1
|
Tomaino G, Pantaleoni C, D’Urzo A, Santambrogio C, Testa F, Ciprandi M, Cotugno D, Frascotti G, Vanoni M, Tortora P. An Efficient Method for Vault Nanoparticle Conjugation with Finely Adjustable Amounts of Antibodies and Small Molecules. Int J Mol Sci 2024; 25:6629. [PMID: 38928334 PMCID: PMC11203631 DOI: 10.3390/ijms25126629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Vaults are eukaryotic ribonucleoproteins consisting of 78 copies of the major vault protein (MVP), which assemble into a nanoparticle with an about 60 nm volume-based size, enclosing other proteins and RNAs. Regardless of their physiological role(s), vaults represent ideal, natural hollow nanoparticles, which are produced by the assembly of the sole MVP. Here, we have expressed in Komagataella phaffi and purified an MVP variant carrying a C-terminal Z peptide (vault-Z), which can tightly bind an antibody's Fc portion, in view of targeted delivery. Via surface plasmon resonance analysis, we could determine a 2.5 nM affinity to the monoclonal antibody Trastuzumab (Tz)/vault-Z 1:1 interaction. Then, we characterized the in-solution interaction via co-incubation, ultracentrifugation, and analysis of the pelleted proteins. This showed virtually irreversible binding up to an at least 10:1 Tz/vault-Z ratio. As a proof of concept, we labeled the Fc portion of Tz with a fluorophore and conjugated it with the nanoparticle, along with either Tz or Cetuximab, another monoclonal antibody. Thus, we could demonstrate antibody-dependent, selective uptake by the SKBR3 and MDA-MB 231 breast cancer cell lines. These investigations provide a novel, flexible technological platform that significantly extends vault-Z's applications, in that it can be stably conjugated with finely adjusted amounts of antibodies as well as of other molecules, such as fluorophores, cell-targeting peptides, or drugs, using the Fc portion as a scaffold.
Collapse
Affiliation(s)
- Giulia Tomaino
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (G.T.); (C.P.); (A.D.); (C.S.); (F.T.); (M.C.); (D.C.); (M.V.)
| | - Camilla Pantaleoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (G.T.); (C.P.); (A.D.); (C.S.); (F.T.); (M.C.); (D.C.); (M.V.)
| | - Annalisa D’Urzo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (G.T.); (C.P.); (A.D.); (C.S.); (F.T.); (M.C.); (D.C.); (M.V.)
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (G.T.); (C.P.); (A.D.); (C.S.); (F.T.); (M.C.); (D.C.); (M.V.)
| | - Filippo Testa
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (G.T.); (C.P.); (A.D.); (C.S.); (F.T.); (M.C.); (D.C.); (M.V.)
| | - Matilde Ciprandi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (G.T.); (C.P.); (A.D.); (C.S.); (F.T.); (M.C.); (D.C.); (M.V.)
| | - Davide Cotugno
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (G.T.); (C.P.); (A.D.); (C.S.); (F.T.); (M.C.); (D.C.); (M.V.)
| | - Gianni Frascotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (G.T.); (C.P.); (A.D.); (C.S.); (F.T.); (M.C.); (D.C.); (M.V.)
| | - Marco Vanoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (G.T.); (C.P.); (A.D.); (C.S.); (F.T.); (M.C.); (D.C.); (M.V.)
- ISBE-SYSBIO Centre for Systems Biology, 20126 Milan, Italy
| | - Paolo Tortora
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (G.T.); (C.P.); (A.D.); (C.S.); (F.T.); (M.C.); (D.C.); (M.V.)
| |
Collapse
|
2
|
González-Álamos M, Guerra P, Verdaguer N. Structure, Dynamics and Functional Implications of the Eukaryotic Vault Complex. Subcell Biochem 2024; 104:531-548. [PMID: 38963499 DOI: 10.1007/978-3-031-58843-3_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Vault ribonucleoprotein particles are naturally designed nanocages, widely found in the eukaryotic kingdom. Vaults consist of 78 copies of the major vault protein (MVP) that are organized in 2 symmetrical cup-shaped halves, of an approximate size of 70x40x40 nm, leaving a huge internal cavity which accommodates the vault poly(ADP-ribose) polymerase (vPARP), the telomerase-associated protein-1 (TEP1) and some small untranslated RNAs. Diverse hypotheses have been developed on possible functions of vaults, based on their unique capsular structure, their rapid movements and the distinct subcellular localization of the particles, implicating transport of cargo, but they are all pending confirmation. Vault particles also possess many attributes that can be exploited in nanobiotechnology, particularly in the creation of vehicles for the delivery of multiple molecular cargoes. Here we review what is known about the structure and dynamics of the vault complex and discuss a possible mechanism for the vault opening process. The recent findings in the characterization of the vaults in cells and in its natural microenvironment will be also discussed.
