1
|
Liu J, Zhang X, Zhang Y, Zhao B, Liu Z, Dong X, Feng S, Du Y. Mn-based Prussian blue analogues: Multifunctional nanozymes for hydrogen peroxide detection and photothermal therapy of tumors. Talanta 2024; 277:126320. [PMID: 38824861 DOI: 10.1016/j.talanta.2024.126320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/18/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Nanozymes have the advantages of simple synthesis, high stability, low cost and easy recycling, and can be applied in many fields including molecular detection, disease diagnosis and cancer therapy. However, most of the current nanozymes suffer from the defects of low catalytic activity and single function, which limits their sensing sensitivity and multifunctional applications. The development of highly active and multifunctional nanozymes is an important way to realize multidisciplinary applications. In this work, Mn-based Prussian blue analogues (Mn-PBA) and their derived double-shelled nanoboxes (DSNBs) are synthesized by co-precipitation method. The nanobox structure of DSNBs formed by etching Mn-PBA with tannic acid endows Mn-PBA DSNBs with better peroxidase-like activity than Mn-PBA. A colorimetric method for the rapid and sensitive determination of H2O2 is developed using Mn-PBA DSNBs-1.5 as a sensor with a detection limit as low as 0.62 μM. Moreover, Mn-PBA DSNBs-2 has excellent photothermal conversion ability, which can be applied to the photothermal therapy of tumors to inhibit the proliferation of tumor cells without damaging other tissues and organs. This study provides a new idea for the rational design of nanozymes and the expansion of their multi-functional applications in various fields.
Collapse
Affiliation(s)
- Jingjing Liu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022, PR China
| | - Xiaojun Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
| | - Yuan Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, PR China
| | - Bo Zhao
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022, PR China.
| | - Zhelin Liu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022, PR China.
| | - Xiangting Dong
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022, PR China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, PR China
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China.
| |
Collapse
|
2
|
Liu S, Wei Y, Liang Y, Du P, Lei P, Yu D, Zhang H. Engineering Nanozymes for Tumor Therapy via Ferroptosis Self-Amplification. Adv Healthc Mater 2024; 13:e2400307. [PMID: 38573778 DOI: 10.1002/adhm.202400307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Ferroptosis induction is an emerging strategy for tumor therapy. Reactive oxygen species (ROS) can induce ferroptosis but are easily consumed by overexpressed glutathione (GSH) in tumor cells. Therefore, achieving a large amount of ROS production in tumor cells without being consumed is key to efficiently inducing ferroptosis. In this study, a self-amplifying ferroptosis-inducing therapeutic agent, Pd@CeO2-Fe-Co-WZB117-DSPE-PEG-FA (PCDWD), is designed for tumor therapy. PCDWD exhibits excellent multi-enzyme activities due to the loading of Fe-Co dual atoms with abundant active sites, including peroxidase-like enzymes, catalase-like enzymes, and glutathione oxidases (GSHOx), which undergo catalytic reactions in the tumor microenvironment to produce ROS, thereby inducing ferroptosis. Furthermore, PCDWD can also deplete GSH in tumor cells, thus reducing the consumption of ROS by GSH and inhibiting the expression of GSH peroxidase 4. Moreover, the photothermal effect of PCDWD can not only directly kill tumor cells but also further enhance its own enzyme activities, consequently promoting ferroptosis in tumor cells. In addition, WZB117 can reduce the expression of heat shock protein 90 by inhibiting glucose transport, thereby reducing the thermal resistance of tumor cells and further improving the therapeutic effect. Finally, X-ray computed tomography imaging of PCDWD guides it to achieve efficient tumor therapy.
Collapse
Affiliation(s)
- Shuyu Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yi Wei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Yuan Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Pengye Du
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Pengpeng Lei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Duo Yu
- Second Hospital of Jilin University, The Second Hospital of Jilin University Department of Radiotherapy, Changchun, 130062, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Shahid S, Khan A, Shahid W, Rehan M, Asif R, Nisar H, Kanwal Q, Choi JR. Nanoenzymes: A Radiant Hope for the Early Diagnosis and Effective Treatment of Breast and Ovarian Cancers. Int J Nanomedicine 2024; 19:5813-5835. [PMID: 38895143 PMCID: PMC11184228 DOI: 10.2147/ijn.s460712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/16/2024] [Indexed: 06/21/2024] Open
Abstract
Breast and ovarian cancers, despite having chemotherapy and surgical treatment, still have the lowest survival rate. Experimental stages using nanoenzymes/nanozymes for ovarian cancer diagnosis and treatment are being carried out, and correspondingly the current treatment approaches to treat breast cancer have a lot of adverse side effects, which is the reason why researchers and scientists are looking for new strategies with less side effects. Nanoenzymes have intrinsic enzyme-like activities and can reduce the shortcomings of naturally occurring enzymes due to the ease of storage, high stability, less expensive, and enhanced efficiency. In this review, we have discussed various ways in which nanoenzymes are being used to diagnose and treat breast and ovarian cancer. For breast cancer, nanoenzymes and their multi-enzymatic properties can control the level of reactive oxygen species (ROS) in cells or tissues, for example, oxidase (OXD) and peroxidase (POD) activity can be used to generate ROS, while catalase (CAT) or superoxide dismutase (SOD) activity can scavenge ROS. In the case of ovarian cancer, most commonly nanoceria is being investigated, and also when folic acid is combined with nanoceria there are additional advantages like inhibition of beta galactosidase. Nanocarriers are also used to deliver small interfering RNA that are effective in cancer treatment. Studies have shown that iron oxide nanoparticles are actively being used for drug delivery, similarly ferritin carriers are used for the delivery of nanozymes. Hypoxia is a major factor in ovarian cancer, therefore MnO2-based nanozymes are being used as a therapy. For cancer diagnosis and screening, nanozymes are being used in sonodynamic cancer therapy for cancer diagnosis and screening, whereas biomedical imaging and folic acid gold particles are also being used for image guided treatments. Nanozyme biosensors have been developed to detect ovarian cancer. This review article summarizes a detailed insight into breast and ovarian cancers in light of nanozymes-based diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Samiah Shahid
- Research Centre for Health Sciences (RCHS), The University of Lahore, Lahore, Pakistan
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Ayesha Khan
- Research Centre for Health Sciences (RCHS), The University of Lahore, Lahore, Pakistan
| | - Wajeehah Shahid
- Department of Physics, The University of Lahore, Lahore, Pakistan
| | - Mehvesh Rehan
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Roha Asif
- Research Centre for Health Sciences (RCHS), The University of Lahore, Lahore, Pakistan
| | - Haseeb Nisar
- School of Life Sciences, University of Management and Technology, Lahore, Pakistan
| | - Qudsia Kanwal
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Jeong Ryeol Choi
- School of Electronic Engineering, Kyonggi University, Suwon, Kyeonggi-do, 16227, Republic of Korea
| |
Collapse
|
4
|
Tang Y, Gao L, Fei J. Light-triggered AND logic tetrapeptide dynamic covalent assembly. Colloids Surf B Biointerfaces 2024; 238:113885. [PMID: 38574405 DOI: 10.1016/j.colsurfb.2024.113885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/07/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
We demonstrate light-triggered dynamic covalent assembly of a linear short tetrapeptide containing two terminal cysteine residues in an AND logic manner. A photobase generator is introduced to accomplish light-mediated pH regulation to increase the reduction potential of thiols in the tetrapeptide, which activates its oxidative polymerization through disulfide bonds. Interestingly, it is elucidated that under light irradiation, mere co-existence of photobase generator and the oxidizing agent permits the polymerization performance of this tetrapeptide. Hence, a light-triggered AND logic dynamic covalent assembly of a tetrapeptide is achieved. Further, upon redox response, the reversible aggregation and disaggregation can be transformed for numerous times due to the dynamic covalent feature of disulfide bond. As a comparison, no assembly occurs for a short peptide containing one terminal cysteine residue under the same stimuli condition. This work offers a new approach to remotely control programmable molecular assembly of short linear peptides based on dynamic covalent bond, holding great potential in wide bioapplications.
