1
|
Moon H, Park B, Chou N, Park KS, Lee S, Kim S. Soft-Actuated Cuff Electrodes with Minimal Contact for Bidirectional Peripheral Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2409942. [PMID: 39523735 DOI: 10.1002/adma.202409942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Neural interfaces with embedded electrical functions, such as cuff electrodes, are essential for monitoring and stimulating peripheral nerves. Still, several challenges remain with cuff electrodes because sutured devices can damage the nerve by high pressure and the secured contact of electrodes with the nerve is hard to accomplish, which however is essential in maintaining electrical performance. Here, a sutureless soft-actuated cuff electrodes (SACE) that can envelop the nerve conveniently by creating a bent shape controlled upon fluid injection, is introduced. Moreover, fluid injection protrudes part of the device where electrodes are formed, thereby achieving minimized, soft but secure contact between the electrodes and the nerve. In vivo results demonstrate the successful recording and stimulation of peripheral nerves over time up to 6 weeks. While securing contact with the nerve, the implanted electrodes can preserve the nerve intact with no reduction in blood flow, thereby indicating only minimal compressive force applied to the nerve. The SACE is expected to be a promising tool for recording and stimulation of peripheral nerves toward bidirectional neuroprostheses.
Collapse
Affiliation(s)
- Hyunmin Moon
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Byungwook Park
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Namsun Chou
- Emotion, Cognition, and Behavior Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Ki-Su Park
- Department of Neurosurgery, Kyungpook National University School of Medicine, Daegu, 41944, Republic of Korea
| | - Sanghoon Lee
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Sohee Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| |
Collapse
|
2
|
Bian Y, Shi H, Yuan Q, Zhu Y, Lin Z, Zhuang L, Han X, Wang P, Chen M, Wang X. Patterning Techniques Based on Metallized Electrospun Nanofibers for Advanced Stretchable Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309735. [PMID: 38687841 PMCID: PMC11234419 DOI: 10.1002/advs.202309735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Indexed: 05/02/2024]
Abstract
Stretchable electronics have experienced remarkable progress, especially in sensors and wireless communication systems, attributed to their ability to conformably contact with rough or uneven surfaces. However, the development of complex, multifunctional, and high-precision stretchable electronics faces substantial challenges, including instability at rigid-soft interfaces and incompatibility with traditional high-precision patterning technologies. Metallized electrospun nanofibers emerge as a promising conductive filler, offering exceptional stretchability, electrical conductivity, transparency, and compatibility with existing patterning technologies. Here, this review focuses on the fundamental properties, preparation processes, patterning technologies, and application scenarios of conductive stretchable composites based on metallized nanofibers. Initially, it introduces the fabrication processes of metallized electrospun nanofibers and their advantages over alternative materials. It then highlights recent progress in patterning technologies, including collector collection, vapor deposition with masks, and lithography, emphasizing their role in enhancing precision and integration. Furthermore, the review shows the broad applicability and potential influence of metallized electrospun nanofibers in various fields through their use in sensors, wireless systems, semiconductor devices, and intelligent healthcare solutions. Ultimately, this review seeks to spark further innovation and address the prevailing challenges in stretchable electronics, paving the way for future breakthroughs in this dynamic field.
Collapse
Affiliation(s)
- Yuhan Bian
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Haozhou Shi
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Qunchen Yuan
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yuxuan Zhu
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zhengzi Lin
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Liujing Zhuang
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xun Han
- ZJU-Hangzhou Global Scientific and Technological Innovation Center School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 311200, P. R. China
| | - Ping Wang
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Mengxiao Chen
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, 311121, P. R. China
| | - Xiandi Wang
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
3
|
Wang Y, Chen H, Yang X, Diao X, Zhai J. Biological electricity generation system based on mitochondria-nanochannel-red blood cells. NANOSCALE 2024; 16:7559-7565. [PMID: 38501607 DOI: 10.1039/d3nr05879d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The high-efficiency energy conversion process in organisms is usually carried out by organelles, proteins and membrane systems. Inspired by the cellular aerobic respiration process, we present an artificial electricity generation device, aimed at sustainable and efficient energy conversion using biological components, to demonstrate the feasibility of bio-inspired energy generation for renewable energy solutions. This approach bridges biological mechanisms and technology, offering a pathway to sustainable, biocompatible energy sources. The device features a mitochondria anode and oxygen-carrying red blood cells (RBCs) cathode, alongside a sandwich-structured sulfonated poly(ether ether ketone) and polyimide composite nanochannel for efficient proton transportation, mimicking cellular respiration. Achieving significant performance with 40 wt% RBCs, it produced a current density of 6.42 mA cm-2 and a maximum power density of 1.21 mW cm-2, maintaining over 50% reactivity after 8 days. This research underscores the potential of bio-inspired systems for advancing sustainable energy technologies.
Collapse
Affiliation(s)
- Yuting Wang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
- College of New Energy and Materials, China University of Petroleum, Beijing, Beijing 102249, PR China
| | - Huaxiang Chen
- College of New Energy and Materials, China University of Petroleum, Beijing, Beijing 102249, PR China
| | - Xiaoda Yang
- State Key Laboratories of Natural and Mimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center Beijing 100191, P. R. China
| | - Xungang Diao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Jin Zhai
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
- State Key Laboratories of Natural and Mimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center Beijing 100191, P. R. China
| |
Collapse
|
4
|
Yang X, Gan T, Zhong D, Du S, Wang S, Stadler FJ, Zhang Y, Zhou X. Rapid self-assembly of self-healable and transferable liquid metal epidermis. J Colloid Interface Sci 2024; 658:148-155. [PMID: 38100971 DOI: 10.1016/j.jcis.2023.12.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/11/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Healable electronic skins, an essential component for future soft robotics, implantable bioelectronics, and smart wearable systems, necessitate self-healable and pliable materials that exhibit functionality at intricate interfaces. Although a plethora of self-healable materials have been developed, the fabrication of highly conformal biocompatible functional materials on complex biological surfaces remains a formidable challenge. Inspired by regenerative properties of skin, we present the self-assembled transfer-printable liquid metal epidermis (SALME), which possesses autonomous self-healing capabilities at the oil-water interface. SALME comprises a layer of surfactant-grafted liquid metal nanodroplets that spontaneously assemble at the oil-water interface within a few seconds. This unique self-assembly property facilitates rapid restoration (<10 s) of SALME following mechanical damage. In addition to its self-healing ability, SALME exhibits excellent shear resistance and can be seamlessly transferred to arbitrary hydrophilic/hydrophobic curved surfaces. The transferred SALME effectively preserves submicron-scale surface textures on biological substrates, thus displaying tremendous potential for future epidermal bioelectronics.
Collapse
Affiliation(s)
- Xiaolong Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, PR China
| | - Tiansheng Gan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, PR China
| | - Dingling Zhong
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, PR China
| | - Shutong Du
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, PR China
| | - Shichang Wang
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518055, PR China
| | - Florian J Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518055, PR China
| | - Yaokang Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, PR China.
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, PR China.
| |
Collapse
|
5
|
Cui Y, Li L, Liu C, Wang Y, Sun M, Jia B, Shen Z, Sheng X, Deng Y. Water-Responsive 3D Electronics for Smart Biological Interfaces. NANO LETTERS 2023; 23:11693-11701. [PMID: 38018768 DOI: 10.1021/acs.nanolett.3c03394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Three-dimensional (3D) electronic systems with their potential for enhanced functionalities often require complex fabrication processes. This paper presents a water-based, stimuli-responsive approach for creating self-assembled 3D electronic systems, particularly suited for biorelated applications. We utilize laser scribing to programmatically shape a water-responsive bilayer, resulting in smart 3D electronic substrates. Control over the deformation direction, actuation time, and surface curvature of rolling structures is achieved by adjusting laser-scribing parameters, as validated through experiments and numerical simulations. Additionally, self-locking structures maintain the integrity of the 3D systems. This methodology enables the implementation of spiral twining electrodes for electrophysiological signal monitoring in plants. Furthermore, the integration of self-rolling electrodes onto peripheral nerves in a rodent model allows for stimulation and recording of in vivo neural activities with excellent biocompatibility. These innovations provide viable paths to next-generation 3D biointegrated electronic systems for life science studies and medical applications.
Collapse
Affiliation(s)
- Yuanyuan Cui
- Research Institute for Frontier Science, Beihang University, Beijing 100191, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
| | - Lizhu Li
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Changbo Liu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
| | - Yuqi Wang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Mengwei Sun
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Ben Jia
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Zhangming Shen
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Yuan Deng
- Research Institute for Frontier Science, Beihang University, Beijing 100191, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
| |
Collapse
|
6
|
Chinnamani MV, Hanif A, Kannan PK, Kaushal S, Sultan MJ, Lee NE. Soft microfiber-based hollow microneedle array for stretchable microfluidic biosensing patch with negative pressure-driven sampling. Biosens Bioelectron 2023; 237:115468. [PMID: 37343311 DOI: 10.1016/j.bios.2023.115468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/19/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023]
Abstract
Wearable point-of-care testing devices are essential for personalized and decentralized healthcare. They can collect biofluid samples from the human body and use an analyzer to detect biomolecules. However, creating an integrated system is challenging due to the difficulty of achieving conformality to the human body, regulating the collection and transport of biofluids, developing a biosensor patch capable of precise biomolecule detection, and establishing a simple operation protocol that requires minimal wearer attention. In this study, we propose using a hollow microneedle (HMN) based on soft hollow microfibers and a microneedle-integrated microfluidic biosensor patch (MIMBP) capable of integrated blood sampling and electrochemical biosensing of biomolecules. The soft MIMBP includes a stretchable microfluidic device, a flexible electrochemical biosensor, and a HMN array made from flexible hollow microfibers. The HMNs are fabricated by electroplating flexible and mechanically durable hollow microfibers made from a nanocomposite matrix of polyimide, a poly (vinylidene fluoride-co-trifluoroethylene) copolymer, and single-walled carbon nanotubes. The MIMBP uses the negative pressure generated by a single button push to collect blood and deliver it to a flexible electrochemical biosensor modified with a gold nanostructure and Pt nanoparticles. We have demonstrated that glucose can be accurately measured up to the molar range in whole human blood collected through the microneedle. The MIMBP platform with HMNs has great potential as a foundation for the future development of simple, wearable, self-testing systems for minimally invasive biomolecule detection. This platform capable of sequential blood collection and high sensitivity glucose detection, which are ideal for personalized and decentralized healthcare.