Collapse
Affiliation(s)
- María González-Álamos
- Structural and Molecular Biology Department, Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Pablo Guerra
- Cryo-Electron Microscopy Platform - IBMB CSIC, Joint Electron Microscopy Center at ALBA (JEMCA), Barcelona, Spain
| | - Núria Verdaguer
- Structural and Molecular Biology Department, Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain.
| |
Collapse
|
3
|
Werby SH, Brčić J, Chosy MB, Sun J, Rendell JT, Neville LF, Wender PA, Cegelski L. Detection of intact vancomycin-arginine as the active antibacterial conjugate in E. coli by whole-cell solid-state NMR. RSC Med Chem 2023; 14:1192-1198. [PMID: 37360389 PMCID: PMC10285746 DOI: 10.1039/d3md00173c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/13/2023] [Indexed: 06/28/2023] Open
Abstract
The introduction of new and improved antibacterial agents based on facile synthetic modifications of existing antibiotics represents a promising strategy to deliver urgently needed antibacterial candidates to treat multi-drug resistant bacterial infections. Using this strategy, vancomycin was transformed into a highly active agent against antibiotic-resistant Gram-negative organisms in vitro and in vivo through the addition of a single arginine to yield vancomycin-arginine (V-R). Here, we report detection of the accumulation of V-R in E. coli by whole-cell solid-state NMR using 15N-labeled V-R. 15N CPMAS NMR revealed that the conjugate remained fully amidated without loss of arginine, demonstrating that intact V-R represents the active antibacterial agent. Furthermore, C{N}REDOR NMR in whole cells with all carbons at natural abundance 13C levels exhibited the sensitivity and selectivity to detect the directly bonded 13C-15N pairs of V-R within E. coli cells. Thus, we also present an effective methodology to directly detect and evaluate active drug agents and their accumulation within bacteria without the need for potentially perturbative cell lysis and analysis protocols.
Collapse
Affiliation(s)
- Sabrina H Werby
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | - Jasna Brčić
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | - Madeline B Chosy
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | - Jiuzhi Sun
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | | | | | - Paul A Wender
- Department of Chemistry, Stanford University Stanford CA 94305 USA
- Department of Chemical and Systems Biology, Stanford University Stanford CA 94305 USA
| | - Lynette Cegelski
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| |
Collapse
|
4
|
van der Ven AM, Gyamfi H, Suttisansanee U, Ahmad MS, Su Z, Taylor RM, Poole A, Chiorean S, Daub E, Urquhart T, Honek JF. Molecular Engineering of E. coli Bacterioferritin: A Versatile Nanodimensional Protein Cage. Molecules 2023; 28:4663. [PMID: 37375226 DOI: 10.3390/molecules28124663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Currently, intense interest is focused on the discovery and application of new multisubunit cage proteins and spherical virus capsids to the fields of bionanotechnology, drug delivery, and diagnostic imaging as their internal cavities can serve as hosts for fluorophores or bioactive molecular cargo. Bacterioferritin is unusual in the ferritin protein superfamily of iron-storage cage proteins in that it contains twelve heme cofactors and is homomeric. The goal of the present study is to expand the capabilities of ferritins by developing new approaches to molecular cargo encapsulation employing bacterioferritin. Two strategies were explored to control the encapsulation of a diverse range of molecular guests compared to random entrapment, a predominant strategy employed in this area. The first was the inclusion of histidine-tag peptide fusion sequences within the internal cavity of bacterioferritin. This approach allowed for the successful and controlled encapsulation of a fluorescent dye, a protein (fluorescently labeled streptavidin), or a 5 nm gold nanoparticle. The second strategy, termed the heme-dependent cassette strategy, involved the substitution of the native heme with heme analogs attached to (i) fluorescent dyes or (ii) nickel-nitrilotriacetate (NTA) groups (which allowed for controllable encapsulation of a histidine-tagged green fluorescent protein). An in silico docking approach identified several small molecules able to replace the heme and capable of controlling the quaternary structure of the protein. A transglutaminase-based chemoenzymatic approach to surface modification of this cage protein was also accomplished, allowing for future nanoparticle targeting. This research presents novel strategies to control a diverse set of molecular encapsulations and adds a further level of sophistication to internal protein cavity engineering.
Collapse
Affiliation(s)
- Anton M van der Ven
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Hawa Gyamfi
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | | - Muhammad S Ahmad
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Zhengding Su
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Robert M Taylor
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Amanda Poole
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Sorina Chiorean
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Elisabeth Daub
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Taylor Urquhart
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - John F Honek
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
5
|
Addressing Critical Issues Related to Storage and Stability of the Vault Nanoparticle Expressed and Purified from Komagataella phaffi. Int J Mol Sci 2023; 24:ijms24044214. [PMID: 36835627 PMCID: PMC9959619 DOI: 10.3390/ijms24044214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The vault nanoparticle is a eukaryotic assembly consisting of 78 copies of the 99-kDa major vault protein. They generate two cup-shaped symmetrical halves, which in vivo enclose protein and RNA molecules. Overall, this assembly is mainly involved in pro-survival and cytoprotective functions. It also holds a remarkable biotechnological potential for drug/gene delivery, thanks to its huge internal cavity and the absence of toxicity/immunogenicity. The available purification protocols are complex, partly because they use higher eukaryotes as expression systems. Here, we report a simplified procedure that combines human vault expression in the yeast Komagataella phaffii, as described in a recent report, and a purification process we have developed. This consists of RNase pretreatment followed by size-exclusion chromatography, which is far simpler than any other reported to date. Protein identity and purity was confirmed by SDS-PAGE, Western blot and transmission electron microscopy. We also found that the protein displayed a significant propensity to aggregate. We thus investigated this phenomenon and the related structural changes by Fourier-transform spectroscopy and dynamic light scattering, which led us to determine the most suitable storage conditions. In particular, the addition of either trehalose or Tween-20 ensured the best preservation of the protein in native, soluble form.