Collapse
Affiliation(s)
- Yuhua Tang
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Liang Gao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Han C, Kundu BK, Liang Y, Sun Y. Near-Infrared Light-Driven Photocatalysis with an Emphasis on Two-Photon Excitation: Concepts, Materials, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307759. [PMID: 37703435 DOI: 10.1002/adma.202307759] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Indexed: 09/15/2023]
Abstract
Efficient utilization of sunlight in photocatalysis is widely recognized as a promising solution for addressing the growing energy demand and environmental issues resulting from fossil fuel consumption. Recently, there have been significant developments in various near-infrared (NIR) light-harvesting systems for artificial photosynthesis and photocatalytic environmental remediation. This review provides an overview of the most recent advancements in the utilization of NIR light through the creation of novel nanostructured materials and molecular photosensitizers, as well as modulating strategies to enhance the photocatalytic processes. A special focus is given to the emerging two-photon excitation NIR photocatalysis. The unique features and limitations of different systems are critically evaluated. In particular, it highlights the advantages of utilizing NIR light and two-photon excitation compared to UV-visible irradiation and one-photon excitation. Ongoing challenges and potential solutions for the future exploration of NIR light-responsive materials are also discussed.
Collapse
Affiliation(s)
- Chuang Han
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430074, China
| | - Bidyut Kumar Kundu
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Yujun Liang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| |
Collapse
|
6
|
Dong W, Xu L, Chen M, Jiang T, Su L, Ma J, Chen CP, Zhang G. Co-, N-doped carbon dot nanozymes based on an untriggered ROS generation approach for anti-biofilm activities and in vivo anti-bacterial treatment. J Mater Chem B 2024; 12:1052-1063. [PMID: 38167941 DOI: 10.1039/d3tb01794j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Bacterial infections originating from food, water, and soil are widely recognized as significant global public health concerns. Biofilms are implicated in approximately two-thirds of bacterial infections. In recent times, nanomaterials have emerged as potential agents for combating biofilms and bacteria, with many of them being activated by light and H2O2 to generate reactive oxygen species (ROS). However, this energy-consuming and extrinsic substrate pattern poses many challenges for practical application. Consequently, there is a pressing need to develop methods for the untriggered generation of ROS to effectively address biofilm and bacterial infections. In this study, we investigated the oxidase-like activity of the Co,N-doped carbon dot (CoNCD) nanozyme, which facilitated the oxidation of ambient O2 to generate 1O2 in the absence of light and H2O2 supplementation; this resulted in effective biofilm cleavage and enhanced bactericidal effects. CoNCDs could become a potential candidate for wound healing and treatment of acute peritonitis in vivo, which can be primarily attributed to the spontaneous production of ROS. This study presents a convenient ROS generator that does not necessitate any specific triggering conditions. The nanozyme properties of CoNCDs exhibit significant promise as a potential remedy for diseases, specifically as an anti-biofilm and anti-bacterial agent.
Collapse
Affiliation(s)
- Wenpei Dong
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Xinxiang, Henan 453007, P. R. China
| | - Lingyun Xu
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Xinxiang, Henan 453007, P. R. China
| | - Mengting Chen
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Xinxiang, Henan 453007, P. R. China
| | - Tao Jiang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Xinxiang, Henan 453007, P. R. China
| | - Li Su
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Xinxiang, Henan 453007, P. R. China
| | - Jinliang Ma
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Xinxiang, Henan 453007, P. R. China
| | - Chang-Po Chen
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Xinxiang, Henan 453007, P. R. China
| | - Guisheng Zhang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
7
|
Zhang D, Liu D, Wang C, Su Y, Zhang X. Nanoreactor-based catalytic systems for therapeutic applications: Principles, strategies, and challenges. Adv Colloid Interface Sci 2023; 322:103037. [PMID: 37931381 DOI: 10.1016/j.cis.2023.103037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023]
Abstract
Inspired by natural catalytic compartments, various synthetic compartments that seclude catalytic reactions have been developed to understand complex multistep biosynthetic pathways, bestow therapeutic effects, or extend biosynthetic pathways in living cells. These emerging nanoreactors possessed many advantages over conventional biomedicine, such as good catalytic activity, specificity, and sustainability. In the past decade, a great number of efficient catalytic systems based on diverse nanoreactors (polymer vesicles, liposome, polymer micelles, inorganic-organic hybrid materials, MOFs, etc.) have been designed and employed to initiate in situ catalyzed chemical reactions for therapy. This review aims to present the recent progress in the development of catalytic systems based on nanoreactors for therapeutic applications, with a special emphasis on the principles and design strategies. Besides, the key components of nanoreactor-based catalytic systems, including nanocarriers, triggers or energy inputs, and products, are respectively introduced and discussed in detail. Challenges and prospects in the fabrication of therapeutic catalytic nanoreactors are also discussed as a conclusion to this review. We believe that catalytic nanoreactors will play an increasingly important role in modern biomedicine, with improved therapeutic performance and minimal side effects.
Collapse
Affiliation(s)
- Dan Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Dongcheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chunfei Wang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Yanhong Su
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, China.
| |
Collapse
|
8
|
Dong W, Chen M, Chang C, Jiang T, Su L, Chen C, Zhang G. Remodeling of Tumor Microenvironment by Nanozyme Combined cGAS-STING Signaling Pathway Agonist for Enhancing Cancer Immunotherapy. Int J Mol Sci 2023; 24:13935. [PMID: 37762239 PMCID: PMC10530945 DOI: 10.3390/ijms241813935] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Nanozymes and cyclic GMP-AMP synthase (cGAS) the stimulator of interferon genes (STING) signaling pathway, as powerful organons, can remodel the tumor microenvironment (TME) to increase efficacy and overcome drug resistance in cancer immunotherapy. Nanozymes have the potential to manipulate the TME by producing reactive oxygen species (ROS), which lead to positive oxidative stress in tumor cells. Cyclic dinucleotide (2',3'-cGAMP), as a second messenger, exists in the TME and can regulate it to achieve antitumor activity. In this work, Co,N-doped carbon dots (CoNCDs) were used as a model nanozyme to evaluate the properties of the anti-tumor mechanism, and effective inhibition of S180 tumor was achieved. Based on CoNCDs' good biocompatibility and therapeutic effect on the tumor, we then introduced the cGAS-STING agonist, and the combination of the CoNCDs and STING agonist significantly inhibited tumor growth, and no significant systemic toxicity was observed. The combined system achieved the enhanced tumor synergistic immunotherapy through TME reprogramming via the peroxidase-like activity of the CoNCDs and cGAS-STING signaling pathway agonist synergistically. Our work provides not only a new effective way to reprogram TME in vivo, but also a promising synergic antitumor therapy strategy.
Collapse
Affiliation(s)
- Wenpei Dong
- Electronic S Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang 453007, China; (W.D.); (T.J.); (L.S.)
- Henan Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Mengting Chen
- Electronic S Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang 453007, China; (W.D.); (T.J.); (L.S.)
- Henan Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Chun Chang
- Electronic S Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang 453007, China; (W.D.); (T.J.); (L.S.)
- Henan Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Tao Jiang
- Electronic S Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang 453007, China; (W.D.); (T.J.); (L.S.)
- Henan Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Li Su
- Electronic S Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang 453007, China; (W.D.); (T.J.); (L.S.)
- Henan Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Changpo Chen
- Electronic S Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang 453007, China; (W.D.); (T.J.); (L.S.)
- Henan Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Guisheng Zhang
- Electronic S Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang 453007, China; (W.D.); (T.J.); (L.S.)
- Henan Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
9
|
Zou D, Li Z, Long D, Dong X, Qu H, Yang L, Cao X. Molecular Cage with Dual Outputs of Photochromism and Luminescence Both in Solution and the Solid State. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13545-13553. [PMID: 36868562 DOI: 10.1021/acsami.2c23196] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The rational design of stimuli-responsive materials requires a deep understanding of the structure-activity relationship. Herein, we proposed an intramolecular conformation-locking strategy─incorporating flexible tetraphenylethylene (TPE) luminogens into the rigid scaffold of a molecular cage─to produce a molecular photoswitch with dual outputs of luminescence and photochromism in solution and in the solid states at once. The molecular cage scaffold, which restricts the intramolecular rotations of the TPE moiety, not only helps to preserve the luminescence of TPE in a dilute solution but facilitates the reversible photochromism on account of the intramolecular cyclization/cycloreversion reactions. Furthermore, we demonstrate assorted applications of this multiresponsive molecular cage, e.g., photo-switchable patterning, anticounterfeiting, and selective vapochromism sensing.