Collapse
Affiliation(s)
- Mottour Vinayagam Chinnamani
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, South Korea
| | - Adeela Hanif
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, South Korea
| | - Padmanathan Karthick Kannan
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, South Korea
| | - Sandeep Kaushal
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, South Korea
| | - Muhammad Junaid Sultan
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, South Korea
| | - Nae-Eung Lee
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, South Korea; SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, South Korea; Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Medical Centre, Suwon, 16419, South Korea; Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, South Korea; Institute of Quantum Biophysics (IQB), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, South Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, South Korea.
| |
Collapse
|
7
|
Ziai Y, Zargarian SS, Rinoldi C, Nakielski P, Sola A, Lanzi M, Truong YB, Pierini F. Conducting polymer-based nanostructured materials for brain-machine interfaces. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1895. [PMID: 37141863 DOI: 10.1002/wnan.1895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/14/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023]
Abstract
As scientists discovered that raw neurological signals could translate into bioelectric information, brain-machine interfaces (BMI) for experimental and clinical studies have experienced massive growth. Developing suitable materials for bioelectronic devices to be used for real-time recording and data digitalizing has three important necessitates which should be covered. Biocompatibility, electrical conductivity, and having mechanical properties similar to soft brain tissue to decrease mechanical mismatch should be adopted for all materials. In this review, inorganic nanoparticles and intrinsically conducting polymers are discussed to impart electrical conductivity to systems, where soft materials such as hydrogels can offer reliable mechanical properties and a biocompatible substrate. Interpenetrating hydrogel networks offer more mechanical stability and provide a path for incorporating polymers with desired properties into one strong network. Promising fabrication methods, like electrospinning and additive manufacturing, allow scientists to customize designs for each application and reach the maximum potential for the system. In the near future, it is desired to fabricate biohybrid conducting polymer-based interfaces loaded with cells, giving the opportunity for simultaneous stimulation and regeneration. Developing multi-modal BMIs, Using artificial intelligence and machine learning to design advanced materials are among the future goals for this field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Collapse
Affiliation(s)
- Yasamin Ziai
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Seyed Shahrooz Zargarian
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Chiara Rinoldi
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Nakielski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Antonella Sola
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing Business Unit, Clayton, Victoria, Australia
| | - Massimiliano Lanzi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Bologna, Italy
| | - Yen Bach Truong
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing Business Unit, Clayton, Victoria, Australia
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
8
|
Yu M, Wang C, Cui H, Huang J, Yu Q, Wang P, Huang C, Li G, Zhao Y, Du X, Liu Z. Self-Closing Stretchable Cuff Electrodes for Peripheral Nerve Stimulation and Electromyographic Signal Recording. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7663-7672. [PMID: 36734973 DOI: 10.1021/acsami.2c15808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The cuff electrode can be wrapped in the columnar or tubular biological tissue for physiological signal detection or stimulation regulation. The reliable and non-excessive interfaces between the electrode and complex tissue are critical. Here, we propose a self-closing stretchable cuff electrode, which is able to self-close onto the bundles of tissues after dropping water. The curliness is realized by the mechanical stress mismatch between different layers of the elastic substrate. The material of the substrate can be selected to match the modulus of the target tissue to achieve minimal constraint on the tissue. Moreover, the self-closing structure keeps the cuff electrode free from any extra mechanical locking structure. For in vivo testing, both sciatic nerve stimulation to drive muscles and electromyographic signal monitoring around a rat's extensor digitorum longus for 1 month prove that our proposed electrode conforms well to the curved surface of biological tissue.
Collapse
Affiliation(s)
- Mei Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Changxian Wang
- School of Mechanics and Construction Engineering, Jinan University, 601 Huangpu Road West, Guangzhou 510632, China
| | - Huanqing Cui
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Jianping Huang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Qianhengyuan Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Ping Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Chao Huang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Guanglin Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Yang Zhao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Xuemin Du
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Zhiyuan Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| |
Collapse
|
9
|
Shan Y, Cui X, Chen X, Li Z. Recent progress of electroactive interface in neural engineering. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e01827. [PMID: 35715994 DOI: 10.1002/wnan.1827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/31/2023]
Abstract
Neural tissue is an electrical responsible organ. The electricity plays a vital role in the growth and development of nerve tissue, as well as the repairing after diseases. The interface between the nervous system and external device for information transmission is called neural electroactive interface. With the development of new materials and fabrication technologies, more and more new types of neural interfaces are developed and the interfaces can play crucial roles in treating many debilitating diseases such as paralysis, blindness, deafness, epilepsy, and Parkinson's disease. Neural interfaces are developing toward flexibility, miniaturization, biocompatibility, and multifunctionality. This review presents the development of neural electrodes in terms of different materials for constructing electroactive neural interfaces, especially focus on the piezoelectric materials-based indirect neuromodulation due to their features of wireless control, excellent effect, and good biocompatibility. We discussed the challenges we need to consider before the application of these new interfaces in clinical practice. The perspectives about future directions for developing more practical electroactive interface in neural engineering are also discussed in this review. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Yizhu Shan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xi Cui
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xun Chen
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China.,Center of Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Xu M, Zhao Y, Xu G, Zhang Y, Sun S, Sun Y, Wang J, Pei R. Recent Development of Neural Microelectrodes with Dual-Mode Detection. BIOSENSORS 2022; 13:59. [PMID: 36671894 PMCID: PMC9856135 DOI: 10.3390/bios13010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Neurons communicate through complex chemical and electrophysiological signal patterns to develop a tight information network. A physiological or pathological event cannot be explained by signal communication mode. Therefore, dual-mode electrodes can simultaneously monitor the chemical and electrophysiological signals in the brain. They have been invented as an essential tool for brain science research and brain-computer interface (BCI) to obtain more important information and capture the characteristics of the neural network. Electrochemical sensors are the most popular methods for monitoring neurochemical levels in vivo. They are combined with neural microelectrodes to record neural electrical activity. They simultaneously detect the neurochemical and electrical activity of neurons in vivo using high spatial and temporal resolutions. This paper systematically reviews the latest development of neural microelectrodes depending on electrode materials for simultaneous in vivo electrochemical sensing and electrophysiological signal recording. This includes carbon-based microelectrodes, silicon-based microelectrode arrays (MEAs), and ceramic-based MEAs, focusing on the latest progress since 2018. In addition, the structure and interface design of various types of neural microelectrodes have been comprehensively described and compared. This could be the key to simultaneously detecting electrochemical and electrophysiological signals.
Collapse
Affiliation(s)
- Meng Xu
- CAS Key Laboratory for Nano-Bio Interface, Division of Nano-biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China
| | - Yuewu Zhao
- CAS Key Laboratory for Nano-Bio Interface, Division of Nano-biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
| | - Guanghui Xu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China
| | - Yuehu Zhang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nano-biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China
| | - Shengkai Sun
- CAS Key Laboratory for Nano-Bio Interface, Division of Nano-biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
| | - Yan Sun
- CAS Key Laboratory for Nano-Bio Interface, Division of Nano-biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China
| | - Jine Wang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nano-biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Division of Nano-biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China
| |
Collapse
|
11
|
Revin VV, Liyaskina EV, Parchaykina MV, Kuzmenko TP, Kurgaeva IV, Revin VD, Ullah MW. Bacterial Cellulose-Based Polymer Nanocomposites: A Review. Polymers (Basel) 2022; 14:4670. [PMID: 36365662 PMCID: PMC9654748 DOI: 10.3390/polym14214670] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 10/15/2023] Open
Abstract
Bacterial cellulose (BC) is currently one of the most popular environmentally friendly materials with unique structural and physicochemical properties for obtaining various functional materials for a wide range of applications. In this regard, the literature reporting on bacterial nanocellulose has increased exponentially in the past decade. Currently, extensive investigations aim at promoting the manufacturing of BC-based nanocomposites with other components such as nanoparticles, polymers, and biomolecules, and that will enable to develop of a wide range of materials with advanced and novel functionalities. However, the commercial production of such materials is limited by the high cost and low yield of BC, and the lack of highly efficient industrial production technologies as well. Therefore, the present review aimed at studying the current literature data in the field of highly efficient BC production for the purpose of its further usage to obtain polymer nanocomposites. The review highlights the progress in synthesizing BC-based nanocomposites and their applications in biomedical fields, such as wound healing, drug delivery, tissue engineering. Bacterial nanocellulose-based biosensors and adsorbents were introduced herein.
Collapse
Affiliation(s)
- Viktor V. Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Elena V. Liyaskina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Marina V. Parchaykina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Tatyana P. Kuzmenko
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Irina V. Kurgaeva
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Vadim D. Revin
- Faculty of Architecture and Civil Engineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
12
|
Tiwari AP, Lokai T, Albin B, Yang IH. A Review on the Technological Advances and Future Perspectives of Axon Guidance and Regeneration in Peripheral Nerve Repair. Bioengineering (Basel) 2022; 9:bioengineering9100562. [PMID: 36290530 PMCID: PMC9598559 DOI: 10.3390/bioengineering9100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Despite a significant advance in the pathophysiological understanding of peripheral nerve damage, the successful treatment of large nerve defects remains an unmet medical need. In this article, axon growth guidance for peripheral nerve regeneration was systematically reviewed and discussed mainly from the engineering perspective. In addition, the common approaches to surgery, bioengineering approaches to emerging technologies such as optogenetic stimulation and magnetic stimulation for functional recovery were discussed, along with their pros and cons. Additionally, clear future perspectives of axon guidance and nerve regeneration were addressed.
