1
|
Bakhtiari MA, Fathi M, Abdolmohammadi F, Hoseinian SMA, Sepahi S, Hooshyar P, Ahmadian MT, Assempour A. Investigation the behavior of different fullerenes on graphene surface. Sci Rep 2024; 14:18220. [PMID: 39107364 PMCID: PMC11303706 DOI: 10.1038/s41598-024-69359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
In the present study, the regime of motion of fullerene molecules on graphene substrate in a specific temperature range is investigated. The potential energy of fullerene molecules is analyzed using classical molecular dynamics methods. Fullerene molecules C36, C50, C60, C76, C80, and C90 are selected due to spherical shapes of different sizes and good motion performance in previous studies. Analysis of the motion regime at different temperatures is one of the main objectives of this study. To achieve this aim, the translational and rotational movements of fullerene molecules are studied independently. In the first step of the investigation, Lennard-Jone's potential energy of fullerene molecules is calculated. Subsequently, the motion regime of different fullerenes is classified based on their displacement and diffusion coefficient. Findings indicate C60 is not appropriate in all conditions. However, C90 and C76 molecules are found to be appropriate candidates in most cases in different conditions. As far as a straight-line movement is considered, the deviation of fullerene molecules is compared by their angular velocities. Although C60 has a lower angular velocity due to its symmetrical shape, it may not move well due to its low diffusion coefficient. Overall, our study helps to understand the performance of different fullerene molecules on graphene substrate and find their possible applications, especially as wheels in nanomachine or nanocarrier structures.
Collapse
Affiliation(s)
- Mohammad Ali Bakhtiari
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - Mohammad Fathi
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | | | | | - Siavash Sepahi
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - Pooya Hooshyar
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - Mohammad Taghi Ahmadian
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran.
| | - Ahmad Assempour
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| |
Collapse
|
2
|
Ariga K, Song J, Kawakami K. Molecular machines working at interfaces: physics, chemistry, evolution and nanoarchitectonics. Phys Chem Chem Phys 2024; 26:13532-13560. [PMID: 38654597 DOI: 10.1039/d4cp00724g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
As a post-nanotechnology concept, nanoarchitectonics combines nanotechnology with advanced materials science. Molecular machines made by assembling molecular units and their organizational bodies are also products of nanoarchitectonics. They can be regarded as the smallest functional materials. Originally, studies on molecular machines analyzed the average properties of objects dispersed in solution by spectroscopic methods. Researchers' playgrounds partially shifted to solid interfaces, because high-resolution observation of molecular machines is usually done on solid interfaces under high vacuum and cryogenic conditions. Additionally, to ensure the practical applicability of molecular machines, operation under ambient conditions is necessary. The latter conditions are met in dynamic interfacial environments such as the surface of water at room temperature. According to these backgrounds, this review summarizes the trends of molecular machines that continue to evolve under the concept of nanoarchitectonics in interfacial environments. Some recent examples of molecular machines in solution are briefly introduced first, which is followed by an overview of studies of molecular machines and similar supramolecular structures in various interfacial environments. The interfacial environments are classified into (i) solid interfaces, (ii) liquid interfaces, and (iii) various material and biological interfaces. Molecular machines are expanding their activities from the static environment of a solid interface to the more dynamic environment of a liquid interface. Molecular machines change their field of activity while maintaining their basic functions and induce the accumulation of individual molecular machines into macroscopic physical properties molecular machines through macroscopic mechanical motions can be employed to control molecular machines. Moreover, research on molecular machines is not limited to solid and liquid interfaces; interfaces with living organisms are also crucial.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa 277-8561, Japan
| | - Jingwen Song
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Kohsaku Kawakami
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
| |
Collapse
|
3
|
Kinikar A, Wang XY, Di Giovannantonio M, Urgel JI, Liu P, Eimre K, Pignedoli CA, Stolz S, Bommert M, Mishra S, Sun Q, Widmer R, Qiu Z, Narita A, Müllen K, Ruffieux P, Fasel R. Sterically Selective [3 + 3] Cycloaromatization in the On-Surface Synthesis of Nanographenes. ACS NANOSCIENCE AU 2024; 4:128-135. [PMID: 38644965 PMCID: PMC11027121 DOI: 10.1021/acsnanoscienceau.3c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 04/23/2024]
Abstract
Surface-catalyzed reactions have been used to synthesize carbon nanomaterials with atomically predefined structures. The recent discovery of a gold surface-catalyzed [3 + 3] cycloaromatization of isopropyl substituted arenes has enabled the on-surface synthesis of arylene-phenylene copolymers, where the surface activates the isopropyl substituents to form phenylene rings by intermolecular coupling. However, the resulting polymers suffered from undesired cross-linking when more than two molecules reacted at a single site. Here we show that such cross-links can be prevented through steric protection by attaching the isopropyl groups to larger arene cores. Upon thermal activation of isopropyl-substituted 8,9-dioxa-8a-borabenzo[fg]tetracene on Au(111), cycloaromatization is observed to occur exclusively between the two molecules. The cycloaromatization intermediate formed by the covalent linking of two molecules is prevented from reacting with further molecules by the wide benzotetracene core, resulting in highly selective one-to-one coupling. Our findings extend the versatility of the [3 + 3] cycloaromatization of isopropyl substituents and point toward steric protection as a powerful concept for suppressing competing reaction pathways in on-surface synthesis.