Collapse
Affiliation(s)
- Ding Zou
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zhihao Li
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Da Long
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xue Dong
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Liulin Yang
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xiaoyu Cao
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
10
|
Liu T, Cai B, Yuan P, Wang L, Tian R, Dai T, Weng L, Chen X. Manipulation and elimination of circulating tumor cells using multi-responsive nanosheet for malignant tumor therapy. Biomater Sci 2023; 11:2590-2602. [PMID: 36804554 DOI: 10.1039/d2bm01986h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Tumor recurrence caused by metastasis is a major cause of death for patients. Thus, a strategy to manipulate the circulating tumor cells (CTCs, initiators of tumor metastasis ) and eliminate them along with the primary tumor has significant clinical significance for malignant tumor therapy. In this study, a magnet-NIR-pH multi-responsive nanosheet (Fe3O4@SiO2-GO-PEG-FA/AMP-DOX, FGPFAD) was fabricated to capture CTCs in circulation, then magnetically transport them to the primary tumor, and finally perform NIR-dependent photothermal therapy as well as acidic-environment-triggered chemotherapy to destroy both the CTCs and the primary tumor. The FGPFAD nanosheet consists of silica-coated ferroferric oxide nanoparticles (Fe3O4@SiO2, magnetic targeting agent), graphene oxide (GO, photothermal therapy agent), polyethylene glycol (PEG, antifouling agent for sustained circulation), folic acid (FA, capturer of CTCs) and antimicrobial-peptide-conjugated doxorubicin (AMP-DOX, agent for chemotherapy), in which the AMP-DOX was bound to the FGPFAD nanosheet via a cleavable Schiff base to achieve acidic-environment-triggered drug release for tumor-specific chemotherapy. Both in vitro and in vivo results indicated that the effective capture and magnetically guided transfer of CTCs to the primary tumor, as well as the multimodal tumor extermination performed by our FGPFAD nanosheet, significantly inhibited the primary tumor and its metastasis.
Collapse
Affiliation(s)
- Tao Liu
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an 710049, P. R. China. .,National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bolei Cai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Pingyun Yuan
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an 710049, P. R. China.
| | - Le Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Ran Tian
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an 710049, P. R. China.
| | - Taiqiang Dai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Lin Weng
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an 710049, P. R. China.
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an 710049, P. R. China.
| |
Collapse
|
11
|
Zeng Z, Wang Z, Chen S, Xiao C, Liu M, Zhang J, Fan J, Zhao Y, Liu B. Bio-nanocomplexes with autonomous O 2 generation efficiently inhibit triple negative breast cancer through enhanced chemo-PDT. J Nanobiotechnology 2022; 20:500. [PMID: 36424589 PMCID: PMC9694858 DOI: 10.1186/s12951-022-01706-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022] Open
Abstract
As one kind of aggressive cancer, triple-negative breast cancer (TNBC) has become one of the major causes of women mortality worldwide. Recently, combinational chemo-PDT therapy based on nanomaterials has been adopted for the treatment of malignant tumor. However, the efficacy of PDT was partly compromised under tumor hypoxia environment due to the lack of sustainable O2 supply. In this study, CeO2-loaded nanoparticles (CeNPs) with peroxidase activity were synthesized to autonomously generate O2 by decomposing H2O2 within tumor region and reprogramming the hypoxia microenvironment as well. Meanwhile, the compound cinobufagin (CS-1) was loaded for inhibiting TNBC growth and metastasis. Moreover, the hybrid membrane camouflage was adopted to improve the biocompatibility and targeting ability of nanocomplexes. In vitro assay demonstrated that decomposition of H2O2 by CeO2 achieved sustainable O2 supply, which accordingly improved the efficacy of PDT. In turn, the generated O2 improved the cytotoxicity and anti-tumor migration effect of CS-1 by downregulating HIF-1α and MMP-9 levels. In vivo assay demonstrated that the combination of CS-1 and PDT significantly inhibited the growth and distance metastasis of tumor in MDA-MB-231 bearing mice. Thus, this chemo-PDT strategy achieved satisfactory therapeutic effects by smartly utilizing the enzyme activity of nanodrugs and special micro-environment of tumor.
Collapse
Affiliation(s)
- Zhihong Zeng
- College of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Zhou Wang
- College of Biology, Hunan University, Changsha, 410082, China
| | - Simin Chen
- College of Biology, Hunan University, Changsha, 410082, China
| | - Chang Xiao
- College of Biology, Hunan University, Changsha, 410082, China
| | - Minzhuo Liu
- College of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Jie Zhang
- College of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Jialong Fan
- College of Biology, Hunan University, Changsha, 410082, China
| | - Yanzhong Zhao
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, China.
| |
Collapse
|
12
|
Wang X, Mu Y, Yang K, Shao K, Cong X, Cao Z, Sun X, Su C, Chen X, Feng C. Reversible Regulation of the Reactive Oxygen Species Level Using a Semiconductor Heterojunction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46324-46339. [PMID: 36200707 DOI: 10.1021/acsami.2c13956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Here, we proposed a novel solution for reversible regulation of the reactive oxygen species (ROS) level using a semiconductor heterojunction. Two metal-based ROS scavengers containing n-type CeO2 nanoparticles and n-type Cu-doped diatom biosilica (Cu-DBs) were integrated by a hydrothermal method to form a typical n-n semiconductor heterojunction (Ce/Cu-DBs). Unlike the control of the ROS level by a single ROS scavenger or ROS-generating agent, Ce/Cu-DBs could quickly eliminate ROS by cascade catalytic reaction, which readily switched to ROS generation through a near-infrared (NIR)-triggered photocatalytic effect. This NIR mediated ROS regulation system provided a noninvasive strategy for reversible control of the ROS level in vitro and in vivo. The Ce/Cu-DBs could relieve cellular oxidative stress by clearing local excessive ROS while inhibiting bacterial growth by increasing ROS levels under NIR radiation. Benefiting from the reversible regulatory effect of Ce/Cu-DBs, programmable healing of infected wounds was realized via on-demand anti-infection and inflammation reduction. This work provided a general method with highly spatiotemporal resolution to a remote and sustainable control ROS level, which had great potential for the biomedical field and regulation of chemical reactions.
Collapse
Affiliation(s)
- Xiaoye Wang
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Yuzhi Mu
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Kuikun Yang
- College of Life Science and Technology, Harbin Institute of Technology, 92# Xidazhi Street, Harbin 150006, Heilongjiang Province, China
| | - Kai Shao
- Department of Central Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong 266035, China
| | - Xin Cong
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Zheng Cao
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xiaojie Sun
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Chang Su
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xiguang Chen
- Qingdao National Laboratory for Marine Science and Technology, 1# Wenhai Road, Qingdao 266000, Shandong Province, China
| | - Chao Feng
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| |
Collapse
|
13
|
Wang L, Chen Y. Bioinspired Dual-Driven Binary Heterogeneous Nanofluidic Ionic Diodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12450-12456. [PMID: 36197723 DOI: 10.1021/acs.langmuir.2c01570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recently, bioinspired 2D material-based nanofluidic systems with unique properties and advantages have been receiving considerable research interest and getting rapid development. However, it remains a huge challenge to integrate adaptive responsiveness to external stimuli and asymmetric ion transport characteristics into the 2D nanofluidic systems. Herein, we report a dual-driven switchable asymmetric ionic transport phenomenon through a graphene oxide-based heterogeneous 2D nanofluidic membrane. Taking advantage of the formation of a charge heterojunction induced by the variation of pH or UV irradiation, a maximum ionic current rectification (ICR) ratio of ca. 56 for pH or 140 for light was achieved. Such smart nanofluidic devices with pH and light dual-responsiveness and asymmetric ion transport behaviors provide a universal strategy for potential applications in chemical sensing, water treatment, and energy conversion and establish a promising platform for exploring advanced quantum ionics biodevices with ultrafast signal transmission, nanochannel-structured bioreactors with high efficiency, etc.
