic chain can influence the thermodynamics of exchange. This has been attributed to interligand interactions, and the use of a modified Ising model simulation to account for these collective effects has been critical in describing these reactions. In this report, we explore the reaction between indium phosphide quantum dots and zinc chloride on a size series of nanocrystals capped with two different lengths of aliphatic, straight-chain carboxylate ligands to investigate the effect that nanocrystal size has on these interligand interactions. We demonstrate that interligand interactions increase as the nanocrystal size increases, changing the thermodynamics of the ligand exchange reaction. Critically, we show that a self-consistent model of these ligand exchanges does not fit the data without the use of a phase transition term in the model and that the strength of this phase transition depends on the nanocrystal size. Combined with solution state X-ray diffraction, these results provide indirect evidence that ligands are ordered on nanocrystals in the solution state.
Collapse
Affiliation(s)
- Jason J Calvin
- Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - Amanda S Brewer
- Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - A Paul Alivisatos
- Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| |
Collapse
|
19
|
Salari R, Amjadi M. An efficient chemiluminescent probe based on Ni-doped CsPbBr 3 perovskite nanocrystals embedded in mesoporous SiO 2 for sensitive assay of L-cysteine. Sci Rep 2024; 14:20871. [PMID: 39242591 PMCID: PMC11379696 DOI: 10.1038/s41598-024-70624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024] Open
Abstract
This study presents an efficient chemiluminescence (CL) probe based on perovskite nanocrystals (NCs) for detection of L-cysteine (L-Cys). It consists of nickel-doped CsPbBr3 NCs embedded in the mesoporous SiO2 matrix as CL reagent and cerium (IV) as an oxidant in aqueous environment. The probe was designed for the highly selective determination of L-Cys based on its remarkable enhancing effect on the CL intensity. The colloidal nanocomposite of nickel-doped CsPbBr3 NCs@SiO2 with photoluminescence quantum yield of 58% was fabricated by ligand-assisted re-precipitation method and characterized by using UV-Vis absorption, FT-IR, X-ray diffraction, and transmission electron microscopy. The sensor was utilized to determine L-Cys in the linear concentration range of 20-300 nM with a detection limit of 12.8 nM. Direct chemical oxidation of Ni-doped CsPbBr3 NCs@SiO2 by Ce(IV) was the single cause of the formation of the excited-state NCs and subsequent production of CL. The developed probe provides outstanding selectivity towards L-Cys over structurally related compounds. Accurate determination of L-Cys in human serum samples was achieved without interference, and the results were confirmed by HPLC method.
Collapse
Affiliation(s)
- Rana Salari
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 5166616471, Iran
| | - Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 5166616471, Iran.
| |
Collapse
|
20
|
Xue W, Zhang X, Zhu W, Zhang X, Wang W, Peng L, Ma X, Li Y. Large-scale heterogeneous synthesis of monodisperse high performance colloidal CsPbBr 3 nanocrystals. FUNDAMENTAL RESEARCH 2024; 4:1137-1146. [PMID: 39431134 PMCID: PMC11489511 DOI: 10.1016/j.fmre.2022.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/17/2022] [Accepted: 05/04/2022] [Indexed: 11/09/2022] Open
Abstract
Colloidal lead halide perovskite nanocrystals (LHP NCs) are promising semiconductor materials for optoelectronic devices, but the high ionicity of LHP NCs makes their crystallization control and post-treatment difficult. Here, phosphonic acids (PAs) are employed as ligands to design a solid-liquid heterogeneous reaction system to regulate the LHP NC crystallization and achieve the desired focusing growth. During the heterogeneous synthesis, the precursors in the liquid phase are responsible for the burst nucleation and initial growth of NCs. Afterwards, the focusing growth of NCs is supported by the precursors released from the solid phase. In addition, the strong binding ability of PAs enables effective passivation of LHP NCs. Without post-treatment, gram-scale monodisperse CsPbBr3 NCs having photoluminescence with a full width at half-maximum of 18 nm and a quantum yield of near-unity are obtained. The CsPbBr3 NCs covered by a compact ligand layer keep initial quantum yield even after 18 cycles of purification, exhibiting excellent stability against polar solvents, ultraviolet irradiation and heat treatment. As scintillators, the prepared CsPbBr3 NCs show strong radioluminescence emission and high-resolution X-ray imaging.
Collapse
Affiliation(s)
- Weinan Xue
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xin Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xue Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Linwei Peng
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yan Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
21
|
Lyu B, Li D, Wang Q, Sun J, Xiong Q, Zhang D, Su H, Choy WCH. Pattern-Matched Polymer Ligands Toward Near-Perfect Synergistic Passivation for High-Performance and Stable Br/Cl Mixed Perovskite Light-Emitting Diodes. Angew Chem Int Ed Engl 2024; 63:e202408726. [PMID: 38804083 DOI: 10.1002/anie.202408726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Mixed Br/Cl perovskite nanocrystals (PeNCs) exhibit bright pure-blue emission benefiting for fulfilling the Rec. 2100 standard. However, phase segregation remains a significant challenge that severely affects the stability and emission spectrum of perovskite light-emitting diodes (PeLEDs). Here, we demonstrate the optimization of the spacing between polydentate functional groups of polymer ligands to match the surface pattern of CsPbBr1.8Cl1.2 PeNCs, resulting in effective synergistic passivation effect and significant improvements in PeLED performances. The block and alternating copolymers with different inter-functional group spacing are facilely synthesized as ligands for PeNCs. Surprisingly, block copolymers with a higher functional group density do not match PeNCs, while alternating copolymers enable efficient PeNCs with the high photoluminescence intensity, low non-radiative recombination rate and high exciton binding energy. Density functional theory calculations clearly confirm the almost perfect match between alternating copolymers and PeNCs. Finally, pure-blue PeLEDs are achieved with the emission at 467 nm and Commission Internationale de l'Eclairage (CIE) coordinates of (0.131, 0.071), high external quantum efficiency (9.1 %) and record spectral and operational stabilities (~80 mins) in mixed-halide PeLEDs. Overall, this study contributes to designing the polymer ligands and promoting the development of high-performance and stable pure-color PeLEDs towards display applications.
Collapse
Affiliation(s)
- Benzheng Lyu
- Department of Electrical and Electronic Engineering, The University of Hong Kong Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Dongyu Li
- Department of Electrical and Electronic Engineering, The University of Hong Kong Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Qiang Wang
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Hong Kong, P. R. China
| | - Jiayun Sun
- Department of Electrical and Electronic Engineering, The University of Hong Kong Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Qi Xiong
- Department of Electrical and Electronic Engineering, The University of Hong Kong Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Dezhong Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Haibin Su
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Hong Kong, P. R. China
| | - Wallace C H Choy
- Department of Electrical and Electronic Engineering, The University of Hong Kong Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
22
|
Abiedh K, Salerno M, Hassen F, Zaaboub Z. Single CsPbBr 3 Perovskite Microcrystals: From Microcubes to Microrods with Improved Crystallinity and Green Emission. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4043. [PMID: 39203221 PMCID: PMC11356739 DOI: 10.3390/ma17164043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024]
Abstract
All-inorganic perovskite materials are promising in optoelectronics, but their morphology is a key parameter for achieving high device efficiency. We prepared CsPbBr3 perovskite microcrystals with different shapes grown directly on planar substrate by conventional drop casting. We observed the formation of CsPbBr3 microcubes on bare indium tin oxide (ITO)-coated glass. Interestingly, with the same technique, CsPbBr3 microrods were obtained on (3-Aminopropyl) triethoxysilane (APTES)-modified ITO-glass, which we ascribe to the modification of formation kinetics. The obtained microcrystals exhibit an orthorhombic structure. A green photoluminescence (PL) emission is revealed from the CsPbBr3 microrods. Contact angle measurements, Fourier-transform infrared and PL spectroscopies confirmed that APTES linked successfully to the ITO-glass substrate. We propose a qualitative mechanism to explain the anisotropic growth. The microrods exhibited improved PL and a slower PL lifetime compared to the microcubes, likely due to the diminished occurrence of defects. This work demonstrates the importance of the substrate surface to control the growth of perovskite single crystals and to boost the radiative recombination in view of high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Khouloud Abiedh
- Micro-Optoelectronics and Nanostructures Laboratory (LR99/ES29), Faculty of Sciences, University of Monastir, Monastir 5000, Tunisia; (K.A.); (F.H.); (Z.Z.)
