1
|
Kotoulas NK, Sen T, Goh MC. Low-cost, real-time detection of bacterial growth via diffraction-based sensing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8366-8371. [PMID: 39541208 DOI: 10.1039/d4ay01489h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The emergence of antibacterial resistance impacts healthcare networks globally, with mortality rates and linked burdens of infection disproportionately affecting the developing world. Rapid alternatives to antibiotic susceptibility testing (AST) allow for swifter, more effective treatment, though they are limited in use in low-resource settings due to significant cost barriers. Herein we demonstrate a simple, cost-effective diffraction sensing-based approach for rapidly detecting bacterial growth (a precursor to AST). Diffraction gratings (1D, lined) directly comprised of our test bacteria (Escherichia coli DH5α) were produced using soft agar-based gel templates designed to direct bacterial attachment and produce a near-zero background signal. The diffraction spot intensities from the live bacterial gratings were monitored in growth and no growth (ampicillin) conditions at room temperature, using a simple fixed laser and photodetector setup. Growth-induced differences in signal were observed within 10-20 minutes, highlighting the sensitivity of this approach and its potential to be adapted as a rapid and accessible AST alternative.
Collapse
Affiliation(s)
- Nicholas K Kotoulas
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.
| | - Tomoyuki Sen
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.
| | - M Cynthia Goh
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
2
|
Reszetnik G, Hammond K, Mahshid S, AbdElFatah T, Nguyen D, Corsini R, Caya C, Papenburg J, Cheng MP, Yansouni CP. Next-generation rapid phenotypic antimicrobial susceptibility testing. Nat Commun 2024; 15:9719. [PMID: 39521792 PMCID: PMC11550857 DOI: 10.1038/s41467-024-53930-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Slow progress towards implementation of conventional clinical bacteriology in low resource settings and strong interest in greater speed for antimicrobial susceptibility testing (AST) more generally has focused attention on next-generation rapid AST technologies. In this Review, we systematically synthesize publications and submissions to regulatory agencies describing technologies that provide phenotypic AST faster than conventional methods. We characterize over ninety technologies in terms of underlying technical innovations, technology readiness level, extent of clinical validation, and time-to-results. This work provides a guide for technology developers and clinical microbiologists to understand the rapid phenotypic AST technology landscape, current development pipeline, and AST-specific validation milestones.
Collapse
Affiliation(s)
- Grace Reszetnik
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Quebec, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Keely Hammond
- Divisions of Infectious Diseases and Medical Microbiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Sara Mahshid
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Quebec, Canada
| | - Tamer AbdElFatah
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Quebec, Canada
| | - Dao Nguyen
- McGill Antimicrobial Resistance Centre, McGill University, Montreal, Quebec, Canada
- Division of Respirology, McGill University Health Centre, Montreal, Quebec, Canada
- Research, Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Rachel Corsini
- Research, Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Chelsea Caya
- Research, Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Jesse Papenburg
- Research, Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Divisions of Pediatric Infectious Diseases and Medical Microbiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Matthew P Cheng
- Divisions of Infectious Diseases and Medical Microbiology, McGill University Health Centre, Montreal, Quebec, Canada
- Research, Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Cedric P Yansouni
- Divisions of Infectious Diseases and Medical Microbiology, McGill University Health Centre, Montreal, Quebec, Canada.
- Research, Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
- J.D. MacLean Centre for Tropical and Geographic Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Yin S, Chen X, Li R, Sun L, Yao C, Li Z. Wearable, Biocompatible, and Dual-Emission Ocular Multisensor Patch for Continuous Profiling of Fluoroquinolone Antibiotics in Tears. ACS NANO 2024; 18:18522-18533. [PMID: 38963059 DOI: 10.1021/acsnano.4c04153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The abuse or misuse of antibiotics in clinical and agricultural settings severely endangers human health and ecosystems, which has raised profound concerns for public health worldwide. Trace detection and reliable discrimination of commonly used fluoroquinolone (FQ) antibiotics and their analogues have consequently become urgent to guide the rational use of antibiotic medicines and deliver efficient treatments for associated diseases. Herein, we report a wearable eye patch integrated with a quadruplex nanosensor chip for noninvasive detection and discrimination of primary FQ antibiotics in tears during routine eyedrop treatment. A set of dual-mode fluorescent nanoprobes of red- or green-emitting CdTe quantum dots integrated with lanthanide ions and a sensitizer, adenosine monophosphate, were constructed to provide an enhanced fluorescence up to 45-fold and nanomolar sensitivity toward major FQs owing to the aggregation-regulated antenna effect. The aggregation-driven, CdTe-Ln(III)-based microfluidic sensor chip is highly specific to FQ antibiotics against other non-FQ counterparts or biomolecular interfering species and is able to accurately discriminate nine types of FQ or non-FQ eyedrop suspensions using linear discriminant analysis. The prototyped wearable sensing detector has proven to be biocompatible and nontoxic to human tissues, which integrates the entire optical imaging modules into a miniaturized, smartphone-based platform for field use and reduces the overall assay time to ∼5 min. The practicability of the wearable eye patch was demonstrated through accurate quantification of antibiotics in a bactericidal event and the continuous profiling of FQ residues in tears after using a typical prescription antibiotic eyedrop. This technology provides a useful supplement to the toolbox for on-site and real-time examination and regulation of inappropriate daily drug use that might potentially lead to long-term antibiotic abuse and has great implications in advancing personal healthcare techniques for the regulation of daily medication therapy.
Collapse
Affiliation(s)
- Shengnan Yin
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiaofeng Chen
- School of Life and Health Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Runze Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Linlin Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Chanyu Yao
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Zheng Li
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
4
|
Heuer C, Jiang X, Ron G, Ternyak O, Scheper T, Bahnemann J, Segal E. Photonic Si microwell architectures for rapid antifungal susceptibility determination of Candida auris. Chem Commun (Camb) 2024; 60:1305-1308. [PMID: 38197155 DOI: 10.1039/d3cc04446g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
We present the application of a photonic silicon chip-based optical sensor system for expeditious and phenotypic antifungal susceptibility testing. This label-free diagnostic assay optically monitors the growth of Candida auris at varying antifungal concentrations on a microwell-structured silicon chip in real-time, and antifungal susceptibility is detected within 6 h, four times faster than in the current gold standard method.