Collapse
Affiliation(s)
- Amogh Kinikar
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Xiao-Ye Wang
- Max Planck
Institute for Polymer Research, 55128 Mainz, Germany
- State
Key
Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Marco Di Giovannantonio
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - José I. Urgel
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Pengcai Liu
- State
Key
Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Kristjan Eimre
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Carlo A. Pignedoli
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Samuel Stolz
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Institute
of Condensed Matter Physics, Station 3, EPFL, 1015 Lausanne, Switzerland
| | - Max Bommert
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Shantanu Mishra
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Qiang Sun
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Roland Widmer
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Zijie Qiu
- Max Planck
Institute for Polymer Research, 55128 Mainz, Germany
| | - Akimitsu Narita
- Max Planck
Institute for Polymer Research, 55128 Mainz, Germany
| | - Klaus Müllen
- Max Planck
Institute for Polymer Research, 55128 Mainz, Germany
- Department
of Chemistry, Johannes Gutenberg-Universität
Mainz, 55128 Mainz, Germany
| | - Pascal Ruffieux
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Roman Fasel
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
4
|
Sun K, Sugawara K, Lyalin A, Ishigaki Y, Uosaki K, Custance O, Taketsugu T, Suzuki T, Kawai S. On-Surface Synthesis of Multiple Cu Atom-Bridged Organometallic Oligomers. ACS NANO 2023. [PMID: 38047624 DOI: 10.1021/acsnano.3c10524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
A metal-metal bond between coordination complexes has the nature of a covalent bond in hydrocarbons. While bimetallic and trimetallic compounds usually have three-dimensional structures in solution, the high directionality and robustness of the bond can be applied for on-surface syntheses. Here, we present a systematic formation of complex organometallic oligomers on Cu(111) through sequential ring opening of 11,11,12,12-tetraphenyl-1,4,5,8-tetraazaanthraquinodimethane and bonding of phenanthroline derivatives by multiple Cu atoms. A detailed characterization with a combination of scanning tunneling microscopy and density functional theory calculations revealed the role of the Cu adatoms in both enantiomers of the chiral oligomers. Furthermore, we found sufficient strength of the bonds against sliding friction by manipulating the oligomers up to a hexamer. This finding may help to increase the variety of organometallic nanostructures on surfaces.
Collapse
Affiliation(s)
- Kewei Sun
- Center for Basic Research on Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0044, Japan
| | - Kazuma Sugawara
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Andrey Lyalin
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University, Sapporo 001-0021, Japan
- Global Research Center for Environment and Energy based on Nanomaterials Science, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Kohei Uosaki
- Global Research Center for Environment and Energy based on Nanomaterials Science, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Oscar Custance
- Center for Basic Research on Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University, Sapporo 001-0021, Japan
| | - Takanori Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Shigeki Kawai
- Center for Basic Research on Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan
| |
Collapse
|
5
|
Simpson G, García-López V, Boese AD, Tour JM, Grill L. Directing and Understanding the Translation of a Single Molecule Dipole. J Phys Chem Lett 2023; 14:2487-2492. [PMID: 36867737 PMCID: PMC10026170 DOI: 10.1021/acs.jpclett.2c03472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Understanding the directed motion of a single molecule on surfaces is not only important in the well-established field of heterogeneous catalysis but also for the design of artificial nanoarchitectures and molecular machines. Here, we report how the tip of a scanning tunneling microscope (STM) can be used to control the translation direction of a single polar molecule. Through the interaction of the molecular dipole with the electric field of the STM junction, it was found that both translations and rotations of the molecule occur. By considering the location of the tip with respect to the axis of the dipole moment, we can deduce the order in which rotation and translation take place. While the molecule-tip interaction dominates, computational results suggest that the translation is influenced by the surface direction along which the motion takes place.