| | - Marco Salerno
- Department of Physics, Institute for Globally Distributed Open Research and Education (IGDORE), University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy
| | - Fredj Hassen
- Micro-Optoelectronics and Nanostructures Laboratory (LR99/ES29), Faculty of Sciences, University of Monastir, Monastir 5000, Tunisia; (K.A.); (F.H.); (Z.Z.)
| | - Zouhour Zaaboub
- Micro-Optoelectronics and Nanostructures Laboratory (LR99/ES29), Faculty of Sciences, University of Monastir, Monastir 5000, Tunisia; (K.A.); (F.H.); (Z.Z.)
| |
Collapse
|
23
|
Zhou X, Zhu Z, Wang C, Niu P, Lyu M, Zhu J. Phenylethylammonium bromide-assisted solution-phase ligand exchange in CsPbBr 3quantum dot solar cells. NANOTECHNOLOGY 2024; 35:405703. [PMID: 38991512 DOI: 10.1088/1361-6528/ad61f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/11/2024] [Indexed: 07/13/2024]
Abstract
CsPbBr3quantum dots (QDs) have excellent optical properties and good phase stability, but the long-chain ligands on their surfaces affect the charge transfer between QDs. Here, we propose a simple ligand exchange strategy: solution-phase ligand exchange. By adding an acetone solution of phenylethylammonium bromide to the purification process of CsPbBr3QDs, the long-chain ligands were effectively replaced and the electric coupling between QDs was improved. As a result, the power conversion efficiency of the solar cell was increased from 1.95% to 2.83%. Meanwhile, the stability of the devices was significantly improved in the unencapsulated case.
Collapse
Affiliation(s)
- Xin Zhou
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
- Special Display and Imaging Technology Innovation Center of Anhui Province, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Academy of Opto-Electric Technology, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Zhibo Zhu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
- Special Display and Imaging Technology Innovation Center of Anhui Province, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Academy of Opto-Electric Technology, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Chengyang Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
- Special Display and Imaging Technology Innovation Center of Anhui Province, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Academy of Opto-Electric Technology, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Pujun Niu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
- Special Display and Imaging Technology Innovation Center of Anhui Province, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Academy of Opto-Electric Technology, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Mei Lyu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
- Special Display and Imaging Technology Innovation Center of Anhui Province, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Academy of Opto-Electric Technology, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Jun Zhu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
- Special Display and Imaging Technology Innovation Center of Anhui Province, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Academy of Opto-Electric Technology, Hefei University of Technology, Hefei 230009, People's Republic of China
| |
Collapse
|
24
|
Zhao C, Zhou Y, Shi C, Ou J, Pan A. Dual Passivation Strategy for Highly Stable Blue-Luminescent CsPbBr 3 Nanoplatelets. Inorg Chem 2024; 63:12316-12322. [PMID: 38885131 DOI: 10.1021/acs.inorgchem.4c01725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Blue-emitting colloidal CsPbX3 (X = Br, Cl, or I) perovskite nanocrystals have emerged as one of the most fascinating materials for optoelectronic applications. However, their applicability is hindered by poor stability and a low photoluminescence efficiency. Herein, highly stable CsPbBr3 nanoplatelets exhibiting intense blue luminescence are fabricated by employing a strategy in which the morphology is regulated and the surface is subjected to dual passivation through the incorporation of zirconium acetylacetonate [Zr(acac)4]. The passivated CsPbBr3 nanocrystals exhibit adjustable light emission from green to dark blue and a controllable morphology from nanocubes (NCs) to nanoplatelets (NPLs) and nanorods accomplished by varying the content of Zr(acac)4. The optimized NPLs are characterized by a bright blue emission with a central wavelength of 459 nm and a high photoluminescence quantum yield of 90%. The addition of Zr(acac)4 in the synthesis of CsPbBr3 induces oriented growth with a two-dimensional morphology. The Zr(acac)4 can repair the surface defects of the nanocrystal surface, and the surface is also capped with the Zr(OH)4 cluster layer. Therefore, the passivated blue-emitting NPLs exhibit outstanding stability compared to that of pristine NPLs during long-term storage and exposure to light. This work provides a novel strategy for fabricating highly stable PNCs with deep-blue emission and widens their potential applications in blue-emitting optoelectronic devices.
Collapse
Affiliation(s)
- Chunyu Zhao
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ying Zhou
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chengyu Shi
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiachen Ou
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Aizhao Pan
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
25
|
Yang W, Jo SH, Lee TW. Perovskite Colloidal Nanocrystal Solar Cells: Current Advances, Challenges, and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401788. [PMID: 38708900 DOI: 10.1002/adma.202401788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/06/2024] [Indexed: 05/07/2024]
Abstract
The power conversion efficiencies (PCEs) of polycrystalline perovskite (PVK) solar cells (SCs) (PC-PeSCs) have rapidly increased. However, PC-PeSCs are intrinsically unstable without encapsulation, and their efficiency drops during large-scale production; these problems hinder the commercial viability of PeSCs. Stability can be increased by using colloidal PVK nanocrystals (c-PeNCs), which have high surface strains, low defect density, and exceptional crystal quality. The use of c-PeNCs separates the crystallization process from the film formation process, which is preponderant in large-scale fabrication. Consequently, the use of c-PeNCs has substantial potential to overcome challenges encountered when fabricating PC-PeSCs. Research on colloidal nanocrystal-based PVK SCs (NC-PeSCs) has increased their PCEs to a level greater than those of other quantum-dot SCs, but has not reached the PCEs of PC-PeSCs; this inferiority significantly impedes widespread application of NC-PeSCs. This review first introduces the distinctive properties of c-PeNCs, then the strategies that have been used to achieve high-efficiency NC-PeSCs. Then it discusses in detail the persisting challenges in this domain. Specifically, the major challenges and solutions for NC-PeSCs related to low short-circuit current density Jsc are covered. Last, the article presents a perspective on future research directions and potential applications in the realm of NC-PeSCs.
Collapse
Affiliation(s)
- Wenqiang Yang
- Institute of Atomic Manufacturing, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, 100191, China
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seung-Hyeon Jo
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Interdisciplinary program in Bioengineering, Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Soft Foundry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
26
|
Lu Y, Alam F, Shamsi J, Abdi-Jalebi M. Doping Up the Light: A Review of A/B-Site Doping in Metal Halide Perovskite Nanocrystals for Next-Generation LEDs. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:10084-10107. [PMID: 38919725 PMCID: PMC11194817 DOI: 10.1021/acs.jpcc.4c00749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
All-inorganic metal halide perovskite nanocrystals (PeNCs) show great potential for the next generation of perovskite light-emitting diodes (PeLEDs). However, trap-assisted recombination negatively impacts the optoelectronic properties of PeNCs and prevents their widespread adoption for commercial exploitation. To mitigate trap-assisted recombination and further enhance the external quantum efficiency of PeLEDs, A/B-site doping has been widely investigated to tune the bandgap of PeNCs. The bandgap of PeNCs is adjustable within a small range (no more than 0.1 eV) by A-site cation doping, resulting in changes in the bond length of Pb-X and the angle of [PbX6]4. Nevertheless, B-site doping of PeNCs has a more significant impact on the bandgap level through modification of surface defect states. In this perspective, we delve into the synthesis of PeNCs with A/B-site doping and their impacts on the structural and optoelectronic properties, as well as their impacts on the performance of subsequent PeLEDs. Furthermore, we explore the A-site and B-site doping mechanisms and the impact of device architecture on doped PeNCs to maximize the performance and stability of PeLEDs. This work presents a comprehensive overview of the studies on A-site and B-site doping in PeNCs and approaches to unlock their full potential in the next generation of LEDs.