Collapse
Affiliation(s)
- Christopher Heuer
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover 30167, Germany
- Institute of Physics, University of Augsburg, Augsburg 86159, Germany
| | - Xin Jiang
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
| | - Gali Ron
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
| | - Orna Ternyak
- Micro- and Nanofabrication and Printing Unit, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover 30167, Germany
| | - Janina Bahnemann
- Institute of Physics, University of Augsburg, Augsburg 86159, Germany
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
5
|
Jiang X, Borkum T, Shprits S, Boen J, Arshavsky-Graham S, Rofman B, Strauss M, Colodner R, Sulam J, Halachmi S, Leonard H, Segal E. Accurate Prediction of Antimicrobial Susceptibility for Point-of-Care Testing of Urine in Less than 90 Minutes via iPRISM Cassettes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303285. [PMID: 37587020 PMCID: PMC10625094 DOI: 10.1002/advs.202303285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/04/2023] [Indexed: 08/18/2023]
Abstract
The extensive and improper use of antibiotics has led to a dramatic increase in the frequency of antibiotic resistance among human pathogens, complicating infectious disease treatments. In this work, a method for rapid antimicrobial susceptibility testing (AST) is presented using microstructured silicon diffraction gratings integrated into prototype devices, which enhance bacteria-surface interactions and promote bacterial colonization. The silicon microstructures act also as optical sensors for monitoring bacterial growth upon exposure to antibiotics in a real-time and label-free manner via intensity-based phase-shift reflectometric interference spectroscopic measurements (iPRISM). Rapid AST using clinical isolates of Escherichia coli (E. coli) from urine is established and the assay is applied directly on unprocessed urine samples from urinary tract infection patients. When coupled with a machine learning algorithm trained on clinical samples, the iPRISM AST is able to predict the resistance or susceptibility of a new clinical sample with an Area Under the Receiver Operating Characteristic curve (AUC) of ∼ 0.85 in 1 h, and AUC > 0.9 in 90 min, when compared to state-of-the-art automated AST methods used in the clinic while being an order of magnitude faster.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Talya Borkum
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Sagi Shprits
- Department of Urology, Bnai Zion Medical Center, Haifa, 3104800, Israel
| | - Joseph Boen
- Department of Biomedical Engineering, Johns Hopkins University, Clark 320B, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Sofia Arshavsky-Graham
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Baruch Rofman
- Department of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Merav Strauss
- Laboratory of Clinical Microbiology, Emek Medical Center, Afula, 1834111, Israel
| | - Raul Colodner
- Laboratory of Clinical Microbiology, Emek Medical Center, Afula, 1834111, Israel
| | - Jeremias Sulam
- Department of Biomedical Engineering, Johns Hopkins University, Clark 320B, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Sarel Halachmi
- Department of Urology, Bnai Zion Medical Center, Haifa, 3104800, Israel
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Heidi Leonard
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
6
|
Prinz Setter O, Jiang X, Segal E. Rising to the surface: capturing and detecting bacteria by rationally-designed surfaces. Curr Opin Biotechnol 2023; 83:102969. [PMID: 37494819 DOI: 10.1016/j.copbio.2023.102969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023]
Abstract
Analytical microbiology has made substantial progress since its conception, starting from potato slices, through selective agar media, to engineered surfaces modified with capture probes. While the latter represents the dominant approach in designing sensors for bacteria detection, the importance of sensor surface properties is frequently ignored. Herein, we highlight their significant role in the complex process of bacterial transition from planktonic to sessile, representing the first and critical step in bacteria detection. We present the main surface features and discuss their effect on the bio-solid interface and the resulting sensing capabilities for both flat and particulate systems. The concepts of rationally-designed surfaces for enhanced bacterial detection are presented with recent examples of sensors (capture probe-free) relying solely on surface cues.
Collapse
Affiliation(s)
- Ofer Prinz Setter
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel
| | - Xin Jiang
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel; The Russel Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel.
| |
Collapse
|
7
|
Heuer C, Preuss JA, Buttkewitz M, Scheper T, Segal E, Bahnemann J. A 3D-printed microfluidic gradient generator with integrated photonic silicon sensors for rapid antimicrobial susceptibility testing. LAB ON A CHIP 2022; 22:4950-4961. [PMID: 36412200 DOI: 10.1039/d2lc00640e] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With antimicrobial resistance becoming a major threat to healthcare settings around the world, there is a paramount need for rapid point-of-care antimicrobial susceptibility testing (AST) diagnostics. Unfortunately, most currently available clinical AST tools are lengthy, laborious, or are simply inappropriate for point-of-care testing. Herein, we design a 3D-printed microfluidic gradient generator that automatically produces two-fold dilution series of clinically relevant antimicrobials. We first establish the compatibility of these generators for classical AST (i.e., broth microdilution) and then extend their application to include a complete on-chip label-free and phenotypic AST. This is accomplished by the integration of photonic silicon chips, which provide a preferential surface for microbial colonization and allow optical tracking of bacterial behavior and growth at a solid-liquid interface in real-time by phase shift reflectometric interference spectroscopic measurements (PRISM). Using Escherichia coli and ciprofloxacin as a model pathogen-drug combination, we successfully determine the minimum inhibitory concentration within less than 90 minutes. This gradient generator-based PRISM assay provides an integrated AST device that is viable for convenient point-of-care testing and offers a promising and most importantly, rapid alternative to current clinical practices, which extend to 8-24 h.
Collapse
Affiliation(s)
- Christopher Heuer
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 320003 Haifa, Israel.
| | - John-Alexander Preuss
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany.
| | - Marc Buttkewitz
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 320003 Haifa, Israel.
| | - Janina Bahnemann
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany.
| |
Collapse
|
8
|
Leonard H, Jiang X, Arshavsky-Graham S, Holtzman L, Haimov Y, Weizman D, Halachmi S, Segal E. Shining light in blind alleys: deciphering bacterial attachment in silicon microstructures. NANOSCALE HORIZONS 2022; 7:729-742. [PMID: 35616534 DOI: 10.1039/d2nh00130f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With new advances in infectious disease, antifouling surfaces, and environmental microbiology research comes the need to understand and control the accumulation and attachment of bacterial cells on a surface. Thus, we employ intrinsic phase-shift reflectometric interference spectroscopic measurements of silicon diffraction gratings to non-destructively observe the interactions between bacterial cells and abiotic, microstructured surfaces in a label-free and real-time manner. We conclude that the combination of specific material characteristics (i.e., substrate surface charge and topology) and characteristics of the bacterial cells (i.e., motility, cell charge, biofilm formation, and physiology) drive bacteria to adhere to a particular surface, often leading to a biofilm formation. Such knowledge can be exploited to predict antibiotic efficacy and biofilm formation, and enhance surface-based biosensor development, as well as the design of anti-biofouling strategies.
Collapse
Affiliation(s)
- Heidi Leonard
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Xin Jiang
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Sofia Arshavsky-Graham
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Liran Holtzman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Yuri Haimov
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Daniel Weizman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Sarel Halachmi
- Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- Department of Urology, Bnai Zion Medical Center, Haifa, 3104800, Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
9
|
The Dynamics of Single-Cell Nanomotion Behaviour of Saccharomyces cerevisiae in a Microfluidic Chip for Rapid Antifungal Susceptibility Testing. FERMENTATION 2022. [DOI: 10.3390/fermentation8050195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The fast emergence of multi-resistant pathogenic yeasts is caused by the extensive—and sometimes unnecessary—use of broad-spectrum antimicrobial drugs. To rationalise the use of broad-spectrum antifungals, it is essential to have a rapid and sensitive system to identify the most appropriate drug. Here, we developed a microfluidic chip to apply the recently developed optical nanomotion detection (ONMD) method as a rapid antifungal susceptibility test. The microfluidic chip contains no-flow yeast imaging chambers in which the growth medium can be replaced by an antifungal solution without disturbing the nanomotion of the cells in the imaging chamber. This allows for recording the cellular nanomotion of the same cells at regular time intervals of a few minutes before and throughout the treatment with an antifungal. Hence, the real-time response of individual cells to a killing compound can be quantified. In this way, this killing rate provides a new measure to rapidly assess the susceptibility of a specific antifungal. It also permits the determination of the ratio of antifungal resistant versus sensitive cells in a population.
