1
|
Chen Y, Quan Z, Wang P, Zhang X, Ding H, Li B, Li B, Niu S, Zhang J, Han Z, Ren L. Bioinspired Antireflective and Antifogging Surface for Highly Efficient and Stable Inverted Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65656-65666. [PMID: 39539098 DOI: 10.1021/acsami.4c15810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Photovoltaic devices are essentially solar energy collectors that convert incident photons into charge carriers. However, light reflection losses and external factors (e.g., fog) can lead to an inefficient utilization of incident photons. Therefore, the development of antifogging surface materials that can efficiently reduce reflection is a critical issue in the upgradation of photovoltaic devices. Herein, inspired by the wing scale structures of butterfly Trogonoptera brookiana, an antireflective and antifogging surface (BRFS) was prepared by a method combining biotemplate and sol-gel. Remarkably, the BRFS possesses a relatively large surface roughness and exhibits superhydrophilic property (static water contact angle of 0°), which can quickly split fog droplet film within 6.6 s to realize the antifogging effect. In addition, the final transmittance of BRFS is as high as 90.25%. Furthermore, as an application demonstration, BRFS was applied to the surface of the reverse organic solar cells. Without compromising the inherent performance of the panels, the BRFS enhances the electrical performance of the inverted solar panels by 18%. This work provides a simple and effective strategy for designing surfaces with superior antifogging and antireflective properties and offers significant potential value for the practical application of photoelectric devices.
Collapse
Affiliation(s)
- You Chen
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin 130022, China
| | - Zijing Quan
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin 130022, China
| | - Pinkun Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin 130022, China
| | - Xiangxiang Zhang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin 130022, China
| | - Hanliang Ding
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin 130022, China
| | - Bowei Li
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin 130022, China
| | - Bo Li
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Junqiu Zhang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| |
Collapse
|
2
|
Ge H, Liu Y, Liu F. Up to Date Review of Nature-Inspired Superhydrophobic Textiles: Fabrication and Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7015. [PMID: 37959613 PMCID: PMC10649416 DOI: 10.3390/ma16217015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
In recent years, with the rapid development of the economy and great progress in science and technology, people have become increasingly concerned about their quality of life and physical health. In order to pursue a higher life, various functional and biomimetic textiles have emerged one after another and have been sought after by people. There are many animal and plant surfaces with special wettability in nature, and their unique "micro-nano structures" and low surface energy have attracted extensive attention from researchers. Researchers have prepared various textiles with superhydrophobic features by mimicking these unique structures. This review introduces the typical organisms with superhydrophobicity in nature, using lotus, water strider, and cicada as examples, and describes their morphological features and excellent superhydrophobicity. The theoretical model, commonly used raw materials, and modification technology of superhydrophobic surfaces are analyzed. In addition, the application areas and the current study status of superhydrophobic surfaces for textiles are also summarized. Finally, the development prospects for superhydrophobic textiles based on bionic technology are discussed.
Collapse
Affiliation(s)
| | - Yu Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China;
| | - Fujuan Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China;
| |
Collapse
|
3
|
Feng X, Chu J, Tian G, Wang Z, Zhou W, Zhang X, Lian Z. Phyllostachys Viridis-Leaf-like MLMN Surfaces Constructed by Nanosecond Laser Hybridization for Superhydrophobic Antifogging and Anti-Icing. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37919234 DOI: 10.1021/acsami.3c14083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
In nature, many species commonly evolve specific functional surfaces to withstand harsh external environments. In particular, structured wettability of surfaces has attracted tremendous interest due to its great potential in antifogging and anti-icing properties. Phyllostachys Viridis is a resistant low-temperature (-18 °C) plant with superhydrophobicity and ice resistivity behaviors. In this work, with inspiration from the representative cold-tolerant plants leaves, a unique multilevel micronano (MLMN) surface was fabricated on copper substrate by ultrafast laser process, which exhibited superior superhydrophobic characteristics with the water contact angle > 165° and rolling angle< 2°. In the dynamic wettability experiment, the rebound efficiency of the droplet on the MLMN surface reached 20.6%, and the contact time was only 10.6 ms. In the condensation experiment, the nucleation, growth, merging, and bouncing of fog drops on the surface was distinctly observed, indicating that rational texture structures can improve the antifogging performance of the surface. In the anti-icing experiment, the freezing time was delayed to 921 s at -10 °C, and the freezing time of salt water reached a staggering 1214 s. Moreover, the mechanical durability of MLMN surfaces was confirmed by scratch damage, sandpaper abrasion, and icing and melting cycle tests, and their repairability was evaluated for product applications in practice. Finally, the underlying antifogging/anti-icing strategy of the MLMN surface was also revealed. We anticipate that the investigations offer a promising way to handily design and fabricate multiscale hierarchical structures with reliable antifogging and anti-icing performance, especially in saltwater-related applications.
Collapse
Affiliation(s)
- Xiaoming Feng
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Jiahui Chu
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Guizhong Tian
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Zhizhong Wang
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Wen Zhou
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xiaowei Zhang
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Zhongxu Lian
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| |
Collapse
|
4
|
Deng W, Su Y, Zhang C, Wang W, Xu L, Liu P, Wang J, Yu X, Zhang Y. Transparent superhydrophilic composite coating with anti-fogging and self-cleaning properties. J Colloid Interface Sci 2023; 642:255-263. [PMID: 37004259 DOI: 10.1016/j.jcis.2023.03.130] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
Superhydrophilic coatings have incomparable advantages in anti-fogging and self-cleaning but are limited to poor abrasion resistance and water resistance. Consequently, the research on the contradiction between hydrophilicity and water resistance, as well as abrasion resistance and visible transmittance, has become a focus of superhydrophilic coatings. Herein, we design a ceramic-polymer superhydrophilic composite coating with a high density, strong cross-linking structure, and smooth surface. Because of its static water contact angle (WCA = 3.2°) and short water spreading time (ST = 1878 ms), the transparent composite coating exhibits anti-fogging performance. Meanwhile, it exhibits anti-fogging durability even after 400 Taber abrasion cycles under a 250 g load or immersion in boiling water for 30 min. Furthermore, the result of self-cleaning characterization and theoretical analysis demonstrate that the low surface roughness endows the composite coating with excellent self-cleaning properties. The composite coating can effectively scavenge oil and dust pollution on its surface in a humid environment. Thus, the developed composite coating in this work is potential in the anti-fogging and self-cleaning fields.