Collapse
Affiliation(s)
- Ying Lu
- Institute
for Materials Discovery, University College
London, Malet Place, London WC1E
7JE, United Kingdom
| | - Firoz Alam
- Department
of Electronic and Electrical Engineering, University College London, London WC1E 6BT, United
Kingdom
| | - Javad Shamsi
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Mojtaba Abdi-Jalebi
- Institute
for Materials Discovery, University College
London, Malet Place, London WC1E
7JE, United Kingdom
| |
Collapse
|
27
|
Ely F, Vieira KO, Reyes-Banda MG, Quevedo-Lopez M. Broadband photodetectors from silane-passivated CsPbBr 3 nanocrystals by ultrasound-mediated synthesis. NANOSCALE 2024; 16:10833-10840. [PMID: 38769851 DOI: 10.1039/d3nr06564b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Perovskite nanocrystals have excellent optical properties but suffer from environmental instability and production up-scaling which limit their commercial application. Here, we report the gram-scale ultrasound-mediated synthesis of silane passivated CsPbBr3 nanocrystals using (3-aminopropyl) triethoxysilane (APTS) as the primary surface ligand surface. The surface engineering endowed the CsPbBr3@SiOR NCs with extended environmental stability, a narrow emission bandwidth and a high photoluminescence quantum yield (PLQY > 75%). Thanks to these excellent optical properties, high-efficiency lateral and vertical photodetectors were fabricated. In particular, the layered vertical photodiode composed of ITO/Ga2O3/CsPbBr3/Au exhibited a broadband photoresponse from 350-700 nm with a responsivity peaking at 44.5.1 A W-1 and specific detectivity above 1013 Jones when illuminated at 470 nm wavelength and biased at +5 V. These results correspond to the best-in-class performance perovskite nanocrystal PD and confirm the extraordinary potential of CsPbBr3@SiOR for the development of efficient optoelectronic devices.
Collapse
Affiliation(s)
- Fernando Ely
- Renato Archer Information Technology Center - CTI, Campinas, SP, 13069-901, Brazil.
- Department of Materials Science & Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Kayo O Vieira
- Renato Archer Information Technology Center - CTI, Campinas, SP, 13069-901, Brazil.
| | - Martin G Reyes-Banda
- Department of Materials Science & Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Manuel Quevedo-Lopez
- Department of Materials Science & Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| |
Collapse
|
28
|
Otero-Martínez C, Zaffalon ML, Ivanov YP, Livakas N, Goldoni L, Divitini G, Bora S, Saleh G, Meinardi F, Fratelli A, Chakraborty S, Polavarapu L, Brovelli S, Manna L. Ultrasmall CsPbBr 3 Blue Emissive Perovskite Quantum Dots Using K-Alloyed Cs 4PbBr 6 Nanocrystals as Precursors. ACS ENERGY LETTERS 2024; 9:2367-2377. [PMID: 39372427 PMCID: PMC11450558 DOI: 10.1021/acsenergylett.4c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 10/08/2024]
Abstract
We report a colloidal synthesis of blue emissive, stable cube-shaped CsPbBr3 quantum dots (QDs) in the strong quantum confinement regime via dissolution-recrystallization starting from pre-syntesized (K x Cs1-x )4PbBr6 nanocrystals which are then reacted with PbBr2. This is markedly different from the known case of Cs4PbBr6 nanocrystals that react within seconds with PbBr2 and get transformed into much larger, green emitting CsPbBr3 nanocrystals. Here, instead, the conversion of (K x Cs1-x )4PbBr6 nanocrystals to CsPbBr3 QDs occurs in a time span of hours, and tuning of the QD size is achieved by adjusting the concentration of the precursors. The QDs exhibit excitonic features in optical absorption that are tunable in the 420-452 nm range, accompanied by blue photoluminescence with quantum yield around 60%. Detailed spectroscopic investigations in both the single and multiexciton regime reveal the exciton fine structure and the effect of Auger recombination of these CsPbBr3 QDs, confirming theoretical predictions for this system.
Collapse
Affiliation(s)
- Clara Otero-Martínez
- CINBIO,
Department of Physical Chemistry, Materials Chemistry and Physics
Group, Universidade de Vigo, Campus Universitario
As Lagoas-Marcosende, 36310 Vigo, Spain
- Nanochemistry, Istituto Italiano di Tecnología, Via Morego 30, 16163 Genova, Italy
| | - Matteo L. Zaffalon
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Yurii P. Ivanov
- Electron
Microscopy and Nanoscopy, Istituto Italiano
di Tecnología, Via Morego 30, 16163 Genova, Italy
| | - Nikolaos Livakas
- Nanochemistry, Istituto Italiano di Tecnología, Via Morego 30, 16163 Genova, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
di Genova, 16146 Genova, Italy
| | - Luca Goldoni
- Material
Characterization Facility, Istituto Italiano
di Tecnologia Via Morego 30, 16163 Genova, Italy
| | - Giorgio Divitini
- Electron
Microscopy and Nanoscopy, Istituto Italiano
di Tecnología, Via Morego 30, 16163 Genova, Italy
| | - Sankalpa Bora
- Materials
Theory for Energy Scavenging (MATES) Lab, Department of Physics, Harish-Chandra Research Institute (HRI), A C.I. of
Homi Bhabha National Institute (HBNI), Jhunsi, Prayagraj 211019, India
| | - Gabriele Saleh
- Nanochemistry, Istituto Italiano di Tecnología, Via Morego 30, 16163 Genova, Italy
| | - Francesco Meinardi
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Andrea Fratelli
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Sudip Chakraborty
- Materials
Theory for Energy Scavenging (MATES) Lab, Department of Physics, Harish-Chandra Research Institute (HRI), A C.I. of
Homi Bhabha National Institute (HBNI), Jhunsi, Prayagraj 211019, India
| | - Lakshminarayana Polavarapu
- CINBIO,
Department of Physical Chemistry, Materials Chemistry and Physics
Group, Universidade de Vigo, Campus Universitario
As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Sergio Brovelli
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Liberato Manna
- Nanochemistry, Istituto Italiano di Tecnología, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
29
|
Khan MI, Hussain S, Almutairi BS, Dahshan A, Mujtaba A, Ahmad SM. The structural, optical and photovoltaic properties of Zn-doped MAPbI 2Br perovskite solar cells. Phys Chem Chem Phys 2024; 26:12210-12218. [PMID: 38592224 DOI: 10.1039/d3cp06299f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The spin coating method was used to deposit MAPbI2Br films on FTO-glass substrates. Zn2+ (zinc) doping was used for these films at intensity rates of 2% and 4%, respectively. XRD analysis proved that MAPbI2Br films had a cubic structure and a crystalline character. 2% Zn doping into the MAPbI2Br film had a modest large grain size (38.09 nm), Eg (1.95 eV), high refractive index (2.66), and low extinction coefficient (1.67), according to XRD and UV-vis analyses. To facilitate and enhance carrier transit, at contacts as well as throughout the bulk material, the perovskite's trap-state densities decreased. The predicted MAPbI2Br valence and conduction band edges are -5.44 and -3.52, respectively. The conduction band (CB) edge of the film that was exposed to Zn atoms has been pressed towards the lower value, assembly it a better material for solar cells. EIS is particularly useful for understanding charge carrier transport, recombination mechanisms, and the influence of different interfaces within the device structure. Jsc is 11.09 mA cm-2, Voc is 1.09, PCE is 9.372% and FF is 0.777. The cell made with the 2% Zn doped into the MAPbI2Br film demonstrated a superior device.