Collapse
Affiliation(s)
- Lili Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, P. R. China
| |
Collapse
|
14
|
Zhang C, Tang Y, Wang Q, He Y, Wang X, Beyer S, Guo J. Near infrared light-induced dynamic modulation of enzymatic activity through polyphenol-functionalized liquid metal nanodroplets. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Mori T, Sekine K, Kawashima K, Mori T, Kuninobu Y. Near‐Infrared and Dual Emissions of Diphenylamino Group‐Substituted Malachite Green Derivatives. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Toshiaki Mori
- Kyushu University: Kyushu Daigaku Interdisciplinary Graduate School of Engineering Sciences JAPAN
| | - Kohei Sekine
- Kyushu University: Kyushu Daigaku Institute for Materials Chemistry and Engineering JAPAN
| | - Kyohei Kawashima
- Kyushu University: Kyushu Daigaku Institute for Materials Chemistry and Engineering JAPAN
| | - Toshifumi Mori
- Kyushu University: Kyushu Daigaku Institute for Materials Chemistry and Engineering JAPAN
| | - Yoichiro Kuninobu
- Kyushu University Institute for Materials Chemistry and Engineering 6-1 Kasugakoen, Kasuga-shi 816-8580 Fukuoka JAPAN
| |
Collapse
|
16
|
Chen Z, Zhang J, Lyu Q, Wang H, Ji X, Yan Z, Chen F, Dahlgren RA, Zhang M. Modular configurations of living biomaterials incorporating nano-based artificial mediators and synthetic biology to improve bioelectrocatalytic performance: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153857. [PMID: 35176368 DOI: 10.1016/j.scitotenv.2022.153857] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/24/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Currently, the industrial application of bioelectrochemical systems (BESs) that are incubated with natural electrochemically active microbes (EABs) is limited due to inefficient extracellular electron transfer (EET) by natural EABs. Notably, recent studies have identified several novel living biomaterials comprising highly efficient electron transfer systems allowing unparalleled proficiency of energy conversion. Introduction of these biomaterials into BESs could fundamentally increase their utilization for a wide range of applications. This review provides a comprehensive assessment of recent advancements in the design of living biomaterials that can be exploited to enhance bioelectrocatalytic performance. Further, modular configurations of abiotic and biotic components promise a powerful enhancement through integration of nano-based artificial mediators and synthetic biology. Herein, recent advancements in BESs are synthesized and assessed, including heterojunctions between conductive nanomaterials and EABs, in-situ hybrid self-assembly of EABs and nano-sized semiconductors, cytoprotection in biohybrids, synthetic biological modifications of EABs and electroactive biofilms. Since living biomaterials comprise a broad range of disciplines, such as molecular biology, electrochemistry and material sciences, full integration of technological advances applied in an interdisciplinary framework will greatly enhance/advance the utility and novelty of BESs. Overall, emerging fundamental knowledge concerning living biomaterials provides a powerful opportunity to markedly boost EET efficiency and facilitate the industrial application of BESs to meet global sustainability challenges/goals.
Collapse
Affiliation(s)
- Zheng Chen
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, People's Republic of China; Fujian Provincial Key Lab of Coastal Basin Environment, Fujian Polytechnic Normal University, Fuqing 350300, People's Republic of China.
| | - Jing Zhang
- School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, People's Republic of China
| | - Qingyang Lyu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Honghui Wang
- School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, People's Republic of China
| | - Xiaoliang Ji
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Zhiying Yan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Fang Chen
- Fujian Provincial Key Lab of Coastal Basin Environment, Fujian Polytechnic Normal University, Fuqing 350300, People's Republic of China
| | - Randy A Dahlgren
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Minghua Zhang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| |
Collapse
|
17
|
Li ZL, Wu H, Zhu JQ, Sun LY, Tong XM, Huang DS, Yang T. Novel Strategy for Optimized Nanocatalytic Tumor Therapy: From an Updated View. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Zhen-Li Li
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) Hangzhou Zhejiang 310014 China
- School of Public Health Hangzhou Medical College Hangzhou Zhejiang 310014 China
- Department of Hepatobiliary Surgery Eastern Hepatobiliary Surgery Hospital Second Military Medical University (Naval Medical University) Shanghai 200438 China
- Eastern Hepatobiliary Clinical Research Institute Third Affiliated Hospital of Naval Medical University Shanghai 200438 China
| | - Han Wu
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) Hangzhou Zhejiang 310014 China
- School of Public Health Hangzhou Medical College Hangzhou Zhejiang 310014 China
- Department of Hepatobiliary Surgery Eastern Hepatobiliary Surgery Hospital Second Military Medical University (Naval Medical University) Shanghai 200438 China
- Eastern Hepatobiliary Clinical Research Institute Third Affiliated Hospital of Naval Medical University Shanghai 200438 China
| | - Jia-Qi Zhu
- College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Li-Yang Sun
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) Hangzhou Zhejiang 310014 China
- School of Public Health Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Xiang-Min Tong
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) Hangzhou Zhejiang 310014 China
- School of Public Health Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Dong-Sheng Huang
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) Hangzhou Zhejiang 310014 China
- School of Public Health Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Tian Yang
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) Hangzhou Zhejiang 310014 China
- School of Public Health Hangzhou Medical College Hangzhou Zhejiang 310014 China
- Department of Hepatobiliary Surgery Eastern Hepatobiliary Surgery Hospital Second Military Medical University (Naval Medical University) Shanghai 200438 China
- Eastern Hepatobiliary Clinical Research Institute Third Affiliated Hospital of Naval Medical University Shanghai 200438 China
| |
Collapse
|
18
|
Ma H, Liu Z, Koshy P, Sorrell CC, Hart JN. Density Functional Theory Investigation of the Biocatalytic Mechanisms of pH-Driven Biomimetic Behavior in CeO 2. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11937-11949. [PMID: 35229603 DOI: 10.1021/acsami.1c24686] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is considerable interest in the pH-dependent, switchable, biocatalytic properties of cerium oxide (CeO2) nanoparticles in biomedicine, where these materials exhibit beneficial antioxidant activity against reactive oxygen species (ROS) at a basic physiological pH but cytotoxic prooxidant activity in an acidic cancer cell pH microenvironment. While the general characteristics of the role of oxygen vacancies are known, the mechanism of their action at the atomic scale under different pH conditions has yet to be elucidated. The present work applies density functional theory (DFT) calculations to interpret, at the atomic scale, the pH-induced behavior of the stable {111} surface of CeO2 containing oxygen vacancies. Analysis of the surface-adsorbed media species reveals the critical role of pH on the interaction between ROS (•O2- and H2O2) and the defective CeO2 {111} surface. Under basic conditions, the superoxide dismutase (SOD) and catalase (CAT) biomimetic reactions can be performed cyclically, scavenging and decomposing ROS to harmless products, making CeO2 an excellent antioxidant. However, under acidic conditions, the CAT biomimetic reaction is hindered owing to the limited reversibility of Ce3+ ↔ Ce4+ and formation ↔ annihilation of oxygen vacancies. A Fenton biomimetic reaction (H2O2 + Ce3+ → Ce4+ + OH- + •OH) is predicted to occur simultaneously with the SOD and CAT biomimetic reactions, resulting in the formation of hydroxyl radicals, making CeO2 a cytotoxic prooxidant.
Collapse
Affiliation(s)
- Hongyang Ma
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales2052, Australia
| | - Zhao Liu
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai519082, China
| | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales2052, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales2052, Australia
| | - Judy N Hart
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales2052, Australia
| |
Collapse
|
19
|
Yu Y, Zhao S, Gu D, Zhu B, Liu H, Wu W, Wu J, Wei H, Miao L. Cerium oxide nanozyme attenuates periodontal bone destruction by inhibiting the ROS-NFκB pathway. NANOSCALE 2022; 14:2628-2637. [PMID: 35088792 DOI: 10.1039/d1nr06043k] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Periodontitis, an inflammatory disease of oxidative stress, occurs due to excess reactive oxygen species (ROS) contributing to cell and tissue damage which in turn leads to alveolar bone resorption as well as the destruction of other periodontal support tissues. With significant recent advances in nanomaterials, we considered a unique type of nanomaterials possessing enzyme-like characteristics (called nanozymes) for potential future clinical applications, especially in light of the increasing number of studies evaluating nanozymes in the setting of inflammatory diseases. Here, we introduced a therapeutic approach for the management of periodontitis utilizing an injection of cerium oxide nanoparticles (CeO2 NPs) in situ. In this study, our synthesized CeO2 NPs could act as ROS scavengers in the inflammatory microenvironment with ideal outcomes. In vitro and in vivo experiments provide strong evidence on the roles of CeO2 NPs in scavenging multiple ROS and suppressing ROS-induced inflammation reactions stimulated by lipopolysaccharides. Moreover, CeO2 NPs could inhibit the MAPK-NFκB signalling pathway to suppress inflammatory factors. In addition, the results from a rat periodontitis model demonstrate that CeO2 NPs could exhibit a remarkable capacity to attenuate alveolar bone resorption, decrease the osteoclast activity and inflammation, and consequently improve the restoration of destroyed tissues. Collectively, our present study underscores the potential of CeO2 NPs for application in the treatment of periodontitis, and provides valuable insights into the application of nanozymes in inflammatory diseases.
Collapse
Affiliation(s)
- Yijun Yu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China.
| | - Sheng Zhao
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Deao Gu
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Bijun Zhu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China.
| | - Hanxiao Liu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China.
| | - Wenlei Wu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China.