Collapse
Affiliation(s)
- Weilin Deng
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, PR China.
| | - Yifan Su
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, PR China.
| | - Churui Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, PR China.
| | - Wei Wang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, PR China.
| | - Lili Xu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, PR China.
| | - Ping Liu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, PR China.
| | - Jinlei Wang
- State Key Laboratory of Advanced Technology for Float Glass, CNBM Research Institute for Advanced Glass Materials Group Co., Ltd, Bengbu 233000, PR China.
| | - Xinquan Yu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, PR China.
| | - Youfa Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
5
|
Chu J, Tian G, Feng X. Recent advances in prevailing antifogging surfaces: structures, materials, durability, and beyond. NANOSCALE 2023. [PMID: 37368459 DOI: 10.1039/d3nr01767b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
In past decades, antifogging surfaces have drawn more and more attention owing to their promising and wide applications such as in aerospace, traffic transportation, optical devices, the food industry, and medical and other fields. Therefore, the potential hazards caused by fogging need to be solved urgently. At present, the up-and-coming antifogging surfaces have been developing swiftly, and can effectively achieve antifogging effects primarily by preventing fog formation and rapid defogging. This review analyzes and summarizes current progress in antifogging surfaces. Firstly, some bionic and typical antifogging structures are described in detail. Then, the antifogging materials explored thus far, mainly focusing on substrates and coatings, are extensively introduced. After that, the solutions for improving the durability of antifogging surfaces are explicitly classified in four aspects. Finally, the remaining big challenges and future development trends of the ascendant antifogging surfaces are also presented.
Collapse
Affiliation(s)
- Jiahui Chu
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, P. R. China.
| | - Guizhong Tian
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, P. R. China.
| | - Xiaoming Feng
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, P. R. China.
| |
Collapse
|
6
|
Li W, Chen Y, Jiao Z. Efficient Anti-Fog and Anti-Reflection Functions of the Bio-Inspired, Hierarchically-Architectured Surfaces of Multiscale Columnar Structures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091570. [PMID: 37177115 PMCID: PMC10180395 DOI: 10.3390/nano13091570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Today, in the fields of optical precision instruments, medical devices, and automotive engineering, the demand for anti-reflection and anti-fog surfaces is growing rapidly. However, the anti-fog function often compromises the efficiency of the anti-reflection function. Therefore, optical precision instruments are always restricted by the inability to combine high anti-reflection efficiency and excellent anti-fog performance into one material. In addition, the synergistic mechanism of harmonizing anti-fogging and anti-reflection is currently unclear, which has a negative impact on the development and optimization of multifunctional surfaces. Herein, bio-inspired anti-fogging and anti-reflection surfaces (BFRSs) possessing multiscale hierarchical columnar structures (MHCS) were obtained using a brief and effective preparation technique, combining the biotemplating method and sol-gel method. Specifically, condensed fog droplets distributed on the BFRS can be absolutely removed within 6 s. In addition, the BFRSs endow the glass substrate with a relatively higher reflectance (17%) than flat glass surfaces (41%). Furthermore, we demonstrated the synergistic mechanism of the anti-fogging and anti-reflection functions of BFRSs. On the one hand, the high transparency benefits from the multiple refraction and scattering of light in the MHCS array. On the other hand, the excellent anti-fogging performance is attributed to the imbalance of the capillary force of the MHCS acting on the liquid film. The explanation for these two mechanisms provides more possibilities for the subsequent preparation of multifunctional surfaces. At the same time, the bionic research concept provides new solutions for the researcher to conquer the combination of high transmission and anti-fog properties for precision optical surfaces.
Collapse
Affiliation(s)
- Weixuan Li
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - You Chen
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Zhibin Jiao
- School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China
| |
Collapse
|
7
|
Recent progress in the mechanisms, preparations and applications of polymeric antifogging coatings. Adv Colloid Interface Sci 2022; 309:102794. [DOI: 10.1016/j.cis.2022.102794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 11/21/2022]
|
8
|
Sato T, Amano A, Dunderdale GJ, Hozumi A. Transparent Composite Films Showing Durable Antifogging and Repeatable Self-Healing Properties Based on an Integral Blend Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9874-9883. [PMID: 35920887 DOI: 10.1021/acs.langmuir.2c01085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antifogging coatings for infrastructures and transparent objects have attracted much attention lately from the perspective of safety and visibility. We have developed a one-pot process to fabricate transparent composite films showing long-lasting antifogging and fast repeatable self-healing properties based on an integral blend (IB) method. This method does not require any specific pretreatments of inorganic fillers/particles. Thus, the precursor solutions could be prepared in a single step by simply mixing raw materials, e.g., poly(vinylpyrrolidone) (PVP) having different molecular weights (MWs: 55, 360, and 1300 k), nano-clay particles (NCPs), and amino-terminated organosilane (AOS). In this study, to control the degree of cross-linking between the PVP matrices and NCPs, addition of AOS as a cross-linker to the PVP matrices (weight percentage of AOS to the PVP matrices, α = 0.01-300%) was carefully controlled. Transparency and self-healing abilities/kinetics of the resulting samples were found to be strongly influenced by both the MWs of PVP and α values. Samples spin-coated with the lowest MW of PVP (55 k) and α values of 0.01-1% gave highly transparent and durable antifogging performance. For example, no fogging was observed for 7 days under >80% relative humidity, and scratches about 30 μm in width could be completely self-healed within a few hours. However, samples with α > 10% gave opaque/grayish films that did not show any self-healing abilities because of an increase in cross-linking of the matrices. The optimized precursor solution was also deposited directly onto the glass slides covered with a transparent porous silica nano-framework (SNF) by a spray-coating method. Due to the formation of the hard and superhydrophilic/hygroscopic SNF with a large surface area, durability of antifogging and self-healing properties of the composite films were moderately improved, compared to those on the flat glass slides.