Collapse
|
10
|
Péter B, Farkas E, Kurunczi S, Szittner Z, Bősze S, Ramsden JJ, Szekacs I, Horvath R. Review of Label-Free Monitoring of Bacteria: From Challenging Practical Applications to Basic Research Perspectives. BIOSENSORS 2022; 12:bios12040188. [PMID: 35448248 PMCID: PMC9026780 DOI: 10.3390/bios12040188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 05/10/2023]
Abstract
Novel biosensors already provide a fast way to detect the adhesion of whole bacteria (or parts of them), biofilm formation, and the effect of antibiotics. Moreover, the detection sensitivities of recent sensor technologies are large enough to investigate molecular-scale biological processes. Usually, these measurements can be performed in real time without using labeling. Despite these excellent capabilities summarized in the present work, the application of novel, label-free sensor technologies in basic biological research is still rare; the literature is dominated by heuristic work, mostly monitoring the presence and amount of a given analyte. The aims of this review are (i) to give an overview of the present status of label-free biosensors in bacteria monitoring, and (ii) to summarize potential novel directions with biological relevancies to initiate future development. Optical, mechanical, and electrical sensing technologies are all discussed with their detailed capabilities in bacteria monitoring. In order to review potential future applications of the outlined techniques in bacteria research, we summarize the most important kinetic processes relevant to the adhesion and survival of bacterial cells. These processes are potential targets of kinetic investigations employing modern label-free technologies in order to reveal new fundamental aspects. Resistance to antibacterials and to other antimicrobial agents, the most important biological mechanisms in bacterial adhesion and strategies to control adhesion, as well as bacteria-mammalian host cell interactions are all discussed with key relevancies to the future development and applications of biosensors.
Collapse
Affiliation(s)
- Beatrix Péter
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
- Correspondence: (B.P.); (R.H.)
| | - Eniko Farkas
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Sandor Kurunczi
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Zoltán Szittner
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Institute of Chemistry, Eötvös Loránd University, 1120 Budapest, Hungary;
- National Public Health Center, 1097 Budapest, Hungary
| | - Jeremy J. Ramsden
- Clore Laboratory, Department of Biomedical Research, University of Buckingham, Buckingham MK18 1AD, UK;
| | - Inna Szekacs
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Robert Horvath
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
- Correspondence: (B.P.); (R.H.)
| |
Collapse
|
11
|
Zeng W, Chen P, Li S, Sha Q, Li P, Zeng X, Feng X, Du W, Liu BF. Hand-powered vacuum-driven microfluidic gradient generator for high-throughput antimicrobial susceptibility testing. Biosens Bioelectron 2022; 205:114100. [PMID: 35219023 DOI: 10.1016/j.bios.2022.114100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023]
Abstract
The growth of bacterial resistance to antimicrobials is a serious problem attracting much attention nowadays. To prevent the misuse and abuse of antimicrobials, it is important to carry out antibiotic susceptibility testing (AST) before clinical use. However, conventional AST methods are relatively laborious and time-consuming (18-24 h). Here, we present a hand-powered vacuum-driven microfluidic (HVM) device, in which a syringe is used as the only vacuum source for rapid generating concentration gradient of antibiotics in different chambers. The HVM device can be preassembled with various amounts of antibiotics, lyophilized, and stored for ready-to-use. Bacterial samples can be loaded into the HVM device through a simple suction step. With the assistance of Alamar Blue, the AST assay and the minimum inhibitory concentration (MIC) of different antibiotics can be investigated by comparing the growth results of bacteria in different culture chambers. In addition, a parallel HVM device was proposed, in which eight AST assays can be performed simultaneously. The results of MIC of three commonly used antibiotics against E. coli K-12 in our HVM device were consistent with those obtained by traditional method while the detection time was shortened to less than 8 h. We believe that our platform is high-throughput, cost-efficient, easy to use, and suitable for POCT applications.
Collapse
Affiliation(s)
- Wenyi Zeng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiuyue Sha
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Pengjie Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xuemei Zeng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
12
|
Novel Microfluidics Device for Rapid Antibiotics Susceptibility Screening. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In recent years, excessive utilization of antibiotics has led to the emergence of antibiotic microbial resistance on a planetary scale. This recent phenomenon represents a serious threat to public health, as well as an enormous burden for healthcare systems’ budgets worldwide. Novel, rapid and cheap methods for antibiotic susceptibility screening are urgently needed for this obstacle to be overcome. In this paper, we present a microfluidic device for on-chip antibiotic resistance testing, which allows for antibiotic microbial resistance detection within 6 hours. The design, fabrication and experimental utilization of the device are thoroughly described and analyzed, as well as possibilities for future automation of the whole process. The accessibility of such a device for all people, regardless of economic status, was of utmost importance for us during the development of the project.
Collapse
|
13
|
Fitzpatrick KJ, Rohlf HJ, Sutherland TD, Koo KM, Beckett S, Okelo WO, Keyburn AL, Morgan BS, Drigo B, Trau M, Donner E, Djordjevic SP, De Barro PJ. Progressing Antimicrobial Resistance Sensing Technologies across Human, Animal, and Environmental Health Domains. ACS Sens 2021; 6:4283-4296. [PMID: 34874700 DOI: 10.1021/acssensors.1c01973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The spread of antimicrobial resistance (AMR) is a rapidly growing threat to humankind on both regional and global scales. As countries worldwide prepare to embrace a One Health approach to AMR management, which is one that recognizes the interconnectivity between human, animal, and environmental health, increasing attention is being paid to identifying and monitoring key contributing factors and critical control points. Presently, AMR sensing technologies have significantly progressed phenotypic antimicrobial susceptibility testing (AST) and genotypic antimicrobial resistance gene (ARG) detection in human healthcare. For effective AMR management, an evolution of innovative sensing technologies is needed for tackling the unique challenges of interconnected AMR across various and different health domains. This review comprehensively discusses the modern state-of-play for innovative commercial and emerging AMR sensing technologies, including sequencing, microfluidic, and miniaturized point-of-need platforms. With a unique view toward the future of One Health, we also provide our perspectives and outlook on the constantly changing landscape of AMR sensing technologies beyond the human health domain.
Collapse
Affiliation(s)
- Kira J. Fitzpatrick
- XING Applied Research & Assay Development (XARAD) Division, XING Technologies Pty. Ltd., Brisbane, Queensland 4073, Australia
| | - Hayden J. Rohlf
- XING Applied Research & Assay Development (XARAD) Division, XING Technologies Pty. Ltd., Brisbane, Queensland 4073, Australia
| | - Tara D. Sutherland
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Black Mountain, Canberra, Australian Capital Territory 2601, Australia
| | - Kevin M. Koo
- XING Applied Research & Assay Development (XARAD) Division, XING Technologies Pty. Ltd., Brisbane, Queensland 4073, Australia
- The University of Queensland Centre for Clinical Research (UQCCR), Brisbane, Queensland 4029, Australia
| | - Sam Beckett
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Black Mountain, Canberra, Australian Capital Territory 2601, Australia
| | - Walter O. Okelo
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Black Mountain, Canberra, Australian Capital Territory 2601, Australia
| | - Anthony L. Keyburn
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness (ACDP), Geelong, Victoria 3220, Australia
| | - Branwen S. Morgan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Black Mountain, Canberra, Australian Capital Territory 2601, Australia
| | - Barbara Drigo
- Future Industries Institute, University of South Australia, Adelaide, South Australia 5095, Australia
| | - Matt Trau
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia, Adelaide, South Australia 5095, Australia
| | - Steven P. Djordjevic
- Ithree Institute, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Paul J. De Barro
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health & Biosecurity, EcoSciences Precinct, Brisbane, Queensland 4001, Australia
| |
Collapse
|
14
|
Heuer C, Bahnemann J, Scheper T, Segal E. Paving the Way to Overcome Antifungal Drug Resistance: Current Practices and Novel Developments for Rapid and Reliable Antifungal Susceptibility Testing. SMALL METHODS 2021; 5:e2100713. [PMID: 34927979 DOI: 10.1002/smtd.202100713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/05/2021] [Indexed: 06/14/2023]
Abstract
The past year has established the link between the COVID-19 pandemic and the global spread of severe fungal infections; thus, underscoring the critical need for rapid and realizable fungal disease diagnostics. While in recent years, health authorities, such as the Centers for Disease Control and Prevention, have reported the alarming emergence and spread of drug-resistant pathogenic fungi and warned against the devastating consequences, progress in the diagnosis and treatment of fungal infections is limited. Early diagnosis and patient-tailored therapy are established to be key in reducing morbidity and mortality associated with fungal (and cofungal) infections. As such, antifungal susceptibility testing (AFST) is crucial in revealing susceptibility or resistance of these pathogens and initiating correct antifungal therapy. Today, gold standard AFST methods require several days for completion, and thus this much delayed time for answer limits their clinical application. This review focuses on the advancements made in developing novel AFST techniques and discusses their implications in the context of the practiced clinical workflow. The aim of this work is to highlight the advantages and drawbacks of currently available methods and identify the main gaps hindering their progress toward clinical application.