Collapse
Affiliation(s)
- M I Khan
- Department of Physics, The University of Lahore, 53700, Pakistan.
| | - Saddam Hussain
- Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Los Mochis C.P. 81223, Mexico.
| | - Badriah S Almutairi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - A Dahshan
- Department of Physics, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Ali Mujtaba
- Department of Physics, The University of Lahore, 53700, Pakistan.
| | | |
Collapse
|
30
|
Avila-Lopez E, Liang S, Elias I, Lin Z, Li YS. Improved electronic uniformity and nanoscale homogeneity in template-grown CsPbBr 3 nanorods. NANOSCALE 2024. [PMID: 38623609 DOI: 10.1039/d3nr06682g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
One-dimensional metal halide perovskites are among the most promising candidate materials for optoelectronic devices. However, the heterogeneity and fast degradation of perovskite nanowires (NWs) and nanorods (NRs) synthesized using conventional approaches impose a bottleneck for their optoelectronic applications. Recently, all-inorganic perovskite CsPbBr3 NRs with tailored dimensions, crafted using an amphiphilic bottlebrush-like block copolymer (BBCP) as nanoreactors, have demonstrated enhanced stabilities. Herein, we report the electronic investigation into these template-grown CsPbBr3 NRs using dielectric force microscopy (DFM), a contactless, nondestructive imaging technique. All freshly prepared CsPbBr3 NRs exhibited ambipolar behaviors for up to two months after sample synthesis. A transition from ambipolar to p-type behaviors occurred after two months, and nearly all NRs completed the transition within two weeks. Moreover, template-grown CsPbBr3 NRs displayed better nanoscale electronic homogeneity compared to their conventional counterparts. The improved electronic uniformity and nanoscale homogeneity place the template-grown CsPbBr3 NRs in a unique advantageous position for optoelectronic applications.
Collapse
Affiliation(s)
- Eduardo Avila-Lopez
- School of Natural Sciences, Mathematics, and Engineering, California State University, Bakersfield, California 93311, USA.
| | - Shuang Liang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Isaac Elias
- School of Natural Sciences, Mathematics, and Engineering, California State University, Bakersfield, California 93311, USA.
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Yize Stephanie Li
- School of Natural Sciences, Mathematics, and Engineering, California State University, Bakersfield, California 93311, USA.
| |
Collapse
|
31
|
Zhong F, Sheng J, Du C, He Y, Sun Y, Dong F. Ligand-mediated exciton dissociation and interparticle energy transfer on CsPbBr 3 perovskite quantum dots for efficient CO 2-to-CO photoreduction. Sci Bull (Beijing) 2024; 69:901-912. [PMID: 38302334 DOI: 10.1016/j.scib.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/16/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
Perovskite quantum dots (PQDs) hold immense potential as photocatalysts for CO2 reduction due to their remarkable quantum properties, which facilitates the generation of multiple excitons, providing the necessary high-energy electrons for CO2 photoreduction. However, harnessing multi-excitons in PQDs for superior photocatalysis remains challenging, as achieving the concurrent dissociation of excitons and interparticle energy transfer proves elusive. This study introduces a ligand density-controlled strategy to enhance both exciton dissociation and interparticle energy transfer in CsPbBr3 PQDs. Optimized CsPbBr3 PQDs with the regulated ligand density exhibit efficient photocatalytic conversion of CO2 to CO, achieving a 2.26-fold improvement over unoptimized counterparts while maintaining chemical integrity. Multiple analytical techniques, including Kelvin probe force microscopy, temperature-dependent photoluminescence, femtosecond transient absorption spectroscopy, and density functional theory calculations, collectively affirm that the proper ligand termination promotes the charge separation and the interparticle transfer through ligand-mediated interfacial electron coupling and electronic interactions. This work reveals ligand density-dependent variations in the gas-solid photocatalytic CO2 reduction performance of CsPbBr3 PQDs, underscoring the importance of ligand engineering for enhancing quantum dot photocatalysis.
Collapse
Affiliation(s)
- Fengyi Zhong
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jianping Sheng
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Chenyu Du
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ye He
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yanjuan Sun
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fan Dong
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
32
|
Cheng Y, Guo X, Shi Y, Pan L. Recent advance of high-quality perovskite nanostructure and its application in flexible photodetectors. NANOTECHNOLOGY 2024; 35:242001. [PMID: 38467065 DOI: 10.1088/1361-6528/ad3251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Flexible photodetectors (PDs) have garnered increasing attention for their potential applications in diverse fields, including weather monitoring, smart robotics, smart textiles, electronic eyes, wearable biomedical monitoring devices, and so on. Notably, perovskite nanostructures have emerged as a promising material for flexible PDs due to their distinctive features, such as a large optical absorption coefficient, tunable band gap, extended photoluminescence decay time, high carrier mobility, low defect density, long exciton diffusion lengths, strong self-trapped effect, good mechanical flexibility, and facile synthesis methods. In this review, we first introduce various synthesis methods for perovskite nanostructures and elucidate their corresponding optical and electrical properties, encompassing quantum dots, nanocrystals, nanowires, nanobelts, nanosheets, single-crystal thin films, polycrystalline thin films, and nanostructured arrays. Furthermore, the working mechanism and key performance parameters of optoelectronic devices are summarized. The review also systematically compiles recent advancements in flexible PDs based on various nanostructured perovskites. Finally, we present the current challenges and prospects for the development of perovskite nanostructures-based flexible PDs.
Collapse
Affiliation(s)
- Yan Cheng
- The Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Xin Guo
- The Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Yi Shi
- The Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Lijia Pan
- The Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
| |
Collapse
|
33
|
Li S, Zhang H, Huang B, Yang H, Bao W, Qiu S, Gao X, Zhuang S. Continuous Nanomanufacturing of Inorganic Lead Halide Perovskite Nanocrystals with High-Concentration Precursors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11704-11714. [PMID: 38406990 DOI: 10.1021/acsami.3c18838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The microscale flow preparation scheme has been widely used in the preparation of inorganic perovskite nanocrystals (NCs). It is considered to be the most promising method for large-scale production. Recently, it has been suggested that increasing the precursor concentration can further improve efficiency, but there is still a lack of understanding of high-concentration synthesis. Here, we develop a microscale flow synthesis scheme using high-concentration precursors, and the typical concentration value in the reaction phase reaches 0.035 mol/L using cesium acetate. The CsPbBr3 NCs with sharp photoluminescence (PL) at 515.7 nm can be obtained, and their PL quantum yield after post-treatment exceeds 90%. The effect of the molar ratio of Pb/Cs (Rm), reaction time, reaction temperature, and excess ligands on this flow reaction is studied. Several new phenomena are observed in our experiment. At 120 °C, some Cs4PbBr6 NCs exist in addition to the usual CsPbBr3 nanoplatelets. Excess ligands lead to the formation of numerous Cs4PbBr6 NCs with a bright green PL, and these NCs will spontaneously transform into a nonemission form in the film. Moreover, mixed-halide CsPbBrxI3-x NCs and CsPbI3 NCs are also prepared in this scheme, and then they are used to obtain LEDs in a range of colors.
Collapse
Affiliation(s)
- Shitong Li
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, P. R. China
| | - Huichao Zhang
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, P. R. China
| | - Bo Huang
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, P. R. China
| | - Hongyu Yang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Science, Hangzhou 310024, China
| | - Wangting Bao
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, P. R. China
| | - Sibin Qiu
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, P. R. China
| | - Xiumin Gao
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Songlin Zhuang
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
34
|
Roy M, Sykora M, Aslam M. Chemical Aspects of Halide Perovskite Nanocrystals. Top Curr Chem (Cham) 2024; 382:9. [PMID: 38430313 DOI: 10.1007/s41061-024-00453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 01/24/2024] [Indexed: 03/03/2024]
Abstract
Halide perovskite nanocrystals (HPNCs) are currently among the most intensely investigated group of materials. Structurally related to the bulk halide perovskites (HPs), HPNCs are nanostructures with distinct chemical, optical, and electronic properties and significant practical potential. One of the keys to the effective exploitation of the HPNCs in advanced technologies is the development of controllable, reproducible, and scalable methods for preparation of materials with desired compositions, phases, and shapes and low defect content. Another important condition is a quantitative understanding of factors affecting the chemical stability and the optical and electronic properties of HPNCs. Here we review important recent developments in these areas. Following a brief historical prospective, we provide an overview of known chemical methods for preparation of HPNCs and approaches used to control their composition, phase, size, and shape. We then review studies of the relationship between the chemical composition and optical properties of HPNCs, degradation mechanisms, and effects of charge injection. Finally, we provide a short summary and an outlook. The aim of this review is not to provide a comprehensive summary of all relevant literature but rather a selection of highlights, which, in the subjective view of the authors, provide the most significant recent observations and relevant analyses.