Collapse
Affiliation(s)
- Tomoya Sato
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimoshidami, Moriyama, Nagoya 463-8560, Japan
| | - Asei Amano
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimoshidami, Moriyama, Nagoya 463-8560, Japan
- Graduate School of Engineering, Aichi Institute of Technology (AIT), 1247 Yachigusa, Yakusa, Toyoya 470-0392, Japan
| | - Gary J Dunderdale
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Atsushi Hozumi
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimoshidami, Moriyama, Nagoya 463-8560, Japan
- Graduate School of Engineering, Aichi Institute of Technology (AIT), 1247 Yachigusa, Yakusa, Toyoya 470-0392, Japan
| |
Collapse
|
9
|
Xie X, Li Y, Wang G, Bai Z, Yu Y, Wang Y, Ding Y, Lu Z. Femtosecond Laser Processing Technology for Anti-Reflection Surfaces of Hard Materials. MICROMACHINES 2022; 13:mi13071084. [PMID: 35888901 PMCID: PMC9322106 DOI: 10.3390/mi13071084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/25/2023]
Abstract
The anti-reflection properties of hard material surfaces are of great significance in the fields of infrared imaging, optoelectronic devices, and aerospace. Femtosecond laser processing has drawn a lot of attentions in the field of optics as an innovative, efficient, and green micro-nano processing method. The anti-reflection surface prepared on hard materials by femtosecond laser processing technology has good anti-reflection properties under a broad spectrum with all angles, effectively suppresses reflection, and improves light transmittance/absorption. In this review, the recent advances on femtosecond laser processing of anti-reflection surfaces on hard materials are summarized. The principle of anti-reflection structure and the selection of anti-reflection materials in different applications are elaborated upon. Finally, the limitations and challenges of the current anti-reflection surface are discussed, and the future development trend of the anti-reflection surface are prospected.
Collapse
Affiliation(s)
- Xiaofan Xie
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China; (X.X.); (Z.B.); (Y.Y.); (Y.W.); (Z.L.)
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
| | - Yunfei Li
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China; (X.X.); (Z.B.); (Y.Y.); (Y.W.); (Z.L.)
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
- Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin 300401, China
- National Demonstration Center for Experimental (Electronic and Communication Engineering) Education, Hebei University of Technology, Tianjin 300401, China
- Correspondence: (Y.L.); (G.W.); (Y.D.)
| | - Gong Wang
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China; (X.X.); (Z.B.); (Y.Y.); (Y.W.); (Z.L.)
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
- Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin 300401, China
- National Demonstration Center for Experimental (Electronic and Communication Engineering) Education, Hebei University of Technology, Tianjin 300401, China
- Correspondence: (Y.L.); (G.W.); (Y.D.)
| | - Zhenxu Bai
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China; (X.X.); (Z.B.); (Y.Y.); (Y.W.); (Z.L.)
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
- Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin 300401, China
- National Demonstration Center for Experimental (Electronic and Communication Engineering) Education, Hebei University of Technology, Tianjin 300401, China
| | - Yu Yu
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China; (X.X.); (Z.B.); (Y.Y.); (Y.W.); (Z.L.)
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
- Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin 300401, China
- National Demonstration Center for Experimental (Electronic and Communication Engineering) Education, Hebei University of Technology, Tianjin 300401, China
| | - Yulei Wang
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China; (X.X.); (Z.B.); (Y.Y.); (Y.W.); (Z.L.)
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
- Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin 300401, China
- National Demonstration Center for Experimental (Electronic and Communication Engineering) Education, Hebei University of Technology, Tianjin 300401, China
| | - Yu Ding
- Science and Technology on Electro-Optical Information Security Control Laboratory, Tianjin 300308, China
- Correspondence: (Y.L.); (G.W.); (Y.D.)
| | - Zhiwei Lu
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China; (X.X.); (Z.B.); (Y.Y.); (Y.W.); (Z.L.)
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
- Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin 300401, China
- National Demonstration Center for Experimental (Electronic and Communication Engineering) Education, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
10
|
Ren J, Kong R, Gao Y, Zhang L, Zhu J. Bioinspired adhesive coatings from polyethylenimine and tannic acid complexes exhibiting antifogging, self-cleaning, and antibacterial capabilities. J Colloid Interface Sci 2021; 602:406-414. [PMID: 34139538 DOI: 10.1016/j.jcis.2021.06.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
In this work, we develop a simple yet robust method to fabricate a bioinspired adhesive coating based on polyethyleneimine (PEI) and tannic acid (TA) complexes, exhibiting excellent antifogging, self-cleaning, and antibacterial properties. The polyethyleneimine-tannic acid (PEI-TA) complexes coating combined with the bioinspired adhesive property from TA can be effectively and stably coated onto various substrates through a one-step deposition process, and the hydrophilicity of the coated substrates can be significantly enhanced with their water contact angle less than 10°. The bioinspired adhesive coating endows the coated substrates with outstanding antifogging and self-cleaning performance. Moreover, it is found that the PEI-TA coated safety goggles display excellent durability and antifogging capability compared to the commercial antifogging safety goggles and commercial antifogging agents coated safety goggles under 65 ℃ vapor condition for 2 h. Furthermore, the PEI-TA coatings show superior antibacterial activities for Gram-negative Escherichiak coli and Gram-positive Staphylococcus aureus. The antifogging, self-cleaning, and antibacterial coating provides widely potential application prospects in optical and medical devices.
Collapse
Affiliation(s)
- Jingli Ren
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Ruixia Kong
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yujie Gao
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Lianbin Zhang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
11
|
Biomimetic Slippery PDMS Film with Papillae-Like Microstructures for Antifogging and Self-Cleaning. COATINGS 2021. [DOI: 10.3390/coatings11020238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Transparent materials with antifogging and self-cleaning ability are of extreme significance for utilization in outdoor solar cell devices to alleviate the performance loss and maintenance costs. Herein, with inspiration from the anti-wetting surfaces in nature, regular papillae-like microstructure arrays (PMAs) inspired by lotus leaves were designed via a common UV lithography combined with a soft replication. Subsequently, the biomimetic slippery polydimethylsiloxane (PDMS) film (BSPF) inspired by the pitcher plant was fabricated successfully by infusing with hydrophobic liquid lubricant. The resultant surface has hydrophobic surface chemistry, a slippery interface, PMAs structure. The wettability, optical characteristic, antifogging property and self-cleaning ability of the PMAs-based BSPF were characterized experimentally. The film displays excellent optical transmittance, antireflection, antifogging, and self-cleaning properties, which is superior to the flat PDMS film (FPF). Remarkably, an average reflection of ∼11.3% in the FPF was reduced to ∼8.9% of the BSPF. In addition, after gradient spray test for 120 s, the antifogging efficiency was close to 100% for the BSPF surface in comparison with the flat PDMS film (FPF), biomimetic PDMS film (BPF) and flat slippery PDMS film (FSPF) (35%, 70% and 85%). Furthermore, we also discovered that the BSPF surface exhibited a better self-cleaning performance toward a variety of liquids than solid dust.