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Leiying Miao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
20
|
Yao S, Wang Y, Chi J, Yu Y, Zhao Y, Luo Y, Wang Y. Porous MOF Microneedle Array Patch with Photothermal Responsive Nitric Oxide Delivery for Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103449. [PMID: 34783460 PMCID: PMC8787387 DOI: 10.1002/advs.202103449] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/01/2021] [Indexed: 05/09/2023]
Abstract
Patches with the capacity of controllable delivering active molecules toward the wound bed to promote wound healing are expectant all along. Herein, a novel porous metal-organic framework (MOF) microneedle (MN) patch enabling photothermal-responsive nitric oxide (NO) delivery for promoting diabetic wound healing is presented. As the NO-loadable copper-benzene-1,3,5-tricarboxylate (HKUST-1) MOF is encapsulated with graphene oxide (GO), the resultant NO@HKUST-1@GO microparticles (NHGs) are imparted with the feature of near-infrared ray (NIR) photothermal response, which facilitate the controlled release of NO molecules. When these NHGs are embedded in a porous PEGDA-MN, the porous structure, larger specific surface area, and sufficient mechanical strength of the integrated MN could promote a more accurate and deeper delivery of NO molecules into the wound site. By applying the resultant NHG-MN to the wound of a type I diabetic rat model, the authors demonstrate that it is capable of accelerating vascularization, tissue regeneration, and collagen deposition, indicating its bright prospect applied in wound healing and other therapeutic scenarios.
Collapse
Affiliation(s)
- Shun Yao
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850China
| | - Yuetong Wang
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Junjie Chi
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001China
| | - Yunru Yu
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850China
| |
Collapse
|
21
|
Abstract
Hydrogels, due to their excellent biochemical and mechnical property, have shown attractive advantages in the field of wound dressings. However, a comprehensive review of the functional hydrogel as a wound dressing is still lacking. This work first summarizes the skin wound healing process and relates evaluation parameters and then reviews the advanced functions of hydrogel dressings such as antimicrobial property, adhesion and hemostasis, anti-inflammatory and anti-oxidation, substance delivery, self-healing, stimulus response, conductivity, and the recently emerged wound monitoring feature, and the strategies adopted to achieve these functions are all classified and discussed. Furthermore, applications of hydrogel wound dressing for the treatment of different types of wounds such as incisional wound and the excisional wound are summarized. Chronic wounds are also mentioned, and the focus of attention on infected wounds, burn wounds, and diabetic wounds is discussed. Finally, the future directions of hydrogel wound dressings for wound healing are further proposed.
Collapse
Affiliation(s)
- Yongping Liang
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiahui He
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baolin Guo
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
22
|
Keoingthong P, Hao Q, Li S, Zhang L, Xu J, Wang S, Chen L, Tan W, Chen Z. Graphene encapsuled Ru nanocrystal with highly-efficient peroxidase-like activity for glutathione detection at near-physiological pH. Chem Commun (Camb) 2021; 57:7669-7672. [PMID: 34254065 DOI: 10.1039/d1cc02953c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel nanozyme comprised of graphene encapsuled Ru nanocrystals (Ru@G) with effective and stable peroxidase-like activity prepared using a chemical vapor deposition (CVD) method was used for the detection of glutathione at near-physiological pH.
Collapse
Affiliation(s)
- Phouphien Keoingthong
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - Qing Hao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - Shengkai Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - Liang Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - Jieqiong Xu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - Shen Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - Long Chen
- Faculty of Science and Technology, University of Macau, Taipa 999078, Macau, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China. and The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| |
Collapse
|
23
|
Cai B, Hou M, Zhang S, Xin Z, Huang J, Yang J, Wang Y, Cai X, Xie S, Zhang C, Huang Y. Dual Targeting of Endoplasmic Reticulum by Redox-Deubiquitination Regulation for Cancer Therapy. Int J Nanomedicine 2021; 16:5193-5209. [PMID: 34354353 PMCID: PMC8331122 DOI: 10.2147/ijn.s321612] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Background Recently, nanocatalyst-induced endoplasmic reticulum (ER) stress for cancer therapy has been attracting considerable attention. However, cancer cells are often able to overcome ER stress-induced death by activating the unfolded protein response (UPR), making nanocatalytic monotherapy a poor defense against cancer progression. Purpose In this study, to improve the nanocatalytic treatment efficacy, a phase change material (PCM) was used to encapsulate the upstream ER stress initiator, iron oxide nanoparticles (Fe3O4 NPs), and the downstream UPR modulator, PR-619. Subsequently, the tumor-homing peptide tLyP-1 was coupled to it to form tLyP-1/PR-619/Fe3O4@PCM (tPF@PCM) theranostic platform. Materials and Methods tPF@PCM was synthesized using nanoprecipitation and resolidification methods followed by the EDC/NHS cross-linking method. The targeting capacity of tPF@PCM was evaluated in vitro and in vivo using flow cytometry and magnetic resonance imaging, respectively. The therapeutic efficacy of tPF@PCM was investigated in a renal cell carcinoma mouse model. Moreover, we explored the synergistic anti-tumor mechanism by examining the intracellular reactive oxygen species (ROS), aggregated proteins, ER stress response levels, and type of cell death. Results tPF@PCM had excellent tumor-targeting properties and exhibited satisfactory photothermal-enhanced tumor inhibition efficacy both in vitro and in vivo. Specifically, the phase transition temperature (45 °C) maintained using 808 nm laser irradiation significantly increased the release and catalytic activity of the peroxidase mimic Fe3O4 NPs. This strongly catalyzed the generation of hydroxyl radicals (•OH) via the Fenton reaction in the acidic tumor microenvironment. The redox imbalance subsequently resulted in an increase in the level of damaged proteins in the ER and initiated ER stress. Moreover, the pan-deubiquitinase inhibitor PR-619 blocked the “adaptive” UPR-mediated degradation of these damaged proteins, exacerbating the ER burden. Consequently, irremediable ER stress activated the “terminal” UPR, leading to apoptosis in cancer cells. Conclusion This ER stress-exacerbating strategy effectively suppresses tumorigenesis, offering novel directions for advances in the treatment of conventional therapy-resistant cancers.
Collapse
Affiliation(s)
- Biao Cai
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Mengfei Hou
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Shijun Zhang
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Zhixiang Xin
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Jiwei Huang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Jingxing Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Yueming Wang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Xingyun Cai
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Shaowei Xie
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Chunfu Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Yiran Huang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| |
Collapse
|
24
|
Mujtaba J, Liu J, Dey KK, Li T, Chakraborty R, Xu K, Makarov D, Barmin RA, Gorin DA, Tolstoy VP, Huang G, Solovev AA, Mei Y. Micro-Bio-Chemo-Mechanical-Systems: Micromotors, Microfluidics, and Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007465. [PMID: 33893682 DOI: 10.1002/adma.202007465] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Wireless nano-/micromotors powered by chemical reactions and/or external fields generate motive forces, perform tasks, and significantly extend short-range dynamic responses of passive biomedical microcarriers. However, before micromotors can be translated into clinical use, several major problems, including the biocompatibility of materials, the toxicity of chemical fuels, and deep tissue imaging methods, must be solved. Nanomaterials with enzyme-like characteristics (e.g., catalase, oxidase, peroxidase, superoxide dismutase), that is, nanozymes, can significantly expand the scope of micromotors' chemical fuels. A convergence of nanozymes, micromotors, and microfluidics can lead to a paradigm shift in the fabrication of multifunctional micromotors in reasonable quantities, encapsulation of desired subsystems, and engineering of FDA-approved core-shell structures with tuneable biological, physical, chemical, and mechanical properties. Microfluidic methods are used to prepare stable bubbles/microbubbles and capsules integrating ultrasound, optoacoustic, fluorescent, and magnetic resonance imaging modalities. The aim here is to discuss an interdisciplinary approach of three independent emerging topics: micromotors, nanozymes, and microfluidics to creatively: 1) embrace new ideas, 2) think across boundaries, and 3) solve problems whose solutions are beyond the scope of a single discipline toward the development of micro-bio-chemo-mechanical-systems for diverse bioapplications.