Collapse
|
13
|
Colorimetric Detection of the SARS-CoV-2 Virus (COVID-19) in Artificial Saliva Using Polydiacetylene Paper Strips. BIOSENSORS 2022; 12:bios12100804. [PMID: 36290942 PMCID: PMC9599072 DOI: 10.3390/bios12100804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022]
Abstract
The spread and resurgence of the SARS-CoV-2 virus (COVID-19 disease) threatens human health and social relations. Prevention of COVID-19 disease partly relies on fabricating low-cost, point-of-care (POC) sensing technology that can rapidly and selectively detect the SARS-CoV-2 virus. We report a colorimetric, paper-based polydiacetylene (PDA) biosensor, designed to detect SARS-CoV-2 spike protein in artificial saliva. Analytical characterizations of the PDA sensor using NMR and FT-IR spectroscopy showed the correct structural elucidation of PCDA-NHS conjugation. The PDA sensor platform containing the N-Hydroxysuccinimide ester of 10, 12-pentacosadiynoic acid (PCDA-NHS) was divided into three experimental PCDA-NHS concentration groups of 10%, 20%, and 30% to optimize the performance of the sensor. The optimal PCDA-NHS molar concentration was determined to be 10%. The PDA sensor works by a color change from blue to red as its colorimetric output when the immobilized antibody binds to the SARS-CoV-2 spike protein in saliva samples. Our results showed that the PDA sensing platform was able to rapidly and qualitatively detect the SARS-CoV-2 spike protein within the concentration range of 1 to 100 ng/mL after four hours of incubation. Further investigation of pH and temperature showed minimal influence on the PDA sensor for the detection of COVID-19 disease. After exposure to the SARS-CoV-2 spike protein, smartphone images of the PDA sensor were used to assess the sensor output by using the red chromatic shift (RCS) of the signal response. These results indicate the potential and practical use of this PDA sensor design for the rapid, colorimetric detection of COVID-19 disease in developing countries with limited access to medical testing.
Collapse
|
14
|
Yang H, Su Y, Sun Z, Ma B, Liu F, Kong Y, Sun C, Li B, Sang Y, Wang S, Li G, Qiu J, Liu C, Geng Z, Liu H. Gold Nanostrip Array-Mediated Wireless Electrical Stimulation for Accelerating Functional Neuronal Differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202376. [PMID: 35618610 PMCID: PMC9353484 DOI: 10.1002/advs.202202376] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Indexed: 05/27/2023]
Abstract
Neural stem cell (NSC)-based therapy holds great promise for the treatment of neurodegenerative diseases. Presently, however, it is hindered by poor functional neuronal differentiation. Electrical stimulation is considered one of the most effective ways to promote neuronal differentiation of NSCs. In addition to surgically implanted electrodes, traditional electrical stimulation includes wires connected to the external power supply, and an additional surgery is required to remove the electrodes or wires following stimulation, which may cause secondary injuries and infections. Herein, a novel method is reported for generation of wireless electrical signals on an Au nanostrip array by leveraging the effect of electromagnetic induction under a rotating magnetic field. The intensity of the generated electrical signals depends on the rotation speed and magnetic field strength. The Au nanostrip array-mediated electric stimulation promotes NSC differentiation into mature neurons within 5 days, at the mRNA, protein, and function levels. The rate of differentiation is faster by at least 5 days than that in cells without treatment. The Au nanostrip array-based wireless device also accelerates neuronal differentiation of NSCs in vivo. The novel method to accelerate the neuronal differentiation of NSCs has the advantages of wireless, timely, localized and precise controllability, and noninvasive power supplementation.
Collapse
Affiliation(s)
- Hongru Yang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Yue Su
- State Key Laboratory of Integrated OptoelectronicsInstitute of SemiconductorsChinese Academy of SciencesBeijing100083P. R. China
| | - Zhaoyang Sun
- Department of Oral and Maxillofacial SurgeryQilu Hospital of Shandong UniversityJinanShandong250012P. R. China
| | - Baojin Ma
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Feng Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Ying Kong
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Chunhui Sun
- Institute for Advanced Interdisciplinary ResearchUniversity of JinanJinanShandong250022P. R. China
| | - Boyan Li
- Department of Neurosurgery Qilu HospitalCheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandong250012P. R. China
| | - Yuanhua Sang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Shuhua Wang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Gang Li
- Department of Neurosurgery Qilu HospitalCheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandong250012P. R. China
| | - Jichuan Qiu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Chao Liu
- Department of Oral and Maxillofacial SurgeryQilu Hospital of Shandong UniversityJinanShandong250012P. R. China
| | - Zhaoxin Geng
- School of Information EngineeringMinzu University of ChinaBeijing100081P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
- Institute for Advanced Interdisciplinary ResearchUniversity of JinanJinanShandong250022P. R. China
| |
Collapse
|
15
|
Lee S, Park J, Kim S, Ok J, Yoo JI, Kim YS, Ahn Y, Kim TI, Ko HC, Lee JY. High-Performance Implantable Bioelectrodes with Immunocompatible Topography for Modulation of Macrophage Responses. ACS NANO 2022; 16:7471-7485. [PMID: 35438981 DOI: 10.1021/acsnano.1c10506] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Implantable bioelectrodes enable precise recording or stimulation of electrical signals with living tissues in close contact. However, their performance is frequently compromised owing to inflammatory tissue reactions, which macrophages either induce or resolve by polarizing to an inflammatory (M1) or noninflammatory (M2) phenotype, respectively. Thus, we aimed to fabricate biocompatible and functional implantable conductive polymer bioelectrodes with optimal topography for the modulation of macrophage responses. To this end, we produced heparin-doped polypyrrole (PPy/Hep) electrodes of different surface roughness, with Ra values from 5.5 to 17.6 nm, by varying the charge densities during electrochemical synthesis. In vitro culture revealed that macrophages on rough PPy/Hep electrodes preferentially polarized to noninflammatory phenotypes. In particular, PPy/Hep-900 (Ra = 14 nm) was optimal with respect to electrochemical properties and the suppression of inflammatory M1 polarization. In vivo implantation indicated that PPy/Hep-900 significantly reduced macrophage recruitment, suppressed inflammatory polarization, and mitigated fibrotic tissue formation. In addition, the implanted PPy/Hep-900 electrodes could successfully record electrocardiographic signals for up to 10 days without substantial decreases in sensitivity, while other electrodes substantially lost their signal sensitivity during implantation. Altogether, we demonstrate that modulating the surface features of PPy/Hep can benefit the design and applications of high-performance and high-biocompatibility bioelectrodes.
Collapse
Affiliation(s)
- Sanghun Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Junggeon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Semin Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jehyung Ok
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jung Il Yoo
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Yong Sook Kim
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Youngkeun Ahn
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Heung Cho Ko
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
16
|
Meisami AH, Abbasi M, Mosleh-Shirazi S, Azari A, Amani AM, Vaez A, Golchin A. Self-propelled micro/nanobots: A new insight into precisely targeting cancerous cells through intelligent and deep cancer penetration. Eur J Pharmacol 2022; 926:175011. [PMID: 35568064 DOI: 10.1016/j.ejphar.2022.175011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/13/2022]
Abstract
Cancer overlooks are globally one of the most dangerous and life-threatening tribulations. While significant advances have been made in the targeted delivery of anti-cancer medications over the last few years, several challenges, such as low efficacy and strong toxic effects, remain to be addressed. Micro/nanomotors have been thoroughly studied for both effective cancer detection and treatment, as demonstrated by significant advancements in the architecture of smart and functional micro/nanomotor biomedical systems. Able to self-propelled within fluid media, micro/nanomotors have attractive vehicles to maximize the efficacy of tumor delivery. Here, we present the current developments in the delivery, detection, and imaging-guided treatment of micro/nanomotors in the clinical field, including cancer-related specific targeted drug delivery, and then discuss the barriers and difficulties encountered by micro/nanomotors throughout the medical process. Furthermore, this paper addresses the potential growth of micro/nanomotors for medical applications, and sets out the current drawbacks and future research directions for more advancement.
Collapse
Affiliation(s)
- Amir Hossein Meisami
- Department of Emergency Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Mosleh-Shirazi
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Arezo Azari
- Department of Applied Cell Sciences and Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Golchin
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
17
|
Choi SM, Rao KM, Zo SM, Shin EJ, Han SS. Bacterial Cellulose and Its Applications. Polymers (Basel) 2022; 14:polym14061080. [PMID: 35335411 PMCID: PMC8949969 DOI: 10.3390/polym14061080] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
The sharp increase in the use of cellulose seems to be in increasing demand in wood; much more research related to sustainable or alternative materials is necessary as a lot of the arable land and natural resources use is unsustainable. In accordance, attention has focused on bacterial cellulose as a new functional material. It possesses a three-dimensional, gelatinous structure consisting of cellulose with mechanical and thermal properties. Moreover, while a plant-originated cellulose is composed of cellulose, hemi-cellulose, and lignin, bacterial cellulose attributable to the composition of a pure cellulose nanofiber mesh spun is not necessary in the elimination of other components. Moreover, due to its hydrophilic nature caused by binding water, consequently being a hydrogel as well as biocompatibility, it has only not only used in medical fields including artificial skin, cartilage, vessel, and wound dressing, but also in delivery; some products have even been commercialized. In addition, it is widely used in various technologies including food, paper, textile, electronic and electrical applications, and is being considered as a highly versatile green material with tremendous potential. However, many efforts have been conducted for the evolution of novel and sophisticated materials with environmental affinity, which accompany the empowerment and enhancement of specific properties. In this review article, we summarized only industry and research status regarding BC and contemplated its potential in the use of BC.
Collapse
Affiliation(s)
- Soon Mo Choi
- Research Institute of Cell Culture, Yeung-Nam University, Gyengsan-si 38541, Korea;
- School of Chemical Engineering, Yeung-Nam University, Gyengsan-si 38541, Korea; (K.M.R.); (S.M.Z.)
| | - Kummara Madhusudana Rao
- School of Chemical Engineering, Yeung-Nam University, Gyengsan-si 38541, Korea; (K.M.R.); (S.M.Z.)
| | - Sun Mi Zo
- School of Chemical Engineering, Yeung-Nam University, Gyengsan-si 38541, Korea; (K.M.R.); (S.M.Z.)
| | - Eun Joo Shin
- Department of Organic Materials and Polymer Engineering, Dong-A University, Busan 49315, Korea
- Correspondence: (E.J.S.); (S.S.H.); Tel.: +82-51-2007343 (E.J.S.); +82-53-8103892 (S.S.H.); Fax: +82-51-2007540 (E.J.S.); +82-53-8104686 (S.S.H.)
| | - Sung Soo Han
- Research Institute of Cell Culture, Yeung-Nam University, Gyengsan-si 38541, Korea;
- School of Chemical Engineering, Yeung-Nam University, Gyengsan-si 38541, Korea; (K.M.R.); (S.M.Z.)