Collapse
|
12
|
Dong W, Li B, Wei J, Tian N, Liang W, Zhang J. Environmentally friendly, durable and transparent anti-fouling coatings applicable onto various substrates. J Colloid Interface Sci 2021; 591:429-439. [PMID: 33631530 DOI: 10.1016/j.jcis.2021.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 01/12/2023]
Abstract
Anti-fouling coatings are of great interest because of their unique wettability and self-cleaning property, but their widespread applications are seriously hindered by low stability, heavy usage of fluorinated compounds and low transparency, etc. Here, we report a new kind of smooth anti-fouling coatings based on methyltrimethoxysilane. The coatings were fabricated by preparing a stock solution via hydrolytic condensation of methyltrimethoxysilane in isopropanol, followed by wiping the glass slide with the non-woven fabric that sucked the stock solution. The transparent anti-fouling coatings have excellent anti-fouling properties against various fluids such as water, n-hexadecane, diiodomethane, daily encountered liquids (e.g., milk, coffee, red wine, soy sauce and cooking oil), mark seals, artificial fingerprint liquids and paints (both water-based and oil-based), etc. The fluids can easily roll off from the 4-30° titled coatings. Furthermore, the coatings have good mechanical (200 cycles of friction, scratching and bending), chemical (saline, acidic and basic solutions) and thermal stability (boiling and 300 °C heating) regarding the easy sliding behavior of the probing liquids. In addition, the anti-fouling coatings are applicable onto various substrates via the same procedure. The smooth anti-fouling coatings have huge potential applications, owing to the excellent anti-fouling properties, high stability as well as the non-fluorinated and simple preparation method.
Collapse
Affiliation(s)
- Wenrui Dong
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Bucheng Li
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Jinfei Wei
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Ning Tian
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Weidong Liang
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China.
| | - Junping Zhang
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| |
Collapse
|
13
|
Yang Y, Sun T, Ma F, Huang LF, Zeng Z. Superhydrophilic Fe 3+ Doped TiO 2 Films with Long-Lasting Antifogging Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3377-3386. [PMID: 33400484 DOI: 10.1021/acsami.0c18444] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Based on the superhydrophilicity of titanium dioxide (TiO2) after ultraviolet irradiation, it has a high potential in the application of antifogging. However, a durable superhydrophilic state and a broader photoresponse range are necessary. Considering the enhancement of the photoresponse of TiO2, doping is an effective method to prolong the superhydrophilic state. In this paper, a Fe3+ doped TiO2 film with long-lasting superhydrophilicity and antifogging is prepared by sol-gel method. The experiment and density-functional theory (DFT) calculations are performed to investigate the antifogging performance and the underlying microscopic mechanism of Fe3+ doped TiO2. Antifogging tests demonstrate that 1.0 mol % Fe3+ doping leads to durable antifogging performance which lasts 60 days. The DFT calculations reveal that the Fe3+ doping can both increase the photolysis ability of TiO2 under sunlight exposure and enhance the stability of the hydroxyl adsorbate on TiO2 surface, which are the main reasons for a long-lasting superhydrophilicity of TiO2 after sunlight exposure.
Collapse
Affiliation(s)
- Yi Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tianyu Sun
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fuliang Ma
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Liang-Feng Huang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Zhixiang Zeng
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| |
Collapse
|
14
|
Wang J, Xu J, Chen G, Lian Z, Yu H. Reversible Wettability between Underwater Superoleophobicity and Superhydrophobicity of Stainless Steel Mesh for Efficient Oil-Water Separation. ACS OMEGA 2021; 6:77-84. [PMID: 33458461 PMCID: PMC7807473 DOI: 10.1021/acsomega.0c03369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/02/2020] [Indexed: 05/06/2023]
Abstract
Design and fabrication of smart materials with reversible wettability for oil-water separation have attracted worldwide attention due to the increasingly serious water pollution problem. In this study, a rough oxide coating with micro/nanoscale structures is developed on the 304 stainless steel mesh (SSM) by laser ablation. The smart surface with ethanol immersion and natural drying treatments shows the wetting conversion between underwater superoleophobicity and superhydrophobicity. Based on the wettability transition behavior, both light and heavy oil-water mixtures can be separated with the high separation efficiency. Moreover, after being exposed to various corrosive solutions and high temperatures, the smart surface still shows prominent environmental stability. Switchable surface with excellent properties should be an optimal choice to solve the environmental conditions that need to be addressed urgently.
Collapse
|
15
|
Zhao S, Tie L, Guo Z, Li J. Robust Superhydrophobic Membrane for Solving Water-Accelerated Fatigue of ZDDP-Containing Lubricating Oils. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8560-8569. [PMID: 32635735 DOI: 10.1021/acs.langmuir.0c01407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Superwetting materials show distinct advantages in interfacial applications such as oil-water separation. However, it remains a challenge to solve water-accelerated fatigue of lubricating oils owing to the poor mechanical durability of superhydrophobic surfaces and the intractable emulsions stabilized by additives. In this work, a robust superhydrophobic membrane for solving water-accelerated fatigue of lubricating oils containing zinc dialkyldithiophosphate (ZDDP) as a typical antiwear additive is presented. An all-inorganic coating is constructed by SiO2 nanoparticles and aluminum phosphate using a simple spray-coating method. After silanization, the prepared membrane can extremely repel water and effectively separate ZDDP-stabilized water-in-lubricating oil emulsions (the purities of the collected lubricating oils are over 99.995%), even after sand impingement for 100 cycles. Ball-on-disk tribological tests at severe contact pressures reveal that the reclaimed lubricating oils recover the protective ability, and the catalytic dehydrogenation of lubricating oil is dramatically suppressed to avoid producing a mass of unwanted carbon-based wear debris. This work advances the development of superwetting materials in the lubricating oil industry.
