1
|
Wheeler MB, Rabel RAC, Rubessa M, Popescu G. Label-free, high-throughput holographic imaging to evaluate mammalian gametes and embryos†. Biol Reprod 2024; 110:1125-1134. [PMID: 38733568 PMCID: PMC11180620 DOI: 10.1093/biolre/ioae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 05/13/2024] Open
Abstract
Assisted reproduction is one of the significant tools to treat human infertility. Morphological assessment is the primary method to determine sperm and embryo viability during in vitro fertilization cycles. It has the advantage of being a quick, convenient, and inexpensive means of assessment. However, visual observation is of limited predictive value for early embryo morphology. It has led many to search for other imaging tools to assess the reproductive potential of a given embryo. The limitations of visual assessment apply to both humans and animals. One recent innovation in assisted reproduction technology imaging is interferometric phase microscopy, also known as holographic microscopy. Interferometric phase microscopy/quantitative phase imaging is the next likely progression of analytical microscopes for the assisted reproduction laboratory. The interferometric phase microscopy system analyzes waves produced by the light as it passes through the specimen observed. The microscope collects the light waves produced and uses the algorithm to create a hologram of the specimen. Recently, interferometric phase microscopy has been combined with quantitative phase imaging, which joins phase contrast microscopy with holographic microscopy. These microscopes collect light waves produced and use the algorithm to create a hologram of the specimen. Unlike other systems, interferometric phase microscopy can provide a quantitative digital image, and it can make 2D and 3D images of the samples. This review summarizes some newer and more promising quantitative phase imaging microscopy systems for evaluating gametes and embryos. Studies clearly show that quantitative phase imaging is superior to bright field microscopy-based evaluation methods when evaluating sperm and oocytes prior to IVF and embryos prior to transfer. However, further assessment of these systems for efficacy, reproducibility, cost-effectiveness, and embryo/gamete safety must take place before they are widely adopted.
Collapse
Affiliation(s)
- Matthew B Wheeler
- Department of Animal Sciences University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - R A Chanaka Rabel
- Department of Animal Sciences University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Marcello Rubessa
- Department of Animal Sciences University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Gabriel Popescu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
2
|
Park J, Bai B, Ryu D, Liu T, Lee C, Luo Y, Lee MJ, Huang L, Shin J, Zhang Y, Ryu D, Li Y, Kim G, Min HS, Ozcan A, Park Y. Artificial intelligence-enabled quantitative phase imaging methods for life sciences. Nat Methods 2023; 20:1645-1660. [PMID: 37872244 DOI: 10.1038/s41592-023-02041-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 09/11/2023] [Indexed: 10/25/2023]
Abstract
Quantitative phase imaging, integrated with artificial intelligence, allows for the rapid and label-free investigation of the physiology and pathology of biological systems. This review presents the principles of various two-dimensional and three-dimensional label-free phase imaging techniques that exploit refractive index as an intrinsic optical imaging contrast. In particular, we discuss artificial intelligence-based analysis methodologies for biomedical studies including image enhancement, segmentation of cellular or subcellular structures, classification of types of biological samples and image translation to furnish subcellular and histochemical information from label-free phase images. We also discuss the advantages and challenges of artificial intelligence-enabled quantitative phase imaging analyses, summarize recent notable applications in the life sciences, and cover the potential of this field for basic and industrial research in the life sciences.
Collapse
Affiliation(s)
- Juyeon Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - Bijie Bai
- Electrical and Computer Engineering Department, University of California, Los Angeles, Los Angeles, CA, USA
- Bioengineering Department, University of California, Los Angeles, Los Angeles, CA, USA
| | - DongHun Ryu
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, Republic of Korea
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tairan Liu
- Electrical and Computer Engineering Department, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chungha Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - Yi Luo
- Electrical and Computer Engineering Department, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mahn Jae Lee
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Luzhe Huang
- Electrical and Computer Engineering Department, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jeongwon Shin
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yijie Zhang
- Electrical and Computer Engineering Department, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Yuzhu Li
- Electrical and Computer Engineering Department, University of California, Los Angeles, Los Angeles, CA, USA
| | - Geon Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | | | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, Los Angeles, CA, USA.
- Bioengineering Department, University of California, Los Angeles, Los Angeles, CA, USA.
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, Republic of Korea.
- Tomocube, Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Xie S, Li J, Sun S, Chen W, Cheng H, Song Y, Li Y, Liu M, Zhu X, Liang X, Zhou J. TUBright: A Peptide Probe for Imaging Microtubules. Anal Chem 2022; 94:11168-11174. [PMID: 35917443 DOI: 10.1021/acs.analchem.2c01285] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In vitro assays using reconstituted microtubules have provided molecular insights into the principles of microtubule dynamics and the roles of microtubule-associated proteins. Emerging questions that further uncover the complexity in microtubule dynamics, especially those on tubulin isotypes and post-translational modifications, raise new technical challenges on how to visualize microtubules composed of tubulin purified from limited sources, primarily due to the low efficiency of the conventional tubulin labeling protocol. Here, we develop a peptide probe, termed TUBright, that labels in vitro reconstituted microtubules. TUBright, when coupled with different fluorescent dyes, provides flexible labeling of microtubules with a high signal-to-noise ratio. TUBright does not interfere with the dynamic behaviors of microtubules and microtubule-associated proteins. Therefore, TUBright is a useful tool for imaging microtubules, making it feasible to use tubulin from limited sources for answering many open questions on microtubule dynamics.
Collapse
Affiliation(s)
- Songbo Xie
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jingrui Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Shuang Sun
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Wei Chen
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haisu Cheng
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yinlong Song
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuyang Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Min Liu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin Liang
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China.,State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Jayakumar N, Dullo FT, Dubey V, Ahmad A, Ströhl F, Cauzzo J, Guerreiro EM, Snir O, Skalko-Basnet N, Agarwal K, Ahluwalia BS. Multi-moded high-index contrast optical waveguide for super-contrast high-resolution label-free microscopy. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:3421-3436. [PMID: 38144043 PMCID: PMC10741054 DOI: 10.1515/nanoph-2022-0100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/26/2023]
Abstract
The article elucidates the physical mechanism behind the generation of superior-contrast and high-resolution label-free images using an optical waveguide. Imaging is realized by employing a high index contrast multi-moded waveguide as a partially coherent light source. The modes provide near-field illumination of unlabeled samples, thereby repositioning the higher spatial frequencies of the sample into the far-field. These modes coherently scatter off the sample with different phases and are engineered to have random spatial distributions within the integration time of the camera. This mitigates the coherent speckle noise and enhances the contrast (2-10) × as opposed to other imaging techniques. Besides, the coherent scattering of the different modes gives rise to fluctuations in intensity. The technique demonstrated here is named chip-based Evanescent Light Scattering (cELS). The concepts introduced through this work are described mathematically and the high-contrast image generation process using a multi-moded waveguide as the light source is explained. The article then explores the feasibility of utilizing fluctuations in the captured images along with fluorescence-based techniques, like intensity-fluctuation algorithms, to mitigate poor-contrast and diffraction-limited resolution in the coherent imaging regime. Furthermore, a straight waveguide is demonstrated to have limited angular diversity between its multiple modes and therefore, for isotropic sample illumination, a multiple-arms waveguide geometry is used. The concepts introduced are validated experimentally via high-contrast label-free imaging of weakly scattering nanosized specimens such as extra-cellular vesicles (EVs), liposomes, nanobeads and biological cells such as fixed and live HeLa cells.