- Correspondence: (E.J.S.); (S.S.H.); Tel.: +82-51-2007343 (E.J.S.); +82-53-8103892 (S.S.H.); Fax: +82-51-2007540 (E.J.S.); +82-53-8104686 (S.S.H.)
| |
Collapse
|
18
|
Zhang Y, Zhang T, Huang Z, Yang J. A New Class of Electronic Devices Based on Flexible Porous Substrates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105084. [PMID: 35038244 PMCID: PMC8895116 DOI: 10.1002/advs.202105084] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Indexed: 05/03/2023]
Abstract
With the advent of the Internet of Things era, the connection between electronic devices and humans is getting closer and closer. New-concept electronic devices including e-skins, nanogenerators, brain-machine interfaces, and implantable medical devices, can work on or inside human bodies, calling for wearing comfort, super flexibility, biodegradability, and stability under complex deformations. However, conventional electronics based on metal and plastic substrates cannot effectively meet these new application requirements. Therefore, a series of advanced electronic devices based on flexible porous substrates (e.g., paper, fabric, electrospun nanofibers, wood, and elastic polymer sponge) is being developed to address these challenges by virtue of their superior biocompatibility, breathability, deformability, and robustness. The porous structure of these substrates can not only improve device performance but also enable new functions, but due to their wide variety, choosing the right porous substrate is crucial for preparing high-performance electronics for specific applications. Herein, the properties of different flexible porous substrates are summarized and their basic principles of design, manufacture, and use are highlighted. Subsequently, various functionalization methods of these porous substrates are briefly introduced and compared. Then, the latest advances in flexible porous substrate-based electronics are demonstrated. Finally, the remaining challenges and future directions are discussed.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonONN6A 5B9Canada
| | - Tengyuan Zhang
- Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonONN6A 5B9Canada
| | - Zhandong Huang
- Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonONN6A 5B9Canada
| | - Jun Yang
- Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonONN6A 5B9Canada
- Shenzhen Institute for Advanced StudyUniversity of Electronic Science and Technology of ChinaShenzhen518000P. R. China
| |
Collapse
|
19
|
Vėbraitė I, Hanein Y. Soft Devices for High-Resolution Neuro-Stimulation: The Interplay Between Low-Rigidity and Resolution. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:675744. [PMID: 35047928 PMCID: PMC8757739 DOI: 10.3389/fmedt.2021.675744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/14/2021] [Indexed: 12/27/2022] Open
Abstract
The field of neurostimulation has evolved over the last few decades from a crude, low-resolution approach to a highly sophisticated methodology entailing the use of state-of-the-art technologies. Neurostimulation has been tested for a growing number of neurological applications, demonstrating great promise and attracting growing attention in both academia and industry. Despite tremendous progress, long-term stability of the implants, their large dimensions, their rigidity and the methods of their introduction and anchoring to sensitive neural tissue remain challenging. The purpose of this review is to provide a concise introduction to the field of high-resolution neurostimulation from a technological perspective and to focus on opportunities stemming from developments in materials sciences and engineering to reduce device rigidity while optimizing electrode small dimensions. We discuss how these factors may contribute to smaller, lighter, softer and higher electrode density devices.
Collapse
Affiliation(s)
- Ieva Vėbraitė
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Yael Hanein
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
20
|
Song S, Kim KY, Lee SH, Kim KK, Lee K, Lee W, Jeon H, Ko SH. Recent Advances in 1D Nanomaterial‐Based Bioelectronics for Healthcare Applications. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Sangmin Song
- Applied Nano and Thermal Science Lab Department of Mechanical Engineering Seoul National University 1 Gwanak-ro Gwanak-gu Seoul 151-742 Korea
- Center for Biomaterials Biomedical Research Institute Korea Institute of Science and Technology (KIST) 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Korea
| | - Kyung Yeun Kim
- Applied Nano and Thermal Science Lab Department of Mechanical Engineering Seoul National University 1 Gwanak-ro Gwanak-gu Seoul 151-742 Korea
- Center for Biomaterials Biomedical Research Institute Korea Institute of Science and Technology (KIST) 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Korea
| | - Sun Hee Lee
- Center for Biomaterials Biomedical Research Institute Korea Institute of Science and Technology (KIST) 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Korea
| | - Kyun Kyu Kim
- Department of Chemical Engineering Stanford University Stanford CA 94305 USA
| | - Kyungwoo Lee
- Center for Biomaterials Biomedical Research Institute Korea Institute of Science and Technology (KIST) 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Korea
| | - Wonryung Lee
- Center for Biomaterials Biomedical Research Institute Korea Institute of Science and Technology (KIST) 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Korea
| | - Hojeong Jeon
- Center for Biomaterials Biomedical Research Institute Korea Institute of Science and Technology (KIST) 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Korea
- KU-KIST Graduate School of Converging Science and Technology Korea University 145, Anam-ro Seongbuk-gu Seoul 02841 Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab Department of Mechanical Engineering Seoul National University 1 Gwanak-ro Gwanak-gu Seoul 151-742 Korea
- Institute of Advanced Machines and Design/Institute of Engineering Research Seoul National University Seoul 08826 Korea
| |
Collapse
|
21
|
Investigation of Effects of Copper, Zinc, and Strontium Doping on Electrochemical Properties of Titania Nanotube Arrays for Neural Interface Applications. Processes (Basel) 2021. [DOI: 10.3390/pr9122099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Direct interaction with the neuronal cells is a prerequisite to deciphering useful information in understanding the underlying causes of diseases and functional abnormalities in the brain. Precisely fabricated nanoelectrodes provide the capability to interact with the brain in its natural habitat without compromising its functional integrity. Yet, challenges exist in terms of the high cost and complexity of fabrication as well as poor control over the chemical composition and geometries at the nanoscale, all imposed by inherent limitations of current micro/nanofabrication techniques. In this work, we report on electrochemical fabrication and optimization of vertically oriented TiO2 nanotube arrays as nanoelectrodes for neural interface application. The effects of zinc, strontium, and copper doping on the structural, electrochemical, and biocompatibility properties of electrochemically anodized TiO2 nanotube arrays were investigated. It was found that doping can alter the geometric features, i.e., the length, diameter, and wall thickness, of the nanotubes. Among pure and doped samples, the 0.02 M copper-doped TiO2 nanotubes exhibited superior electrochemical properties, with the highest specific storage capacitance of 130 F g−1 and the lowest impedance of 0.295 KΩ. In addition, regeneration of Vero cells and neurons was highly promoted on (0.02 M) Cu-doped TiO2 nanotube arrays, with relatively small tube diameters and more hydrophilicity, compared with the other two types of dopants. Our results suggest that in situ doping is a promising method for the optimization of various structural and compositional properties of electrochemically anodized nanotube arrays and improvement of their functionality as a potential nanoelectrode platform for neural interfacing.
Collapse
|
22
|
Richter B, Mace Z, Hays ME, Adhikari S, Pham HQ, Sclabassi RJ, Kolber B, Yerneni SS, Campbell P, Cheng B, Tomycz N, Whiting DM, Le TQ, Nelson TL, Averick S. Development and Characterization of Novel Conductive Sensing Fibers for In Vivo Nerve Stimulation. SENSORS (BASEL, SWITZERLAND) 2021; 21:7581. [PMID: 34833660 PMCID: PMC8619502 DOI: 10.3390/s21227581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 12/11/2022]
Abstract
Advancements in electrode technologies to both stimulate and record the central nervous system's electrical activities are enabling significant improvements in both the understanding and treatment of different neurological diseases. However, the current neural recording and stimulating electrodes are metallic, requiring invasive and damaging methods to interface with neural tissue. These electrodes may also degrade, resulting in additional invasive procedures. Furthermore, metal electrodes may cause nerve damage due to their inherent rigidity. This paper demonstrates that novel electrically conductive organic fibers (ECFs) can be used for direct nerve stimulation. The ECFs were prepared using a standard polyester material as the structural base, with a carbon nanotube ink applied to the surface as the electrical conductor. We report on three experiments: the first one to characterize the conductive properties of the ECFs; the second one to investigate the fiber cytotoxic properties in vitro; and the third one to demonstrate the utility of the ECF for direct nerve stimulation in an in vivo rodent model.
Collapse
Affiliation(s)
- Bertram Richter
- System Department of Neurosurgery, Allegheny Health Network, Pittsburgh, PA 15212, USA; (B.R.); (Z.M.); (R.J.S.); (B.C.); (N.T.); (D.M.W.)
| | - Zachary Mace
- System Department of Neurosurgery, Allegheny Health Network, Pittsburgh, PA 15212, USA; (B.R.); (Z.M.); (R.J.S.); (B.C.); (N.T.); (D.M.W.)
- Computational Diagnostics, Inc., Pittsburgh, PA 15213, USA
| | - Megan E. Hays
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA; (M.E.H.); (S.A.); (T.L.N.)
| | - Santosh Adhikari
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA; (M.E.H.); (S.A.); (T.L.N.)
| | - Huy Q. Pham
- Department of Biomedical Engineering, North Dakota State University, Fargo, ND 58102, USA;
| | - Robert J. Sclabassi
- System Department of Neurosurgery, Allegheny Health Network, Pittsburgh, PA 15212, USA; (B.R.); (Z.M.); (R.J.S.); (B.C.); (N.T.); (D.M.W.)