Collapse
Affiliation(s)
- Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lu Tie
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, P. R. China
| | - Jing Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
16
|
Chang TA, Hsu WJ, Hung TH, Hu SW, Tsao HK, Zou C, Lin LC, Kang YH, Chen JJ, Kang DY. Toward Long-Lasting Low-Haze Antifog Coatings through the Deposition of Zeolites. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Te-An Chang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Wan-Ju Hsu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Ting-Hsiang Hung
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Ssu-Wei Hu
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan, ROC
| | - Heng-Kwong Tsao
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan, ROC
| | - Changlong Zou
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Li-Chiang Lin
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Yu-Hao Kang
- Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan, ROC
| | - Jiun-Jen Chen
- Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan, ROC
| | - Dun-Yen Kang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
| |
Collapse
|
17
|
Zuo Y, Zheng L, Zhao C, Liu H. Micro-/Nanostructured Interface for Liquid Manipulation and Its Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903849. [PMID: 31482672 DOI: 10.1002/smll.201903849] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/12/2019] [Indexed: 05/09/2023]
Abstract
Understanding the relationship between liquid manipulation and micro-/nanostructured interfaces has gained much attention due to the wide potential applications in many fields, such as chemical and biomedical assays, environmental protection, industry, and even daily life. Much work has been done to construct various materials with interfacial liquid manipulation abilities, leading to a range of interesting applications. Herein, different fabrication methods from the top-down approach to the bottom-up approach and subsequent surface modifications of micro-/nanostructured interfaces are first introduced. Then, interactions between the surface and liquid, including liquid wetting, liquid transportation, and a number of corresponding models, together with the definition of hydrophilic/hydrophobic, oleophilic/olephobic, the definition and mechanism of superwetting, including superhydrophobicity, superhydrophilicity, and superoleophobicity, are presented. The micro-/nanostructured interface, with major applications in self-cleaning, antifogging, anti-icing, anticorrosion, drag-reduction, oil-water separation, water collection, droplet (micro)array, and surface-directed liquid transport, is summarized, and the mechanisms underlying each application are discussed. Finally, the remaining challenges and future perspectives in this area are included.
Collapse
Affiliation(s)
- Yinxiu Zuo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Liuzheng Zheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Chao Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hong Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
18
|
Zhao J, Lu P, Song L, Tian L, Ming W, Ren L. Highly efficient antifogging and frost-resisting acrylic coatings from one-step thermal curing. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Ren J, Wang Y, Yao Y, Wang Y, Fei X, Qi P, Lin S, Kaplan DL, Buehler MJ, Ling S. Biological Material Interfaces as Inspiration for Mechanical and Optical Material Designs. Chem Rev 2019; 119:12279-12336. [DOI: 10.1021/acs.chemrev.9b00416] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yu Wang
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Yuan Yao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yang Wang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Xiang Fei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ping Qi
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Shihui Lin
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Markus J. Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
20
|
An Q, Zhang B, Liu G, Yang W, Zhao H, Wang J, Wang L. Directional droplet-actuation and fluid-resistance reduction performance on the bio-inspired shark-fin-like superhydrophobic surface. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Li J, Li J, Sun J, Feng S, Wang Z. Biological and Engineered Topological Droplet Rectifiers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806501. [PMID: 30697833 DOI: 10.1002/adma.201806501] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/18/2018] [Indexed: 06/09/2023]
Abstract
The power of the directional and spontaneous transport of liquid droplets is revealed through ubiquitous biological processes and numerous practical applications, where droplets are rectified to achieve preferential functions. Despite extensive progress, the fundamental understanding and the ability to exploit new strategies to rectify droplet transport remain elusive. Here, the latest progress in the fundamental understanding as well as the development of engineered droplet rectifiers that impart superior performance in a wide variety of working conditions, ranging from low temperature, ambient temperature, to high temperature, is discussed. For the first time, a phase diagram is formulated that naturally connects the droplet dynamics, including droplet formation modes, length scales, and phase states, with environmental conditions. Parallel approaches are then taken to discuss the basic physical mechanisms underlying biological droplet rectifiers, and a variety of strategies and manufacturing routes for the development of robust artificial droplet rectifiers. Finally, perspectives on how to create novel man-made rectifiers with functionalities beyond natural counterparts are presented.
Collapse
Affiliation(s)
- Jing Li
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Jiaqian Li
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Jing Sun
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Shile Feng
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Zuankai Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
22
|
Tie L, Guo Z, Liang Y, Liu W. Water super-repellent behavior of semicircular micro/nanostructured surfaces. NANOSCALE 2019; 11:3725-3732. [PMID: 30742167 DOI: 10.1039/c8nr09489f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this article, we report the construction of semicircular micro/nanostructured surfaces. Based on thermodynamic analysis, free energy (FE) and free energy barrier (FEB) as well as equilibrium contact angle (ECA) and contact angle hysteresis (CAH) for four exact wetting states of semicircular micro/nanostructured surfaces are theoretically discussed in detail. Notably, the wetting behavior is closely related to the exact wetting state and the base radius or space of semicircular micro/nanostructure. Furthermore, it is demonstrated that the stable wetting state of the semicircular micro/nanostructured surfaces depends on the microscale and nanoscale ratio of base space and radius. A suitable semicircular micro/nanostructure of the surface may lead to a droplet in the stable Cassie-Cassie (Cc) state. Moreover, an important role of the nanoscale semicircular surfaces in determining water super-repellence is effective in decreasing or increasing the ratio of microscale base space and radius for the Cassie or Wenzel state. Additionally, wetting behaviour of single semicircular micro- and nano-structured surfaces are comparatively investigated. The FE and ECA of micro/nanostructured surfaces are lower or higher than those of the single microstructured surfaces. However, the effects of nanoscale semicircular surfaces on the FEB and CAH mainly rely on the microscale wetting state. Finally, the related experimental results were used to verify our investigation. These results are in good agreement with the experiment, which are helpful in designing the wetting behavior of hierarchical semicircular micro/nano-structured surface.