Collapse
Affiliation(s)
- Nikhil Jayakumar
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø9037, Norway
| | - Firehun T. Dullo
- Department of Microsystems and Nanotechnology, SINTEF Digital, Gaustadalleen 23C, 0373Oslo, Norway
| | - Vishesh Dubey
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø9037, Norway
| | - Azeem Ahmad
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø9037, Norway
| | - Florian Ströhl
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø9037, Norway
| | - Jennifer Cauzzo
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø9037, Norway
| | | | - Omri Snir
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø9037, Norway
| | - Natasa Skalko-Basnet
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø9037, Norway
| | - Krishna Agarwal
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø9037, Norway
| | - Balpreet Singh Ahluwalia
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø9037, Norway
- Department of Clinical Science, Intervention and Technology, Karolinska Insitute, 17177Stockholm, Sweden
| |
Collapse
|
5
|
Ma Y, Dai T, Lei Y, Zheng J, Liu M, Sui B, Smith ZJ, Chu K, Kong L, Gao P. Label-free imaging of intracellular organelle dynamics using flat-fielding quantitative phase contrast microscopy (FF-QPCM). OPTICS EXPRESS 2022; 30:9505-9520. [PMID: 35299377 DOI: 10.1364/oe.454023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Panoramic and long-term observation of nanosized organelle dynamics and interactions with high spatiotemporal resolution still hold great challenge for current imaging platforms. In this study, we propose a live-organelle imaging platform, where a flat-fielding quantitative phase contrast microscope (FF-QPCM) visualizes all the membrane-bound subcellular organelles, and an intermittent fluorescence channel assists in specific organelle identification. FF-QPCM features a high spatiotemporal resolution of 245 nm and 250 Hz and strong immunity against external disturbance. Thus, we could investigate several important dynamic processes of intracellular organelles from direct perspectives, including chromosome duplication in mitosis, mitochondrial fusion and fission, filaments, and vesicles' morphologies in apoptosis. Of note, we have captured, for the first time, a new type of mitochondrial fission (entitled mitochondrial disintegration), the generation and fusion process of vesicle-like organelles, as well as the mitochondrial vacuolization during necrosis. All these results bring us new insights into spatiotemporal dynamics and interactions among organelles, and hence aid us in understanding the real behaviors and functional implications of the organelles in cellular activities.
Collapse
|
6
|
Ma L, Geng J, Kolossov VL, Han Z, Pei Y, Lim SJ, Kilian KA, Smith AM. Antibody Self-Assembly Maximizes Cytoplasmic Immunostaining Accuracy of Compact Quantum Dots. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2021; 33:4877-4889. [PMID: 35221487 PMCID: PMC8880911 DOI: 10.1021/acs.chemmater.1c00164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Antibody conjugates of quantum dots (QDs) are expected to transform immunofluorescence staining by expanding multiplexed analysis and improving target quantification. Recently, a new generation of small QDs coated with multidentate polymers has improved QD labeling density in diverse biospecimens, but new challenges prevent their routine use. In particular, these QDs exhibit nonspecific binding to fixed cell nuclei and their antibody conjugates have random attachment orientations. This report describes four high-efficiency chemical approaches to conjugate antibodies to compact QDs. Methods include click chemistry and self-assembly through polyhistidine coordination, both with and without adaptor proteins that directionally orient antibodies. Specific and nonspecific labeling are independently analyzed after application of diverse blocking agent classes, and a new assay is developed to quantitatively measure intracellular labeling density based on microtubule stain connectivity. Results show that protein conjugation to the QD surface is required to simultaneously eliminate nonspecific binding and maintain antigen specificity. Of the four conjugation schemes, polyhistidine-based coordination of adaptor proteins with antibody self-assembly yields the highest intracellular staining density and the simplest conjugation procedure. Therefore, antibody and adaptor protein orientation, in addition to blocking optimization, are important determinants of labeling outcomes, insights that can inform translational development of these more compact nanomaterials.
Collapse
Affiliation(s)
- Liang Ma
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States; Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Junlong Geng
- Department of Bioengineering, Carl R. Woese Institute for Genomic Biology, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Vladimir L Kolossov
- Holonyak Micro and Nanotechnology Laboratory and Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zhiyuan Han
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States; Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Pei
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States; Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States; School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sung Jun Lim
- Holonyak Micro and Nanotechnology Laboratory and Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States; Division of Nanotechnology, Dalseong-Gun 42988, Republic of Korea
| | - Kristopher A Kilian
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States; Holonyak Micro and Nanotechnology Laboratory and Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States; School of Materials Science and Engineering and School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Andrew M Smith
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States; Holonyak Micro and Nanotechnology Laboratory, Department of Bioengineering, Carl R. Woese Institute for Genomic Biology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States; Carle Illinois College of Medicine, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Chen X, Kandel ME, Popescu G. Spatial light interference microscopy: principle and applications to biomedicine. ADVANCES IN OPTICS AND PHOTONICS 2021; 13:353-425. [PMID: 35494404 PMCID: PMC9048520 DOI: 10.1364/aop.417837] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this paper, we review spatial light interference microscopy (SLIM), a common-path, phase-shifting interferometer, built onto a phase-contrast microscope, with white-light illumination. As one of the most sensitive quantitative phase imaging (QPI) methods, SLIM allows for speckle-free phase reconstruction with sub-nanometer path-length stability. We first review image formation in QPI, scattering, and full-field methods. Then, we outline SLIM imaging from theory and instrumentation to diffraction tomography. Zernike's phase-contrast microscopy, phase retrieval in SLIM, and halo removal algorithms are discussed. Next, we discuss the requirements for operation, with a focus on software developed in-house for SLIM that enables high-throughput acquisition, whole slide scanning, mosaic tile registration, and imaging with a color camera. We introduce two methods for solving the inverse problem using SLIM, white-light tomography, and Wolf phase tomography. Lastly, we review the applications of SLIM in basic science and clinical studies. SLIM can study cell dynamics, cell growth and proliferation, cell migration, mass transport, etc. In clinical settings, SLIM can assist with cancer studies, reproductive technology, blood testing, etc. Finally, we review an emerging trend, where SLIM imaging in conjunction with artificial intelligence brings computational specificity and, in turn, offers new solutions to outstanding challenges in cell biology and pathology.
Collapse
|
8
|
Kandel ME, Kim E, Lee YJ, Tracy G, Chung HJ, Popescu G. Multiscale Assay of Unlabeled Neurite Dynamics Using Phase Imaging with Computational Specificity. ACS Sens 2021; 6:1864-1874. [PMID: 33882232 PMCID: PMC8815662 DOI: 10.1021/acssensors.1c00100] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Primary neuronal cultures have been widely used to study neuronal morphology, neurophysiology, neurodegenerative processes, and molecular mechanism of synaptic plasticity underlying learning and memory. However, the unique behavioral properties of neurons make them challenging to study, with phenotypic differences expressed as subtle changes in neuronal arborization rather than easy-to-assay features such as cell count. The need to analyze morphology, growth, and intracellular transport has motivated the development of increasingly sophisticated microscopes and image analysis techniques. Due to its high-contrast, high-specificity output, many assays rely on confocal fluorescence microscopy, genetic methods, or antibody staining techniques. These approaches often limit the ability to measure quantitatively dynamic activity such as intracellular transport and growth. In this work, we describe a method for label-free live-cell cell imaging with antibody staining specificity by estimating the associated fluorescence signals via quantitative phase imaging and deep convolutional neural networks. This computationally inferred fluorescence image is then used to generate a semantic segmentation map, annotating subcellular compartments of live unlabeled neural cultures. These synthetic fluorescence maps were further applied to study the time-lapse development of hippocampal neurons, highlighting the relationships between the cellular dry mass production and the dynamic transport activity within the nucleus and neurites. Our implementation provides a high-throughput strategy to analyze neural network arborization dynamically, with high specificity and without the typical phototoxicity and photobleaching limitations associated with fluorescent markers.