Collapse
Affiliation(s)
- Mrinmoy Roy
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, 400076, India
- Laboratory for Advanced Materials, Faculty of Natural Sciences, Comenius University, Bratislava, 84104, Slovakia
| | - Milan Sykora
- Laboratory for Advanced Materials, Faculty of Natural Sciences, Comenius University, Bratislava, 84104, Slovakia
| | - M Aslam
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
35
|
Amador-Sánchez YA, Vargas B, Romero-Ibarra JE, Mendoza-Cruz R, Ramos E, Solis-Ibarra D. Surfactant-tail control of CsPbBr 3 nanocrystal morphology. NANOSCALE HORIZONS 2024; 9:472-478. [PMID: 38240821 DOI: 10.1039/d3nh00409k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
CsPbBr3 nanocrystals (NCs) are promising optoelectronic and catalytic materials. Manipulating their morphology can improve their properties and stability. In this work, an alkene-derived zwitterionic ligand was used to control the morphology of CsPbBr3 NCs to yield the highly unusual rhombicuboctahedron morphology, showcasing the first example of a surfactant-tail controlled growth.
Collapse
Affiliation(s)
- Yoarhy A Amador-Sánchez
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Brenda Vargas
- Instituto de Física, Universidad Nacional Autónoma de México, CU, Coyoacán, 04510 Ciudad de México, Mexico
| | - Josué E Romero-Ibarra
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, CU, Coyoacán, 04510 Ciudad de México, Mexico
| | - Rubén Mendoza-Cruz
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, CU, Coyoacán, 04510 Ciudad de México, Mexico
| | - Estrella Ramos
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, CU, Coyoacán, 04510 Ciudad de México, Mexico
| | - Diego Solis-Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
36
|
Zhou Y, He Z, Zhao C, Shi C, Pan A. Controllable fabrication of well-shaped PMBA@CsPbBr 3 nanoparticles for highly sensitive detection of HCl and HBr. Chem Commun (Camb) 2024; 60:2042-2045. [PMID: 38285465 DOI: 10.1039/d3cc05966a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
We report a facile two-step strategy to construct well-shaped PMBA@CsPbBr3 nanoparticles, with this strategy involving combining in situ adsorption and controlled polymerization. The morphological evolution process and mechanism of formation of the nanoparticles were demonstrated, and the nanoparticles showed high sensitivity to corrosive acid gas. This work has provided an effective approach for fabricating well-structured perovskite-based nanocomposites.
Collapse
Affiliation(s)
- Ying Zhou
- School of Chemistry, Xi'an Jiaotong University, Xianning West Road, 28, Xi'an, 710049, China.
| | - Zaozhen He
- School of Chemistry, Xi'an Jiaotong University, Xianning West Road, 28, Xi'an, 710049, China.
| | - Chunyu Zhao
- School of Chemistry, Xi'an Jiaotong University, Xianning West Road, 28, Xi'an, 710049, China.
| | - Chengyu Shi
- School of Chemistry, Xi'an Jiaotong University, Xianning West Road, 28, Xi'an, 710049, China.
| | - Aizhao Pan
- School of Chemistry, Xi'an Jiaotong University, Xianning West Road, 28, Xi'an, 710049, China.
| |
Collapse
|
37
|
Yue Y, Zou X, Liu L, Liu X, Zhang B, Zhao B, Chen M, Fu Y, Zhang Y, Niu L. Cyanuric Acid-Functionalized Perovskite Nanocrystals toward Low Interface Impedance, High Environmental Stability, and Superior Electrochemiluminescence. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7531-7542. [PMID: 38291590 DOI: 10.1021/acsami.3c13936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Perovskite nanocrystals (PNs) have received much attention as luminescence materials in the field of electrochemiluminescence (ECL). However, as one key factor for determining the optoelectronic properties of the surface state of PNs, the surface passivation layer of PNs has enormous difficulty in simultaneously meeting the requirements of high ECL efficiency, conductivity, and stability. Herein, an effective surface modification strategy with cyanuric acid (CA) is used to solve such issue. As confirmed, the CA molecules are chemically anchored onto the surface of PNs via the Lewis interaction between π electrons of the triazine ring and the empty orbit of Pb2+. Benefiting from the above interaction, the electrochemical impedance of PNs is decreased greatly without the loss of light-emitting efficiency. Moreover, the stability of PNs under O2 exposure is improved by almost sixfold. These improvements are confirmed to be beneficial for enhancing the ECL behaviors of PNs under electrochemical operation. Upon cathode ECL driving conditions in aqueous media, the ECL intensity and efficiency of PNs are increased to 200 and 170%, respectively. This work provides a new modification strategy to holistically improve the ECL performance of PNs, which is instructive to exploring robust perovskite nanomaterials for electrochemical applications.
Collapse
Affiliation(s)
- Yifei Yue
- School of Civil Engineering c/o Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou510006, China
| | - Xingzi Zou
- School of Civil Engineering c/o Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou510006, China
| | - Lihui Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing210023, China
| | - Xuejing Liu
- Key Laboratory on Resources Chemicals and Material of Ministry of Education, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Baohua Zhang
- School of Civil Engineering c/o Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou510006, China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing210023, China
| | - Bolin Zhao
- School of Civil Engineering c/o Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou510006, China
| | - Mei Chen
- School of Civil Engineering c/o Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou510006, China
| | - Yuxuan Fu
- School of Civil Engineering c/o Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou510006, China
| | - Yuwei Zhang
- School of Civil Engineering c/o Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou510006, China
| | - Li Niu
- School of Civil Engineering c/o Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou510006, China
| |
Collapse
|
38
|
Hazra V, Mondal S, Pattanayak P, Bhattacharyya S. Nanoplatelet Superlattices by Tin-Induced Transformation of FAPbI 3 Nanocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304920. [PMID: 37817355 DOI: 10.1002/smll.202304920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/19/2023] [Indexed: 10/12/2023]
Abstract
The transition from 3D to 2D lead halide perovskites is traditionally led by the lattice incorporation of bulky organic cations. However, the transformation into a coveted 2D superlattice-like structure by cationic substitution at the Pb2+ site of 3D perovskite is unfamiliar. It is demonstrated that the gradual increment of [Sn2+ ] alters the FASnx Pb1- x I3 nanocrystals into the Ruddlesden-Popper-like nanoplatelets (NPLs), with surface-absorbed oleic acid (OA) and oleylamine (OAm) spacer ligand at 80 °C (FA+ : formamidinium cation). These NPLs are stacked either by a perfect alignment to form the superlattice or by offsetting the NPL edges because of their lateral displacements. The phase transition occurs from the Sn/Pb ratio ≥0.011, with 0.64 wt% of Sn2+ species. At and above Sn/Pb = 0.022, the NPL superlattice stacks start to grow along [00l] with a repeating length of 4.37(3) nm, comprising the organic bilayer and the inorganic block having two octahedral layers (n = 2). Besides, a photoluminescence quantum yield of 98.4% is obtained with Sn/Pb = 0.011 (n ≥ 4), after surface passivation by trioctylphosphine (TOP).