Collapse
Affiliation(s)
- Lu Tie
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
| | | | | | | |
Collapse
|
23
|
Jiang Z, Liu Y, Shao Y, Zhao P, Yuan J, Wang H. Fine tuning the hydrophobicity of counter‐anions to tailor pore size in porous all‐poly(ionic liquid) membranes. POLYM INT 2019. [DOI: 10.1002/pi.5764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Zhiping Jiang
- Key Laboratory of Functional Polymer Materials (Ministry of Education)College of Chemistry, Institute of Polymer Chemistry, Nankai University Tianjin China
| | - Yu‐ping Liu
- Key Laboratory of Biosensing and Molecular Recognition (Tianjin), and Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)College of Chemistry, Nankai University Tianjin China
| | - Yue Shao
- Key Laboratory of Functional Polymer Materials (Ministry of Education)College of Chemistry, Institute of Polymer Chemistry, Nankai University Tianjin China
| | - Peng Zhao
- Key Laboratory of Functional Polymer Materials (Ministry of Education)College of Chemistry, Institute of Polymer Chemistry, Nankai University Tianjin China
| | - Jiayin Yuan
- Department of Materials and Environmental ChemistryStockholm University Stockholm Sweden
| | - Hong Wang
- Key Laboratory of Functional Polymer Materials (Ministry of Education)College of Chemistry, Institute of Polymer Chemistry, Nankai University Tianjin China
| |
Collapse
|
24
|
Sun Y, Guo Z. Recent advances of bioinspired functional materials with specific wettability: from nature and beyond nature. NANOSCALE HORIZONS 2019; 4:52-76. [PMID: 32254145 DOI: 10.1039/c8nh00223a] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Through 3.7 billion years of evolution and natural selection, plants and animals in nature have ingeniously fulfilled a broad range of fascinating functions to achieve optimized performance in responding and adapting to changes in the process of interacting with complex natural environments. It is clear that the hierarchically organized micro/nanostructures of the surfaces of living organisms decisively manage fascinating and amazing functions, regardless of the chemical components of their building blocks. This conclusion now allows us to elucidate the underlying mechanisms whereby these hierarchical structures have a great impact on the properties of the bulk material. In this review, we mainly focus on advances over the last three years in bioinspired multiscale functional materials with specific wettability. Starting from selected naturally occurring surfaces, manmade bioinspired surfaces with specific wettability are introduced, with an emphasis on the cooperation between structural characteristics and macroscopic properties, including lotus leaf-inspired superhydrophobic surfaces, fish scale-inspired superhydrophilic/underwater superoleophobic surfaces, springtail-inspired superoleophobic surfaces, and Nepenthes (pitcher plant)-inspired slippery liquid-infused porous surfaces (SLIPSs), as well as other multifunctional surfaces that combine specific wettability with mechanical properties, optical properties and the unidirectional transport of liquid droplets. Afterwards, various top-down and bottom-up fabrication techniques are presented, as well as emerging cutting-edge applications. Finally, our personal perspectives and conclusions with regard to the transfer of micro- and nanostructures to engineered materials are provided.
Collapse
Affiliation(s)
- Yihan Sun
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | | |
Collapse
|
25
|
Water drop-surface interactions as the basis for the design of anti-fogging surfaces: Theory, practice, and applications trends. Adv Colloid Interface Sci 2019; 263:68-94. [PMID: 30521982 DOI: 10.1016/j.cis.2018.11.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/23/2018] [Accepted: 11/20/2018] [Indexed: 11/22/2022]
Abstract
Glass- and polymer-based materials have become essential in the fabrication of a multitude of elements, including eyeglasses, automobile windshields, bathroom mirrors, greenhouses, and food packages, which unfortunately mist up under typical operating conditions. Far from being an innocuous phenomenon, the formation of minute water drops on the surface is detrimental to their optical properties (e.g., light-transmitting capability) and, in many cases, results in esthetical, hygienic, and safety concerns. In this context, it is therefore not surprising that research in the field of fog-resistant surfaces is gaining in popularity, particularly in recent years, in view of the growing number of studies focusing on this topic. This review addresses the most relevant advances released thus far on anti-fogging surfaces, with a particular focus on coating deposition, surface micro/nanostructuring, and surface functionalization. A brief explanation of how surfaces fog up and the main issues of interest linked to fogging phenomenon, including common problems, anti-fogging strategies, and wetting states are first presented. Anti-fogging mechanisms are then discussed in terms of the morphology of water drops, continuing with a description of the main fabrication techniques toward anti-fogging property. This review concludes with the current and the future perspectives on the utility of anti-fogging surfaces for several applications and some remaining challenges in this field.
Collapse
|
26
|
Zhang H, Huang X, Wang C, Peng Z, Xu Y, He X, Zhang C, Lu J. Nanocellulose-assisted construction of hydrophilic 3D hierarchical stereocomplex meshworks in enantiomeric polylactides: towards thermotolerant biocomposites with enhanced environmental degradation. CrystEngComm 2019. [DOI: 10.1039/c9ce01412h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A hydrophilic and hierarchical 3D stereocomplexed crystalline meshwork was in situ constructed in fully bio-derived enantiomeric polylactide/cellulose nanocrystal nanocomposites.
Collapse
Affiliation(s)
- Huanhuan Zhang
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Xi Huang
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Chuanfeng Wang
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Zhou Peng
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Yali Xu
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Xuebing He
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Chaoliang Zhang
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- China
| | - Jun Lu
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| |
Collapse
|
27
|
Han Z, Feng X, Jiao Z, Wang Z, Zhang J, Zhao J, Niu S, Ren L. Bio-inspired antifogging PDMS coupled micro-pillared superhydrophobic arrays and SiO 2 coatings. RSC Adv 2018; 8:26497-26505. [PMID: 35541092 PMCID: PMC9083089 DOI: 10.1039/c8ra04699a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/05/2018] [Indexed: 11/21/2022] Open
Abstract
In this work, inspired by some typical creatures from nature with superhydrophobic surfaces, a bio-inspired antifogging PDMS is designed and fabricated successfully using UV lithography and a template method. First, we fabricated an SU-8 layer with a bio-inspired micro-pillared array (MPA) using traditional UV lithography. Then, it was used as a template to fabricate a PDMS film (PF). After that, it was chemically modified with SiO2 coatings. It was found that the PF coupled with sprayed SiO2 coatings and a MPA have a higher water contact angle (CA) of 158° and a lower contact angle hysteresis (CAH) of less than 2°. Water drops can be separated from this bio-inspired PDMS surface within 86.8 ms. More importantly, this film's antifogging property is superior, with a recovery time of less than 13 s, which is significantly superior to that of the flat PF and the PF with the MPA. Afterwards, FTIR was applied to analyse the surface chemistry features and suggested that the bio-inspired PF has extremely low surface tension. So, it can be confirmed that an excellent superhydrophobic antifogging property has been achieved on the surface of the PF. Meanwhile, the microscopic and macroscopic dynamic movement behaviour of the fog drops was further observed. Then, the underlying antifogging mechanism was also revealed. These properties mainly benefit from the coupling effect of intermolecular attraction of droplets, chemical compositions (nanometre roughness SiO2) and the physical structures (MPA). The investigations offer a promising way to handily design and fabricate multiscale hierarchical structures on polymers and other materials. More importantly, these findings suggest great potential value for specific antifogging applications in display devices, transport, agricultural greenhouses, food packaging and solar products, especially in continuous harsh fogging conditions.