Collapse
Affiliation(s)
- Mikhail E Kandel
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Eunjae Kim
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Young Jae Lee
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Gregory Tracy
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| | - Hee Jung Chung
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| | - Gabriel Popescu
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Robert HML, Holanová K, Bujak Ł, Vala M, Henrichs V, Lánský Z, Piliarik M. Fast photothermal spatial light modulation for quantitative phase imaging at the nanoscale. Nat Commun 2021; 12:2921. [PMID: 34012021 PMCID: PMC8134576 DOI: 10.1038/s41467-021-23252-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 04/12/2021] [Indexed: 12/25/2022] Open
Abstract
Spatial light modulators have become an essential tool for advanced microscopy, enabling breakthroughs in 3D, phase, and super-resolution imaging. However, continuous spatial-light modulation that is capable of capturing sub-millisecond microscopic motion without diffraction artifacts and polarization dependence is challenging. Here we present a photothermal spatial light modulator (PT-SLM) enabling fast phase imaging for nanoscopic 3D reconstruction. The PT-SLM can generate a step-like wavefront change, free of diffraction artifacts, with a high transmittance and a modulation efficiency independent of light polarization. We achieve a phase-shift > π and a response time as short as 70 µs with a theoretical limit in the sub microsecond range. We used the PT-SLM to perform quantitative phase imaging of sub-diffractional species to decipher the 3D nanoscopic displacement of microtubules and study the trajectory of a diffusive microtubule-associated protein, providing insights into the mechanism of protein navigation through a complex microtubule network.
Collapse
Affiliation(s)
- Hadrien M L Robert
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18251, Czech Republic
| | - Kristýna Holanová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18251, Czech Republic
| | - Łukasz Bujak
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18251, Czech Republic
| | - Milan Vala
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18251, Czech Republic
| | - Verena Henrichs
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Prague West, 25250, Czech Republic
| | - Zdeněk Lánský
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Prague West, 25250, Czech Republic
| | - Marek Piliarik
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18251, Czech Republic.
| |
Collapse
|
10
|
Jiao Y, He YR, Kandel ME, Liu X, Lu W, Popescu G. Computational interference microscopy enabled by deep learning. APL PHOTONICS 2021; 6:046103. [PMID: 35308602 PMCID: PMC8931864 DOI: 10.1063/5.0041901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Quantitative phase imaging (QPI) has been widely applied in characterizing cells and tissues. Spatial light interference microscopy (SLIM) is a highly sensitive QPI method due to its partially coherent illumination and common path interferometry geometry. However, SLIM's acquisition rate is limited because of the four-frame phase-shifting scheme. On the other hand, off-axis methods such as diffraction phase microscopy (DPM) allow for single-shot QPI. However, the laser-based DPM system is plagued by spatial noise due to speckles and multiple reflections. In a parallel development, deep learning was proven valuable in the field of bioimaging, especially due to its ability to translate one form of contrast into another. Here, we propose using deep learning to produce synthetic, SLIM-quality, and high-sensitivity phase maps from DPM using single-shot images as the input. We used an inverted microscope with its two ports connected to the DPM and SLIM modules such that we have access to the two types of images on the same field of view. We constructed a deep learning model based on U-net and trained on over 1000 pairs of DPM and SLIM images. The model learned to remove the speckles in laser DPM and overcame the background phase noise in both the test set and new data. The average peak signal-to-noise ratio, Pearson correlation coefficient, and structural similarity index measure were 29.97, 0.79, and 0.82 for the test dataset. Furthermore, we implemented the neural network inference into the live acquisition software, which now allows a DPM user to observe in real-time an extremely low-noise phase image. We demonstrated this principle of computational interference microscopy imaging using blood smears, as they contain both erythrocytes and leukocytes, under static and dynamic conditions.
Collapse
Affiliation(s)
- Yuheng Jiao
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuchen R. He
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Mikhail E. Kandel
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Xiaojun Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenlong Lu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Gabriel Popescu
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Author to whom correspondence should be addressed:
| |
Collapse
|
11
|
In Vitro Microtubule Dynamics Assays Using Dark-Field Microscopy. Methods Mol Biol 2021. [PMID: 31879897 DOI: 10.1007/978-1-0716-0219-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Microtubules are dynamic non-covalent mesoscopic polymers. Their dynamic behavior is essential for cell biological processes ranging from intracellular transport to cell division and neurogenesis. Fluorescence microscopy has been the method of choice for monitoring microtubule dynamics in the last two decades. However, fluorescent microtubules are prone to photodamage that alters their dynamics, and the fluorescent label itself can affect microtubule properties. Dark-field imaging is a label-free technique that can generate high signal-to-noise, low-background images of microtubules at high acquisition rates without the photobleaching inherent to fluorescence microscopy. Here, we describe how to image in vitro microtubule dynamics using dark-field microscopy. The ability to image microtubules label-free allows the investigation of the dynamic properties of non-abundant tubulin species where fluorescent labeling is not feasible, free from the confounding effects arising from the addition of fluorescent labels.
Collapse
|
12
|
Rubessa M, Feugang JM, Kandel ME, Schreiber S, Hessee J, Salerno F, Meyers S, Chu I, Popescu G, Wheeler MB. High-throughput sperm assay using label-free microscopy: morphometric comparison between different sperm structures of boar and stallion spermatozoa. Anim Reprod Sci 2020; 219:106509. [PMID: 32828395 DOI: 10.1016/j.anireprosci.2020.106509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 10/24/2022]
Abstract
The capacity for microscopic evaluation of sperm is useful for assisted reproductive technologies (ART), because this can allow for specific selection of sperm cells for in vitro fertilization (IVF). The objective of this study was to analyze the same sperm samples using two high-resolution methods: spatial light interference microscopy (SLIM) and atomic force microscopy (AFM) to determine if with one method there was more timely and different information obtained than the other. To address this objective, there was evaluation of sperm populations from boars and stallions. To the best of our knowledge, this is the first reported comparison when using AFM and high-sensitivity interferometric microscopy (such as SLIM) to evaluate spermatozoa. Results indicate that with the use of SLIM microscopy there is similar nanoscale sensitivity as with use of AFM while there is approximately 1,000 times greater throughput with use of SLIM. With SLIM, there is also allowace for the measurement of the dry mass (non-aqueous content) of spermatozoa, which may be a new label-free marker for sperm viability. In the second part of this study, there was analysis of two sperm populations. There were interesting correlations between the different compartments of the sperm and the dry mass in both boars and stallions. Furthermore, there was a correlation between the dry mass of the sperm head and the length and width of the acrosome in both boars and stallions. This correlation is positive in boars while it is negative in stallions.
Collapse
Affiliation(s)
- Marcello Rubessa
- Department of Animal Science, University of Illinois, Urbana-Champaign, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, Univ. of Illinois at Urbana-Champaign, USA
| | - Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Mikhail E Kandel
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute of Advanced Science and Technology, USA
| | - Sierra Schreiber
- Department of Animal Science, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Jade Hessee
- Department of Animal Science, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Francesca Salerno
- Department of Animal Science, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Sascha Meyers
- Department of Animal Science, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Iwei Chu
- Institute for Imaging & Analytical Technologies, Mississippi State University, Mississippi State, MS 39762, USA
| | - Gabriel Popescu
- Department of Bioengineering, University of Illinois, Urbana, Illinois 61801, USA; Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute of Advanced Science and Technology, USA
| | - Matthew B Wheeler
- Department of Animal Science, University of Illinois, Urbana-Champaign, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, Univ. of Illinois at Urbana-Champaign, USA; Department of Bioengineering, University of Illinois, Urbana, Illinois 61801, USA.