Collapse
|
6
|
Aljabali AAA, Rezigue M, Alsharedeh RH, Obeid MA, Mishra V, Serrano-Aroca Á, Tambuwala MM. Protein-Based Drug Delivery Nanomedicine Platforms: Recent Developments. Pharm Nanotechnol 2022; 10:257-267. [PMID: 35980061 DOI: 10.2174/2211738510666220817120307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/08/2022] [Accepted: 04/26/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Naturally occurring protein cages, both viral and non-viral assemblies, have been developed for various pharmaceutical applications. Protein cages are ideal platforms as they are compatible, biodegradable, bioavailable, and amenable to chemical and genetic modification to impart new functionalities for selective targeting or tracking of proteins. The ferritin/ apoferritin protein cage, plant-derived viral capsids, the small Heat shock protein, albumin, soy and whey protein, collagen, and gelatin have all been exploited and characterized as drugdelivery vehicles. Protein cages come in many shapes and types with unique features such as unmatched uniformity, size, and conjugations. OBJECTIVES The recent strategic development of drug delivery will be covered in this review, emphasizing polymer-based, specifically protein-based, drug delivery nanomedicine platforms. The potential and drawbacks of each kind of protein-based drug-delivery system will also be highlighted. METHODS Research examining the usability of nanomaterials in the pharmaceutical and medical sectors were identified by employing bibliographic databases and web search engines. RESULTS Rings, tubes, and cages are unique protein structures that occur in the biological environment and might serve as building blocks for nanomachines. Furthermore, numerous virions can undergo reversible structural conformational changes that open or close gated pores, allowing customizable accessibility to their core and ideal delivery vehicles. CONCLUSION Protein cages' biocompatibility and their ability to be precisely engineered indicate they have significant potential in drug delivery and intracellular administration.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163 - P.O. BOX 566, Jordan
| | - Meriem Rezigue
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163 - P.O. BOX 566, Jordan
| | - Rawan H Alsharedeh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163 - P.O. BOX 566, Jordan
| | - Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163 - P.O. BOX 566, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, 46001 Valencia, Spain
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, England, UK
| |
Collapse
|
7
|
Li L, Chen G. Precise Assembly of Proteins and Carbohydrates for Next-Generation Biomaterials. J Am Chem Soc 2022; 144:16232-16251. [PMID: 36044681 DOI: 10.1021/jacs.2c04418] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The complexity and diversity of biomacromolecules make them a unique class of building blocks for generating precise assemblies. They are particularly available to a new generation of biomaterials integrated with living systems due to their intrinsic properties such as accurate recognition, self-organization, and adaptability. Therefore, many excellent approaches have been developed, leading to a variety of quite practical outcomes. Here, we review recent advances in the fabrication and application of artificially precise assemblies by employing proteins and carbohydrates as building blocks, followed by our perspectives on some of new challenges, goals, and opportunities for the future research directions in this field.
Collapse
Affiliation(s)
- Long Li
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China.,Multiscale Research Institute for Complex Systems, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
8
|
Chen L, Hong W, Ren W, Xu T, Qian Z, He Z. Recent progress in targeted delivery vectors based on biomimetic nanoparticles. Signal Transduct Target Ther 2021; 6:225. [PMID: 34099630 PMCID: PMC8182741 DOI: 10.1038/s41392-021-00631-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 02/05/2023] Open
Abstract
Over the past decades, great interest has been given to biomimetic nanoparticles (BNPs) since the rise of targeted drug delivery systems and biomimetic nanotechnology. Biological vectors including cell membranes, extracellular vesicles (EVs), and viruses are considered promising candidates for targeted delivery owing to their biocompatibility and biodegradability. BNPs, the integration of biological vectors and functional agents, are anticipated to load cargos or camouflage synthetic nanoparticles to achieve targeted delivery. Despite their excellent intrinsic properties, natural vectors are deliberately modified to endow multiple functions such as good permeability, improved loading capability, and high specificity. Through structural modification and transformation of the vectors, they are pervasively utilized as more effective vehicles that can deliver contrast agents, chemotherapy drugs, nucleic acids, and genes to target sites for refractory disease therapy. This review summarizes recent advances in targeted delivery vectors based on cell membranes, EVs, and viruses, highlighting the potential applications of BNPs in the fields of biomedical imaging and therapy industry, as well as discussing the possibility of clinical translation and exploitation trend of these BNPs.