Collapse
Affiliation(s)
- Zhiwu Han
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University Changchun 130022 China
| | - Xiaoming Feng
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University Changchun 130022 China
| | - Zhibin Jiao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University Changchun 130022 China
| | - Ze Wang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University Changchun 130022 China
| | - Junqiu Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University Changchun 130022 China
- Department of Mechanical Engineering, Columbia University New York 10027 USA
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University Changchun 130022 China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University Changchun 130022 China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University Changchun 130022 China
| |
Collapse
|
28
|
Flynn Bolte KT, Balaraman RP, Jiao K, Tustison M, Kirkwood KS, Zhou C, Kohli P. Probing Liquid-Solid and Vapor-Liquid-Solid Interfaces of Hierarchical Surfaces Using High-Resolution Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3720-3730. [PMID: 29486565 DOI: 10.1021/acs.langmuir.8b00298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Liquid-solid (LS) and vapor-liquid-solid (VLS) interfaces are important for the fundamental understanding of how surface chemistry impacts industrial processes and applications. Superhydrophobic surfaces, from structural hierarchies, were fabricated by coating flat smooth surfaces with hollow glass microspheres. These surfaces are referred to as structural hierarchical-modified microsphere surfaces (SHiMMs). Two-phase LS and three-phase VLS interfaces of water droplets on SHiMMs, with an apparent static contact angle (aSCA) of ∼160°, were probed at microscale using environmental scanning electron microscopy (ESEM) and high-resolution optical microscopy (OM). Both ESEM and OM confirmed the presence of air pockets in 3-150 μm range at the VLS triple-phase of the droplet peripheral contact line. The wetting characteristics of the LS interface in the interior of the water droplet were probed using energy-dispersive spectroscopy, which corroborated well with the VLS triple-phase observations, confirming the presence of both the microscale air pockets and fractional complete wetting of the SHiMMs. The superhydrophobic water droplets on the SHiMMs also exhibited relatively high adhesion to the SHiMMs-a tilt angle of 10°-40° was needed for detaching the droplets off the surfaces. Semiquantitative three-phase contact-line analysis and experimental data indicated high-water aSCA, and large adhesion on the microscale-roughened SHiMMs is attributed to pinning of the probe liquid both at the triple VLS and interior LS interfaces. The control over microroughness and surface chemistry of the SHiMMs will allow tuning of both the static and dynamic liquid-surface interactions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Punit Kohli
- Department of Chemistry and Biochemistry , Southern Illinois University , Carbondale , Illinois 62901 , United States
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60201 , United States
| |
Collapse
|
29
|
Han Z, Feng X, Guo Z, Niu S, Ren L. Flourishing Bioinspired Antifogging Materials with Superwettability: Progresses and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704652. [PMID: 29441617 DOI: 10.1002/adma.201704652] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/05/2017] [Indexed: 05/20/2023]
Abstract
Antifogging (AF) structure materials found in nature have great potential for enabling novel and emerging products and technologies to facilitate the daily life of human societies, attracting enormous research interests owing to their potential applications in display devices, traffics, agricultural greenhouse, food packaging, solar products, and other fields. The outstanding performance of biological AF surfaces encourages the rapid development and wide application of new AF materials. In fact, AF properties are inextricably associated with their surface superwettability. Generally, the superwettability of AF materials depends on a combination of their surface geometrical structures and surface chemical compositions. To explore their general design principles, recent progresses in the investigation of bioinspired AF materials are summarized herein. Recent developments of the mechanism, fabrication, and applications of bioinspired AF materials with superwettability are also a focus. This includes information on constructing superwetting AF materials based on designing the topographical structure and regulating the surface chemical composition. Finally, the remaining challenges and promising breakthroughs in this field are also briefly discussed.
Collapse
Affiliation(s)
- Zhiwu Han
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, Jilin, P. R. China
| | - Xiaoming Feng
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, Jilin, P. R. China
| | - Zhiguang Guo
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, Jilin, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, Jilin, P. R. China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, Jilin, P. R. China
| |
Collapse
|
30
|
He Z, Elbaz A, Gao B, Zhang J, Su E, Gu Z. Disposable Morpho menelaus Based Flexible Microfluidic and Electronic Sensor for the Diagnosis of Neurodegenerative Disease. Adv Healthc Mater 2018; 7. [PMID: 29345124 DOI: 10.1002/adhm.201701306] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/29/2017] [Indexed: 01/01/2023]
Abstract
Rapid early disease prevention or precise diagnosis is almost impossible in low-resource settings. Natural ordered structures in nature have great potential for the development of ultrasensitive biosensors. Here, motivated by the unique structures and extraordinary functionalities of ordered structures in nature, a biosensor based on butterfly wings is presented. In this study, a flexible Morpho menelaus (M. menelaus) based wearable sensor is integrated with a microfluidic system and electronic networks to facilitate the diagnosis of neurodegenerative disease (ND). In the microfluidic section, the structural characteristics of the M. menelaus wings up layer are combined with SiO2 nanoparticles to form a heterostructure. The fluorescent enhancement property of the heterostructure is used to increase the fluorescent intensity for multiplex detection of two proteins: IgG and AD7c-NTP. For the electronic section, conductive ink is blade-coated on the under layer of wings for measuring resistance change rate to obtain the frequency of static tremors of ND patients. The disposable M. menelaus based flexible microfluidic and electronic sensor enables biochemical-physiological hybrid monitoring of ND. The sensor is also amenable to a variety of applications, such as comprehensive personal healthcare and human-machine interaction.