- Computational Diagnostics, Inc., Pittsburgh, PA 15213, USA
| | - Benedict Kolber
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX 75080, USA;
| | - Saigopalakrishna S. Yerneni
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15217, USA; (S.S.Y.); (P.C.)
| | - Phil Campbell
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15217, USA; (S.S.Y.); (P.C.)
| | - Boyle Cheng
- System Department of Neurosurgery, Allegheny Health Network, Pittsburgh, PA 15212, USA; (B.R.); (Z.M.); (R.J.S.); (B.C.); (N.T.); (D.M.W.)
| | - Nestor Tomycz
- System Department of Neurosurgery, Allegheny Health Network, Pittsburgh, PA 15212, USA; (B.R.); (Z.M.); (R.J.S.); (B.C.); (N.T.); (D.M.W.)
| | - Donald M. Whiting
- System Department of Neurosurgery, Allegheny Health Network, Pittsburgh, PA 15212, USA; (B.R.); (Z.M.); (R.J.S.); (B.C.); (N.T.); (D.M.W.)
| | - Trung Q. Le
- Department of Industrial and Manufacturing Engineering, North Dakota State University, Fargo, ND 58102, USA
| | - Toby L. Nelson
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA; (M.E.H.); (S.A.); (T.L.N.)
| | - Saadyah Averick
- System Department of Neurosurgery, Allegheny Health Network, Pittsburgh, PA 15212, USA; (B.R.); (Z.M.); (R.J.S.); (B.C.); (N.T.); (D.M.W.)
| |
Collapse
|
23
|
Liang Y, Offenhäusser A, Ingebrandt S, Mayer D. PEDOT:PSS-Based Bioelectronic Devices for Recording and Modulation of Electrophysiological and Biochemical Cell Signals. Adv Healthc Mater 2021; 10:e2100061. [PMID: 33970552 PMCID: PMC11468774 DOI: 10.1002/adhm.202100061] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/31/2021] [Indexed: 12/16/2022]
Abstract
To understand the physiology and pathology of electrogenic cells and the corresponding tissue in their full complexity, the quantitative investigation of the transmission of ions as well as the release of chemical signals is important. Organic (semi-) conducting materials and in particular organic electrochemical transistor are gaining in importance for the investigation of electrophysiological and recently biochemical signals due to their synthetic nature and thus chemical diversity and modifiability, their biocompatible and compliant properties, as well as their mixed electronic and ionic conductivity featuring ion-to-electron conversion. Here, the aim is to summarize recent progress on the development of bioelectronic devices utilizing polymer polyethylenedioxythiophene: poly(styrene sulfonate) (PEDOT:PSS) to interface electronics and biological matter including microelectrode arrays, neural cuff electrodes, organic electrochemical transistors, PEDOT:PSS-based biosensors, and organic electronic ion pumps. Finally, progress in the material development is summarized for the improvement of polymer conductivity, stretchability, higher transistor transconductance, or to extend their field of application such as cation sensing or metabolite recognition. This survey of recent trends in PEDOT:PSS electrophysiological sensors highlights the potential of this multifunctional material to revolve current technology and to enable long-lasting, multichannel polymer probes for simultaneous recordings of electrophysiological and biochemical signals from electrogenic cells.
Collapse
Affiliation(s)
- Yuanying Liang
- Institute of Polymer Optoelectronic Materials and DevicesState Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhouGuangdong510640China
| | - Andreas Offenhäusser
- Institute of Biological Information ProcessingBioelectronics IBI‐3Forschungszentrum JülichJülich52425Germany
| | - Sven Ingebrandt
- Faculty of Electrical Engineering and Information TechnologyInstitute of Materials in Electrical Engineering 1RWTH Aachen UniversityAachen52074Germany
| | - Dirk Mayer
- Institute of Biological Information ProcessingBioelectronics IBI‐3Forschungszentrum JülichJülich52425Germany
| |
Collapse
|
24
|
Lienemann S, Zötterman J, Farnebo S, Tybrandt K. Stretchable gold nanowire-based cuff electrodes for low-voltage peripheral nerve stimulation. J Neural Eng 2021; 18. [PMID: 33957608 DOI: 10.1088/1741-2552/abfebb] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/06/2021] [Indexed: 12/29/2022]
Abstract
Objective. Electrical stimulation of the peripheral nervous system (PNS) can treat various diseases and disorders, including the healing process after nerve injury. A major challenge when designing electrodes for PNS stimulation is the mechanical mismatch between the nerve and the device, which can lead to non-conformal contact, tissue damage and inefficient stimulation due to current leakage. Soft and stretchable cuff electrodes promise to tackle these challenges but often have limited performance and rely on unconventional materials. The aim of this study is to develop a high performance soft and stretchable cuff electrode based on inert materials for low-voltage nerve stimulation.Approach. We developed 50µm thick stretchable cuff electrodes based on silicone rubber, gold nanowire conductors and platinum coated nanowire electrodes. The electrode performance was characterized under strain cycling to assess the durability of the electrodes. The stimulation capability of the cuff electrodes was evaluated in anin vivosciatic nerve rat model by measuring the electromyography response to various stimulation pulses.Main results. The stretchable cuff electrodes showed excellent stability for 50% strain cycling and one million stimulation pulses. Saturated homogeneous stimulation of the sciatic nerve was achieved at only 200 mV due to the excellent conformability of the electrodes, the low conductor resistance (0.3 Ohm sq-1), and the low electrode impedance.Significance. The developed stretchable cuff electrode combines favourable mechanical properties and good electrode performance with inert and stable materials, making it ideal for low power supply applications within bioelectronic medicine.
Collapse
Affiliation(s)
- Samuel Lienemann
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Johan Zötterman
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University Hospital, Linköping, Sweden.,Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Simon Farnebo
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University Hospital, Linköping, Sweden.,Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| |
Collapse
|
25
|
Dong R, Wang L, Hang C, Chen Z, Liu X, Zhong L, Qi J, Huang Y, Liu S, Wang L, Lu Y, Jiang X. Printed Stretchable Liquid Metal Electrode Arrays for In Vivo Neural Recording. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006612. [PMID: 33711201 DOI: 10.1002/smll.202006612] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The adoption of neural interfacing into neurological diagnosis is severely hampered by the complex, costly, and error-prone manufacturing methods, requiring new fabrication processes and materials for flexible neural interfacing. Here a strategy for fabricating highly stretchable neural electrode arrays based on screen printing of liquid metal conductors onto polydimethylsiloxane substrates is presented. The screen-printed electrode arrays show a resolution of 50 µm, which is ideally applicable to neural interfaces. The integration of liquid metal-polymer conductor enables the neural electrode arrays to retain stable electrical properties and compliant mechanical performance under a significant (≈108%) strain. Taking advantage of its high biocompatibility, liquid metal electrode arrays exhibit excellent performance for neurite growth and long-term implantation. The stretchable electrode arrays can spontaneously conformally come in touch with the brain surface, and high-throughput electrocorticogram signals are recorded. Based on stretchable electrode arrays, real-time monitoring of epileptiform activities can be provided at different states of seizure. The method reported here offers a new fabrication strategy to manufacture stretchable neural electrodes, with additional potential utility in diagnostic brain-machine interfaces.
Collapse
Affiliation(s)
- Ruihua Dong
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Road, Nangang District, Harbin, 150001, P. R. China
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Lulu Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Chen Hang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Zhen Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Xiaoyan Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Leni Zhong
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Jie Qi
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Yuqing Huang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Shaoqin Liu
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Road, Nangang District, Harbin, 150001, P. R. China
| | - Liping Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Yi Lu
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Xingyu Jiang
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Road, Nangang District, Harbin, 150001, P. R. China
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
26
|
Llerena Zambrano B, Renz AF, Ruff T, Lienemann S, Tybrandt K, Vörös J, Lee J. Soft Electronics Based on Stretchable and Conductive Nanocomposites for Biomedical Applications. Adv Healthc Mater 2021; 10:e2001397. [PMID: 33205564 DOI: 10.1002/adhm.202001397] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Research on the field of implantable electronic devices that can be directly applied in the body with various functionalities is increasingly intensifying due to its great potential for various therapeutic applications. While conventional implantable electronics generally include rigid and hard conductive materials, their surrounding biological objects are soft and dynamic. The mechanical mismatch between implanted devices and biological environments induces damages in the body especially for long-term applications. Stretchable electronics with outstanding mechanical compliance with biological objects effectively improve such limitations of existing rigid implantable electronics. In this article, the recent progress of implantable soft electronics based on various conductive nanocomposites is systematically described. In particular, representative fabrication approaches of conductive and stretchable nanocomposites for implantable soft electronics and various in vivo applications of implantable soft electronics are focused on. To conclude, challenges and perspectives of current implantable soft electronics that should be considered for further advances are discussed.
Collapse
Affiliation(s)
- Byron Llerena Zambrano
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Aline F. Renz
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Tobias Ruff
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Samuel Lienemann
- Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping 601 74 Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping 601 74 Sweden
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Jaehong Lee
- Department of Robotics Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST) 333 Techno jungan‐dareo Daegu 42988 South Korea
| |
Collapse
|
27
|
Liu S, Zhao Y, Hao W, Zhang XD, Ming D. Micro- and nanotechnology for neural electrode-tissue interfaces. Biosens Bioelectron 2020; 170:112645. [DOI: 10.1016/j.bios.2020.112645] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 01/14/2023]
|
28
|
|
29
|
Jahanmard F, Croes M, Castilho M, Majed A, Steenbergen MJ, Lietaert K, Vogely HC, van der Wal BCH, Stapels DAC, Malda J, Vermonden T, Amin Yavari S. Bactericidal coating to prevent early and delayed implant-related infections. J Control Release 2020; 326:38-52. [PMID: 32580041 DOI: 10.1016/j.jconrel.2020.06.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/22/2020] [Accepted: 06/14/2020] [Indexed: 01/01/2023]
Abstract
The occurrence of an implant-associated infection (IAI) with the formation of a persisting bacterial biofilm remains a major risk following orthopedic biomaterial implantation. Yet, progress in the fabrication of tunable and durable implant coatings with sufficient bactericidal activity to prevent IAI has been limited. Here, an electrospun composite coating was optimized for the combinatorial and sustained delivery of antibiotics. Antibiotics-laden poly(ε-caprolactone) (PCL) and poly`1q`(lactic-co glycolic acid) (PLGA) nanofibers were electrospun onto lattice structured titanium (Ti) implants. In order to achieve tunable and independent delivery of vancomycin (Van) and rifampicin (Rif), we investigated the influence of the specific drug-polymer interaction and the nanofiber coating composition on the drug release profile and durability of the polymer-Ti interface. We found that a bi-layered nanofiber structure, produced by electrospinning of an inner layer of [PCL/Van] and an outer layer of [PLGA/Rif], yielded the optimal combinatorial drug release profile. This resulted in markedly enhanced bactericidal activity against planktonic and adherent Staphylococcus aureus for 6 weeks as compared to single drug delivery. Moreover, after 6 weeks, synergistic bacterial killing was observed as a result of sustained Van and Rif release. The application of a nanofiber-filled lattice structure successfully prevented the delamination of the multi-layer coating after press-fit cadaveric bone implantation. This new lattice design, in conjunction with the multi-layer nanofiber structure, can be applied to develop tunable and durable coatings for various metallic implantable devices. This is particularly appealing to tune the release of multiple antimicrobial agents over a period of weeks to prevent early and delayed onset IAI.