Collapse
Affiliation(s)
- Christopher Heuer
- Institute of Technical Chemistry, Leibniz University Hannover, 30167, Hannover, Germany
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 320003, Israel
| | - Janina Bahnemann
- Institute of Technical Chemistry, Leibniz University Hannover, 30167, Hannover, Germany
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University Hannover, 30167, Hannover, Germany
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 320003, Israel
| |
Collapse
|
15
|
Fu Q, Zhang Y, Wang P, Pi J, Qiu X, Guo Z, Huang Y, Zhao Y, Li S, Xu J. Rapid identification of the resistance of urinary tract pathogenic bacteria using deep learning-based spectroscopic analysis. Anal Bioanal Chem 2021; 413:7401-7410. [PMID: 34673992 DOI: 10.1007/s00216-021-03691-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/24/2022]
Abstract
The resistance of urinary tract pathogenic bacteria to various antibiotics is increasing, which requires the rapid detection of infectious pathogens for accurate and timely antibiotic treatment. Here, we propose a rapid diagnosis strategy for the antibiotic resistance of bacteria in urinary tract infections (UTIs) based on surface-enhanced Raman scattering (SERS) using a positively charged gold nanoparticle planar solid SERS substrate. Then, an intelligent identification model for SERS spectra based on the deep learning technique is constructed to realize the rapid, ultrasensitive, and non-labeled detection of pathogenic bacteria. A total of 54,000 SERS spectra were collected from 18 isolates belonging to 6 species of common UTI bacteria in this work to realize identification of bacterial species, antibiotic sensitivity, and multidrug resistance (MDR) via convolutional neural networks (CNN). This method significantly simplify the Raman data processing processes without background removing and smoothing, however, achieving 96% above classification accuracy, which was significantly greater than the 85% accuracy of the traditional multivariate statistical analysis algorithm principal component analysis combined with the K-nearest neighbor (PCA-KNN). This work clearly elucidated the potential of combining SERS and deep learning technique to realize culture-free identification of pathogenic bacteria and their associated antibiotic sensitivity.
Collapse
Affiliation(s)
- Qiuyue Fu
- Biomedical Photonics Laboratory, School of Biomedical Engineering, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Yanjiao Zhang
- School of Basic Medicine, Guangdong Medical University, Dongguan, 523808, China
| | - Peng Wang
- Biomedical Photonics Laboratory, School of Biomedical Engineering, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Xun Qiu
- Biomedical Photonics Laboratory, School of Biomedical Engineering, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Zhusheng Guo
- Donghua Hospital Laboratory Department, Dongguan, 523808, Guangdong, China
| | - Ya Huang
- Donghua Hospital Laboratory Department, Dongguan, 523808, Guangdong, China
| | - Yi Zhao
- Guangdong Provincial Key Laboratory of Molecular Diagnosis, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Shaoxin Li
- Biomedical Photonics Laboratory, School of Biomedical Engineering, Guangdong Medical University, Dongguan, 523808, Guangdong, China.
| | - Junfa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, Guangdong, China.
| |
Collapse
|
16
|
He Y, Zhao H, Liu Y, Zhou H. Specific and rapid reverse assaying protocol for detection and antimicrobial susceptibility testing of Pseudomonas aeruginosa based on dual molecular recognition. Sci Rep 2021; 11:11101. [PMID: 34045567 PMCID: PMC8159986 DOI: 10.1038/s41598-021-90619-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/11/2021] [Indexed: 01/11/2023] Open
Abstract
The worldwide emergence and spread of antimicrobial resistance is accelerated by irrational administration and use of empiric antibiotics. A key point to the crisis is a lack of rapid diagnostic protocols for antimicrobial susceptibility testing (AST), which is crucial for a timely and rational antibiotic prescription. Here, a recombinant bacteriophage tail fiber protein (TFP) was functionalized on magnetic particles to specifically capture Pseudomonas aeruginosa, while fluorescein isothiocyanate-labeled-magainin II was utilized as the indicator. For solving the magnetic particles' blocking effects, a reverse assaying protocol based on TFP recognition was developed to investigate the feasibility of detection and AST of P. aeruginosa. P. aeruginosa can be rapidly, sensitively and specifically detected within 1.5 h with a linear range of 1.0 × 102 to 1.0 × 106 colony forming units (CFU)⋅mL-1 and a detection limit of 3.3 × 10 CFU⋅mL-1. Subsequently, AST results, which were consistent with broth dilution results, can be obtained within 3.5 h. Due to the high specificity of the TFP, AST can actually be conducted without the need for bacterial isolation and identification. Based on the proof-of-principle work, the detection and AST of other pathogens can be extended by expressing the TFPs of their bacteriophages.
Collapse
Affiliation(s)
- Yong He
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Hang Zhao
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Yuanwen Liu
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - He Zhou
- Zunyi Institute for Food and Drug Control, Zunyi, 563000, China.
| |
Collapse
|
17
|
Robertson J, McGoverin C, White JR, Vanholsbeeck F, Swift S. Rapid Detection of Escherichia coli Antibiotic Susceptibility Using Live/Dead Spectrometry for Lytic Agents. Microorganisms 2021; 9:924. [PMID: 33925816 PMCID: PMC8147107 DOI: 10.3390/microorganisms9050924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Antibiotic resistance is a serious threat to public health. The empiric use of the wrong antibiotic occurs due to urgency in treatment combined with slow, culture-based diagnostic techniques. Inappropriate antibiotic choice can promote the development of antibiotic resistance. We investigated live/dead spectrometry using a fluorimeter (Optrode) as a rapid alternative to culture-based techniques through application of the LIVE/DEAD® BacLightTM Bacterial Viability Kit. Killing was detected by the Optrode in near real-time when Escherichia coli was treated with lytic antibiotics-ampicillin and polymyxin B-and stained with SYTO 9 and/or propidium iodide. Antibiotic concentration, bacterial growth phase, and treatment time used affected the efficacy of this detection method. Quantification methods of the lethal action and inhibitory action of the non-lytic antibiotics, ciprofloxacin and chloramphenicol, respectively, remain to be elucidated.
Collapse
Affiliation(s)
- Julia Robertson
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland 1023, New Zealand; (J.R.W.); (S.S.)
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland 1010, New Zealand; (C.M.); (F.V.)
| | - Cushla McGoverin
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland 1010, New Zealand; (C.M.); (F.V.)
- Department of Physics, The University of Auckland, Auckland 1010, New Zealand
| | - Joni R. White
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland 1023, New Zealand; (J.R.W.); (S.S.)
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland 1010, New Zealand; (C.M.); (F.V.)
| | - Frédérique Vanholsbeeck
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland 1010, New Zealand; (C.M.); (F.V.)