Collapse
Affiliation(s)
- Zhenzhu He
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
| | - Abdelrahman Elbaz
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
| | - Bingbing Gao
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
| | - Junning Zhang
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
| | - Enben Su
- Getein Biotech; Inc. No.9 Bofu Road, Luhe Distric Nanjing 211505 Jiangsu China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
| |
Collapse
|
31
|
Zhang P, Zhang L, Chen H, Dong Z, Zhang D. Surfaces Inspired by the Nepenthes Peristome for Unidirectional Liquid Transport. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 28782892 DOI: 10.1002/adma.201702995] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/23/2017] [Indexed: 05/15/2023]
Abstract
The slippery peristome of the pitcher plant Nepenthes has attracted much attention due to its unique function for preying on insects. Recent findings on the peristome surface of Nepenthes alata demonstrate a fast and continuous unidirectional liquid transport, which is enabled by the combination of a pinning effect at the sharp edges and a capillary rise in the wedge, deriving from the multiscale structure, which provides inspiration for designing and fabricating functional surfaces for unidirectional liquid transport. Developments in the fabrication methods of peristome-inspired surfaces and control methods for liquid transport are summarized. Both potential applications in the fields of microfluidic devices, biomedicine, and mechanical engineering and directions for further research in the future are discussed.
Collapse
Affiliation(s)
- Pengfei Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Liwen Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Huawei Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Deyuan Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| |
Collapse
|
32
|
Han Z, Li B, Mu Z, Niu S, Zhang J, Ren L. Energy-Efficient Oil-Water Separation of Biomimetic Copper Membrane with Multiscale Hierarchical Dendritic Structures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1701121. [PMID: 28714188 DOI: 10.1002/smll.201701121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/24/2017] [Indexed: 06/07/2023]
Abstract
Membrane-based materials with special surface wettability have been applied widely for the treatment of increasing industrial oily waste water, as well as frequent oil spill accidents. However, traditional technologies are energy-intensive and limited, either by fouling or by the inability of a single membrane to separate all types of oil-water mixtures. Herein, a biomimetic monolayer copper membrane (BMCM), composed of multiscale hierarchical dendritic structures, is cleverly designed and successfully fabricated on steel mesh substrate. It not only possesses the ability of energy-efficient oil-water separation but also excellent self-recovery anti-oil-fouling properties (<150 s). The BMCM even keeps high separation efficiency (>93%) after ten-time cycling tests. More importantly, it retains efficient oil-water separation capacity for five different oils. In fact, these advanced features are benefited by the synergistic effect of chemical compositions and physical structures, which is inspired by the typical nonwetting strategy of butterfly wing scales. The findings in this work may inspire a facile but effective strategy for repeatable and antipollution oil-water separation, which is more suitable for various applications under practical conditions, such as wastewater treatment, fuel purification, separation of commercially relevant oily water, and so forth.
Collapse
Affiliation(s)
- Zhiwu Han
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, Jilin, P. R. China
| | - Bo Li
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, Jilin, P. R. China
| | - Zhengzhi Mu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, Jilin, P. R. China
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shichao Niu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, Jilin, P. R. China
| | - Junqiu Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, Jilin, P. R. China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, Jilin, P. R. China
| |
Collapse
|
33
|
Han Z, Mu Z, Li B, Feng X, Wang Z, Zhang J, Niu S, Ren L. Bioinspired Omnidirectional Self-Stable Reflectors with Multiscale Hierarchical Structures. ACS APPLIED MATERIALS & INTERFACES 2017; 9:29285-29294. [PMID: 28771309 DOI: 10.1021/acsami.7b08768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Structured surfaces, demonstrating various wondrous physicochemical performances, are ubiquitous phenomena in nature. Butterfly wings with impressive structural colors are an interesting example for multiscale hierarchical structures (MHSs). However, most natural structural colors are relatively unstable and highly sensitive to incident angles, which limit their potential practical applications to a certain extent. Here, we reported a bioinspired color reflector with omnidirectional reflective self-stable (ORS) properties, which is inspired by the wing scales of Papilio palinurus butterfly. Through experimental exploration and theoretical analysis, it was found that the vivid colors of such butterfly wings are structure-based and possess novel ORS properties, which attributes to the multiple optical actions between light and the complex structures coupling the inverse opal-like structures (IOSs) and stacked lamellar ridges (SLRs). On the basis of this, we designed and successfully fabricated the SiO2-based bioinspired color reflectors (BCRs) through a facile and effective biotemplate method. It was confirmed that the MHSs in biotemplate are inherited by the obtained SiO2-based BCRs. More importantly, the SiO2-based BCRs also demonstrated the similar ORS properties in a wide wavelength range. We forcefully anticipate that the reported MHS-based ORS performance discovered in butterfly wing scales here could offer new thoughts for scientists to solve unstable reflection issues in particular optical field. The involved biotemplate fabrication method offers a facile and effective strategy for fabricating functional nanomaterials or bioinspired nanodevices with 3D complex nanostructures, such as structured optical devices, displays, and optoelectronic equipment.
Collapse
Affiliation(s)
- Zhiwu Han
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University , Changchun 130022, China
| | - Zhengzhi Mu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University , Changchun 130022, China
| | - Bo Li
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University , Changchun 130022, China
| | - Xiaoming Feng
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University , Changchun 130022, China
| | - Ze Wang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University , Changchun 130022, China
| | - Junqiu Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University , Changchun 130022, China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University , Changchun 130022, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University , Changchun 130022, China
| |
Collapse
|
34
|
Affiliation(s)
- Ying Cui
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Dewen Li
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hao Bai
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
35
|
Long-term durability of superhydrophobic properties of butterfly wing scales after continuous contact with water. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.01.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Liu Y, Song Y, Niu S, Zhang Y, Han Z, Ren L. Integrated super-hydrophobic and antireflective PDMS bio-templated from nano-conical structures of cicada wings. RSC Adv 2016. [DOI: 10.1039/c6ra23811d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A PDMS positive replica bio-templated from cicada wings demonstrates excellent antireflective properties and super-hydrophobic capacity.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory of Bionic Engineering
- Ministry of Education
- Jilin University
- Changchun 130022
- China
| | - Yunyun Song
- Key Laboratory of Bionic Engineering
- Ministry of Education
- Jilin University
- Changchun 130022
- China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering
- Ministry of Education
- Jilin University
- Changchun 130022
- China
| | - Yonglai Zhang
- State Key Laboratory on Integrated Optoelectronics
- College of Electronic Science and Engineering
- Jilin University
- Changchun 130012
- China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering
- Ministry of Education
- Jilin University
- Changchun 130022
- China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering
- Ministry of Education
- Jilin University
- Changchun 130022
- China
| |
Collapse
|