Collapse
Affiliation(s)
- F Jahanmard
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - M Croes
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - M Castilho
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - A Majed
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - M J Steenbergen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| | - K Lietaert
- 3D Systems - LayerWise NV, Leuven, Belgium; Department of Metallurgy and Materials Engineering, KU Leuven, Leuven, Belgium
| | - H C Vogely
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - B C H van der Wal
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - D A C Stapels
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J Malda
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - T Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| | - S Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
30
|
Conducting Polymer-Based Composite Materials for Therapeutic Implantations: From Advanced Drug Delivery System to Minimally Invasive Electronics. INT J POLYM SCI 2020. [DOI: 10.1155/2020/5659682] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Conducting polymer-based composites have recently becoming popular in both academic research and industrial practices due to their high conductivity, ease of process, and tunable electrical properties. The multifunctional conducting polymer-based composites demonstrated great application potential for in vivo therapeutics and implantable electronics, including drug delivery, neural interfacing, and minimally invasive electronics. In this review article, the state-of-the-art conducting polymer-based composites in the mentioned biological fields are discussed and summarized. The recent progress on the synthesis, structure, properties, and application of the conducting polymer-based composites is presented, aimed at revealing the structure-property relationship and the corresponding functional applications of the conducting polymer-based composites. Furthermore, key issues and challenges regarding the implantation performance of these composites are highlighted in this paper.
Collapse
|
31
|
Constantin CP, Aflori M, Damian RF, Rusu RD. Biocompatibility of Polyimides: A Mini-Review. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3166. [PMID: 31569679 PMCID: PMC6804260 DOI: 10.3390/ma12193166] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 01/28/2023]
Abstract
Polyimides (PIs) represent a benchmark for high-performance polymers on the basis of a remarkable collection of valuable traits and accessible production pathways and therefore have incited serious attention from the ever-demanding medical field. Their characteristics make them suitable for service in hostile environments and purification or sterilization by robust methods, as requested by most biomedical applications. Even if PIs are generally regarded as "biocompatible", proper analysis and understanding of their biocompatibility and safe use in biological systems deeply needed. This mini-review is designed to encompass some of the most robust available research on the biocompatibility of various commercial or noncommercial PIs and to comprehend their potential in the biomedical area. Therefore, it considers (i) the newest concepts in the field, (ii) the chemical, (iii) physical, or (iv) manufacturing elements of PIs that could affect the subsequent biocompatibility, and, last but not least, (v) in vitro and in vivo biocompatibility assessment and (vi) reachable clinical trials involving defined polyimide structures. The main conclusion is that various PIs have the capacity to accommodate in vivo conditions in which they are able to function for a long time and can be judiciously certified as biocompatible.
Collapse
Affiliation(s)
- Catalin P Constantin
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda 41A, Iasi-700487, Romania.
| | - Magdalena Aflori
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda 41A, Iasi-700487, Romania.
| | - Radu F Damian
- SC Intelectro Iasi SRL, Str. Iancu Bacalu, nr.3, Iasi-700029, Romania.
| | - Radu D Rusu
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda 41A, Iasi-700487, Romania.
| |
Collapse
|
32
|
Xia Y, Wu Y, Yu T, Xue S, Guo M, Li J, Li Z. Multifunctional Glycerol-Water Hydrogel for Biomimetic Human Skin with Resistance Memory Function. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21117-21125. [PMID: 31117465 DOI: 10.1021/acsami.9b05554] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biomimetic human skinlike materials with preferably self-healing ability, high sensitivity for external stimuli, and good adhesiveness against diverse substrates under a wide range of temperatures are of great importance in various applications such as wearable devices, human-motion devices, and soft robotics. However, most of the reported biomimetic human skinlike materials lack memory function, i.e., they cannot memorize the external stimuli once the stimuli disappear. This drawback hinders their applications in mimicking the human skin in real world. Here, a polyacrylamide/Au@polydopamine glycerol-water (GW) hydrogel has been designed to address this challenge. The as-prepared GW hydrogel exhibits a fast self-healing efficiency and good adhesiveness against diverse substrates under a wide range of temperatures (from -15 to 37 °C). Additionally, our GW hydrogel also possesses good perceived ability for external stimuli and subtle/large human motions. Most importantly, resistance memory function has been realized based on our GW hydrogel. These outstanding properties make it potentially significant in mimicking the human skin in real world.
Collapse
Affiliation(s)
- Yuanmeng Xia
- School of Materials Science and Engineering , Southwest Petroleum University , Chengdu 610500 , China
| | - Yuanpeng Wu
- School of Materials Science and Engineering , Southwest Petroleum University , Chengdu 610500 , China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation , Southwest Petroleum University , Chengdu 610500 , China
| | - Tian Yu
- College of Physical Science and Technology , Sichuan University , Chengdu 610064 , China
| | - Shishan Xue
- School of Materials Science and Engineering , Southwest Petroleum University , Chengdu 610500 , China
| | - Meiling Guo
- School of Materials Science and Engineering , Southwest Petroleum University , Chengdu 610500 , China
| | - Jingliang Li
- Institute for Frontier Materials , Deakin University , Geelong , VIC 3220 , Australia
| | - Zhenyu Li
- School of Materials Science and Engineering , Southwest Petroleum University , Chengdu 610500 , China
| |
Collapse
|
33
|
Zheng X, Woeppel KM, Griffith AY, Chang E, Looker MJ, Fisher LE, Clapsaddle BJ, Cui XT. Soft Conducting Elastomer for Peripheral Nerve Interface. Adv Healthc Mater 2019; 8:e1801311. [PMID: 30843365 DOI: 10.1002/adhm.201801311] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/24/2019] [Indexed: 12/17/2022]
Abstract
State-of-the-art intraneural electrodes made from silicon or polyimide substrates have shown promise in selectively modulating efferent and afferent activity in the peripheral nervous system. However, when chronically implanted, these devices trigger a multiphase foreign body response ending in device encapsulation. The presence of encapsulation increases the distance between the electrode and the excitable tissue, which not only reduces the recordable signal amplitude but also requires increased current to activate nearby axons. Herein, this study reports a novel conducting polymer based intraneural electrode which has Young's moduli similar to that of nerve tissue. The study first describes material optimization of the soft wire conductive matrix and evaluates their mechanical and electrochemical properties. Second, the study demonstrates 3T3 cell survival when cultured with media eluted from the soft wires. Third, the study presents acute in vivo functionality for stimulation of peripheral nerves to evoke force and compound muscle action potential in a rat model. Furthermore, comprehensive histological analyses show that soft wires elicit significantly less scar tissue encapsulation, less changes to axon size, density and morphology, and reduced macrophage activation compared to polyimide implants in the sciatic nerves at 1 month postimplantation.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
| | - Kevin M Woeppel
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
| | - Azante Y Griffith
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
| | - Emily Chang
- TDA Research Inc., 12345 W. 52nd Street, Wheat Ridge, CO, 80033, USA
| | - Michael J Looker
- TDA Research Inc., 12345 W. 52nd Street, Wheat Ridge, CO, 80033, USA
| | - Lee E Fisher
- Department of Physical Medicine and Rehabilitation, Department of Bioengineering, University of Pittsburgh, 3250 Fifth Ave., Pittsburgh, PA, 15213, USA
| | | | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
| |
Collapse
|
34
|
Zhang Y, Zheng N, Cao Y, Wang F, Wang P, Ma Y, Lu B, Hou G, Fang Z, Liang Z, Yue M, Li Y, Chen Y, Fu J, Wu J, Xie T, Feng X. Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording. SCIENCE ADVANCES 2019; 5:eaaw1066. [PMID: 31086809 PMCID: PMC6505533 DOI: 10.1126/sciadv.aaw1066] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 03/05/2019] [Indexed: 05/18/2023]
Abstract
Peripheral neuromodulation has been widely used throughout clinical practices and basic neuroscience research. However, the mechanical and geometrical mismatches at current electrode-nerve interfaces and complicated surgical implantation often induce irreversible neural damage, such as axonal degradation. Here, compatible with traditional 2D planar processing, we propose a 3D twining electrode by integrating stretchable mesh serpentine wires onto a flexible shape memory substrate, which has permanent shape reconfigurability (from 2D to 3D), distinct elastic modulus controllability (from ~100 MPa to ~300 kPa), and shape memory recoverability at body temperature. Similar to the climbing process of twining plants, the temporarily flattened 2D stiff twining electrode can naturally self-climb onto nerves driven by 37°C normal saline and form 3D flexible neural interfaces with minimal constraint on the deforming nerves. In vivo animal experiments, including right vagus nerve stimulation for reducing the heart rate and action potential recording of the sciatic nerve, demonstrate the potential clinical utility.