- Department of Physics, The University of Auckland, Auckland 1010, New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland 1023, New Zealand; (J.R.W.); (S.S.)
| |
Collapse
|
18
|
Biological small-molecule assays using gradient-based microfluidics. Biosens Bioelectron 2021; 178:113038. [PMID: 33556809 DOI: 10.1016/j.bios.2021.113038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 12/20/2022]
Abstract
Studying the potency of small-molecules on eukaryotic and prokaryotic cells using conventional biological settings requires time-consuming procedures and large volumes of expensive small-molecules. Microfluidics could significantly expedite these assays by enabling operation in high-throughput and (semi)automated modes. Here, we introduce a microfluidics platform based on multi-volume microchamber arrays that can produce a wide range of small-molecule concentrations with a desired gradient-based profile for rapid and precise biological testing within a single device with minimal hands-on time. The concept behind this device is based on introducing the same amount of a small-molecule into microchambers of different volumes to spontaneously generate a gradient concentration profile via diffusion. This design enables to obtain an unprecedented concentration range (e.g., three orders of magnitude) that can be easily adjusted, allowing us to pinpoint the precise effect of small-molecules on pre-loaded prokaryotic and eukaryotic cells. We also propose a comprehensive relationship for determining the loading time (the only required parameter for implementing this platform) in order to study the effects of any small-molecule on a biological species in a desired test. We demonstrate the versatility of this microfluidics platform by conducting two small-molecule assays-antimicrobial resistance and sugar-phosphate toxicity for both eukaryotic and prokaryotic biological systems.
Collapse
|
19
|
Klein AK, Dietzel A. Microfluidic Systems for Antimicrobial Susceptibility Testing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 179:291-309. [PMID: 33851232 DOI: 10.1007/10_2021_164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human health is threatened by the spread of antimicrobial resistance and resulting infections. One reason for the resistance spread is the treatment with inappropriate and ineffective antibiotics because standard antimicrobial susceptibility testing methods are time-consuming and laborious. To reduce the antimicrobial susceptibility detection time, minimize treatments with empirical broad-spectrum antibiotics, and thereby combat the further spread of antimicrobial resistance, faster and point-of-care methods are needed. This requires many different research approaches. Microfluidic systems for antimicrobial susceptibility testing offer the possibility to reduce the detection time, as small sample and reagent volumes can be used and the detection of single cells is possible. In some cases, the aim is to use human samples without pretreatment or pre-cultivation. This chapter first provides an overview of conventional detection methods. It then presents the potential of and various current approaches in microfluidics. The focus is on microfluidic methods for phenotypic antimicrobial susceptibility testing.
Collapse
Affiliation(s)
- Ann-Kathrin Klein
- Institute of Microtechnology Technische Universität Braunschweig, Braunschweig, Germany
| | - Andreas Dietzel
- Institute of Microtechnology Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
20
|
Heuer C, Leonard H, Nitzan N, Lavy-Alperovitch A, Massad-Ivanir N, Scheper T, Segal E. Antifungal Susceptibility Testing of Aspergillus niger on Silicon Microwells by Intensity-Based Reflectometric Interference Spectroscopy. ACS Infect Dis 2020; 6:2560-2566. [PMID: 32930571 PMCID: PMC7584364 DOI: 10.1021/acsinfecdis.0c00234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
There is a demonstrated and paramount need for rapid, reliable infectious disease diagnostics, particularly those for invasive fungal infections. Current clinical determinations for an appropriate antifungal therapy can take up to 3 days using current antifungal susceptibility testing methods, a time-to-readout that can prove detrimental for immunocompromised patients and promote the spread of antifungal resistant pathogens. Herein, we demonstrate the application of intensity-based reflectometric interference spectroscopic measurements (termed iPRISM) on microstructured silicon sensors for use as a rapid, phenotypic antifungal susceptibility test. This diagnostic platform optically tracks morphological changes of fungi corresponding to conidia growth and hyphal colonization at a solid-liquid interface in real time. Using Aspergillus niger as a model fungal pathogen, we can determine the minimal inhibitory concentration of clinically relevant antifungals within 12 h. This assay allows for expedited detection of fungal growth and provides a label-free alternative to broth microdilution and agar diffusion methods, with the potential to be used for point-of-care diagnostics.
Collapse
Affiliation(s)
- Christopher Heuer
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | | | | | | | | | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | | |
Collapse
|
21
|
Yaghoubi M, Rahimi F, Negahdari B, Rezayan AH, Shafiekhani A. A lectin-coupled porous silicon-based biosensor: label-free optical detection of bacteria in a real-time mode. Sci Rep 2020; 10:16017. [PMID: 32994483 PMCID: PMC7525577 DOI: 10.1038/s41598-020-72457-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/27/2020] [Indexed: 11/29/2022] Open
Abstract
Accuracy and speed of detection, along with technical and instrumental simplicity, are indispensable for the bacterial detection methods. Porous silicon (PSi) has unique optical and chemical properties which makes it a good candidate for biosensing applications. On the other hand, lectins have specific carbohydrate-binding properties and are inexpensive compared to popular antibodies. We propose a lectin-conjugated PSi-based biosensor for label-free and real-time detection of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) by reflectometric interference Fourier transform spectroscopy (RIFTS). We modified meso-PSiO2 (10–40 nm pore diameter) with three lectins of ConA (Concanavalin A), WGA (Wheat Germ Agglutinin), and UEA (Ulex europaeus agglutinin) with various carbohydrate specificities, as bioreceptor. The results showed that ConA and WGA have the highest binding affinity for E. coli and S. aureus respectively and hence can effectively detect them. This was confirmed by 6.8% and 7.8% decrease in peak amplitude of fast Fourier transform (FFT) spectra (at 105 cells mL−1 concentration). A limit of detection (LOD) of about 103 cells mL−1 and a linear response range of 103 to 105 cells mL−1 were observed for both ConA-E. coli and WGA-S. aureus interaction platforms that are comparable to the other reports in the literature. Dissimilar response patterns among lectins can be attributed to the different bacterial cell wall structures. Further assessments were carried out by applying the biosensor for the detection of Klebsiella aerogenes and Bacillus subtilis bacteria. The overall obtained results reinforced the conjecture that the WGA and ConA have a stronger interaction with Gram-positive and Gram-negative bacteria, respectively. Therefore, it seems that specific lectins can be suggested for bacterial Gram-typing or even serotyping. These observations were confirmed by the principal component analysis (PCA) model.
Collapse
Affiliation(s)
- Mona Yaghoubi
- Division of Nanobiotechnoloy, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Fereshteh Rahimi
- Division of Nanobiotechnoloy, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hossein Rezayan
- Division of Nanobiotechnoloy, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | | |
Collapse
|
22
|
Li L, Wang C, Nie Y, Yao B, Hu H. Nanofabrication enabled lab-on-a-chip technology for the manipulation and detection of bacteria. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Iriya R, Jing W, Syal K, Mo M, Chen C, Yu H, Haydel SE, Wang S, Tao N. Rapid antibiotic susceptibility testing based on bacterial motion patterns with long short-term memory neural networks. IEEE SENSORS JOURNAL 2020; 20:4940-4950. [PMID: 32440258 PMCID: PMC7241544 DOI: 10.1109/jsen.2020.2967058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Antibiotic resistance is an increasing public health threat. To combat it, a fast method to determine the antibiotic susceptibility of infecting pathogens is required. Here we present an optical imaging-based method to track the motion of single bacterial cells and generate a model to classify active and inactive cells based on the motion patterns of the individual cells. The model includes an image-processing algorithm to segment individual bacterial cells and track the motion of the cells over time, and a deep learning algorithm (Long Short-Term Memory network) to learn and determine if a bacterial cell is active or inactive. By applying the model to human urine specimens spiked with an Escherichia coli lab strain, we show that the method can accurately perform antibiotic susceptibility testing as fast as 30 minutes for five commonly used antibiotics.