Collapse
Affiliation(s)
- Li Chen
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weiqi Hong
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenyan Ren
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Xu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyong Qian
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Pazo M, Salluce G, Lostalé-Seijo I, Juanes M, Gonzalez F, Garcia-Fandiño R, Montenegro J. Short oligoalanine helical peptides for supramolecular nanopore assembly and protein cytosolic delivery. RSC Chem Biol 2021; 2:503-512. [PMID: 34458796 PMCID: PMC8341679 DOI: 10.1039/d0cb00103a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/07/2020] [Indexed: 01/09/2023] Open
Abstract
In this work we report a rational design strategy for the identification of new peptide prototypes for the non-disruptive supramolecular permeation of membranes and the transport of different macromolecular giant cargos. The approach targets a maximal enhancement of helicity in the presence of membranes with sequences bearing the minimal number of cationic and hydrophobic moieties. The here reported folding enhancement in membranes allowed the selective non-lytic translocation of different macromolecular cargos including giant proteins. The transport of different high molecular weight polymers and functional proteins was demonstrated in vesicles and in cells with excellent efficiency and optimal viability. As a proof of concept, functional monoclonal antibodies were transported for the first time into different cell lines and cornea tissues by exploiting the helical control of a short peptide sequence. This work introduces a rational design strategy that can be employed to minimize the number of charges and hydrophobic residues of short peptide carriers to achieve non-destructive transient membrane permeation and transport of different macromolecules. The helical enhancement of a short oligoalanine peptide scaffold in anionic membranes triggered the supramolecular assembly of a nanopore, which allowed the transport and release of proteins in the cytosol of cells and tissues.![]()
Collapse
Affiliation(s)
- Marta Pazo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Giulia Salluce
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Irene Lostalé-Seijo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Marisa Juanes
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Francisco Gonzalez
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain.,Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS) and Service of Ophthalmology, Complejo Hospitalario Universitario de Santiago 15706 Santiago de Compostela Spain
| | - Rebeca Garcia-Fandiño
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
10
|
Frascotti G, Galbiati E, Mazzucchelli M, Pozzi M, Salvioni L, Vertemara J, Tortora P. The Vault Nanoparticle: A Gigantic Ribonucleoprotein Assembly Involved in Diverse Physiological and Pathological Phenomena and an Ideal Nanovector for Drug Delivery and Therapy. Cancers (Basel) 2021; 13:cancers13040707. [PMID: 33572350 PMCID: PMC7916137 DOI: 10.3390/cancers13040707] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In recent decades, a molecular complex referred to as vault nanoparticle has attracted much attention by the scientific community, due to its unique properties. At the molecular scale, it is a huge assembly consisting of 78 97-kDa polypeptide chains enclosing an internal cavity, wherein enzymes involved in DNA integrity maintenance and some small noncoding RNAs are accommodated. Basically, two reasons justify this interest. On the one hand, this complex represents an ideal tool for the targeted delivery of drugs, provided it is suitably engineered, either chemically or genetically; on the other hand, it has been shown to be involved in several cellular pathways and mechanisms that most often result in multidrug resistance. It is therefore expected that a better understanding of the physiological roles of this ribonucleoproteic complex may help develop new therapeutic strategies capable of coping with cancer progression. Here, we provide a comprehensive review of the current knowledge. Abstract The vault nanoparticle is a eukaryotic ribonucleoprotein complex consisting of 78 individual 97 kDa-“major vault protein” (MVP) molecules that form two symmetrical, cup-shaped, hollow halves. It has a huge size (72.5 × 41 × 41 nm) and an internal cavity, wherein the vault poly(ADP-ribose) polymerase (vPARP), telomerase-associated protein-1 (TEP1), and some small untranslated RNAs are accommodated. Plenty of literature reports on the biological role(s) of this nanocomplex, as well as its involvement in diseases, mostly oncological ones. Nevertheless, much has still to be understood as to how vault participates in normal and pathological mechanisms. In this comprehensive review, current understanding of its biological roles is discussed. By different mechanisms, vault’s individual components are involved in major cellular phenomena, which result in protection against cellular stresses, such as DNA-damaging agents, irradiation, hypoxia, hyperosmotic, and oxidative conditions. These diverse cellular functions are accomplished by different mechanisms, mainly gene expression reprogramming, activation of proliferative/prosurvival signaling pathways, export from the nucleus of DNA-damaging drugs, and import of specific proteins. The cellular functions of this nanocomplex may also result in the onset of pathological conditions, mainly (but not exclusively) tumor proliferation and multidrug resistance. The current understanding of its biological roles in physiological and pathological processes should also provide new hints to extend the scope of its exploitation as a nanocarrier for drug delivery.
Collapse
|
11
|
Demchuk AM, Patel TR. The biomedical and bioengineering potential of protein nanocompartments. Biotechnol Adv 2020; 41:107547. [PMID: 32294494 DOI: 10.1016/j.biotechadv.2020.107547] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 03/21/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022]
Abstract
Protein nanocompartments (PNCs) are self-assembling biological nanocages that can be harnessed as platforms for a wide range of nanobiotechnology applications. The most widely studied examples of PNCs include virus-like particles, bacterial microcompartments, encapsulin nanocompartments, enzyme-derived nanocages (such as lumazine synthase and the E2 component of the pyruvate dehydrogenase complex), ferritins and ferritin homologues, small heat shock proteins, and vault ribonucleoproteins. Structural PNC shell proteins are stable, biocompatible, and tolerant of both interior and exterior chemical or genetic functionalization for use as vaccines, therapeutic delivery vehicles, medical imaging aids, bioreactors, biological control agents, emulsion stabilizers, or scaffolds for biomimetic materials synthesis. This review provides an overview of the recent biomedical and bioengineering advances achieved with PNCs with a particular focus on recombinant PNC derivatives.
Collapse
Affiliation(s)
- Aubrey M Demchuk
- Department of Neuroscience, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, Canada.