Collapse
Affiliation(s)
- Vishwadeepa Hazra
- Department of Chemical Sciences, and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Sudipta Mondal
- Department of Chemical Sciences, and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Pradip Pattanayak
- Department of Chemical Sciences, and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Sayan Bhattacharyya
- Department of Chemical Sciences, and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| |
Collapse
|
39
|
Mamgain S, Yella A. Dynamics of interfacial charge transfer between CsPbBr 3perovskite nanocrystals and molecular acceptors for photodetection application. NANOTECHNOLOGY 2024; 35:165202. [PMID: 38176067 DOI: 10.1088/1361-6528/ad1afe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
Perovskite nanocrystals (NCs) recently emerged as a suitable candidate for optoelectronic applications because of its simplistic synthesis approach and superior optical properties. For better device performance, the effective absorption of incident photons and the understanding of charge transfer (CT) process are the basic requirements. Herein, we investigate the interfacial charge transfer dynamics of CsPbBr3NCs in the presence of different molecular acceptors; 7,7,8,8-Tetracyanoquinodimethane (TCNQ) and 11,11,12,12 tetracyanonaphtho-2,6-quinodimethane (TCNAQ). The vivid change in CT dynamics at the interfaces of NCs and two different molecular acceptors (TCNQ and TCNAQ) has been observed. The results demonstrate that the ground state complex formation in the presence of TCNQ acts as additional driving force to accelerate the charge transfer between the NCs and molecular acceptor. Moreover, this donor (NCs)-acceptor (TCNQ, TCNAQ) system results in the higher absorption of incident photons. Finally, the photo detector based on CsPbBr3-TCNQ system was fabricated for the first time. The device exhibited a high on-off ratio (104). Furthermore, the CsPbBr3-TCNQ photodetector shows a fast photoresponse times of 180 ms/110 ms (rise/decay time) with a specific detectivity (D*) of 5.2 × 1011Jones. The simple synthesis and outstanding photodetection abilities of this perovskite NCs-molecular acceptor system make them potential candidates for optoelectronic applications.
Collapse
Affiliation(s)
- Swati Mamgain
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, 400076, India
| | - Aswani Yella
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, 400076, India
| |
Collapse
|
40
|
Li Y, Deng M, Zhang X, Qian L, Xiang C. Proton-Prompted Ligand Exchange to Achieve High-Efficiency CsPbI 3 Quantum Dot Light-Emitting Diodes. NANO-MICRO LETTERS 2024; 16:105. [PMID: 38300363 PMCID: PMC10834927 DOI: 10.1007/s40820-024-01321-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/11/2023] [Indexed: 02/02/2024]
Abstract
CsPbI3 perovskite quantum dots (QDs) are ideal materials for the next generation of red light-emitting diodes. However, the low phase stability of CsPbI3 QDs and long-chain insulating capping ligands hinder the improvement of device performance. Traditional in-situ ligand replacement and ligand exchange after synthesis were often difficult to control. Here, we proposed a new ligand exchange strategy using a proton-prompted in-situ exchange of short 5-aminopentanoic acid ligands with long-chain oleic acid and oleylamine ligands to obtain stable small-size CsPbI3 QDs. This exchange strategy maintained the size and morphology of CsPbI3 QDs and improved the optical properties and the conductivity of CsPbI3 QDs films. As a result, high-efficiency red QD-based light-emitting diodes with an emission wavelength of 645 nm demonstrated a record maximum external quantum efficiency of 24.45% and an operational half-life of 10.79 h.
Collapse
Affiliation(s)
- Yanming Li
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, People's Republic of China
- Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Ming Deng
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, People's Republic of China
- Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Xuanyu Zhang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, People's Republic of China
- Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
- University of Nottingham Ningbo China, Ningbo, 315100, People's Republic of China
| | - Lei Qian
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, People's Republic of China
- Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Chaoyu Xiang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, People's Republic of China.
- Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.
| |
Collapse
|
41
|
Huang Y, Yu J, Wu Z, Li B, Li M. All-inorganic lead halide perovskites for photocatalysis: a review. RSC Adv 2024; 14:4946-4965. [PMID: 38327811 PMCID: PMC10847908 DOI: 10.1039/d3ra07998h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024] Open
Abstract
Nowadays, environmental pollution and the energy crisis are two significant concerns in the world, and photocatalysis is seen as a key solution to these issues. All-inorganic lead halide perovskites have been extensively utilized in photocatalysis and have become one of the most promising materials in recent years. The superior performance of all-inorganic lead halide perovskites distinguish them from other photocatalysts. Since pure lead halide perovskites typically have shortcomings, such as low stability, poor active sites, and ineffective carrier extraction, that restrict their use in photocatalytic reactions, it is crucial to enhance their photocatalytic activity and stability. Huge progress has been made to deal with these critical issues to enhance the effects of all-inorganic lead halide perovskites as efficient photocatalysts in a wide range of applications. In this manuscript, the synthesis methods of all-inorganic lead halide perovskites are discussed, and promising strategies are proposed for superior photocatalytic performance. Moreover, the research progress of photocatalysis applications are summarized; finally, the issues of all-inorganic lead halide perovskite photocatalytic materials at the current state and future research directions are also analyzed and discussed. We hope that this manuscript will provide novel insights to researchers to further promote the research on photocatalysis based on all-inorganic lead halide perovskites.
Collapse
Affiliation(s)
- Yajie Huang
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Jiaxing Yu
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Zhiyuan Wu
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Borui Li
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Ming Li
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| |
Collapse
|
42
|
Wang S, Wei Z, Xu Q, Yu L, Xiao Y. Trinity Strategy: Enabling Perovskite as Hydrophilic and Efficient Fluorescent Nanozyme for Constructing Biomarker Reporting Platform. ACS NANO 2024; 18:1084-1097. [PMID: 38149588 DOI: 10.1021/acsnano.3c10548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Water instability and sensing homogeneity are the Achilles' heel of CsPbX3 NPs in biological fluids application. This work reports the preparation of Mn2+:CsPbCl3@SiO2 yolk-shell nanoparticles (YSNPs) in aqueous solutions created through the integration of ligand, surface, and crystal engineering strategies. The SN2 reaction between 4-chlorobutyric acid (CBA) and oleylamine (OAm) yields a zwitterionic ligand that facilitates the dispersion of YSNPs in water, while the robust SiO2 shell enhances their overall stability. Besides, Mn2+ doping in YSNPs not only introduces a second emission center but also enables potential postsynthetic designability, leading to the switching from YSNPs to MnO2@YSNPs with excellent oxidase (OXD)-like activity. Theoretical calculations reveal that electron transfer from CsPbCl3 to in situ MnO2 and the adsorption-desorption process of 3,3',5,5'-tetramethylbenzidine (TMB) synergistically amplify the OXD-like activity. In the presence of ascorbic acid (AA), Mn4+ in MnO2@YSNPs (fluorescent nanozyme) is reduced to Mn2+ and dissociated, thereby inhibiting the OXD-like activity and triggering fluorescence "turn-on/off", i.e., dual-mode recognition. Finally, a biomarker reporting platform based on MnO2@YSNPs fluorescent nanozyme is constructed with AA as the reporter molecule, and the accurate detection of human serum alkaline phosphatase (ALP) is realized, demonstrating the vast potential of perovskites in biosensing.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhongyu Wei
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Qi Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Long Yu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuxiu Xiao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
43
|
Sadeghi S, Bateni F, Kim T, Son DY, Bennett JA, Orouji N, Punati VS, Stark C, Cerra TD, Awad R, Delgado-Licona F, Xu J, Mukhin N, Dickerson H, Reyes KG, Abolhasani M. Autonomous nanomanufacturing of lead-free metal halide perovskite nanocrystals using a self-driving fluidic lab. NANOSCALE 2024; 16:580-591. [PMID: 38116636 DOI: 10.1039/d3nr05034c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Lead-based metal halide perovskite (MHP) nanocrystals (NCs) have emerged as a promising class of semiconducting nanomaterials for a wide range of optoelectronic and photoelectronic applications. However, the intrinsic lead toxicity of MHP NCs has significantly hampered their large-scale device applications. Copper-base MHP NCs with composition-tunable optical properties have emerged as a prominent lead-free MHP NC candidate. However, comprehensive synthesis space exploration, development, and synthesis science studies of copper-based MHP NCs have been limited by the manual nature of flask-based synthesis and characterization methods. In this study, we present an autonomous approach for the development of lead-free MHP NCs via seamless integration of a modular microfluidic platform with machine learning-assisted NC synthesis modeling and experiment selection to establish a self-driving fluidic lab for accelerated NC synthesis science studies. For the first time, a successful and reproducible in-flow synthesis of Cs3Cu2I5 NCs is presented. Autonomous experimentation is then employed for rapid in-flow synthesis science studies of Cs3Cu2I5 NCs. The autonomously generated experimental NC synthesis dataset is then utilized for fast-tracked synthetic route optimization of high-performing Cs3Cu2I5 NCs.