Collapse
Affiliation(s)
- Jawayria Mujtaba
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Jinrun Liu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Krishna K Dey
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China
| | - Rik Chakraborty
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Kailiang Xu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
- School of Information Science and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Denys Makarov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Roman A Barmin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str, Moscow, 121205, Russia
| | - Dmitry A Gorin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str, Moscow, 121205, Russia
| | - Valeri P Tolstoy
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Petergof, St. Petersburg, 198504, Russia
| | - Gaoshan Huang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Alexander A Solovev
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yongfeng Mei
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
25
|
|
26
|
Preparation and properties of conductive bacterial cellulose-based graphene oxide-silver nanoparticles antibacterial dressing. Carbohydr Polym 2021; 257:117671. [DOI: 10.1016/j.carbpol.2021.117671] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
|
27
|
Chen X, Xing H, Zhou Z, Hao Y, Zhang X, Qi F, Zhao J, Gao L, Wang X. Nanozymes go oral: nanocatalytic medicine facilitates dental health. J Mater Chem B 2021; 9:1491-1502. [PMID: 33427841 DOI: 10.1039/d0tb02763d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanozymes are multi-functional nanomaterials with enzyme-like activity, which rapidly won a place in biomedicine due to their number of nanocatalytic materials types and applications. Yan and Gao first discovered horseradish peroxidase-like activity in ferromagnetic nanoparticles in 2007. With the joint efforts of many scientists, a new concept-nanocatalytic medicine-is emerging. Nanozymes overcome the inherent disadvantages of natural enzymes, such as poor environmental stability, high production costs, difficult storage and so on. Their progress in dentistry is following the advancement of materials science. The oral research and application of nanozymes is becoming a new branch of nanocatalytic medicine. In order to highlight the great contribution of nanozymes facilitating dental health, we first review the overall research progress of multi-functional nanozymes in oral related diseases, including treating dental caries, dental pulp diseases, oral ulcers and peri-implantitis; the monitoring of oral cancer, oral bacteria and ions; and the regeneration of soft and hard tissue. Additionally, we also propose the challenges remaining for nanozymes in terms of their research and application, and mention future concerns. We believe that the new catalytic nanomaterials will play important roles in dentistry in the future.
Collapse
Affiliation(s)
- Xiaohang Chen
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China. and Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Helin Xing
- Department of Prosthodontics, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Zilan Zhou
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China. and Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Yujia Hao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China. and Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Xiaoxuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China. and Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China and CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Feng Qi
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
| | - Jing Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China. and Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China. and Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| |
Collapse
|
28
|
Research progress in nanozyme-based composite materials for fighting against bacteria and biofilms. Colloids Surf B Biointerfaces 2021; 198:111465. [DOI: 10.1016/j.colsurfb.2020.111465] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022]
|
29
|
Seifi T, Kamali AR. Anti-pathogenic activity of graphene nanomaterials: A review. Colloids Surf B Biointerfaces 2020; 199:111509. [PMID: 33340933 DOI: 10.1016/j.colsurfb.2020.111509] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022]
Abstract
Graphene and its derivatives are promising candidates for a variety of biological applications, among which, their anti-pathogenic properties are highly attractive due to the outstanding physicochemical characteristics of these novel nanomaterials. The antibacterial, antiviral and antifungal performances of graphene are increasingly becoming more important due to the pathogen's resistance to existing drugs. Despite this, the factors influencing the antibacterial activity of graphene nanomaterials, and consequently, the mechanisms involved are still controversial. This review aims to systematically summarize the literature, discussing various factors that affect the antibacterial performance of graphene materials, including the shape, size, functional group and the electrical conductivity of graphene flakes, as well as the concentration, contact time and the pH value of the graphene suspensions used in related microbial tests. We discuss the possible surface and edge interactions between bacterial cells and graphene nanomaterials, which cause antibacterial effects such as membrane/oxidative/photothermal stresses, charge transfer, entrapment and self-killing phenomena. This article reviews the anti-pathogenic activity of graphene nanomaterials, comprising their antibacterial, antiviral, antifungal and biofilm-forming performance, with an emphasis on the antibacterial mechanisms involved.
Collapse
Affiliation(s)
- Tahereh Seifi
- Energy and Environmental Materials Research Centre (E(2)MC), School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Ali Reza Kamali
- Energy and Environmental Materials Research Centre (E(2)MC), School of Metallurgy, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
30
|
Dong S, Dong Y, Jia T, Liu S, Liu J, Yang D, He F, Gai S, Yang P, Lin J. GSH-Depleted Nanozymes with Hyperthermia-Enhanced Dual Enzyme-Mimic Activities for Tumor Nanocatalytic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002439. [PMID: 32914495 DOI: 10.1002/adma.202002439] [Citation(s) in RCA: 290] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Nanocatalytic therapy, using artificial nanoscale enzyme mimics (nanozymes), is an emerging technology for therapeutic treatment of various malignant tumors. However, the relatively deficient catalytic activity of nanozymes in the tumor microenvironment (TME) restrains their biomedical applications. Here, a versatile and bacteria-like PEG/Ce-Bi@DMSN nanozyme is developed by coating uniform Bi2 S3 nanorods (NRs) with dendritic mesoporous silica (Bi2 S3 @DMSN) and then decorating ultrasmall ceria nanozymes into the large mesopores of Bi2 S3 @DMSN. The nanozymes exhibit dual enzyme-mimic catalytic activities (peroxidase-mimic and catalase-mimic) under acidic conditions that can regulate the TME, that is, simultaneously elevate oxidative stress and relieve hypoxia. In addition, the nanozymes can effectively consume the overexpressed glutathione (GSH) through redox reaction. Photothermal therapy (PTT) is introduced to synergistically improve the dual enzyme-mimicking catalytic activities and depletion of the overexpressed GSH in the tumors by photonic hyperthermia. This is achieved by taking advantage of the desirable light absorbance in the second near-infrared (NIR-II) window of the PEG/Ce-Bi@DMSN nanozymes. Subsequently the reactive oxygen species (ROS)-mediated therapeutic efficiency is significantly improved. Therefore, this study provides a proof of concept of hyperthermia-augmented multi-enzymatic activities of nanozymes for tumor ablation.
Collapse
Affiliation(s)
- Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Yushan Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Tao Jia
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shikai Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Jing Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Jun Lin
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
31
|
Lee HP, Gaharwar AK. Light-Responsive Inorganic Biomaterials for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000863. [PMID: 32995121 PMCID: PMC7507067 DOI: 10.1002/advs.202000863] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/24/2020] [Indexed: 05/19/2023]
Abstract
Light-responsive inorganic biomaterials are an emerging class of materials used for developing noninvasive, noncontact, precise, and controllable medical devices in a wide range of biomedical applications, including photothermal therapy, photodynamic therapy, drug delivery, and regenerative medicine. Herein, a range of biomaterials is discussed, including carbon-based nanomaterials, gold nanoparticles, graphite carbon nitride, transition metal dichalcogenides, and up-conversion nanoparticles that are used in the design of light-responsive medical devices. The importance of these light-responsive biomaterials is explored to design light-guided nanovehicle, modulate cellular behavior, as well as regulate extracellular microenvironments. Additionally, future perspectives on the clinical use of light-responsive biomaterials are highlighted.
Collapse
Affiliation(s)
- Hung Pang Lee
- Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Akhilesh K. Gaharwar
- Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
- Material Science and EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
- Center for Remote Health Technologies and SystemsTexas A&M UniversityCollege StationTX77843USA
| |
Collapse
|
32
|
Zhao Y, Ding B, Xiao X, Jiang F, Wang M, Hou Z, Xing B, Teng B, Cheng Z, Ma P, Lin J. Virus-Like Fe 3O 4@Bi 2S 3 Nanozymes with Resistance-Free Apoptotic Hyperthermia-Augmented Nanozymitic Activity for Enhanced Synergetic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11320-11328. [PMID: 32067461 DOI: 10.1021/acsami.9b20661] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanomaterials with intrinsic peroxidase-like activities are able to catalyze the oxidation of the substrate with the peroxide, which have been widely considered as artificial enzymatic agents in cancer therapy. However, current peroxidase catalytic oxidation treatments generating reactive oxygen species rely highly on hydrogen peroxide and pH, which limit greatly their therapeutic efficiency in the tumor microenvironment. Here, we report a strategy to construct the complex virus-like Fe3O4@Bi2S3 nanocatalysts (F-BS NCs) by connecting typical peroxidase Fe3O4 (MNPs) with a narrow band gap semiconductor Bi2S3 (BS) to enhance the enzymatic activity resorting to the limited intratumoral peroxide and efficient external photothermal stimuli. In this formulation, the integrated F-BS NCs induce cancer-cell death through mild photothermal treatment and sequential photothermal-stimulative catalysis of H2O2 into highly toxic •OH under 808 nm laser, which successfully realize a remarkable synergistic anticancer achievement.