| | - Trushar R Patel
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming, School of Medicine, University of Calgary, 2500 University Dr. N.W., Calgary, AB T2N 1N4, Canada; Li Ka Shing Institute of Virology and Discovery Lab, Faculty of Medicine & Dentistry, University of Alberta, 6-010 Katz Center for Health Research, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
12
|
Lothe AG, Kalra SS, Wang M, Mack EE, Walecka-Hutchison C, Kickhoefer VA, Rome LH, Mahendra S. Vault packaged enzyme mediated degradation of amino-aromatic energetic compounds. CHEMOSPHERE 2020; 242:125117. [PMID: 31655399 DOI: 10.1016/j.chemosphere.2019.125117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/07/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
Amino-aromatic compounds, 2-amino-4-nitrotoluene (ANT), and 2,4-diaminotoluene (DAT) are carcinogens and environmentally persistent pollutants. In this study, we investigated their degradation by natural manganese peroxidase (nMnP) derived from Phanerochaete chrysosporium and recombinant manganese peroxidase packaged in vaults (vMnP). Encapsulation of manganese peroxidase (MnP) in ribonucleoprotein nanoparticle cages, called vaults, was achieved by creating recombinant vaults in yeast Pichia pastoris. Vault packaging increased the stability of MnP by locally sequestering multiple copies of the enzyme. Within 96 h, both vMnP and nMnP catalyzed over 72% removal of ANT in-vitro, which indicates that vault packaging did not limit substrate diffusion. It was observed that vMnP was more efficient than nMnP and P. chrysosporium for the catalysis of target contaminants. Only 57% of ANT was degraded by P. chrysosporium even when MnP activity reached about 480 U L-1 in cultures. At 1.5 U L-1 initial activity, vMnP achieved 38% of ANT and 51% of DAT degradation, whereas even 2.7 times higher activity of nMnP showed insignificant biodegradation of both compounds. These results imply that due to protection by vault cages, vMnP has lower inactivation rates. Thus, it works effectively at lower dosage for a longer duration compared to nMnP without requiring frequent replenishment. Collectively, these results indicate that fungal enzymes packaged in vault nanoparticles are more stable and active, and they would be effective in biodegradation of energetic compounds in industrial processes, waste treatment, and contaminated environments.
Collapse
Affiliation(s)
- Anjali G Lothe
- Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Shashank Singh Kalra
- Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Meng Wang
- Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Elizabeth Erin Mack
- Corteva Environmental Remediation, Corteva Agriscience, Newark, DE, 19711, United States
| | - Claudia Walecka-Hutchison
- Environmental Remediation and Restoration, The Dow Chemical Company, Midland, MI, 48674, United States
| | | | - Leonard H Rome
- Biological Chemistry, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Shaily Mahendra
- Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States.
| |
Collapse
|
13
|
Zhuang J, Holay M, Park JH, Fang RH, Zhang J, Zhang L. Nanoparticle Delivery of Immunostimulatory Agents for Cancer Immunotherapy. Theranostics 2019; 9:7826-7848. [PMID: 31695803 PMCID: PMC6831474 DOI: 10.7150/thno.37216] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
Immunostimulatory agents, including adjuvants, cytokines, and monoclonal antibodies, hold great potential for the treatment of cancer. However, their direct administration often results in suboptimal pharmacokinetics, vulnerability to biodegradation, and compromised targeting. More recently, encapsulation into biocompatible nanoparticulate carriers has become an emerging strategy for improving the delivery of these immunotherapeutic agents. Such approaches can address many of the challenges facing current treatment modalities by endowing additional protection and significantly elevating the bioavailability of the encapsulated payloads. To further improve the delivery efficiency and subsequent immune responses associated with current nanoscale approaches, biomimetic modifications and materials have been employed to create delivery platforms with enhanced functionalities. By leveraging nature-inspired design principles, these biomimetic nanodelivery vehicles have the potential to alter the current clinical landscape of cancer immunotherapy.
Collapse
Affiliation(s)
- Jia Zhuang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Maya Holay
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Joon Ho Park
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H. Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jie Zhang
- Cello Therapeutics, Inc., San Diego, CA 92121, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
14
|
Fulcher JA, Tamshen K, Wollenberg AL, Kickhoefer VA, Mrazek J, Elliott J, Ibarrondo FJ, Anton PA, Rome LH, Maynard HD, Deming T, Yang OO. Human Vault Nanoparticle Targeted Delivery of Antiretroviral Drugs to Inhibit Human Immunodeficiency Virus Type 1 Infection. Bioconjug Chem 2019; 30:2216-2227. [PMID: 31265254 DOI: 10.1021/acs.bioconjchem.9b00451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
"Vaults" are ubiquitously expressed endogenous ribonucleoprotein nanoparticles with potential utility for targeted drug delivery. Here, we show that recombinant human vault nanoparticles are readily engulfed by certain key human peripheral blood mononuclear cells (PBMC), predominately dendritic cells, monocytes/macrophages, and activated T cells. As these cell types are the primary targets for human immunodeficiency virus type 1 (HIV-1) infection, we examined the utility of recombinant human vaults for targeted delivery of antiretroviral drugs. We chemically modified three different antiretroviral drugs, zidovudine, tenofovir, and elvitegravir, for direct conjugation to vaults. Tested in infection assays, drug-conjugated vaults inhibited HIV-1 infection of PBMC with equivalent activity to free drugs, indicating vault delivery and drug release in the cytoplasm of HIV-1-susceptible cells. The ability to deliver functional drugs via vault nanoparticle conjugates suggests their potential utility for targeted drug delivery against HIV-1.