Collapse
Affiliation(s)
- Rafael Iriya
- School of Electrical, Computer and Energy engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Wenwen Jing
- The Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ, 85287, USA
| | - Karan Syal
- The Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ, 85287, USA
| | - Manni Mo
- The Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ, 85287, USA
| | - Chao Chen
- The Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ, 85287, USA
| | - Hui Yu
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shelley E Haydel
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Shaopeng Wang
- The Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ, 85287, USA
| | - Nongjian Tao
- School of Electrical, Computer and Energy engineering, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
24
|
Behera B, Anil Vishnu GK, Chatterjee S, Sitaramgupta V VSN, Sreekumar N, Nagabhushan A, Rajendran N, Prathik BH, Pandya HJ. Emerging technologies for antibiotic susceptibility testing. Biosens Bioelectron 2019; 142:111552. [PMID: 31421358 DOI: 10.1016/j.bios.2019.111552] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 12/22/2022]
Abstract
Superbugs such as infectious bacteria pose a great threat to humanity due to an increase in bacterial mortality leading to clinical treatment failure, lengthy hospital stay, intravenous therapy and accretion of bacteraemia. These disease-causing bacteria gain resistance to drugs over time which further complicates the treatment. Monitoring of antibiotic resistance is therefore necessary so that bacterial infectious diseases can be diagnosed rapidly. Antimicrobial susceptibility testing (AST) provides valuable information on the efficacy of antibiotic agents and their dosages for treatment against bacterial infections. In clinical laboratories, most widely used AST methods are disk diffusion, gradient diffusion, broth dilution, or commercially available semi-automated systems. Though these methods are cost-effective and accurate, they are time-consuming, labour-intensive, and require skilled manpower. Recently much attention has been on developing rapid AST techniques to avoid misuse of antibiotics and provide effective treatment. In this review, we have discussed emerging engineering AST techniques with special emphasis on phenotypic AST. These techniques include fluorescence imaging along with computational image processing, surface plasmon resonance, Raman spectra, and laser tweezer as well as micro/nanotechnology-based device such as microfluidics, microdroplets, and microchamber. The mechanical and electrical behaviour of single bacterial cell and bacterial suspension for the study of AST is also discussed.
Collapse
Affiliation(s)
- Bhagaban Behera
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - G K Anil Vishnu
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India; Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Suman Chatterjee
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - V S N Sitaramgupta V
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - Niranjana Sreekumar
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - Apoorva Nagabhushan
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | | | - B H Prathik
- Indira Gandhi Institute of Child Health, Bangalore, India
| | - Hardik J Pandya
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
25
|
Gupta N, Renugopalakrishnan V, Liepmann D, Paulmurugan R, Malhotra BD. Cell-based biosensors: Recent trends, challenges and future perspectives. Biosens Bioelectron 2019; 141:111435. [PMID: 31238280 DOI: 10.1016/j.bios.2019.111435] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022]
Abstract
Existing at the interface of biology and electronics, living cells have been in use as biorecognition elements (bioreceptors) in biosensors since the early 1970s. They are an interesting choice of bioreceptors as they allow flexibility in determining the sensing strategy, are cheaper than purified enzymes and antibodies and make the fabrication relatively simple and cost-effective. And with advances in the field of synthetic biology, microfluidics and lithography, many exciting developments have been made in the design of cell-based biosensors in the last about five years. 3D cell culture systems integrated with electrodes are now providing new insights into disease pathogenesis and physiology, while cardiomyocyte-integrated microelectrode array (MEA) technology is set to be standardized for the assessment of drug-induced cardiac toxicity. From cell microarrays for high-throughput applications to plasmonic devices for anti-microbial susceptibility testing and advent of microbial fuel cell biosensors, cell-based biosensors have evolved from being mere tools for detection of specific analytes to multi-parametric devices for real time monitoring and assessment. However, despite these advancements, challenges such as regeneration and storage life, heterogeneity in cell populations, high interference and high costs due to accessory instrumentation need to be addressed before the full potential of cell-based biosensors can be realized at a larger scale. This review summarizes results of the studies that have been conducted in the last five years toward the fabrication of cell-based biosensors for different applications with a comprehensive discussion on the challenges, future trends, and potential inputs needed for improving them.
Collapse
Affiliation(s)
- Niharika Gupta
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi 110042, India
| | | | - Dorian Liepmann
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Ramasamy Paulmurugan
- Department of Radiology, Cellular Pathway Imaging Laboratory, Stanford University School of Medicine, 3155 Porter Drive, Suite 2236, Palo Alto, CA, 94304, USA
| | - Bansi D Malhotra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi 110042, India.
| |
Collapse
|
26
|
Idelevich EA, Becker K. How to accelerate antimicrobial susceptibility testing. Clin Microbiol Infect 2019; 25:1347-1355. [PMID: 31055166 DOI: 10.1016/j.cmi.2019.04.025] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/27/2019] [Accepted: 04/18/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND Antimicrobial susceptibility testing (AST) results are crucial for timely administration of effective antimicrobial treatment, and, thus, should be made available to clinicians as fast as possible. In particular, increasing rates of multidrug-resistant organisms emphasize the need for rapid AST (rAST). OBJECTIVES This article aims to provide microbiologists and clinicians with a critical overview of the current state of possibilities to accelerate AST. We also intend to discuss technical and strategic aspects of rAST, which may be helpful to academic researchers and assay developers in the industry. SOURCES We have reviewed literature on rAST methods and their implementation in routine diagnostics. CONTENT Phenotypic rAST is universal, mechanism-independent and allows exact categorization, but it demands time for the microorganisms to start the growth and to express the response to antibiotics. Detection of selected resistance mechanisms is more rapid, but the interpretation of its clinical impact is limited. Technical challenges of phenotypic rAST include inoculum effect, delayed expression of resistance, lag phase and initial biomass increase in susceptible isolates. Criteria for a successful rAST assay are ease of use, random access, capacity for simultaneous testing of multiple specimens, affordability and financial attractiveness for industry. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based AST seems to be particularly promising, as it can optimally be combined with MALDI-TOF MS identification. Direct testing from clinical specimens provides particularly early findings, with positive blood cultures being the most suitable specimen type. Polymicrobial samples and inoculum effect are serious obstacles for direct AST from other clinical specimens. Next to the technology improvement, optimization of pre-analytics and laboratory organization is essential. IMPLICATIONS It appears feasible to generate an AST report within the same working shift; however, only affordable and easy-to-use rAST technologies have a chance to enter broad diagnostic routine. Efforts should be made by industry, authorities and academia to enable wide dissemination of rAST in clinical diagnostics.