Collapse
Affiliation(s)
- Yajie Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- University of Science and Technology of China, No. 96, JinZhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- University of Science and Technology of China, No. 96, JinZhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
| | - Xiao Xiao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- University of Science and Technology of China, No. 96, JinZhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
| | - Fan Jiang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- University of Science and Technology of China, No. 96, JinZhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
| | - Meifang Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- University of Science and Technology of China, No. 96, JinZhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
| | - Zhiyao Hou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Bengang Xing
- School of Physical & Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Bo Teng
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Jilin University, Changchun 130041, China
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- University of Science and Technology of China, No. 96, JinZhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
33
|
|
34
|
|
35
|
Mou J, Xu X, Zhang F, Xia J, Wang Z. Promoting Nanozyme Cascade Bioplatform by ZIF-Derived N-Doped Porous Carbon Nanosheet-based Protein/Bimetallic Nanoparticles for Tandem Catalysis. ACS APPLIED BIO MATERIALS 2019; 3:664-672. [DOI: 10.1021/acsabm.9b01012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Junsong Mou
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao 266071, PR China
| | - Xianzhen Xu
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao 266071, PR China
| | - Feifei Zhang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao 266071, PR China
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao 266071, PR China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao 266071, PR China
| |
Collapse
|
36
|
Abstract
Natural enzymes, such as biocatalysts, are widely used in biosensors, medicine and health, the environmental field, and other fields. However, it is easy for natural enzymes to lose catalytic activity due to their intrinsic shortcomings including a high purification cost, insufficient stability, and difficulties of recycling, which limit their practical applications. The unexpected discovery of the Fe3O4 nanozyme in 2007 has given rise to tremendous efforts for developing natural enzyme substitutes. Nanozymes, which are nanomaterials with enzyme-mimetic catalytic activity, can serve as ideal candidates for artificial mimic enzymes. Nanozymes possess superiorities due to their low cost, high stability, and easy preparation. Although great progress has been made in the development of nanozymes, the catalytic efficiency of existing nanozymes is relatively low compared with natural enzymes. It is still a challenging task to develop nanozymes with a precise regulation of catalytic activity. This review summarizes the classification and various strategies for modulating the activity as well as research progress in the different application fields of nanozymes. Typical examples of the recent research process of nanozymes will be presented and critically discussed.
Collapse
|
37
|
Wang L, Wen Q, Jia P, Jia M, Lu D, Sun X, Jiang L, Guo W. Light-Driven Active Proton Transport through Photoacid- and Photobase-Doped Janus Graphene Oxide Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903029. [PMID: 31339197 DOI: 10.1002/adma.201903029] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/30/2019] [Indexed: 06/10/2023]
Abstract
Biological electrogenic systems use protein-based ionic pumps to move salt ions uphill across a cell membrane to accumulate an ion concentration gradient from the equilibrium physiological environment. Toward high-performance and robust artificial electric organs, attaining an antigradient ion transport mode by fully abiotic materials remains a great challenge. Herein, a light-driven proton pump transport phenomenon through a Janus graphene oxide membrane (JGOM) is reported. The JGOM is fabricated by sequential deposition of graphene oxide (GO) nanosheets modified with photobase (BOH) and photoacid (HA) molecules. Upon ultraviolet light illumination, the generation of a net protonic photocurrent through the JGOM, from the HA-GO to the BOH-GO side, is observed. The directional proton flow can thus establish a transmembrane proton concentration gradient of up to 0.8 pH units mm-2 membrane area at a proton transport rate of 3.0 mol h-1 m-2 . Against a concentration gradient, antigradient proton transport can be achieved. The working principle is explained in terms of asymmetric surface charge polarization on HA-GO and BOH-GO multilayers triggered by photoisomerization reactions, and the consequent intramembrane proton concentration gradient. The implementation of membrane-scale light-harvesting 2D nanofluidic system that mimics the charge process of the bioelectric organs makes a straightforward step toward artificial electrogenic and photosynthetic applications.
Collapse
Affiliation(s)
- Lili Wang
- College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qi Wen
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Pan Jia
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Meijuan Jia
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Diannan Lu
- State Key Joint Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaoming Sun
- College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wei Guo
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
38
|
Yang B, Chen Y, Shi J. Nanocatalytic Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901778. [PMID: 31328844 DOI: 10.1002/adma.201901778] [Citation(s) in RCA: 340] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/16/2019] [Indexed: 05/24/2023]
Abstract
Catalysis and medicine are often considered as two independent research fields with their own respective scientific phenomena. Promoted by recent advances in nanochemistry, large numbers of nanocatalysts, such as nanozymes, photocatalysts, and electrocatalysts, have been applied in vivo to initiate catalytic reactions and modulate biological microenvironments for generating therapeutic effects. The rapid growth of research in biomedical applications of nanocatalysts has led to the concept of "nanocatalytic medicine," which is expected to promote the further advance of such a subdiscipline in nanomedicine. The high efficiency and selectivity of catalysis that chemists strived to achieve in the past century can be ingeniously translated into high efficacy and mitigated side effects in theranostics by using "nanocatalytic medicine" to steer catalytic reactions for optimized therapeutic outcomes. Here, the rationale behind the construction of nanocatalytic medicine is eludicated based on the essential reaction factors of catalytic reactions (catalysts, energy input, and reactant). Recent advances in this burgeoning field are then comprehensively presented and the mechanisms by which catalytic nanosystems are conferred with theranostic functions are discussed in detail. It is believed that such an emerging catalytic therapeutic modality will play a more important role in the field of nanomedicine.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
39
|
Schmermund L, Jurkaš V, Özgen FF, Barone GD, Büchsenschütz HC, Winkler CK, Schmidt S, Kourist R, Kroutil W. Photo-Biocatalysis: Biotransformations in the Presence of Light. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00656] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Luca Schmermund
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| | - Valentina Jurkaš
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| | - F. Feyza Özgen
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Giovanni D. Barone
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Hanna C. Büchsenschütz
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Christoph K. Winkler
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| | - Sandy Schmidt
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Robert Kourist
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|
40
|
Huang Y, Ren J, Qu X. Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chem Rev 2019; 119:4357-4412. [PMID: 30801188 DOI: 10.1021/acs.chemrev.8b00672] [Citation(s) in RCA: 1561] [Impact Index Per Article: 312.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Because of the high catalytic activities and substrate specificity, natural enzymes have been widely used in industrial, medical, and biological fields, etc. Although promising, they often suffer from intrinsic shortcomings such as high cost, low operational stability, and difficulties of recycling. To overcome these shortcomings, researchers have been devoted to the exploration of artificial enzyme mimics for a long time. Since the discovery of ferromagnetic nanoparticles with intrinsic horseradish peroxidase-like activity in 2007, a large amount of studies on nanozymes have been constantly emerging in the next decade. Nanozymes are one kind of nanomaterials with enzymatic catalytic properties. Compared with natural enzymes, nanozymes have the advantages such as low cost, high stability and durability, which have been widely used in industrial, medical, and biological fields. A thorough understanding of the possible catalytic mechanisms will contribute to the development of novel and high-efficient nanozymes, and the rational regulations of the activities of nanozymes are of great significance. In this review, we systematically introduce the classification, catalytic mechanism, activity regulation as well as recent research progress of nanozymes in the field of biosensing, environmental protection, and disease treatments, etc. in the past years. We also propose the current challenges of nanozymes as well as their future research focus. We anticipate this review may be of significance for the field to understand the properties of nanozymes and the development of novel nanomaterials with enzyme mimicking activities.
Collapse
Affiliation(s)
- Yanyan Huang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China.,College of Light Industry and Food Engineering , Nanjing Forestry University , Nanjing 210037 , China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China
| |
Collapse
|
41
|
Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 2019; 48:1004-1076. [DOI: 10.1039/c8cs00457a] [Citation(s) in RCA: 1628] [Impact Index Per Article: 325.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An updated comprehensive review to help researchers understand nanozymes better and in turn to advance the field.