Collapse
Affiliation(s)
- Sina Sadeghi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Fazel Bateni
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Taekhoon Kim
- Synthesis Technical Unit, Material Research Center, Samsung Advanced Institute of Technology, SEC, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Dae Yong Son
- Synthesis Technical Unit, Material Research Center, Samsung Advanced Institute of Technology, SEC, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Jeffrey A Bennett
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Negin Orouji
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Venkat S Punati
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Christine Stark
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Teagan D Cerra
- Department of Physics, Weber State University, Ogden, UT 84408, USA
| | - Rami Awad
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Fernando Delgado-Licona
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Jinge Xu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Nikolai Mukhin
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Hannah Dickerson
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Kristofer G Reyes
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY 14260, USA
| | - Milad Abolhasani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
44
|
Wang C, Matta SK, Ng CK, Cao C, Sharma M, Chesman ASR, Russo SP, Jasieniak JJ. Direct synthesis of CsPbX 3 perovskite nanocrystal assemblies. NANOSCALE 2024; 16:614-623. [PMID: 38086654 DOI: 10.1039/d3nr04285e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Inorganic CsPbX3 (X = Cl, Br, I) perovskite nanocrystals (NCs) possess many advantageous optoelectronic properties, making them an attractive candidate for light emitting diodes, lasers, or photodetector applications. Such perovskite NCs can form extended assemblies that further modify their bandgap and emission wavelength. In this article, a facile direct synthesis of CsPbX3 NC assemblies that are 1 μm in size and are composed of 10 nm-sized NC building blocks is reported. The direct synthesis of these assemblies with a conventional hot-injection method of the NCs is achieved through the judicious selection of the solvent, ligands, and reaction stoichiometry. Only under selective reaction conditions where the surface ligand environment is tuned to enhance the hydrophobic interactions between ligand chains of neighbouring NCs is self-assembly achieved. These assemblies possess narrow and red-shifted photoluminescence compared to their isolated NC counterparts, which further expands the colour gamut that can be rendered from inorganic perovskites. This is demonstrated through simple down-converting light emitters.
Collapse
Affiliation(s)
- Chujie Wang
- ARC Centre of Excellence in Exciton Science, Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | - Sri K Matta
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne 3000, Australia
- Center for Computational Sciences, University of Tsukuba, Japan
| | - Chun Kiu Ng
- ARC Centre of Excellence in Exciton Science, Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | - Chang Cao
- ARC Centre of Excellence in Exciton Science, Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | - Manoj Sharma
- ARC Centre of Excellence in Exciton Science, Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | - Anthony S R Chesman
- CSIRO Manufacturing, Ian Wark Laboratories, Research Way, Clayton, VIC 3168, Australia
| | - Salvy P Russo
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne 3000, Australia
| | - Jacek J Jasieniak
- ARC Centre of Excellence in Exciton Science, Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
45
|
Ahmad I, Abohashrh M, Rahim A, Ahmad S, Muhmood T, Wen H. Surface crafting and entrapment of CsPbBr 3 perovskite QDs in ZIF-8 for ammonia recognition. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123091. [PMID: 37453386 DOI: 10.1016/j.saa.2023.123091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/04/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
The substantial optical features of perovskite quantum dots (PQD) lead to rapid growth in the investigation of their surface and lattice doping for optoelectronic and biochemical sensor advancements. Herein, we have used the surface ligand crafting model of PQD by ammonia and its optimum response to recognise ammonia in the sensing cellulose paper. The PQD with acetyl amine and octanoic acid capped were synthesized and entrapped in zeolites imidazole framework to delay the instant quenching and envisaged response to ammonia with high sensitivity. The hybrid perovskite quantum dots and Zeolite imidazolate framework-8 (PQD@ZIF-8) materials were further immersed in cellulose paper for solid-state sensor fabrication for the detection of ammonia by naked-eye and a Xiaomi Note-5 mobile camera. The ammonia was measured with high sensitivity at ambient conditions, with a detection limit of 16 ppm and a linear detection range of 1 to 500 ppm. This research provides a new platform for designing sensor selectivity and sensitivity, which could be used to further develop fluorescent nanomaterials-based sensors for small molecule detection.
Collapse
Affiliation(s)
- Imtiaz Ahmad
- Membrane Science and Technology Research Group, Chemistry Department, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia; Department of Chemistry, Fatima Jinnah Woman University, The Mall, Rawalpindi, Pakistan.
| | - Mohammed Abohashrh
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Abdur Rahim
- Department of Zoology, University of Malakand, Pakistan
| | - Sadia Ahmad
- Department of Chemistry, Fatima Jinnah Woman University, The Mall, Rawalpindi, Pakistan
| | - Tahir Muhmood
- College of Science, Nanjing Forestry University, Nanjing 210037 PR China.
| | - Hongli Wen
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
46
|
Pereira RW, Ramabhadran RO. Accurate Computation of Aqueous p Kas of Biologically Relevant Organic Acids: Overcoming the Challenges Posed by Multiple Conformers, Tautomeric Equilibria, and Disparate Functional Groups with the Fully Black-Box p K-Yay Method. J Phys Chem A 2023; 127:9121-9138. [PMID: 37862610 DOI: 10.1021/acs.jpca.3c02977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
The use of static electronic structure calculations to compute solution-phase pKas offers a great advantage in that a macroscopic bulk property could be computed via microscopic computations involving very few molecules. There are various sources of errors in the quantum chemical calculations though. Overcoming these errors to accurately compute pKas of a plethora of acids is an active area of research in physical chemistry pursued by both computational as well as experimental chemists. We recently developed the pK-Yay method in our attempt to accurately compute aqueous pKas of strong and weak acids. The method is fully black-box, computationally inexpensive, and is very easy for even a nonexpert to use. However, the method was thus far tested on very few molecules (only 16 in all). Herein, in order to assess the future applicability of pK-Yay, we study the effect of multiple conformers, the presence of tautomers under equilibrium, and the impact of a wide variety of functional groups (derivatives of acetic acid with substituents at various positions, dicarboxylic acids, aromatic carboxylic acids, amines and amides, phenols and thiols, and fluorine bearing organic acids). Starting with more than 1000 conformers and tautomers, this study establishes that overall errors of ∼ 1.0 pKa units are routinely obtained for a majority of the molecules. Larger errors are noted in cases where multiple charges, intramolecular hydrogen bonding, and several ionizable functional groups are simultaneously present. An important conclusion to emerge from this work is that, the computed pKas are insensitive (difference <0.5) to whether we consider multiple conformers/tautomers or only choose the most stable conformer/tautomer. Further, pK-Yay captures the stereoelectronic effects arising due to differing axial vs equatorial pattern, and is useful to predict the dominant acid-base equilibrium in a system featuring several equilibria. Overall, pK-Yay may be employed in several chemical applications featuring organic molecules and biomonomers.