| |
Collapse
|
13
|
Rubessa M, Kandel ME, Schreiber S, Meyers S, Beck DH, Popescu G, Wheeler MB. Morphometric analysis of sperm used for IVP by three different separation methods with spatial light interference microscopy. Syst Biol Reprod Med 2020; 66:26-36. [DOI: 10.1080/19396368.2019.1701139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Marcello Rubessa
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Mikhail E. Kandel
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sierra Schreiber
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Sasha Meyers
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Douglas H. Beck
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gabriel Popescu
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Matthew B. Wheeler
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
14
|
Fanous MJ, Li Y, Kandel ME, Abdeen AA, Kilian KA, Popescu G. Effects of substrate patterning on cellular spheroid growth and dynamics measured by gradient light interference microscopy (GLIM). JOURNAL OF BIOPHOTONICS 2019; 12:e201900178. [PMID: 31400294 PMCID: PMC7716417 DOI: 10.1002/jbio.201900178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/05/2019] [Accepted: 08/07/2019] [Indexed: 05/12/2023]
Abstract
The development of three-dimensional (3D) cellular architectures during development and pathological processes involves intricate migratory patterns that are modulated by genetics and the surrounding microenvironment. The substrate composition of cell cultures has been demonstrated to influence growth, proliferation and migration in 2D. Here, we study the growth and dynamics of mouse embryonic fibroblast cultures patterned in a tissue sheet which then exhibits 3D growth. Using gradient light interference microscopy (GLIM), a label-free quantitative phase imaging approach, we explored the influence of geometry on cell growth patterns and rotational dynamics. We apply, for the first time to our knowledge, dispersion-relation phase spectroscopy (DPS) in polar coordinates to generate the radial and rotational cell mass-transport. Our data show that cells cultured on engineered substrates undergo rotational transport in a radially independent manner and exhibit faster vertical growth than the control, unpatterned cells. The use of GLIM and polar DPS provides a novel quantitative approach to studying the effects of spatially patterned substrates on cell motility and growth.
Collapse
Affiliation(s)
- Michael J. Fanous
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Yanfen Li
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts
| | - Mikhail E. Kandel
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Amr A. Abdeen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Kristopher A. Kilian
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales, Sydney, Australia
- School of Materials Science and Engineering, University of New South Wales, Sydney, Australia
| | - Gabriel Popescu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Correspondence: Gabriel Popescu, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL.
| |
Collapse
|
15
|
Kandel ME, Hu C, Naseri Kouzehgarani G, Min E, Sullivan KM, Kong H, Li JM, Robson DN, Gillette MU, Best-Popescu C, Popescu G. Epi-illumination gradient light interference microscopy for imaging opaque structures. Nat Commun 2019; 10:4691. [PMID: 31619681 PMCID: PMC6795907 DOI: 10.1038/s41467-019-12634-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023] Open
Abstract
Multiple scattering and absorption limit the depth at which biological tissues can be imaged with light. In thick unlabeled specimens, multiple scattering randomizes the phase of the field and absorption attenuates light that travels long optical paths. These obstacles limit the performance of transmission imaging. To mitigate these challenges, we developed an epi-illumination gradient light interference microscope (epi-GLIM) as a label-free phase imaging modality applicable to bulk or opaque samples. Epi-GLIM enables studying turbid structures that are hundreds of microns thick and otherwise opaque to transmitted light. We demonstrate this approach with a variety of man-made and biological samples that are incompatible with imaging in a transmission geometry: semiconductors wafers, specimens on opaque and birefringent substrates, cells in microplates, and bulk tissues. We demonstrate that the epi-GLIM data can be used to solve the inverse scattering problem and reconstruct the tomography of single cells and model organisms.
Collapse
Affiliation(s)
- Mikhail E Kandel
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Chenfei Hu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ghazal Naseri Kouzehgarani
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Eunjung Min
- Rowland Institute at Harvard University, Cambridge, Cambridge, MA, USA
| | | | - Hyunjoon Kong
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Car R. Woese Institute for Genomic Biology, University of Illinois at Urbana-, Champaign, IL, USA
| | - Jennifer M Li
- Rowland Institute at Harvard University, Cambridge, Cambridge, MA, USA
| | - Drew N Robson
- Rowland Institute at Harvard University, Cambridge, Cambridge, MA, USA
| | - Martha U Gillette
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Catherine Best-Popescu
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gabriel Popescu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
16
|
Ma Y, Guo S, Pan Y, Fan R, Smith ZJ, Lane S, Chu K. Quantitative phase microscopy with enhanced contrast and improved resolution through ultra-oblique illumination (UO-QPM). JOURNAL OF BIOPHOTONICS 2019; 12:e201900011. [PMID: 31184803 DOI: 10.1002/jbio.201900011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/02/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
Recent developments in phase contrast microscopy have enabled the label-free visualization of certain organelles due to their distinct morphological features, making this method an attractive alternative in the study of cellular dynamics. However tubular structures such as endoplasmic reticulum (ER) networks and complex dynamics such as the fusion and fission of mitochondria, due to their low phase contrast, still need fluorescent labeling to be adequately imaged. In this article, we report a quantitative phase microscope with ultra-oblique illumination that enables us to see those structures and their dynamics with high contrast for the first time without labeling. The imaging capability was validated through comparison to the fluorescence images with the same field-of-view. The high image resolution (~270 nm) was validated using both beads and cellular structures. Furthermore, we were able to record the vibration of ER networks at a frame rate of 250 Hz. We additionally show complex cellular processes such as remodeling of the mitochondria networks through fusion and fission and vesicle transportation along the ER without labels. Our high spatial and temporal resolution allowed us to observe mitochondria "spinning", which has not been reported before, further demonstrating the advantages of the proposed method.
Collapse
Affiliation(s)
- Ying Ma
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, Hefei, China
- University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, Anhui, Hefei, China
| | - Siyue Guo
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, Hefei, China
- University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, Anhui, Hefei, China
| | - Yang Pan
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, Hefei, China
- University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, Anhui, Hefei, China
| | - Rong Fan
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, Hefei, China
| | - Zachary J Smith
- University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, Anhui, Hefei, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Anhui, Hefei, China
| | - Stephen Lane
- Center for Biophotonics, University of California, Davis, Sacramento, California
| | - Kaiqin Chu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, Hefei, China
- University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, Anhui, Hefei, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Anhui, Hefei, China
| |
Collapse
|
17
|
Mahamdeh M, Howard J. Implementation of Interference Reflection Microscopy for Label-free, High-speed Imaging of Microtubules. J Vis Exp 2019. [PMID: 31449260 DOI: 10.3791/59520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There are several methods for visualizing purified biomolecules near surfaces. Total-internal reflection fluorescence (TIRF) microscopy is a commonly used method, but has the drawback that it requires fluorescent labeling, which can interfere with the activity of the molecules. Also, photobleaching and photodamage are concerns. In the case of microtubules, we have found that images of similar quality to TIRF can be obtained using interference reflection microscopy (IRM). This suggests that IRM might be a general technique for visualizing the dynamics of large biomolecules and oligomers in vitro. In this paper, we show how a fluorescence microscope can be modified simply to obtain IRM images. IRM is easier and considerably cheaper to implement than other contrast techniques such as differential interference contrast microcopy or interferometric scattering microscopy. It is also less susceptible to surface defects and solution impurities than darkfield microscopy. Using IRM, together with the image analysis software described in this paper, the field of view and the frame rate is limited only by the camera; with a sCMOS camera and wide-field illumination microtubule length can be measured with precision up to 20 nm with a bandwidth of 10 Hz.
Collapse
Affiliation(s)
- Mohammed Mahamdeh
- Department of Molecular Biophysics and Biochemistry, Yale University; Harvard Medical School, Harvard University
| | - Jonathon Howard
- Department of Molecular Biophysics and Biochemistry, Yale University;
| |
Collapse
|
18
|
Abstract
Interferometric scattering microscopy (iSCAT) is an extremely sensitive imaging method based on the efficient detection of light scattered by nanoscopic objects. The ability to, at least in principle, maintain high imaging contrast independent of the exposure time or the scattering cross section of the object allows for unique applications in single-particle tracking, label-free imaging of nanoscopic (dis)assembly, and quantitative single-molecule characterization. We illustrate these capabilities in areas as diverse as mechanistic studies of motor protein function, viral capsid assembly, and single-molecule mass measurement in solution. We anticipate that iSCAT will become a widely used approach to unravel previously hidden details of biomolecular dynamics and interactions.