Collapse
Affiliation(s)
- Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Zhangping Lou
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Yunyao Zhu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Li Qin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| |
Collapse
|
42
|
Li W, Liu D, Geng X, Li Z, Gao R. Real-time regulation of catalysis by remote-controlled enzyme-conjugated gold nanorod composites for aldol reaction-based applications. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00167k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Remote-controlled nanomaterials, used to regulate rapid conversion of light energy into internal energy, are an emerging technology for achieving real-time control of enzymatic and catalytic industrial processes.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun
- China
| | - Dongni Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun
- China
| | - Xu Geng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun
- China
| | - Zhengqiang Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun
- China
| | - Renjun Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun
- China
| |
Collapse
|
43
|
Li G, Fei J, Xu Y, Hong JD, Li J. Proton-consumed nanoarchitectures toward sustainable and efficient photophosphorylation. J Colloid Interface Sci 2018; 535:325-330. [PMID: 30316119 DOI: 10.1016/j.jcis.2018.09.082] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 12/01/2022]
Abstract
At present, photophosphorylation in natural or artificial systems is accomplished by the production of protons or their pumping across the biomembranes. Herein, different from this strategy above, we demonstrate a designed system which can effectively enhance photophosphorylation by photo-induced proton-scavenging through molecular assembly. Upon the introduction of photobase generators, a (photo-) chemical reaction occurs to produce hydroxyl ions. Accompanying the further extramembranous acid-base neutralization reaction, an outbound flow of protons is generated to drive the reconstituted adenosine triphosphate (ATP) synthase to produce ATP. That is, contrary to biochemistry, the proton gradient to drive photophosphorylation derives from the scavenging of protons present in the external medium by hydroxyl ions, produced by the partially photo-induced splitting of photobase generator. Such assembled system holds great potential in ATP-consuming bioapplications.
Collapse
Affiliation(s)
- Guangle Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Youqian Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jong-Dal Hong
- Department of Chemistry, Incheon National University, Incheon 21022, South Korea.
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
44
|
Sun W, Wu FG. Two-Dimensional Materials for Antimicrobial Applications: Graphene Materials and Beyond. Chem Asian J 2018; 13:3378-3410. [DOI: 10.1002/asia.201800851] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/14/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Wei Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering; Southeast University; 2 Sipailou Road Nanjing 210096 P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering; Southeast University; 2 Sipailou Road Nanjing 210096 P. R. China
| |
Collapse
|
45
|
Liu Y, Zhao L, Xing R, Jiao T, Song W, Yan X. Covalent Assembly of Amphiphilic Bola-Amino Acids into Robust and Biodegradable Nanoparticles for In Vitro Photothermal Therapy. Chem Asian J 2018; 13:3526-3532. [DOI: 10.1002/asia.201800825] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/05/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Yamei Liu
- State Key Laboratory of Metastable Materials Science and Technology; Yanshan University; Qinhuangdao 066004 China
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 China
- Hebei Key Laboratory of Applied Chemistry; School of Environmental and Chemical Engineering; Yanshan University; Qinhuangdao 066004 China
| | - Luyang Zhao
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 China
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology; Yanshan University; Qinhuangdao 066004 China
- Hebei Key Laboratory of Applied Chemistry; School of Environmental and Chemical Engineering; Yanshan University; Qinhuangdao 066004 China
| | - Weixing Song
- Department of Chemistry; Capital Normal University; Beijing 100048 China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
46
|
Bi H, He F, Dai Y, Xu J, Dong Y, Yang D, Gai S, Li L, Li C, Yang P. Quad-Model Imaging-Guided High-Efficiency Phototherapy Based on Upconversion Nanoparticles and ZnFe2O4 Integrated Graphene Oxide. Inorg Chem 2018; 57:9988-9998. [DOI: 10.1021/acs.inorgchem.8b01159] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | - Chunxia Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang 321004, P. R. China
| | | |
Collapse
|
47
|
Wang X, Lopez A, Liu J. Adsorption of Phosphate and Polyphosphate on Nanoceria Probed by DNA Oligonucleotides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7899-7905. [PMID: 29886738 DOI: 10.1021/acs.langmuir.8b01482] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phosphate-containing molecules exist in many forms in biology and the environment, and their interaction with metal oxides is an important aspect of their chemistry and biochemistry. In this work, phosphates with different degrees of polymerization (e.g., orthophosphate, pyrophosphate (PPi), sodium triphosphate (STPP), sodium trimetaphosphate (STMP), and polyphosphate with 25 phosphate units) and phosphates with one or two capping groups were studied. CeO2 nanoparticles (nanoceria) were used as a model metal oxide. DNA is also a polyphosphate, and a fluorescently labeled DNA oligonucleotide was mixed with nanoceria. These phosphate species were individually added to displace the adsorbed DNA. Longer phosphate chains were more efficient when each molecule was used at the same molar concentration, whereas PPi and STPP were most efficient at the same total phosphorus atom concentration. By capping the phosphate with organic groups, the affinity was significantly decreased. Isothermal titration calorimetry (ITC) was also performed to quantitatively measure thermodynamic parameters. Although STMP was very slow at displacing DNA, it was still adsorbed very strongly by nanoceria from ITC, indicating kinetic effects likely due to its ring structure. This observation allowed us to use the DNA as a probe to study the hydrolysis of STMP to form STPP. In summary, this study provides a systematic understanding of phosphate species interacting with metal oxides, and interestingly, it demonstrates an analytical application as well.
Collapse
Affiliation(s)
- Xiuzhong Wang
- College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , China
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Anand Lopez
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
48
|
Sun H, Zhou Y, Ren J, Qu X. Kohlenstoff-Nanozyme: Enzymatische Eigenschaften, Katalysemechanismen und Anwendungen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712469] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hanjun Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun Jilin 130022 China
- University of Chinese Academy of Sciences; Beijing 100039 China
| | - Ya Zhou
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun Jilin 130022 China
- University of Science and Technology of China; Hefei Anhui 230026 China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun Jilin 130022 China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun Jilin 130022 China
| |
Collapse
|
49
|
Sun H, Zhou Y, Ren J, Qu X. Carbon Nanozymes: Enzymatic Properties, Catalytic Mechanism, and Applications. Angew Chem Int Ed Engl 2018; 57:9224-9237. [DOI: 10.1002/anie.201712469] [Citation(s) in RCA: 306] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/01/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Hanjun Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun Jilin 130022 China
- University of Chinese Academy of Sciences; Beijing 100039 China
| | - Ya Zhou
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun Jilin 130022 China
- University of Science and Technology of China; Hefei Anhui 230026 China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun Jilin 130022 China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun Jilin 130022 China
| |
Collapse
|
50
|
Abstract
Bacterial infection continues to be a growing global health problem with the most widely accepted treatment paradigms restricted to antibiotics. However, antibiotics overuse and misuse have triggered increased multidrug resistance, frustrating the therapeutic outcomes and leading to higher mortalities. Even worse, the tendency of bacteria to form biofilms on living and nonliving surfaces further increases the difficulty in confronting bacteria because the extracellular matrix can act as a robust barrier to prevent the penetration of antibiotics and resist environmental stress. As a result, the inability to completely eliminate bacteria and biofilms often leads to persistent infection, implant failure, and device damage. Therefore, it is of paramount importance to develop alternative antimicrobial agents while avoiding the generation of bacterial resistance. Taking lessons from natural enzymes for destroying cellular structural integrity or interfering with metabolisms such as proliferation, quorum sensing, and programmed death, the construction of artificial enzymes to mimic the enzyme functions will provide unprecedented opportunities for combating bacteria. Moreover, compared to natural enzymes, artificial enzymes possess much higher stability against stringent conditions, easier tunable catalytic activity, and large-scale production for practical use. In this Account, we will focus on our recent progress in the design and synthesis of artificial enzymes as a new generation of "antibiotics", which have been demonstrated as promising applications in planktonic bacteria inactivation, wound/lung disinfection, as well as biofilm inhibition and dispersion. First, we will introduce direct utilization of the intrinsic catalytic activities of artificial enzymes without dangerous chemical auxiliaries for killing bacteria under mild conditions. Second, to avoid the toxicity caused by overdose of H2O2 in conventional disinfections, we leveraged artificial enzymes with peroxidase-mimic activities to catalyze the generation of hydroxyl radicals at low H2O2 levels while achieving efficient antibacterial outcomes. Importantly, the feasibility of these artificial enzymes was further demonstrated in vivo by mitigating mice wound and lung disinfection. Third, by combining artificial enzymes with stimuli-responsive materials, smart on-demand therapeutic modalities were constructed for thwarting bacteria in a controllable manner. For instance, a photoswitchable "Band-Aid"-like hydrogel doped with artificial enzymes was developed for efficiently killing bacteria without compromising mammal cell proliferation, which was promising for accelerating wound healing. Lastly, regarding the key roles that extracellular DNAs (eDNAs) play in maintaining biofilm integrity, we further designed a multinuclear metal complex-based DNase-mimetic artificial enzyme toward cleaving the eDNA for inhibiting biofilm formation and dispersing the established biofilms. We expect that our rational designs would boost the development of artificial enzymes with different formulations as novel antibacterial agents for clinical and industrial applications.
Collapse
Affiliation(s)
- Zhaowei Chen
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
- Graduate School, University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Zhenzhen Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
- Graduate School, University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
| |
Collapse
|