Collapse
Affiliation(s)
- E A Idelevich
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany.
| | - K Becker
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
27
|
Volbers D, Stierle VK, Ditzel KJ, Aschauer J, Rädler JO, Opitz M, Paulitschke P. Interference Disturbance Analysis Enables Single-Cell Level Growth and Mobility Characterization for Rapid Antimicrobial Susceptibility Testing. NANO LETTERS 2019; 19:643-651. [PMID: 30525694 DOI: 10.1021/acs.nanolett.8b02815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To support the emerging battle against antimicrobial resistance (AMR), detection methods that allow fast and accurate antimicrobial susceptibility testing (AST) are urgently needed. The early identification and application of an appropriate antibiotic treatment leads to lower mortality rates and substantial cost savings and prevents the development of resistant pathogens. In this work, we present a diffraction-based method, which is capable of quantitative bacterial growth, mobility, and susceptibility measurements. The method is based on the temporal analysis of the intensity of a light diffraction peak, which arises due to interference at a periodic pattern of gold nanostructures. The presence of bacteria disturbs the constructive interference, leading to an intensity decrease and thus allows the monitoring of bacterial growth in very low volumes. We demonstrate the direct correlation of the decrease in diffraction peak intensity with bacterial cell number starting from single cells and show the capability for rapid high-throughput AST measurements by determining the minimum inhibitory concentration for three different antimicrobials in less than 2-3 h as well as the susceptibility in less than 30-40 min. Furthermore, bacterial mobility is obtained from short-term fluctuations of the diffraction peak intensity and is shown to decrease by a factor of 3 during bacterial attachment to a surface. This multiparameter detection method allows for rapid AST of planktonic and of biofilm-forming bacterial strains in low volumes and in real-time without the need of high initial cell numbers.
Collapse
Affiliation(s)
- David Volbers
- Faculty of Physics and Center for NanoScience (CeNS) , Ludwig-Maximilians-Universität , Geschwister-Scholl-Platz1 , München D-80539 , Germany
| | - Valentin K Stierle
- Faculty of Physics and Center for NanoScience (CeNS) , Ludwig-Maximilians-Universität , Geschwister-Scholl-Platz1 , München D-80539 , Germany
| | - Konstantin J Ditzel
- Faculty of Physics and Center for NanoScience (CeNS) , Ludwig-Maximilians-Universität , Geschwister-Scholl-Platz1 , München D-80539 , Germany
| | - Julian Aschauer
- Faculty of Physics and Center for NanoScience (CeNS) , Ludwig-Maximilians-Universität , Geschwister-Scholl-Platz1 , München D-80539 , Germany
| | - Joachim O Rädler
- Faculty of Physics and Center for NanoScience (CeNS) , Ludwig-Maximilians-Universität , Geschwister-Scholl-Platz1 , München D-80539 , Germany
| | - Madeleine Opitz
- Faculty of Physics and Center for NanoScience (CeNS) , Ludwig-Maximilians-Universität , Geschwister-Scholl-Platz1 , München D-80539 , Germany
| | - Philipp Paulitschke
- Faculty of Physics and Center for NanoScience (CeNS) , Ludwig-Maximilians-Universität , Geschwister-Scholl-Platz1 , München D-80539 , Germany
| |
Collapse
|
28
|
Davidov T, Granik N, Zahran S, Leonard H, Adir I, Elul O, Fried T, Gil A, Mayo B, Ohayon S, Sarig S, Shasha N, Tsedef S, Weiner S, Brunwasser-Meirom M, Ereskovsky A, Katz N, Kaufmann B, Haimov Y, Segal E, Amit R. Designing Bacterial Chemotactic Receptors Guided by Photonic Femtoliter Well Arrays for Quantifiable, Label-Free Measurement of Bacterial Chemotaxis. ACS Biomater Sci Eng 2019; 5:603-612. [PMID: 33405824 DOI: 10.1021/acsbiomaterials.8b01429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Whole cell bioreporters, such as bacterial cells, can be used for environmental and clinical sensing of specific analytes. However, the current methods implemented to observe such bioreporters in the form of chemotactic responses heavily rely on microscope analysis, fluorescent labels, and hard-to-scale microfluidic devices. Herein, we demonstrate that chemotaxis can be detected within minutes using intrinsic optical measurements of silicon femtoliter well arrays (FMAs). This is done via phase-shift reflectometric interference spectroscopic measurements (PRISM) of the wells, which act as silicon diffraction gratings, enabling label-free, real-time quantification of the number of trapped bacteria cells in the optical readout. By generating unsteady chemical gradients over the wells, we first demonstrate that chemotaxis toward attractants and away from repellents can be easily differentiated based on the signal response of PRISM. The lowest concentration of chemorepellent to elicit an observed bacterial response was 50 mM, whereas the lowest concentration of chemoattractant to elicit a response was 10 mM. Second, we employed PRISM, in combination with a computational approach, to rapidly scan for and identify a novel synthetic histamine chemoreceptor strain. Consequently, we show that by using a combined computational design approach, together with a quantitative, real-time, and label-free detection method, it is possible to manufacture and characterize novel synthetic chemoreceptors in Escherichia coli (E. coli).
Collapse
|
29
|
Ferdman B, Weiss LE, Alalouf O, Haimovich Y, Shechtman Y. Ultrasensitive Refractometry via Supercritical Angle Fluorescence. ACS NANO 2018; 12:11892-11898. [PMID: 30475589 DOI: 10.1021/acsnano.8b05849] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Refractometry, namely, the measurement of refractive index (RI), provides information about various sample properties such as concentrations and molecular structure. One physical phenomenon which enables precise determination of a sample's RI in a microscope is the supercritical-angle fluorescence. This effect is observed when the fluorescence from an emitter near a glass-medium interface is captured by an objective lens with a high numerical aperture. The materials' index mismatch creates a distinguishable transition in the intensity pattern at the back focal plane of the objective that changes proportionally to the RI of the media. Here, we present a refractometry approach in which the fluorophores are preattached to the bottom surface of a microfluidic channel, enabling highly sensitive determination of the RI using tiny amounts of liquid (picoliters). With this method, we attained a standard deviation of 3.1 × 10-5 and a repeatability of 2.7 × 10-5 RI units. We first determine the capabilities of the device for glycerol-water solutions and then demonstrate the relevance of our system for monitoring changes in biological systems. As a model system, we show that we can detect single bacteria ( Escherichia coli) and measure population growth.
Collapse
|
30
|
Azizi M, Zaferani M, Dogan B, Zhang S, Simpson KW, Abbaspourrad A. Nanoliter-Sized Microchamber/Microarray Microfluidic Platform for Antibiotic Susceptibility Testing. Anal Chem 2018; 90:14137-14144. [DOI: 10.1021/acs.analchem.8b03817] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Morteza Azizi
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, New York 14853, United States
| | - Meisam Zaferani
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, New York 14853, United States
| | - Belgin Dogan
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Shiying Zhang
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Kenneth W. Simpson
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
31
|
Leonard H, Colodner R, Halachmi S, Segal E. Recent Advances in the Race to Design a Rapid Diagnostic Test for Antimicrobial Resistance. ACS Sens 2018; 3:2202-2217. [PMID: 30350967 DOI: 10.1021/acssensors.8b00900] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Even with advances in antibiotic therapies, bacterial infections persistently plague society and have amounted to one of the most prevalent issues in healthcare today. Moreover, the improper and excessive administration of antibiotics has led to resistance of many pathogens to prescribed therapies, rendering such antibiotics ineffective against infections. While the identification and detection of bacteria in a patient's sample is critical for point-of-care diagnostics and in a clinical setting, the consequent determination of the correct antibiotic for a patient-tailored therapy is equally crucial. As a result, many recent research efforts have been focused on the development of sensors and systems that correctly guide a physician to the best antibiotic to prescribe for an infection, which can in turn, significantly reduce the instances of antibiotic resistance and the evolution of bacteria "superbugs." This review details the advantages and shortcomings of the recent advances (focusing from 2016 and onward) made in the developments of antimicrobial susceptibility testing (AST) measurements. Detection of antibiotic resistance by genomic AST techniques relies on the prediction of antibiotic resistance via extracted bacterial DNA content, while phenotypic determinations typically track physiological changes in cells and/or populations exposed to antibiotics. Regardless of the method used for AST, factors such as cost, scalability, and assay time need to be weighed into their design. With all of the expansive innovation in the field, which technology and sensing systems demonstrate the potential to detect antimicrobial resistance in a clinical setting?