Collapse
Affiliation(s)
- Jennifer A Fulcher
- Division of Infectious Diseases, Department of Medicine , David Geffen School of Medicine at UCLA , Los Angeles , California , United States
| | - Kyle Tamshen
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California , United States
| | - Alexander L Wollenberg
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California , United States
| | - Valerie A Kickhoefer
- Department of Biological Chemistry , David Geffen School of Medicine at UCLA , Los Angeles , California , United States
| | - Jan Mrazek
- Division of Infectious Diseases, Department of Medicine , David Geffen School of Medicine at UCLA , Los Angeles , California , United States
| | - Julie Elliott
- Vatche and Tamar Manoukian Division of Digestive Diseases , David Geffen School of Medicine at UCLA , Los Angeles , California , United States
| | - F Javier Ibarrondo
- Division of Infectious Diseases, Department of Medicine , David Geffen School of Medicine at UCLA , Los Angeles , California , United States
| | - Peter A Anton
- Vatche and Tamar Manoukian Division of Digestive Diseases , David Geffen School of Medicine at UCLA , Los Angeles , California , United States.,AIDS Healthcare Foundation , Los Angeles , California , United States
| | - Leonard H Rome
- Department of Biological Chemistry , David Geffen School of Medicine at UCLA , Los Angeles , California , United States.,California NanoSystems Institute , University of California , Los Angeles , California , United States
| | - Heather D Maynard
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California , United States.,California NanoSystems Institute , University of California , Los Angeles , California , United States.,Department of Bioengineering , University of California , Los Angeles , California , United States
| | - Timothy Deming
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California , United States.,California NanoSystems Institute , University of California , Los Angeles , California , United States.,Department of Bioengineering , University of California , Los Angeles , California , United States
| | - Otto O Yang
- Division of Infectious Diseases, Department of Medicine , David Geffen School of Medicine at UCLA , Los Angeles , California , United States.,AIDS Healthcare Foundation , Los Angeles , California , United States
| |
Collapse
|
15
|
Muñoz-Juan A, Carreño A, Mendoza R, Corchero JL. Latest Advances in the Development of Eukaryotic Vaults as Targeted Drug Delivery Systems. Pharmaceutics 2019; 11:E300. [PMID: 31261673 PMCID: PMC6680493 DOI: 10.3390/pharmaceutics11070300] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 12/04/2022] Open
Abstract
The use of smart drug delivery systems (DDSs) is one of the most promising approaches to overcome some of the drawbacks of drug-based therapies, such as improper biodistribution and lack of specific targeting. Some of the most attractive candidates as DDSs are naturally occurring, self-assembling protein nanoparticles, such as viruses, virus-like particles, ferritin cages, bacterial microcompartments, or eukaryotic vaults. Vaults are large ribonucleoprotein nanoparticles present in almost all eukaryotic cells. Expression in different cell factories of recombinant versions of the "major vault protein" (MVP) results in the production of recombinant vaults indistinguishable from native counterparts. Such recombinant vaults can encapsulate virtually any cargo protein, and they can be specifically targeted by engineering the C-terminus of MVP monomer. These properties, together with nanometric size, a lumen large enough to accommodate cargo molecules, biodegradability, biocompatibility and no immunogenicity, has raised the interest in vaults as smart DDSs. In this work we provide an overview of eukaryotic vaults as a new, self-assembling protein-based DDS, focusing in the latest advances in the production and purification of this platform, its application in nanomedicine, and the current preclinical and clinical assays going on based on this nanovehicle.
Collapse
Affiliation(s)
- Amanda Muñoz-Juan
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Aida Carreño
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Rosa Mendoza
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - José L Corchero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain.
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
16
|
Gallego I, Rioboo A, Reina JJ, Díaz B, Canales Á, Cañada FJ, Guerra‐Varela J, Sánchez L, Montenegro J. Glycosylated Cell‐Penetrating Peptides (GCPPs). Chembiochem 2019; 20:1400-1409. [DOI: 10.1002/cbic.201800720] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/22/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Iván Gallego
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela Campus Vida 15782 Santiago de Compostela Spain
| | - Alicia Rioboo
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela Campus Vida 15782 Santiago de Compostela Spain
| | - José J. Reina
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela Campus Vida 15782 Santiago de Compostela Spain
| | - Bernardo Díaz
- Centro de Investigaciones Biológicas (CIB) del CSIC C/Ramiro de Maetzu 9, CP 28040 Madrid Spain
- Departamento de Biología Estructural y QuímicaFac. Ciencias Químicas Univ. Complutense de Madrid Avd/ Complutense s/n, CP Madrid Spain
| | - Ángeles Canales
- Departamento de Biología Estructural y QuímicaFac. Ciencias Químicas Univ. Complutense de Madrid Avd/ Complutense s/n, CP Madrid Spain
| | - F. Javier Cañada
- Centro de Investigaciones Biológicas (CIB) del CSIC C/Ramiro de Maetzu 9, CP 28040 Madrid Spain
| | - Jorge Guerra‐Varela
- Departamento de Zooloxía, Xenética e Antropoloxía FísicaFacultade de Veterinaria Universidade de Santiago de Compostela 27002 Lugo Spain
| | - Laura Sánchez
- Departamento de Zooloxía, Xenética e Antropoloxía FísicaFacultade de Veterinaria Universidade de Santiago de Compostela 27002 Lugo Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela Campus Vida 15782 Santiago de Compostela Spain
| |
Collapse
|
17
|
Fadeel B. Hide and Seek: Nanomaterial Interactions With the Immune System. Front Immunol 2019; 10:133. [PMID: 30774634 PMCID: PMC6367956 DOI: 10.3389/fimmu.2019.00133] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/16/2019] [Indexed: 01/18/2023] Open
Abstract
Engineered nanomaterials hold promise for a wide range of applications in medicine. However, safe use of nanomaterials requires that interactions with biological systems, not least with the immune system, are understood. Do nanomaterials elicit novel or unexpected effects, or is it possible to predict immune responses to nanomaterials based on how the immune system handles pathogens? How does the bio-corona of adsorbed biomolecules influence subsequent immune interactions of nanomaterials? How does the grafting of polymers such as poly(ethylene glycol) onto nanomaterial surfaces impact on these interactions? Can ancient immune evasion or “stealth” strategies of pathogens inform the design of nanomaterials for biomedical applications? Can nanoparticles co-opt immune cells to target diseased tissues? The answers to these questions may prove useful for the development of nanomedicines.