Collapse
Affiliation(s)
- Gavin Young
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom; ,
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom; ,
| |
Collapse
|
19
|
Li Y, Fanous MJ, Kilian KA, Popescu G. Quantitative phase imaging reveals matrix stiffness-dependent growth and migration of cancer cells. Sci Rep 2019; 9:248. [PMID: 30670739 PMCID: PMC6343033 DOI: 10.1038/s41598-018-36551-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/22/2018] [Indexed: 12/21/2022] Open
Abstract
Cancer progression involves complex signals within the tumor microenvironment that orchestrate proliferation and invasive processes. The mechanical properties of the extracellular matrix (ECM) within this microenvironment has been demonstrated to influence growth and the migratory phenotype that precedes invasion. Here we present the integration of a label-free quantitative phase imaging technique, spatial light interference microscopy (SLIM)-with protein-conjugated hydrogel substrates-to explore how the stiffness of the ECM influences melanoma cells of varying metastatic potential. Melanoma cells of high metastatic potential demonstrate increased growth and velocity characteristics relative to cells of low metastatic potential. Cell velocity in the highly metastatic population shows a relative insensitivity to matrix stiffness suggesting adoption of migratory routines that are independent of mechanics to facilitate invasion. The use of SLIM and engineered substrates provides a new approach to characterize the invasive properties of live cells as a function of microenvironment parameters. This work provides fundamental insight into the relationship between growth, migration and metastatic potential, and provides a new tool for profiling cancer cells for clinical grading and development of patient-specific therapeutic regimens.
Collapse
Affiliation(s)
- Yanfen Li
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Michael J Fanous
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Kristopher A Kilian
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.
- School of Chemistry, School of Materials Science and Engineering, Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Gabriel Popescu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.
| |
Collapse
|
20
|
Cheng CY, Liao YH, Hsieh CL. High-speed imaging and tracking of very small single nanoparticles by contrast enhanced microscopy. NANOSCALE 2019; 11:568-577. [PMID: 30548049 DOI: 10.1039/c8nr06789a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nanoparticles have been used extensively in biology-related research and many applications require direct visualization of individual nanoparticles by optical microscopy. For long-term and high-speed measurements, scattering-based microscopy is a unique technique because of the stable and indefinite scattering signals. In scattering-based single-particle measurements, large nanoparticles are usually needed in order to generate sufficient signals for detection. However, larger nanoparticles introduce greater mass loading, experience stronger steric hindrance, and are more prone to crosslinking. In this work, we demonstrate coherent brightfield (COBRI) microscopy with enhanced contrast and show its capability of direct visualization of very small nanoparticles in scattering at a high speed. COBRI microscopy allows us to visualize and track single metallic and dielectric nanoparticles, as small as 10 nm, at 1000 frames per second. A quantitative relationship between the linear scattering cross section of the nanoparticle and its COBRI contrast is reported. Using COBRI microscopy, we further demonstrate the tracking of 10 nm gold nanoparticles labeled to lipid molecules in supported bilayer membranes, showing that the small nanoparticles may facilitate single-molecule measurements with reduced perturbation. Furthermore, the identical imaging sensitivities of COBRI and interferometric scattering (iSCAT) microscopy, the reflection counterpart of COBRI, is demonstrated at an equal illumination intensity. Finally, future improvements in the speed and sensitivity of scattering-based interference microscopy are discussed.
Collapse
Affiliation(s)
- Ching-Ya Cheng
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, 10617 Taipei, Taiwan.
| | | | | |
Collapse
|
21
|
Huang C, Gu Y, Chen J, Bahrani AA, Abu Jawdeh EG, Bada HS, Saatman K, Yu G, Chen L. A Wearable Fiberless Optical Sensor for Continuous Monitoring of Cerebral Blood Flow in Mice. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2019; 25:1-9. [PMID: 31666792 DOI: 10.1109/jstqe.2018.2869613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Continuous and longitudinal monitoring of cerebral blood flow (CBF) in animal models provides information for studying the mechanisms and interventions of various cerebral diseases. Since anesthesia may affect brain hemodynamics, researchers have been seeking wearable devices for use in conscious animals. We present a wearable diffuse speckle contrast flowmeter (DSCF) probe for monitoring CBF variations in mice. The DSCF probe consists of a small low-power near-infrared laser diode as a point source and an ultra-small low-power CMOS camera as a 2D detector array, which can be affixed on a mouse head. The movement of red blood cells in brain cortex (i.e., CBF) produces spatial fluctuations of laser speckles, which are captured by the camera. The DSCF system was calibrated using tissue phantoms and validated in a human forearm and mouse brains for continuous monitoring of blood flow increases and decreases against the established technologies. Significant correlations were observed among these measurements (R2 ≥ 0.80, p < 10-5). This small fiberless probe has the potential to be worn by a freely moving conscious mouse. Moreover, the flexible source-detector configuration allows for varied probing depths up to ~8 mm, which is sufficient for transcranially detecting CBF in the cortices of rodents and newborn infants.
Collapse
Affiliation(s)
- Chong Huang
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506 USA
| | - Yutong Gu
- Department of Electrical Engineering, University of Southern California, Los Angeles, CA, 90089 USA
| | - Jing Chen
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506 USA
| | - Ahmed A Bahrani
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506 USA
| | - Elie G Abu Jawdeh
- Department of Pediatrics, College of Medicine, University of Kentucky, Lexington, KY 40536 USA
| | - Henrietta S Bada
- Department of Pediatrics, College of Medicine, University of Kentucky, Lexington, KY 40536 USA
| | - Kathryn Saatman
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536 USA
| | - Guoqiang Yu
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506 USA
| | - Lei Chen
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536 USA
| |
Collapse
|
22
|
SLIM microscopy allows for visualization of DNA-containing liposomes designed for sperm-mediated gene transfer in cattle. Mol Biol Rep 2018; 46:695-703. [PMID: 30539382 DOI: 10.1007/s11033-018-4525-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/23/2018] [Indexed: 10/27/2022]
Abstract
Naked DNA has been shown to bind naturally to the sperm, a method called sperm-mediated gene transfer (SMGT). Based on these observations, we examined the efficiency of exogenous DNA binding to sperm using liposomes. In this experiment, we analyzed methods to select frozen-thawed bovine sperm, and evaluated the binding of exogenous DNA to those sperm. To determine the optimal selection method, we used Computer-Assisted Sperm Analysis (CASA). Percoll or Swim-Up were used to select sperm, followed by incubation up to 3 h with the liposome-DNA complexes. The samples were collected after 1 h and after 3 h. We used enhanced green fluorescent protein (eGFP) in combination with the liposomes as a marker for exogenous DNA binding. Five treatments per selection method were analyzed: (1) no incubation, no liposomes and no DNA, (2) incubation with no liposomes and no DNA, (3) incubation with liposomes and no DNA, (4) incubation with liposomes and 1 µg of DNA and (5) incubation with liposomes and 10 µg of DNA. The CASA results for total motility and rapid motility were statistically significant (P < 0.01) between the control and the other treatments in the Percoll group as opposed to Swim-Up. Swim-Up was therefore chosen as the optimal selection method. In order to determine if the liposome-DNA complex had bound to sperm, real time PCR was used to detect GFP DNA and images of the sperm were analyzed using the Spatial Light Interference Microscopy (SLIM). SLIM confirmed the presence of liposomes on the sperm head and tail.