Collapse
Affiliation(s)
- Yingchao Zhang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Ning Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yu Cao
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Fengle Wang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Peng Wang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Yinji Ma
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Bingwei Lu
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Guohui Hou
- Institute of Flexible Electronics Technology of THU, Jiaxing 314000, China
| | - Zizheng Fang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ziwei Liang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Mengkun Yue
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Yan Li
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Ying Chen
- Institute of Flexible Electronics Technology of THU, Jiaxing 314000, China
| | - Ji Fu
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Jian Wu
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xue Feng
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
35
|
Wang A, Hu M, Zhou L, Qiang X. Self-Powered Well-Aligned P(VDF-TrFE) Piezoelectric Nanofiber Nanogenerator for Modulating an Exact Electrical Stimulation and Enhancing the Proliferation of Preosteoblasts. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E349. [PMID: 30832450 PMCID: PMC6473961 DOI: 10.3390/nano9030349] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/10/2019] [Accepted: 02/19/2019] [Indexed: 12/27/2022]
Abstract
Electric potential plays an indispensable role in tissue engineering and wound healing. Piezoelectric nanogenerators based on direct piezoelectric effects can be self-powered energy sources for electrical stimulation and have attracted extensive attention. However, the accuracy of piezoelectric stimuli on piezoelectric polymers membranes in vitro during the dynamic condition is rarely studied. Here, a self-powered tunable electrical stimulation system for assisting the proliferation of preosteoblasts was achieved by well-aligned P(VDF-TrFE) piezoelectric nanofiber membrane (NFM) both as a nanogenerator (NG) and as a scaffold. The effects of electrospinning and different post-treatments (annealing and poling) on the surface wettability, piezoelectric β phase, ferroelectric properties, and sensing performance of NFMs were evaluated here. The polarized P(VDF-TrFE) NFM offered an enhanced piezoelectric value (d31 of 22.88 pC/N) versus pristine P(VDF-TrFE) NFM (d31 of 0.03 pC/N) and exhibited good sensing performance. The maximum voltage and current output of the P(VDF-TrFE) piezoelectric nanofiber NGs reached -1.7 V and 41.5 nA, respectively. An accurate electrical response was obtained in real time under dynamic mechanical stimulation by immobilizing the NGs on the flexible bottom of the culture plate, thereby restoring the real scene of providing electrical stimulation to the cells in vitro. In addition, we simulated the interaction between the piezoelectric nanofiber NG and cells through an equivalent circuit model. To verify the feasibility of P(VDF-TrFE) nanofiber NGs as an exact electrical stimulation, the effects of different outputs of P(VDF-TrFE) nanofiber NGs on cell proliferation in vitro were compared. The study realized a significant enhancement of preosteoblasts proliferation. This work demonstrated the customizability of P(VDF-TrFE) piezoelectric nanofiber NG for self-powered electrical stimulation system application and suggested its significant potential application for tissue repair and regeneration.
Collapse
Affiliation(s)
- Aochen Wang
- School of Microelectronics, Tianjin University, Tianjin 300072, China.
| | - Ming Hu
- School of Microelectronics, Tianjin University, Tianjin 300072, China.
| | - Liwei Zhou
- School of Microelectronics, Tianjin University, Tianjin 300072, China.
| | - Xiaoyong Qiang
- School of Microelectronics, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
36
|
González-González MA, Kanneganti A, Joshi-Imre A, Hernandez-Reynoso AG, Bendale G, Modi R, Ecker M, Khurram A, Cogan SF, Voit WE, Romero-Ortega MI. Thin Film Multi-Electrode Softening Cuffs for Selective Neuromodulation. Sci Rep 2018; 8:16390. [PMID: 30401906 PMCID: PMC6219541 DOI: 10.1038/s41598-018-34566-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 10/18/2018] [Indexed: 01/21/2023] Open
Abstract
Silicone nerve cuff electrodes are commonly implanted on relatively large and accessible somatic nerves as peripheral neural interfaces. While these cuff electrodes are soft (1–50 MPa), their self-closing mechanism requires of thick walls (200–600 µm), which in turn contribute to fibrotic tissue growth around and inside the device, compromising the neural interface. We report the use of thiol-ene/acrylate shape memory polymer (SMP) for the fabrication of thin film multi-electrode softening cuffs (MSC). We fabricated multi-size MSC with eight titanium nitride (TiN) electrodes ranging from 1.35 to 13.95 × 10−4 cm2 (1–3 kΩ) and eight smaller gold (Au) electrodes (3.3 × 10−5 cm2; 750 kΩ), that soften at physiological conditions to a modulus of 550 MPa. While the SMP material is not as soft as silicone, the flexural forces of the SMP cuff are about 70–700 times lower in the MSC devices due to the 30 μm thick film compared to the 600 μm thick walls of the silicone cuffs. We demonstrated the efficacy of the MSC to record neural signals from rat sciatic and pelvic nerves (1000 µm and 200 µm diameter, respectively), and the selective fascicular stimulation by current steering. When implanted side-by-side and histologically compared 30 days thereafter, the MSC devices showed significantly less inflammation, indicated by a 70–80% reduction in ED1 positive macrophages, and 54–56% less fibrotic vimentin immunoreactivity. Together, the data supports the use of MSC as compliant and adaptable technology for the interfacing of somatic and autonomic peripheral nerves.
Collapse
Affiliation(s)
- María A González-González
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Aswini Kanneganti
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Alexandra Joshi-Imre
- Department of Material Science and Engineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Ana G Hernandez-Reynoso
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Geetanjali Bendale
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Romil Modi
- Department of Material Science and Engineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Melanie Ecker
- Department of Material Science and Engineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Ali Khurram
- Department of Material Science and Engineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Stuart F Cogan
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Walter E Voit
- Department of Material Science and Engineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Mario I Romero-Ortega
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA.
| |
Collapse
|
37
|
Renz AF, Reichmuth AM, Stauffer F, Thompson-Steckel G, Vörös J. A guide towards long-term functional electrodes interfacing neuronal tissue. J Neural Eng 2018; 15:061001. [DOI: 10.1088/1741-2552/aae0c2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Yang J, Du M, Wang L, Li S, Wang G, Yang X, Zhang L, Fang Y, Zheng W, Yang G, Jiang X. Bacterial Cellulose as a Supersoft Neural Interfacing Substrate. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33049-33059. [PMID: 30208275 DOI: 10.1021/acsami.8b12083] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biocompatible neural interfaces hold great promise for treating neurological disorders and enhancing the mental and physical ability of human beings. Most of the currently available neural interfaces are made from rigid, dense inorganic materials that cause tissue damage. We present supersoft multichannel electrodes by depositing gold layers on thin bacterial cellulose (BC) (Au-BC electrodes). The Young's modulus of BC ( EBC = 120 kPa) is between those of the brain tissue ( Ebrain = 2.7-3.1 kPa) and the peripheral neural tissues ( Eperipheral nerve = 580-840 kPa). The bending stiffness of the Au-BC electrodes corresponds to 1/5200 of Au-polyimide electrodes with the same layout. Furthermore, the Au-BC electrodes are highly durable (conductivity >95% after 100 cycles of 180° bending). In vivo recording of brain electric activity demonstrates the great potential of the Au-BC electrodes for neural interfacing applications.
Collapse
Affiliation(s)
- Junchuan Yang
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center of Excellence for Nanoscience , National Center for NanoScience and Technology , Beijing , 100190 , China
- National Engineering Research Center for Nano-Medicine, Department of Biomedical Engineering, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan , 430074 , China
| | - Mingde Du
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center of Excellence for Nanoscience , National Center for NanoScience and Technology , Beijing , 100190 , China
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Le Wang
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center of Excellence for Nanoscience , National Center for NanoScience and Technology , Beijing , 100190 , China
| | - Sixiang Li
- National Engineering Research Center for Nano-Medicine, Department of Biomedical Engineering, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan , 430074 , China
| | - Guorui Wang
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center of Excellence for Nanoscience , National Center for NanoScience and Technology , Beijing , 100190 , China
| | - Xinglong Yang
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center of Excellence for Nanoscience , National Center for NanoScience and Technology , Beijing , 100190 , China
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Lijuan Zhang
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center of Excellence for Nanoscience , National Center for NanoScience and Technology , Beijing , 100190 , China
| | - Ying Fang
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center of Excellence for Nanoscience , National Center for NanoScience and Technology , Beijing , 100190 , China
| | - Wenfu Zheng
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center of Excellence for Nanoscience , National Center for NanoScience and Technology , Beijing , 100190 , China
| | - Guang Yang
- National Engineering Research Center for Nano-Medicine, Department of Biomedical Engineering, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan , 430074 , China
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center of Excellence for Nanoscience , National Center for NanoScience and Technology , Beijing , 100190 , China
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| |
Collapse
|
39
|
Chen N, Luo B, Yang IH, Thakor NV, Ramakrishna S. Biofunctionalized platforms towards long-term neural interface. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018. [DOI: 10.1016/j.cobme.2018.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
40
|
Huang T, Jiang K, Li L, Chen S, Li R, Shen G, Chen D. Large-Scale Fabrication of Flexible On-Chip Micro-Supercapacitors by a Mechanical Scribing Process. ChemElectroChem 2018. [DOI: 10.1002/celc.201800439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tingting Huang
- College of Physics and Mathematics and Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science; University of Science and Technology Beijing; Beijing 100083 China
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors; Chinese Academy of Sciences; Beijing 100083 China
| | - Kai Jiang
- Institute & Hospital of Hepatobiliary Surgery, Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLA, Chinese PLA Medical School; Chinese PLA General Hospital; Beijing 100853 China
| | - La Li
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors; Chinese Academy of Sciences; Beijing 100083 China
| | - Shuai Chen
- College of Physics and Mathematics and Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science; University of Science and Technology Beijing; Beijing 100083 China
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors; Chinese Academy of Sciences; Beijing 100083 China
| | - Rui Li
- College of Physics and Mathematics and Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science; University of Science and Technology Beijing; Beijing 100083 China
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors; Chinese Academy of Sciences; Beijing 100083 China
| | - Guozhen Shen
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors; Chinese Academy of Sciences; Beijing 100083 China
| | - Di Chen
- College of Physics and Mathematics and Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science; University of Science and Technology Beijing; Beijing 100083 China
| |
Collapse
|
41
|
Arab Hassani F, Mogan RP, Gammad GGL, Wang H, Yen SC, Thakor NV, Lee C. Toward Self-Control Systems for Neurogenic Underactive Bladder: A Triboelectric Nanogenerator Sensor Integrated with a Bistable Micro-Actuator. ACS NANO 2018; 12:3487-3501. [PMID: 29630352 DOI: 10.1021/acsnano.8b00303] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Aging, neurologic diseases, and diabetes are a few risk factors that may lead to underactive bladder (UAB) syndrome. Despite all of the serious consequences of UAB, current solutions, the most common being ureteric catheterization, are all accompanied by serious shortcomings. The necessity of multiple catheterizations per day for a physically able patient not only reduces the quality of life with constant discomfort and pain but also can end up causing serious complications. Here, we present a bistable actuator to empty the bladder by incorporating shape memory alloy components integrated on flexible polyvinyl chloride sheets. The introduction of two compression and restoration phases for the actuator allows for repeated actuation for a more complete voiding of the bladder. The proposed actuator exhibits one of the highest reported voiding percentages of up to 78% of the bladder volume in an anesthetized rat after only 20 s of actuation. This amount of voiding is comparable to the common catheterization method, and its one time implantation onto the bladder rectifies the drawbacks of multiple catheterizations per day. Furthermore, the scaling of the device for animal models larger than rats can be easily achieved by adjusting the number of nitinol springs. For neurogenic UAB patients with degraded nerve function as well as degenerated detrusor muscle, we integrate a flexible triboelectric nanogenerator sensor with the actuator to detect the fullness of the bladder. The sensitivity of this sensor to the filling status of the bladder shows its capability for defining a self-control system in the future that would allow autonomous micturition.