Collapse
Affiliation(s)
- Bengt Fadeel
- Nanosafety and Nanomedicine Laboratory, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Neek M, Kim TI, Wang SW. Protein-based nanoparticles in cancer vaccine development. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 15:164-174. [PMID: 30291897 PMCID: PMC6289732 DOI: 10.1016/j.nano.2018.09.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/17/2018] [Accepted: 09/24/2018] [Indexed: 01/09/2023]
Abstract
Peptide and protein-based cancer vaccines usually fail to elicit efficient immune responses against tumors. However, delivery of these peptides and proteins as components within caged protein nanoparticles has shown promising improvements in vaccine efficacy. Advantages of protein nanoparticles over other vaccine platforms include their highly organized structures and symmetry, biodegradability, ability to be specifically functionalized at three different interfaces (inside and outside the protein cage, and between subunits in macromolecular assembly), and ideal size for vaccine delivery. In this review, we discuss different classes of virus-like particles and caged protein nanoparticles that have been used as vehicles to transport and increase the interaction of cancer vaccine components with the immune system. We review the effectiveness of these protein nanoparticles towards inducing and elevating specific immune responses, which are needed to overcome the low immunogenicity of the tumor microenvironment.
Collapse
Affiliation(s)
- Medea Neek
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, USA
| | - Tae Il Kim
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Szu-Wen Wang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, USA; Department of Biomedical Engineering, University of California, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA.
| |
Collapse
|
19
|
Antonoplis A, Zang X, Huttner MA, Chong KKL, Lee YB, Co JY, Amieva MR, Kline KA, Wender PA, Cegelski L. A Dual-Function Antibiotic-Transporter Conjugate Exhibits Superior Activity in Sterilizing MRSA Biofilms and Killing Persister Cells. J Am Chem Soc 2018; 140:16140-16151. [PMID: 30388366 PMCID: PMC6430714 DOI: 10.1021/jacs.8b08711] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
New strategies are urgently needed to target MRSA, a major global health problem and the leading cause of mortality from antibiotic-resistant infections in many countries. Here, we report a general approach to this problem exemplified by the design and synthesis of a vancomycin-d-octaarginine conjugate (V-r8) and investigation of its efficacy in addressing antibiotic-insensitive bacterial populations. V-r8 eradicated MRSA biofilm and persister cells in vitro, outperforming vancomycin by orders of magnitude. It also eliminated 97% of biofilm-associated MRSA in a murine wound infection model and displayed no acute dermal toxicity. This new dual-function conjugate displays enhanced cellular accumulation and membrane perturbation as compared to vancomycin. Based on its rapid and potent activity against biofilm and persister cells, V-r8 is a promising agent against clinical MRSA infections.
Collapse
Affiliation(s)
- Alexandra Antonoplis
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Xiaoyu Zang
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Melanie A. Huttner
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Kelvin K. L. Chong
- Singapore Centre for Environmental Life Science Engineering (SCELSE), School of Biological Sciences, Nanyang Technological University, Singapore 637551
- Nanyang Technological University Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore 637553
| | - Yu B. Lee
- Singapore Centre for Environmental Life Science Engineering (SCELSE), School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Julia Y. Co
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Stanford, California 94305, United States
| | - Manuel R. Amieva
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Stanford, California 94305, United States
- Department of Microbiology & Immunology, Stanford University, Stanford, California 94305, United States
| | - Kimberly A. Kline
- Singapore Centre for Environmental Life Science Engineering (SCELSE), School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Paul A. Wender
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
20
|
Méndez-Ardoy A, Lostalé-Seijo I, Montenegro J. Where in the Cell Is our Cargo? Methods Currently Used To Study Intracellular Cytosolic Localisation. Chembiochem 2018; 20:488-498. [PMID: 30178574 DOI: 10.1002/cbic.201800390] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Indexed: 12/14/2022]
Abstract
The internalisation and delivery of active substances into cells is a field of growing interest for chemical biology and therapeutics. As we move from small-molecule-based drugs towards bigger cargos, such as antibodies, enzymes, nucleases or nucleic acids, the development of efficient delivery systems becomes critical for their practical application. Different strategies and synthetic carriers have been developed; these include cationic lipids, gold nanoparticles, polymers, cell-penetrating peptides (CPPs), protein surface modification etc. However, all of these methodologies still present limitations relating to the precise targeting of the different intracellular compartments and, in particular, difficulties in access to the cellular cytosol. Additionally, the precise quantification of the cellular uptake of a compound is not enough to demonstrate delivery and/or functional activity. Therefore, methods to determine cellular distributions of cargos and carriers are of critical importance for identifying the barriers that are blocking the activity. Herein we survey the different techniques that can currently be used to track and to monitor the subcellular localisation of the synthetic compounds that we deliver inside cells.