Collapse
Affiliation(s)
- Roshni W Pereira
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Andhra Pradesh 517507, India
- Centre for Atomic Molecular Optical Sciences and Technology (CAMOST), Tirupati, Andhra Pradesh 517507, India
| | - Raghunath O Ramabhadran
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Andhra Pradesh 517507, India
- Centre for Atomic Molecular Optical Sciences and Technology (CAMOST), Tirupati, Andhra Pradesh 517507, India
| |
Collapse
|
47
|
Mehra S, Mamta, Singh V, Gupta G, Srivastava A, Sharma SN. Experimental analysis of methylammonium and Formamidinium-based halide perovskite properties for optoelectronic applications. Heliyon 2023; 9:e21701. [PMID: 38027742 PMCID: PMC10651522 DOI: 10.1016/j.heliyon.2023.e21701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Nowadays, the toxicity of lead in metal-halide perovskites is the most precarious obstruction in the commercialization of perovskite-based optoelectronic devices. However, Pb-free metal halide perovskites as environment-friendly materials because of their exceptional properties, such as band-gap tunability, narrow emission spectra, low toxicity and easy solution-processability, are potential candidates for optoelectronic applications. Recently, literature reported the poor structural stability and low-emission intensity of Bi-based perovskite NCs. Still, this paper focuses on the fabrication of Formamidinium (FA)-based Bi mixed halide and Methylammonium(MA)-based Bi-pure halide perovskites using Ligand-Assisted Reprecipitation Technique (LARP) technique. XRD diffraction patterns of FA-based perovskites were slightly broad, signifying the nanocrystalline form and limited size of perovskite nanocrystals. While the XRD diffraction patterns of MA3Bi2X9 (X = Cl/Br/I) perovskites were narrow, signifying the amorphous nature and larger size of perovskite nanocrystals. The peak positions were varied in MA-based bismuth halide perovskites with respect to the halide variation from Br to Cl to I ions. The optical study shows the variation in band gap and average lifetime with respect to halide variation leading to enhanced optical properties for device applications. The band-gap of FA3Bi2BrxCl1-x & FA3Bi2IxCl1-x perovskites was calculated to be around 3.7 & 3.8 eV, respectively, while in MA-halide perovskites the band-gap was calculated to be 2.8 eV, 3.1 eV & 3.4 eV with respect to halide variation from I to Cl to Br in perovskite samples using Tauc's plot respectively. Moreover, simulation is carried out using the SCAPS-1D software to study the various parameters in MA & FA-based Bi-pure or mixed halide perovskites. Here, we discussed the variation in efficiency with respect to the thickness variation from 100 to 500 nm for MA3Bi2I9 halide perovskites. These MA3Bi2I9 halide perovskites show minimum efficiency of 4.65 % at 100 nm thickness, while the perovskite sample exhibits maximum efficiency of 10.32 % at 500 nm thickness. Thus, the results stated that the thickness of absorber layers directly affects the device characteristics for optoelectronic applications.
Collapse
Affiliation(s)
- Sonali Mehra
- CSIR- National Physical Laboratory, Dr. KS Krishnan Marg, New Delhi, 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mamta
- CSIR- National Physical Laboratory, Dr. KS Krishnan Marg, New Delhi, 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - V.N. Singh
- CSIR- National Physical Laboratory, Dr. KS Krishnan Marg, New Delhi, 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Govind Gupta
- CSIR- National Physical Laboratory, Dr. KS Krishnan Marg, New Delhi, 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - A.K. Srivastava
- CSIR- National Physical Laboratory, Dr. KS Krishnan Marg, New Delhi, 110012, India
- CSIR- Advanced Materials and Processes Research Institute, Bhopal, Madhya Pradesh, India
| | - Shailesh Narain Sharma
- CSIR- National Physical Laboratory, Dr. KS Krishnan Marg, New Delhi, 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
48
|
Doane T, Cruz KJ, Chiang TH, Maye MM. Using the Photoluminescence Color Change in Cesium Lead Iodide Nanoparticles to Monitor the Kinetics of an External Organohalide Chemical Reaction by Halide Exchange. ACS NANOSCIENCE AU 2023; 3:418-423. [PMID: 37868221 PMCID: PMC10588436 DOI: 10.1021/acsnanoscienceau.3c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 10/24/2023]
Abstract
In this work, we demonstrate a photoluminescence-based method to monitor the kinetics of an organohalide reaction by way of detecting released bromide ions at cesium lead halide nanoparticles. Small aliquots of the reaction are added to an assay with known concentrations of CsPbI3, and the resulting Br-to-I halide exchange (HE) results in rapid and sensitive wavelength blueshifts (Δλ) due to CsPbBrxI3-x intermediate concentrations, the wavelengths of which are proportional to concentrations. An assay response factor, C, relates Δλ to Br- concentration as a function of CsPbI3 concentration. The observed kinetics, as well as calculated rate constants, equilibrium, and activation energy of the solvolysis reaction tested correspond closely to synthetic literature values, validating the assay. Factors that influence the sensitivity and performance of the assay, such as CsPbI3 size, morphology, and concentration, are discussed.
Collapse
Affiliation(s)
| | - Kevin J. Cruz
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Tsung-Hsing Chiang
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Mathew M. Maye
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
49
|
Sun C, Jiang Y, Zhang L, Wei K, Yuan M. Toward the Controlled Synthesis of Lead Halide Perovskite Nanocrystals. ACS NANO 2023; 17:17600-17609. [PMID: 37683288 DOI: 10.1021/acsnano.3c05609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Lead halide perovskite nanocrystals (LHP NCs) have rapidly emerged as one of the most promising materials for optical sources, photovoltaics, and sensor fields. The controlled synthesis of LHP NCs with high monodispersity and precise size tunability has been a subject of intensive research in recent years. However, due to their ionic nature, LHP NCs are usually formed instantaneously, and the corresponding nucleation and growth are difficult to monitor and regulated. In this Perspective, we summarize the representative attempts to achieve controlled synthesis of LHP NCs. We first highlight the burst nucleation and rapid growth characteristics of conventional synthesis methods. Afterward, we introduce the scheme of changing the LHP NCs into kinetically dominant, continuously size-tunable synthesis via nucleation-growth decoupling. We also summarize methods to eliminate undesired ripening effects and achieve homogeneous size distribution through rational ligand selection and solvent engineering. We hope this Perspective will facilitate the development of controlled LHP NCs synthesis protocols and advance the understanding of crystal growth fundamentals of perovskite materials.
Collapse
Affiliation(s)
- Changjiu Sun
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yuanzhi Jiang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Li Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Keyu Wei
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Mingjian Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
50
|
Kim DY, Jung JG, Lee YJ, Park MH. Lead-Free Halide Perovskite Nanocrystals for Light-Emitting Diodes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6317. [PMID: 37763594 PMCID: PMC10532894 DOI: 10.3390/ma16186317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Lead-based halide perovskite nanocrystals (PeNCs) have demonstrated remarkable potential for use in light-emitting diodes (LEDs). This is because of their high photoluminescence quantum yield, defect tolerance, tunable emission wavelength, color purity, and high device efficiency. However, the environmental toxicity of Pb has impeded their commercial viability owing to the restriction of hazardous substances directive. Therefore, Pb-free PeNCs have emerged as a promising solution for the development of eco-friendly LEDs. This review article presents a detailed analysis of the various compositions of Pb-free PeNCs, including tin-, bismuth-, antimony-, and copper-based perovskites and double perovskites, focusing on their stability, optoelectronic properties, and device performance in LEDs. Furthermore, we address the challenges encountered in using Pb-free PeNC-LEDs and discuss the prospects and potential of these Pb-free PeNCs as sustainable alternatives to lead-based PeLEDs. In this review, we aim to shed light on the current state of Pb-free PeNC LEDs and highlight their significance in driving the development of eco-friendly LED technologies.
Collapse
Affiliation(s)
- Do-Young Kim
- Department of Materials Science and Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (D.-Y.K.); (J.-G.J.); (Y.-J.L.)
- Department of Green Chemistry and Materials Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| | - Jae-Geun Jung
- Department of Materials Science and Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (D.-Y.K.); (J.-G.J.); (Y.-J.L.)
- Department of Green Chemistry and Materials Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| | - Ye-Ji Lee
- Department of Materials Science and Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (D.-Y.K.); (J.-G.J.); (Y.-J.L.)
| | - Min-Ho Park
- Department of Materials Science and Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (D.-Y.K.); (J.-G.J.); (Y.-J.L.)
- Department of Green Chemistry and Materials Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
- Integrative Institute of Basic Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| |
Collapse
|