Collapse
Affiliation(s)
- Faezeh Arab Hassani
- Department of Electrical and Computer Engineering, Faculty of Engineering , National University of Singapore , 4 Engineering Drive 3 , #05-45, Singapore 117583 , Singapore
- Singapore Institute for Neurotechnology , National University of Singapore , 28 Medical Drive , #05-COR, Singapore 117456 , Singapore
- Center for Intelligent Sensors and MEMS , National University of Singapore , 5 Engineering Drive 1 , E6 #05-11F, Singapore 117608 , Singapore
| | - Roshini P Mogan
- Singapore Institute for Neurotechnology , National University of Singapore , 28 Medical Drive , #05-COR, Singapore 117456 , Singapore
| | - Gil G L Gammad
- Singapore Institute for Neurotechnology , National University of Singapore , 28 Medical Drive , #05-COR, Singapore 117456 , Singapore
| | - Hao Wang
- Department of Electrical and Computer Engineering, Faculty of Engineering , National University of Singapore , 4 Engineering Drive 3 , #05-45, Singapore 117583 , Singapore
- Singapore Institute for Neurotechnology , National University of Singapore , 28 Medical Drive , #05-COR, Singapore 117456 , Singapore
- Center for Intelligent Sensors and MEMS , National University of Singapore , 5 Engineering Drive 1 , E6 #05-11F, Singapore 117608 , Singapore
- Hybrid-Integrated Flexible Electronic Systems (HIFES) Program , National University of Singapore , 5 Engineering Drive 1 , E6 #05-4, Singapore 117608 , Singapore
| | - Shih-Cheng Yen
- Department of Electrical and Computer Engineering, Faculty of Engineering , National University of Singapore , 4 Engineering Drive 3 , #05-45, Singapore 117583 , Singapore
- Singapore Institute for Neurotechnology , National University of Singapore , 28 Medical Drive , #05-COR, Singapore 117456 , Singapore
| | - Nitish V Thakor
- Department of Electrical and Computer Engineering, Faculty of Engineering , National University of Singapore , 4 Engineering Drive 3 , #05-45, Singapore 117583 , Singapore
- Singapore Institute for Neurotechnology , National University of Singapore , 28 Medical Drive , #05-COR, Singapore 117456 , Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, Faculty of Engineering , National University of Singapore , 4 Engineering Drive 3 , #05-45, Singapore 117583 , Singapore
- Singapore Institute for Neurotechnology , National University of Singapore , 28 Medical Drive , #05-COR, Singapore 117456 , Singapore
- Center for Intelligent Sensors and MEMS , National University of Singapore , 5 Engineering Drive 1 , E6 #05-11F, Singapore 117608 , Singapore
- Hybrid-Integrated Flexible Electronic Systems (HIFES) Program , National University of Singapore , 5 Engineering Drive 1 , E6 #05-4, Singapore 117608 , Singapore
- NUS Graduate School for Integrative Science and Engineering , National University of Singapore , Singapore 117456 , Singapore
| |
Collapse
|
42
|
Scaini D, Ballerini L. Nanomaterials at the neural interface. Curr Opin Neurobiol 2017; 50:50-55. [PMID: 29289930 DOI: 10.1016/j.conb.2017.12.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/26/2017] [Accepted: 12/15/2017] [Indexed: 12/16/2022]
Abstract
Interfacing the nervous system with devices able to efficiently record or modulate the electrical activity of neuronal cells represents the underlying foundation of future theranostic applications in neurology and of current openings in neuroscience research. These devices, usually sensing cell activity via microelectrodes, should be characterized by safe working conditions in the biological milieu together with a well-controlled operation-life. The stable device/neuronal electrical coupling at the interface requires tight interactions between the electrode surface and the cell membrane. This neuro-electrode hybrid represents the hyphen between the soft nature of neural tissue, generating electrical signals via ion motions, and the rigid realm of microelectronics and medical devices, dealing with electrons in motion. Efficient integration of these entities is essential for monitoring, analyzing and controlling neuronal signaling but poses significant technological challenges. Improving the cell/electrode interaction and thus the interface performance requires novel engineering of (nano)materials: tuning at the nanoscale electrode's properties may lead to engineer interfacing probes that better camouflaged with their biological target. In this brief review, we highlight the most recent concepts in nanotechnologies and nanomaterials that might help reducing the mismatch between tissue and electrode, focusing on the device's mechanical properties and its biological integration with the tissue.
Collapse
Affiliation(s)
- Denis Scaini
- Scuola Internazionale Superiore di Studi Avanzati, via Bonomea, 265, 34136 Trieste, Italy; Elettra-Sincrotrone Trieste S.C.p.A. di interesse nazionale, S.S. 14, km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Laura Ballerini
- Scuola Internazionale Superiore di Studi Avanzati, via Bonomea, 265, 34136 Trieste, Italy.
| |
Collapse
|
43
|
Lee S, Peh WYX, Wang J, Yang F, Ho JS, Thakor NV, Yen S, Lee C. Toward Bioelectronic Medicine-Neuromodulation of Small Peripheral Nerves Using Flexible Neural Clip. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700149. [PMID: 29201608 PMCID: PMC5700646 DOI: 10.1002/advs.201700149] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 04/30/2017] [Indexed: 05/24/2023]
Abstract
Neural modulation technology and the capability to affect organ function have spawned the new field of bioelectronic medicine. Therapeutic interventions depend on wireless bioelectronic neural interfaces that can conformally and easily attach to small (few hundred micrometers) nerves located deep in the body without neural damage. Besides size, factors like flexibility and compliance to attach and adapt to visceral nerves associated moving organs are of paramount importance and have not been previously addressed. This study proposes a novel flexible neural clip (FNC) that can be used to interface with a variety of different peripheral nerves. To illustrate the flexibility of the design, this study stimulates the pelvic nerve, the vagus nerve, and branches of the sciatic nerve and evaluates the feasibility of the design in modulating the function of each of these nerves. It is found that this FNC allows fine-tuning of physiological processes such as micturition, heart rate, and muscle contractions. Furthermore, this study also tests the ability of wirelessly powered FNC to enable remote modulation of visceral pelvic nerves located deep in the body. These results show that the FNC can be used with a range of different nerves, providing one of the critical pieces in the field of bioelectronics medicines.
Collapse
Affiliation(s)
- Sanghoon Lee
- Department of Electrical and Computer EngineeringNational University of Singapore4 Engineering Drive 3Singapore117583Singapore
- Singapore Institute for Neurotechnology (SINAPSE)National University of Singapore28 Medical Drive, #05‐CORSingapore117456Singapore
- Center for Intelligent Sensors and MEMSNational University of Singapore4 Engineering Drive 3Singapore117576Singapore
- NUS Suzhou Research Institute (NUSRI)Industrial ParkSuzhou215123P. R. China
| | - Wendy Yen Xian Peh
- Singapore Institute for Neurotechnology (SINAPSE)National University of Singapore28 Medical Drive, #05‐CORSingapore117456Singapore
| | - Jiahui Wang
- Department of Electrical and Computer EngineeringNational University of Singapore4 Engineering Drive 3Singapore117583Singapore
- Singapore Institute for Neurotechnology (SINAPSE)National University of Singapore28 Medical Drive, #05‐CORSingapore117456Singapore
- Center for Intelligent Sensors and MEMSNational University of Singapore4 Engineering Drive 3Singapore117576Singapore
- NUS Suzhou Research Institute (NUSRI)Industrial ParkSuzhou215123P. R. China
| | - Fengyuan Yang
- Department of Electrical and Computer EngineeringNational University of Singapore4 Engineering Drive 3Singapore117583Singapore
- Singapore Institute for Neurotechnology (SINAPSE)National University of Singapore28 Medical Drive, #05‐CORSingapore117456Singapore
| | - John S. Ho
- Department of Electrical and Computer EngineeringNational University of Singapore4 Engineering Drive 3Singapore117583Singapore
- Singapore Institute for Neurotechnology (SINAPSE)National University of Singapore28 Medical Drive, #05‐CORSingapore117456Singapore
| | - Nitish V. Thakor
- Department of Electrical and Computer EngineeringNational University of Singapore4 Engineering Drive 3Singapore117583Singapore
- Singapore Institute for Neurotechnology (SINAPSE)National University of Singapore28 Medical Drive, #05‐CORSingapore117456Singapore
- Graduate School for Integrative Science and EngineeringNational University of SingaporeSingapore117456Singapore
- Department of Biomedical EngineeringSchool of MedicineJohns Hopkins UniversityBaltimoreMD21205USA
| | - Shih‐Cheng Yen
- Department of Electrical and Computer EngineeringNational University of Singapore4 Engineering Drive 3Singapore117583Singapore
- Singapore Institute for Neurotechnology (SINAPSE)National University of Singapore28 Medical Drive, #05‐CORSingapore117456Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer EngineeringNational University of Singapore4 Engineering Drive 3Singapore117583Singapore
- Singapore Institute for Neurotechnology (SINAPSE)National University of Singapore28 Medical Drive, #05‐CORSingapore117456Singapore
- Center for Intelligent Sensors and MEMSNational University of Singapore4 Engineering Drive 3Singapore117576Singapore
- NUS Suzhou Research Institute (NUSRI)Industrial ParkSuzhou215123P. R. China
- Graduate School for Integrative Science and EngineeringNational University of SingaporeSingapore117456Singapore
| |
Collapse
|