Collapse
Affiliation(s)
- Alejandro Méndez-Ardoy
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Irene Lostalé-Seijo
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
21
|
Galbiati E, Avvakumova S, La Rocca A, Pozzi M, Messali S, Magnaghi P, Colombo M, Prosperi D, Tortora P. A fast and straightforward procedure for vault nanoparticle purification and the characterization of its endocytic uptake. Biochim Biophys Acta Gen Subj 2018; 1862:2254-2260. [PMID: 30036602 DOI: 10.1016/j.bbagen.2018.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/12/2018] [Accepted: 07/17/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND Vaults are eukaryotic ribonucleoprotein particles composed of up 78 copies of the 97 kDa major vault protein that assembles into a barrel-like, "nanocapsule" enclosing poly(ADP-ribose) polymerase, telomerase-associated protein-1 and small untranslated RNAs. Overall, the molecular mass of vault particles amounts to about 13 MDa. Although it has been implicated in several cellular functions, its physiological roles remain poorly understood. Also, the possibility to exploit it as a nanovector for drug delivery is currently being explored in several laboratories. METHODS Using the baculovirus expression system, vaults were expressed and purified by a dialysis step using a 1 MDa molecular weight cutoff membrane and a subsequent size exclusion chromatography. Purity was assessed by SDS-PAGE, transmission electron microscopy and dynamic light scattering. Particle's endocytic uptake was monitored by flow cytometry and confocal microscopy. RESULTS The purification protocol here reported is far simpler and faster than those currently available and lead to the production of authentic vault. We then demonstrated its clathrin-mediated endocytic uptake by normal fibroblast and glioblastoma, but not carcinoma cell lines. In contrast, no significant caveolin-mediated endocytosis was detected. CONCLUSIONS These results provide the first evidence for an intrinsic propensity of the vault complex to undergo endocytic uptake cultured eukaryotic cells. GENERAL SIGNIFICANCE The newly developed purification procedure will greatly facilitate any investigation based on the use of the vault particle as a natural nanocarrier. Its clathrin-mediated endocytic uptake observed in normal and in some tumor cell lines sheds light on its physiological role.
Collapse
Affiliation(s)
- Elisabetta Galbiati
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, I-20126 Milano, Italy
| | - Svetlana Avvakumova
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, I-20126 Milano, Italy
| | - Alessandra La Rocca
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, I-20126 Milano, Italy
| | - Maria Pozzi
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, I-20126 Milano, Italy
| | - Silvia Messali
- Oncology, Nerviano Medical Sciences, Viale Pasteur 10, Milano, 20014, Nerviano, Italy
| | - Paola Magnaghi
- Oncology, Nerviano Medical Sciences, Viale Pasteur 10, Milano, 20014, Nerviano, Italy
| | - Miriam Colombo
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, I-20126 Milano, Italy
| | - Davide Prosperi
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, I-20126 Milano, Italy
| | - Paolo Tortora
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, I-20126 Milano, Italy.
| |
Collapse
|
22
|
Azuma Y, Edwardson TGW, Hilvert D. Tailoring lumazine synthase assemblies for bionanotechnology. Chem Soc Rev 2018; 47:3543-3557. [DOI: 10.1039/c8cs00154e] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The cage-forming protein lumazine synthase is readily modified, evolved and assembled with other components.
Collapse
Affiliation(s)
- Yusuke Azuma
- Laboratory of Organic Chemistry
- ETH Zurich
- 8093 Zurich
- Switzerland
| | | | - Donald Hilvert
- Laboratory of Organic Chemistry
- ETH Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
23
|
Unzueta U, Serna N, Sánchez-García L, Roldán M, Sánchez-Chardi A, Mangues R, Villaverde A, Vázquez E. Engineering multifunctional protein nanoparticles by in vitro disassembling and reassembling of heterologous building blocks. NANOTECHNOLOGY 2017; 28:505102. [PMID: 29072576 DOI: 10.1088/1361-6528/aa963e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The engineering of protein self-assembling at the nanoscale allows the generation of functional and biocompatible materials, which can be produced by easy biological fabrication. The combination of cationic and histidine-rich stretches in fusion proteins promotes oligomerization as stable protein-only regular nanoparticles that are composed by a moderate number of building blocks. Among other applications, these materials are highly appealing as tools in targeted drug delivery once empowered with peptidic ligands of cell surface receptors. In this context, we have dissected here this simple technological platform regarding the controlled disassembling and reassembling of the composing building blocks. By applying high salt and imidazole in combination, nanoparticles are disassembled in a process that is fully reversible upon removal of the disrupting agents. By taking this approach, we accomplish here the in vitro generation of hybrid nanoparticles formed by heterologous building blocks. This fact demonstrates the capability to generate multifunctional and/or multiparatopic or multispecific materials usable in nanomedical applications.
Collapse
Affiliation(s)
- Ugutz Unzueta
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, E-08025 Barcelona, Spain. CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | | | | | | | | | | | | | | |
Collapse
|
24
|
A simple in vitro tumor chemosensitivity assay based on cell penetrating peptide tagged luciferase. PLoS One 2017; 12:e0186184. [PMID: 29125836 PMCID: PMC5681261 DOI: 10.1371/journal.pone.0186184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/26/2017] [Indexed: 12/11/2022] Open
Abstract
The analysis of intracellular ATP can reveal the response of cells to different treatments and is important for individualized medicine. In the present study, we developed a cell penetrating peptides (CPPs) tagged luciferase (TAT-LUC) for tumor chemosensitivity assay. The activity of recombinant TAT-LUC was evaluated using ATP standard solution and tumor cells. This recombinant TAT-LUC was then used for the analysis of sensitivity index (SI) of four strains of tumor cells. The results showed that TAT-LUC could detect less than 10 nM extracellular ATP with a strong correlation between the luminescence intensity and the ATP content (R2 = 0.994). Without cell lysis, the detection limit for intracellular ATP analysis was 40 tumor cells. Furthermore, chemosensitivity of four strains of tumor cells (Skov-3/DDP, A549/DDP, MDA-MB-231, Huh-7) was determined by this assay successfully. The cell penetration ability of TAT-LUC enables the assay not only to reflect drug resistance of tumor cells real-timely but also to minimize the test time, which can be a valuable aid for personalized cancer chemotherapy.
Collapse
|