Collapse
Affiliation(s)
- Grant
J. Simpson
- Department
of Physical Chemistry, Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Víctor García-López
- Departments
of Chemistry and Materials Science and NanoEngineering and Smalley-Curl
Institute and NanoCarbon Center, Rice University, Houston, Texas 77005, United States
| | - A. Daniel Boese
- Department
of Theoretical Chemistry, Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - James M. Tour
- Departments
of Chemistry and Materials Science and NanoEngineering and Smalley-Curl
Institute and NanoCarbon Center, Rice University, Houston, Texas 77005, United States
| | - Leonhard Grill
- Department
of Physical Chemistry, Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|
6
|
Au-Yeung KH, Sarkar S, Kühne T, Aiboudi O, Ryndyk DA, Robles R, Lorente N, Lissel F, Joachim C, Moresco F. A Nanocar and Rotor in One Molecule. ACS NANO 2023; 17:3128-3134. [PMID: 36638056 DOI: 10.1021/acsnano.2c12128] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Depending on its adsorption conformation on the Au(111) surface, a zwitterionic single-molecule machine works in two different ways under bias voltage pulses. It is a unidirectional rotor while anchored on the surface. It is a fast-drivable molecule vehicle (nanocar) while physisorbed. By tuning the surface coverage, the conformation of the molecule can be selected to be either rotor or nanocar. The inelastic tunneling excitation producing the movement is investigated in the same experimental conditions for both the unidirectional rotation of the rotor and the directed movement of the nanocar.
Collapse
Affiliation(s)
- Kwan Ho Au-Yeung
- Center for Advancing Electronics Dresden, TU Dresden, 01062Dresden, Germany
| | - Suchetana Sarkar
- Center for Advancing Electronics Dresden, TU Dresden, 01062Dresden, Germany
| | - Tim Kühne
- Center for Advancing Electronics Dresden, TU Dresden, 01062Dresden, Germany
| | - Oumaima Aiboudi
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany, and Faculty of Chemistry and Food Chemistry, TU Dresden, 01062Dresden, Germany
| | - Dmitry A Ryndyk
- Institute for Materials Science, TU Dresden, 01062Dresden, Germany
- Theoretical Chemistry, TU Dresden, 01062Dresden, Germany
| | - Roberto Robles
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018Donostia-San Sebastián, Spain
| | - Nicolas Lorente
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018Donostia-San Sebastián, Spain
- Donostia international physics center, 20018Donostia-San Sebastián, Spain
| | - Franziska Lissel
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany, and Faculty of Chemistry and Food Chemistry, TU Dresden, 01062Dresden, Germany
| | - Christian Joachim
- GNS & MANA Satellite, CEMES, CNRS, 29 rue J. Marvig, 31055Toulouse, France
| | - Francesca Moresco
- Center for Advancing Electronics Dresden, TU Dresden, 01062Dresden, Germany
| |
Collapse
|
7
|
Barragán A, Nicolás-García T, Lauwaet K, Sánchez-Grande A, Urgel JI, Björk J, Pérez EM, Écija D. Design and Manipulation of a Minimalistic Hydrocarbon Nanocar on Au(111). Angew Chem Int Ed Engl 2023; 62:e202212395. [PMID: 36445791 DOI: 10.1002/anie.202212395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022]
Abstract
Nanocars are carbon-based single-molecules with a precise design that facilitates their atomic-scale control on a surface. The rational design of these molecules is important in atomic and molecular-scale manipulation to advance the development of molecular machines, as well as for a better understanding of self-assembly, diffusion and desorption processes. Here, we introduce the molecular design and construction of a collection of minimalistic nanocars. They feature an anthracene chassis and four benzene derivatives as wheels. After sublimation and adsorption on an Au(111) surface, we show controlled and fast manipulation of the nanocars along the surface using the tip of a scanning tunneling microscope (STM). The mechanism behind the successful displacement is the induced dipole created over the nanocar by the STM tip. We utilized carbon monoxide functionalized tips both to avoid decomposition and accidentally picking the nanocars up during the manipulation. This strategy allowed thousands of maneuvers to successfully win the Nanocar Race II championship.