Collapse
|
23
|
Mahamdeh M, Simmert S, Luchniak A, Schäffer E, Howard J. Label-free high-speed wide-field imaging of single microtubules using interference reflection microscopy. J Microsc 2018; 272:60-66. [PMID: 30044498 PMCID: PMC6486835 DOI: 10.1111/jmi.12744] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/08/2018] [Accepted: 07/09/2018] [Indexed: 01/04/2023]
Abstract
When studying microtubules in vitro, label free imaging of single microtubules is necessary when the quantity of purified tubulin is too low for efficient fluorescent labelling or there is concern that labelling will disrupt function. Commonly used techniques for observing unlabelled microtubules, such as video enhanced differential interference contrast, dark-field and more recently laser-based interferometric scattering microscopy, suffer from a number of drawbacks. The contrast of differential interference contrast images depends on the orientation of the microtubules, dark-field is highly sensitive to impurities and optical misalignments. In addition, all of these techniques require costly optical components such as Nomarski prisms, dark-field condensers, lasers and laser scanners. Here we show that single microtubules can be imaged at high speed and with high contrast using interference reflection microscopy without the aforementioned drawbacks. Interference reflection microscopy is simple to implement, requiring only the incorporation of a 50/50 mirror instead of a dichroic in a fluorescence microscope, and with appropriate microscope settings has a similar signal-to-noise ratio to differential interference contrast and fluorescence. We demonstrated the utility of interference reflection microscopy by high-speed imaging and tracking of dynamic microtubules at 100 frames per second. In conclusion, the optical quality of interference reflection microscopy falls within the range of other microscope techniques, being inferior to some and superior to others, depending on the metric used and, with minimal microscope modification, can be used to study the dynamics of unlabelled microtubules. LAY DESCRIPTION The cytoskeleton gives a cell its shape and plays a major role in its movement and division. It's also helps organise the content of cells and is the base for intracellular transport. Important components of the cytoskeleton are microtubules, which are hollow cylindrical beams (25 nm in diameter) that assemble from protein building blocks called tubulin. Deficiencies in microtubules are related to many diseases including cancer and Alzheimer. Given their important role, microtubules are heavily investigated in many laboratories. One way to study microtubules is to isolate them from cells and image them using light microscopy. Over the years a number of imaging techniques have been used. These techniques have a number of drawbacks which are addressed by ongoing efforts which this work is a part of. Here, we present a method based on light interference that produce high quality images of microtubules. The technique is cheap and easy to implement making it accessible to a wide base of researchers.
Collapse
Affiliation(s)
- Mohammed Mahamdeh
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, U.S.A
| | - Steve Simmert
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Anna Luchniak
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, U.S.A
| | - Erik Schäffer
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Jonathon Howard
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, U.S.A
| |
Collapse
|
24
|
Abstract
Rapid, accurate, and nondestructive mapping of material properties is of great interest in many fields, with applications ranging from detection of defects or other subsurface features in semiconductors to estimating temperature rise in various tissue layers during laser therapy. We demonstrate the speed and precision of two interferometric techniques, quantitative phase imaging and phase-resolved optical coherence tomography, in recording optical phase changes induced by energy deposition in various materials. Such phase perturbations can be used to infer sample properties, ranging from absorption and temperature maps to distribution of electric field or resistivity. We derive the theoretical sensitivity limits of such techniques and demonstrate their applicability to the mapping of absorption coefficients, temperature, and electric fields in synthetic and biological samples. Optical phase changes induced by transient perturbations provide a sensitive measure of material properties. We demonstrate the high sensitivity and speed of such methods, using two interferometric techniques: quantitative phase imaging (QPI) in transmission and phase-resolved optical coherence tomography (OCT) in reflection. Shot-noise–limited QPI can resolve energy deposition of about 3.4 mJ/cm2 in a single pulse, which corresponds to 0.8 °C temperature rise in a single cell. OCT can detect deposition of 24 mJ/cm2 energy between two scattering interfaces producing signals with about 30-dB signal-to-noise ratio (SNR), and 4.7 mJ/cm2 when SNR is 45 dB. Both techniques can image thermal changes within the thermal confinement time, which enables accurate single-shot mapping of absorption coefficients even in highly scattering samples, as well as electrical conductivity and many other material properties in biological samples at cellular scale. Integration of the phase changes along the beam path helps increase sensitivity, and the signal relaxation time reveals the size of hidden objects. These methods may enable multiple applications, ranging from temperature-controlled retinal laser therapy or gene expression to mapping electric current density and characterization of semiconductor devices with rapid pump–probe measurements.
Collapse
|
25
|
Kandel ME, Fanous M, Best-Popescu C, Popescu G. Real-time halo correction in phase contrast imaging. BIOMEDICAL OPTICS EXPRESS 2018; 9:623-635. [PMID: 29552399 PMCID: PMC5854064 DOI: 10.1364/boe.9.000623] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/24/2017] [Accepted: 12/24/2017] [Indexed: 05/19/2023]
Abstract
As a label-free, nondestructive method, phase contrast is by far the most popular microscopy technique for routine inspection of cell cultures. However, features of interest such as extensions near cell bodies are often obscured by a glow, which came to be known as the halo. Advances in modeling image formation have shown that this artifact is due to the limited spatial coherence of the illumination. Nevertheless, the same incoherent illumination is responsible for superior sensitivity to fine details in the phase contrast geometry. Thus, there exists a trade-off between high-detail (incoherent) and low-detail (coherent) imaging systems. In this work, we propose a method to break this dichotomy, by carefully mixing corrected low-frequency and high-frequency data in a way that eliminates the edge effect. Specifically, our technique is able to remove halo artifacts at video rates, requiring no manual interaction or a priori point spread function measurements. To validate our approach, we imaged standard spherical beads, sperm cells, tissue slices, and red blood cells. We demonstrate real-time operation with a time evolution study of adherent neuron cultures whose neurites are revealed by our halo correction. We show that with our novel technique, we can quantify cell growth in large populations, without the need for thresholds and system variant calibration.
Collapse
Affiliation(s)
- Mikhail E. Kandel
- Department of Electrical and Computer Engineering, the University of Illinois at Urbana-Champaign, 306 N. Wright Street, Urbana, IL 61801, USA
| | - Michael Fanous
- Department of Bioengineering, the University of Illinois at Urbana-Champaign, 306 N. Wright Street, Urbana, IL 61801, USA
| | - Catherine Best-Popescu
- Department of Bioengineering, the University of Illinois at Urbana-Champaign, 306 N. Wright Street, Urbana, IL 61801, USA
| | - Gabriel Popescu
- Department of Electrical and Computer Engineering, the University of Illinois at Urbana-Champaign, 306 N. Wright Street, Urbana, IL 61801, USA
- Department of Bioengineering, the University of Illinois at Urbana-Champaign, 306 N. Wright Street, Urbana, IL 61801, USA
| |
Collapse
|
26
|
Daloglu MU, Luo W, Shabbir F, Lin F, Kim K, Lee I, Jiang JQ, Cai WJ, Ramesh V, Yu MY, Ozcan A. Label-free 3D computational imaging of spermatozoon locomotion, head spin and flagellum beating over a large volume. LIGHT, SCIENCE & APPLICATIONS 2018; 7:17121. [PMID: 30839645 PMCID: PMC6107047 DOI: 10.1038/lsa.2017.121] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 05/24/2023]
Abstract
We report a high-throughput and label-free computational imaging technique that simultaneously measures in three-dimensional (3D) space the locomotion and angular spin of the freely moving heads of microswimmers and the beating patterns of their flagella over a sample volume more than two orders-of-magnitude larger compared to existing optical modalities. Using this platform, we quantified the 3D locomotion of 2133 bovine sperms and determined the spin axis and the angular velocity of the sperm head, providing the perspective of an observer seated at the moving and spinning sperm head. In this constantly transforming perspective, flagellum-beating patterns are decoupled from both the 3D translation and spin of the head, which provides the opportunity to truly investigate the 3D spatio-temporal kinematics of the flagellum. In addition to providing unprecedented information on the 3D locomotion of microswimmers, this computational imaging technique could also be instrumental for micro-robotics and sensing research, enabling the high-throughput quantification of the impact of various stimuli and chemicals on the 3D swimming patterns of sperms, motile bacteria and other micro-organisms, generating new insights into taxis behaviors and the underlying biophysics.