Collapse
Affiliation(s)
- Heidi Leonard
- Department of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, Haifa, Israel 3200003
| | - Raul Colodner
- Laboratory of Clinical Microbiology, Emek Medical Center, Afula, Israel 18101
| | - Sarel Halachmi
- Department of Urology, Bnai Zion Medical Center, Haifa, Israel 3104800
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, Haifa, Israel 3200003
- The Russell Berrie Nanotechnology Institute, Technion − Israel Institute of Technology, Haifa, Israel, 3200003
| |
Collapse
|
32
|
Phenotypic antibiotic susceptibility testing of pathogenic bacteria using photonic readout methods: recent achievements and impact. Appl Microbiol Biotechnol 2018; 103:549-566. [PMID: 30443798 DOI: 10.1007/s00253-018-9505-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022]
Abstract
The development of antibiotic resistances in common pathogens is an increasing challenge for therapy of infections and especially severe complications like sepsis. To prevent administration of broad-spectrum and potentially non-effective antibiotics, the susceptibility spectrum of the pathogens underlying the infection has to be determined. Current phenotypic standard methods for antibiotic susceptibility testing (AST) require the isolation of pathogens from the patient and the subsequent culturing in the presence of antibiotics leading to results only after 24-72 h. Since the early initialization of an effective antibiotic therapy is crucial for positive treatment result in severe infections, faster methods of AST are urgently needed. A large number of different assay systems are currently tested for their practicability for fast detection of antibiotic resistance profiles. They can be divided into genotypic ones which detect the presence of certain genes or gene products associated with resistances and phenotypic assays which determine the effect of antibiotics on the pathogens. In this mini-review, we summarize current developments in fast phenotypic tests that use photonic approaches and critically discuss their status. We further outline steps that are required to bring these assays into clinical practice.
Collapse
|
33
|
Arshavsky-Graham S, Massad-Ivanir N, Segal E, Weiss S. Porous Silicon-Based Photonic Biosensors: Current Status and Emerging Applications. Anal Chem 2018; 91:441-467. [DOI: 10.1021/acs.analchem.8b05028] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sofia Arshavsky-Graham
- Department of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, Haifa 3200003, Israel
- Institute of Technical Chemistry, Leibniz Universität Hannover, Callinstrasse 5, 30167 Hanover, Germany
| | - Naama Massad-Ivanir
- Department of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, Haifa 3200003, Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, Haifa 3200003, Israel
- The Russell Berrie Nanotechnology Institute, Technion − Israel Institute of Technology, Haifa 3200003, Israel
| | - Sharon Weiss
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
34
|
Zhang X, Jiang X, Hao Z, Qu K. Advances in online methods for monitoring microbial growth. Biosens Bioelectron 2018; 126:433-447. [PMID: 30472440 DOI: 10.1016/j.bios.2018.10.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/16/2018] [Indexed: 12/24/2022]
Abstract
Understanding the characteristics of microbial growth is of great significance to many fields including in scientific research, the food industry, health care, and agriculture. Many methods have been established to characterize the process of microbial growth. Online and automated methods, in which sample transfer is avoided, are popular because they can facilitate the development of simple, safe, and effective growth monitoring. This review focuses on advances in online monitoring methods over the last decade (2008-2018). We specifically focus on optic- and electrochemistry-based techniques, either through contact measurements or contactless measurement. Strengths and weaknesses of each set of methods are described and we also speculate on forthcoming trends in the field.
Collapse
Affiliation(s)
- Xuzhi Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106, Nanjing Rd, Shinan District, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Xiaoyu Jiang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106, Nanjing Rd, Shinan District, Qingdao 266071, China; College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Zhihui Hao
- School of Chemistry and Pharmaceutical Sciences, Qingdao Agriculture University, 700, Changcheng Rd, Chengyang District, Qingdao 266109, China.
| | - Keming Qu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106, Nanjing Rd, Shinan District, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| |
Collapse
|
35
|
Rapid detection of Escherichia coli based on 16S rDNA nanogap network electrochemical biosensor. Biosens Bioelectron 2018; 118:9-15. [DOI: 10.1016/j.bios.2018.07.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/15/2018] [Accepted: 07/17/2018] [Indexed: 11/18/2022]
|
36
|
|
37
|
Zhang X, Jiang X, Yang Q, Wang X, Zhang Y, Zhao J, Qu K, Zhao C. Online Monitoring of Bacterial Growth with an Electrical Sensor. Anal Chem 2018; 90:6006-6011. [PMID: 29685039 DOI: 10.1021/acs.analchem.8b01214] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Herein, we developed an automatic electrical bacterial growth sensor (EBGS) based on a multichannel capacitively coupled contactless conductivity detector (C4D). With the use of the EBGS, up to eight culture samples of E. coli in disposable tubes were online monitored simultaneously in a noninvasive manner. Growth curves with high resolution (on the order of a time scale of seconds) were generated by plotting normalized apparent conductivity value against incubation time. The characteristic data of E. coli growth (e.g., growth rate) obtained here were more accurate than those obtained with optical density and contact conductivity methods. And the correlation coefficient of the regression line ( r) for quantitative determination of viable bacteria was 0.9977. Moreover, it also could be used for other tasks, such as the investigation of toxic/stress effects from chemicals and antimicrobial susceptibility testing. All of these performances required neither auxiliary devices nor additional chemicals and biomaterials. Taken together, this strategy has the advantages of simplicity, accuracy, reproducibility, affordability, versatility, and miniaturization, liberating the users greatly from financial and labor costs.
Collapse
Affiliation(s)
- Xuzhi Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences and Laboratory for Marine Fisheries Science and Food Production Processes , Qingdao National Laboratory for Marine Science and Technology , 106 Nanjing Road , Qingdao 266071 , China
| | - Xiaoyu Jiang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences and Laboratory for Marine Fisheries Science and Food Production Processes , Qingdao National Laboratory for Marine Science and Technology , 106 Nanjing Road , Qingdao 266071 , China.,College of Marine Sciences , Shanghai Ocean University , Shanghai 201306 , China
| | - Qianqian Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences and Laboratory for Marine Fisheries Science and Food Production Processes , Qingdao National Laboratory for Marine Science and Technology , 106 Nanjing Road , Qingdao 266071 , China.,College of Marine Sciences , Shanghai Ocean University , Shanghai 201306 , China
| | - Xiaochun Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences and Laboratory for Marine Fisheries Science and Food Production Processes , Qingdao National Laboratory for Marine Science and Technology , 106 Nanjing Road , Qingdao 266071 , China
| | - Yan Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences and Laboratory for Marine Fisheries Science and Food Production Processes , Qingdao National Laboratory for Marine Science and Technology , 106 Nanjing Road , Qingdao 266071 , China
| | - Jun Zhao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences and Laboratory for Marine Fisheries Science and Food Production Processes , Qingdao National Laboratory for Marine Science and Technology , 106 Nanjing Road , Qingdao 266071 , China
| | - Keming Qu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences and Laboratory for Marine Fisheries Science and Food Production Processes , Qingdao National Laboratory for Marine Science and Technology , 106 Nanjing Road , Qingdao 266071 , China
| | - Chuan Zhao
- School of Chemistry , Kensington Campus, The University of New South Wales , Sydney , NSW 2052 , Australia
| |
Collapse
|