Collapse
Affiliation(s)
- Mustafa Ugur Daloglu
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095, USA
| | - Wei Luo
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095, USA
| | - Faizan Shabbir
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095, USA
| | - Francis Lin
- Bioengineering Department, University of California, Los Angeles, CA 90095, USA
| | - Kevin Kim
- Chemistry and Biochemistry Department, University of California, Los Angeles, CA 90095, USA
| | - Inje Lee
- Bioengineering Department, University of California, Los Angeles, CA 90095, USA
| | - Jia-Qi Jiang
- Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA
| | - Wen-Jun Cai
- Department of Mathematics, University of California, Los Angeles, CA 90095, USA
| | - Vishwajith Ramesh
- Bioengineering Department, University of California, Los Angeles, CA 90095, USA
| | - Meng-Yuan Yu
- Computer Science Department, University of California, Los Angeles, CA 90095, USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095, USA
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
27
|
Kim DN, Kim KT, Kim C, Teitell MA, Zangle TA. Soft lithography fabrication of index-matched microfluidic devices for reducing artifacts in fluorescence and quantitative phase imaging. MICROFLUIDICS AND NANOFLUIDICS 2018; 22:2. [PMID: 29725276 PMCID: PMC5927392 DOI: 10.1007/s10404-017-2023-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/24/2017] [Indexed: 05/22/2023]
Abstract
Microfluidic devices are widely used for biomedical applications based on microscopy or other optical detection methods. However, the materials commonly used for microfabrication typically have a high refractive index relative to water, which can create artifacts at device edges and limit applicability to applications requiring high precision imaging or morphological feature detection. Here we present a soft lithography method to fabricate microfluidic devices out of MY133-V2000, a UV-curable, fluorinated polymer with low refractive index that is close to that of water (n = 1.33). The primary challenge in the use of this material (and fluorinated materials in general) is the low adhesion of the fluorinated material; we present several alternative fabrication methods we have tested to improve inter-layer adhesion. The close match between the refractive index of this material and aqueous solutions commonly used in biomedical applications enables fluorescence imaging at microchannel or other microfabricated edges without distortion. The close match in refractive index also enables quantitative phase microscopy (QPM) imaging across the full width of microchannels without error-inducing artifacts for measurement of cell biomass. Overall, our results demonstrate the utility of low-refractive index microfluidics for biological applications requiring high precision optical imaging.
Collapse
Affiliation(s)
- Diane N.H. Kim
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Kevin T. Kim
- Department of Neuroscience, UCLA, Los Angeles, California, USA
| | - Carolyn Kim
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Michael A. Teitell
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, Broad Stem Cell Research Center, California Nanosystems Institute, and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Thomas A. Zangle
- Department of Chemical Engineering and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
28
|
Badea A, McCracken JM, Tillmaand EG, Kandel ME, Oraham AW, Mevis MB, Rubakhin SS, Popescu G, Sweedler JV, Nuzzo RG. 3D-Printed pHEMA Materials for Topographical and Biochemical Modulation of Dorsal Root Ganglion Cell Response. ACS APPLIED MATERIALS & INTERFACES 2017; 9:30318-30328. [PMID: 28813592 PMCID: PMC5605921 DOI: 10.1021/acsami.7b06742] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Understanding and controlling the interactions occurring between cells and engineered materials are central challenges toward progress in the development of biomedical devices. In this work, we describe materials for direct ink writing (DIW), an extrusion-based type of 3D printing, that embed a custom synthetic protein (RGD-PDL) within the microfilaments of 3D-hydrogel scaffolds to modify these interactions and differentially direct tissue-level organization of complex cell populations in vitro. The RGD-PDL is synthesized by modifying poly-d-lysine (PDL) to varying extents with peptides containing the integrin-binding motif Arg-Gly-Asp (RGD). Compositional gradients of the RGD-PDL presented by both patterned and thin-film poly(2-hydroxyethyl) methacrylate (pHEMA) substrates allow the patterning of cell-growth compliance in a grayscale form. The surface chemistry-dependent guidance of cell growth on the RGD-PDL-modified pHEMA materials is demonstrated using a model NIH-3T3 fibroblast cell line. The formation of a more complex cellular system-organotypic primary murine dorsal root ganglion (DRG)-in culture is also achieved on these scaffolds, where distinctive forms of cell growth and migration guidance are seen depending on their RGD-PDL content and topography. This experimental platform for the study of physicochemical factors on the formation and the reorganization of organotypic cultures offers useful capabilities for studies in tissue engineering, regenerative medicine, and diagnostics.
Collapse
Affiliation(s)
- Adina Badea
- School of Chemical Sciences, University of Illinois-Urbana Champaign, Urbana, IL 61801, United States of America
| | - Joselle M. McCracken
- School of Chemical Sciences, University of Illinois-Urbana Champaign, Urbana, IL 61801, United States of America
| | - Emily G. Tillmaand
- Neuroscience Program, University of Illinois-Urbana Champaign, Urbana, IL 61801, United States of America
| | - Mikhail E. Kandel
- Department of Electrical and Computer Engineering, University of Illinois-Urbana Champaign, Urbana, IL 61801, United States of America
| | - Aaron W. Oraham
- School of Chemical Sciences, University of Illinois-Urbana Champaign, Urbana, IL 61801, United States of America
| | - Molly B. Mevis
- School of Chemical Sciences, University of Illinois-Urbana Champaign, Urbana, IL 61801, United States of America
| | - Stanislav S. Rubakhin
- School of Chemical Sciences, University of Illinois-Urbana Champaign, Urbana, IL 61801, United States of America
| | - Gabriel Popescu
- Department of Electrical and Computer Engineering, University of Illinois-Urbana Champaign, Urbana, IL 61801, United States of America
| | - Jonathan V. Sweedler
- School of Chemical Sciences, University of Illinois-Urbana Champaign, Urbana, IL 61801, United States of America
- Neuroscience Program, University of Illinois-Urbana Champaign, Urbana, IL 61801, United States of America
| | - Ralph G. Nuzzo
- School of Chemical Sciences, University of Illinois-Urbana Champaign, Urbana, IL 61801, United States of America
- School of Chemical Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
29
|
Nguyen TH, Kandel ME, Rubessa M, Wheeler MB, Popescu G. Gradient light interference microscopy for 3D imaging of unlabeled specimens. Nat Commun 2017; 8:210. [PMID: 28785013 PMCID: PMC5547102 DOI: 10.1038/s41467-017-00190-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/08/2017] [Indexed: 12/14/2022] Open
Abstract
Multiple scattering limits the contrast in optical imaging of thick specimens. Here, we present gradient light interference microscopy (GLIM) to extract three-dimensional information from both thin and thick unlabeled specimens. GLIM exploits a special case of low-coherence interferometry to extract phase information from the specimen, which in turn can be used to measure cell mass, volume, surface area, and their evolutions in time. Because it combines multiple intensity images that correspond to controlled phase shifts between two interfering waves, gradient light interference microscopy is capable of suppressing the incoherent background due to multiple scattering. GLIM can potentially become a valuable tool for in vitro fertilization, where contrast agents and fluorophores may impact the viability of the embryo. Since GLIM is implemented as an add-on module to an existing inverted microscope, we anticipate that it will be adopted rapidly by the biological community. Challenges in biological imaging include labeling, photobleaching and phototoxicity, as well as light scattering. Here, Nguyen et al. develop a quantitative phase method that uses low-coherence interferometry for label-free 3D imaging in scattering tissue.
Collapse
Affiliation(s)
- Tan H Nguyen
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
| | - Mikhail E Kandel
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
| | - Marcello Rubessa
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
| | - Matthew B Wheeler
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
| | - Gabriel Popescu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA.
| |
Collapse
|
30
|
Kandel ME, Sridharan S, Liang J, Luo Z, Han K, Macias V, Shah A, Patel R, Tangella K, Kajdacsy-Balla A, Guzman G, Popescu G. Label-free tissue scanner for colorectal cancer screening. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:66016. [PMID: 28655054 DOI: 10.1117/1.jbo.22.6.066016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/22/2017] [Indexed: 05/20/2023]
Abstract
The current practice of surgical pathology relies on external contrast agents to reveal tissue architecture, which is then qualitatively examined by a trained pathologist. The diagnosis is based on the comparison with standardized empirical, qualitative assessments of limited objectivity. We propose an approach to pathology based on interferometric imaging of “unstained” biopsies, which provides unique capabilities for quantitative diagnosis and automation. We developed a label-free tissue scanner based on “quantitative phase imaging,” which maps out optical path length at each point in the field of view and, thus, yields images that are sensitive to the “nanoscale” tissue architecture. Unlike analysis of stained tissue, which is qualitative in nature and affected by color balance, staining strength and imaging conditions, optical path length measurements are intrinsically quantitative, i.e., images can be compared across different instruments and clinical sites. These critical features allow us to automate the diagnosis process. We paired our interferometric optical system with highly parallelized, dedicated software algorithms for data acquisition, allowing us to image at a throughput comparable to that of commercial tissue scanners while maintaining the nanoscale sensitivity to morphology. Based on the measured phase information, we implemented software tools for autofocusing during imaging, as well as image archiving and data access. To illustrate the potential of our technology for large volume pathology screening, we established an “intrinsic marker” for colorectal disease that detects tissue with dysplasia or colorectal cancer and flags specific areas for further examination, potentially improving the efficiency of existing pathology workflows.
Collapse
Affiliation(s)
- Mikhail E Kandel
- University of Illinois at Urbana-Champaign, Beckman Institute of Advanced Science and Technology, Quantitative Light Imaging Laboratory, Urbana, Illinois, United StatesbUniversity of Illinois at Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| | - Shamira Sridharan
- University of Illinois at Urbana-Champaign, Beckman Institute of Advanced Science and Technology, Quantitative Light Imaging Laboratory, Urbana, Illinois, United StatescUniversity of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United StatesdUniversity of California, Biomedical Engineering Department, Davis, California, United States
| | - Jon Liang
- University of Illinois at Urbana-Champaign, Beckman Institute of Advanced Science and Technology, Quantitative Light Imaging Laboratory, Urbana, Illinois, United States
| | - Zelun Luo
- University of Illinois at Urbana-Champaign, Beckman Institute of Advanced Science and Technology, Quantitative Light Imaging Laboratory, Urbana, Illinois, United States
| | - Kevin Han
- University of Illinois at Urbana-Champaign, Beckman Institute of Advanced Science and Technology, Quantitative Light Imaging Laboratory, Urbana, Illinois, United States
| | - Virgilia Macias
- University of Illinois at Chicago, Department of Pathology, Chicago, Illinois, United States
| | - Anish Shah
- University of Illinois at Chicago, Department of Pathology, Chicago, Illinois, United States
| | - Roshan Patel
- University of Illinois at Chicago, Department of Pathology, Chicago, Illinois, United States
| | | | - Andre Kajdacsy-Balla
- University of Illinois at Chicago, Department of Pathology, Chicago, Illinois, United States
| | - Grace Guzman
- University of Illinois at Chicago, Department of Pathology, Chicago, Illinois, United States
| | - Gabriel Popescu
- University of Illinois at Urbana-Champaign, Beckman Institute of Advanced Science and Technology, Quantitative Light Imaging Laboratory, Urbana, Illinois, United StatesbUniversity of Illinois at Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United StatescUniversity of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
| |
Collapse
|
31
|
Lee YJ, Cintora P, Arikkath J, Akinsola O, Kandel M, Popescu G, Best-Popescu C. Quantitative assessment of neural outgrowth using spatial light interference microscopy. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:66015. [PMID: 28655053 PMCID: PMC5482290 DOI: 10.1117/1.jbo.22.6.066015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/30/2017] [Indexed: 05/12/2023]
Abstract
Optimal growth as well as branching of axons and dendrites is critical for the nervous system function. Neuritic length, arborization, and growth rate determine the innervation properties of neurons and define each cell’s computational capability. Thus, to investigate the nervous system function, we need to develop methods and instrumentation techniques capable of quantifying various aspects of neural network formation: neuron process extension, retraction, stability, and branching. During the last three decades, fluorescence microscopy has yielded enormous advances in our understanding of neurobiology. While fluorescent markers provide valuable specificity to imaging, photobleaching, and photoxicity often limit the duration of the investigation. Here, we used spatial light interference microscopy (SLIM) to measure quantitatively neurite outgrowth as a function of cell confluence. Because it is label-free and nondestructive, SLIM allows for long-term investigation over many hours. We found that neurons exhibit a higher growth rate of neurite length in low-confluence versus medium- and high-confluence conditions. We believe this methodology will aid investigators in performing unbiased, nondestructive analysis of morphometric neuronal parameters.
Collapse
Affiliation(s)
- Young Jae Lee
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Cellular Neuroscience and Imaging Laboratory, Urbana, Illinois, United States
| | - Pati Cintora
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Cellular Neuroscience and Imaging Laboratory, Urbana, Illinois, United States
| | - Jyothi Arikkath
- University of Nebraska Medical Center, Munroe-Meyer Institute, Omaha, Nebraska, United States
| | - Olaoluwa Akinsola
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering, Quantitative Light Imaging Laboratory, Urbana, Illinois, United States
| | - Mikhail Kandel
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering, Quantitative Light Imaging Laboratory, Urbana, Illinois, United States
| | - Gabriel Popescu
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering, Quantitative Light Imaging Laboratory, Urbana, Illinois, United States
| | - Catherine Best-Popescu
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Cellular Neuroscience and Imaging Laboratory, Urbana, Illinois, United States
| |
Collapse
|
32
|
Kandel ME, Fernandes D, Taylor AM, Shakir H, Best-Popescu C, Popescu G. Three-dimensional intracellular transport in neuron bodies and neurites investigated by label-free dispersion-relation phase spectroscopy. Cytometry A 2017; 91:519-526. [PMID: 28295966 DOI: 10.1002/cyto.a.23081] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/15/2017] [Accepted: 02/20/2017] [Indexed: 01/13/2023]
Abstract
Due to the limitations of fluorescence imaging techniques, the study of intracellular cargo is typically restricted to two-dimensional analyses. To overcome low light levels and the risk of phototoxicity, we employ quantitative phase imaging, a family of full-field imaging techniques that measure the optical path length shift introduced by the specimen. Specifically, we use spatial light interference microscopy (SLIM) to study the transport of mass in whole tomographic volumes and show that a time-correlation technique, dispersion-relation phase spectroscopy (DPS), can be used to simultaneously assay the horizontal and vertical traffic of mass through a cell. To validate our method, we compare the traffic inside cell bodies and neuronal extensions, showing that the vertical transport of mass may prove a more sensitive and interesting metric than similar measurements limited to a 2D, horizontal plane. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Mikhail E Kandel
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Daniel Fernandes
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Alison M Taylor
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801.,Department of Biology, American University, Washington, District of Columbia, 20016
| | - Haadi Shakir
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Catherine Best-Popescu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Gabriel Popescu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| |
Collapse
|