Collapse
Affiliation(s)
- Ana Barragán
- IMDEA Nanoscience Institute C/, Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Tomás Nicolás-García
- IMDEA Nanoscience Institute C/, Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Koen Lauwaet
- IMDEA Nanoscience Institute C/, Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Ana Sánchez-Grande
- IMDEA Nanoscience Institute C/, Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain.,Institute of Physics of the Czech Academy of Science, 16200, Praha, Czech Republic
| | - José I Urgel
- IMDEA Nanoscience Institute C/, Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Jonas Björk
- Department of Physics, Chemistry and Biology, IFM, Linköping University, 58183, Linköping, Sweden
| | - Emilio M Pérez
- IMDEA Nanoscience Institute C/, Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - David Écija
- IMDEA Nanoscience Institute C/, Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
8
|
Small molecule binding to surface-supported single-site transition-metal reaction centres. Nat Commun 2022; 13:7407. [PMID: 36456555 PMCID: PMC9715722 DOI: 10.1038/s41467-022-35193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Despite dominating industrial processes, heterogeneous catalysts remain challenging to characterize and control. This is largely attributable to the diversity of potentially active sites at the catalyst-reactant interface and the complex behaviour that can arise from interactions between active sites. Surface-supported, single-site molecular catalysts aim to bring together benefits of both heterogeneous and homogeneous catalysts, offering easy separability while exploiting molecular design of reactivity, though the presence of a surface is likely to influence reaction mechanisms. Here, we use metal-organic coordination to build reactive Fe-terpyridine sites on the Ag(111) surface and study their activity towards CO and C2H4 gaseous reactants using low-temperature ultrahigh-vacuum scanning tunnelling microscopy, scanning tunnelling spectroscopy, and atomic force microscopy supported by density-functional theory models. Using a site-by-site approach at low temperature to visualize the reaction pathway, we find that reactants bond to the Fe-tpy active sites via surface-bound intermediates, and investigate the role of the substrate in understanding and designing single-site catalysts on metallic supports.
Collapse
|
9
|
Gisbert Y, Abid S, Kammerer C, Rapenne G. Divergent Synthesis of Molecular Winch Prototypes. Chemistry 2021; 27:16242-16249. [PMID: 34492156 DOI: 10.1002/chem.202103126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 11/10/2022]
Abstract
We report the synthesis of conceptually new prototypes of molecular winches with the ultimate aim to investigate the work performed by a single ruthenium-based molecular motor anchored on a surface by probing its ability to pull a load upon electrically-driven directional rotation. According to a technomimetic design, the motor was embedded in a winch structure, with a long flexible polyethylene glycol chain terminated by an azide hook to connect a variety of molecular loads. The structure of the motor was first derivatized by means of two sequential cross-coupling reactions involving a penta(4-halogenophenyl)cyclopentadienyl hydrotris(indazolyl)borate ruthenium(II) precursor and the resulting benzylamine derivative was next exploited as key intermediate in the divergent synthesis of a family of nanowinch prototypes. A one-pot method involving sequential peptide coupling and Cu-catalyzed azide-alkyne cycloaddition was developed to yield four loaded nanowinches, with load fragments encompassing triptycene, fullerene and porphyrin moieties.
Collapse
Affiliation(s)
- Yohan Gisbert
- CEMES, Université de Toulouse, CNRS, 29, rue Marvig, 31055, Toulouse, France
| | - Seifallah Abid
- CEMES, Université de Toulouse, CNRS, 29, rue Marvig, 31055, Toulouse, France
| | - Claire Kammerer
- CEMES, Université de Toulouse, CNRS, 29, rue Marvig, 31055, Toulouse, France
| | - Gwénaël Rapenne
- CEMES, Université de Toulouse, CNRS, 29, rue Marvig, 31055, Toulouse, France.,Division of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, Japan
| |
Collapse
|
10
|
Nishino T, Martin CJ, Yasuhara K, Rapenne G. Nanocars based on Polyaromatic or Porphyrinic Chassis. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.1050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Toshio Nishino
- Division of Materials Science, Nara Institute of Science and Technology, NAIST
| | - Colin J. Martin
- Division of Materials Science, Nara Institute of Science and Technology, NAIST
| | - Kazuma Yasuhara
- Division of Materials Science, Nara Institute of Science and Technology, NAIST
| | - Gwénaël Rapenne
- Division of Materials Science, Nara Institute of Science and Technology, NAIST
| |
Collapse
|
11
|
Zhong Q, Ihle A, Ahles S, Wegner HA, Schirmeisen A, Ebeling D. Constructing covalent organic nanoarchitectures molecule by molecule via scanning probe manipulation. Nat Chem 2021; 13:1133-1139. [PMID: 34475530 PMCID: PMC8550974 DOI: 10.1038/s41557-021-00773-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/12/2021] [Indexed: 11/09/2022]
Abstract
Constructing low-dimensional covalent assemblies with tailored size and connectivity is challenging yet often key for applications in molecular electronics where optical and electronic properties of the quantum materials are highly structure dependent. We present a versatile approach for building such structures block by block on bilayer sodium chloride (NaCl) films on Cu(111) with the tip of an atomic force microscope, while tracking the structural changes with single-bond resolution. Covalent homo-dimers in cis and trans configurations and homo-/hetero-trimers were selectively synthesized by a sequence of dehalogenation, translational manipulation and intermolecular coupling of halogenated precursors. Further demonstrations of structural build-up include complex bonding motifs, like carbon–iodine–carbon bonds and fused carbon pentagons. This work paves the way for synthesizing elusive covalent nanoarchitectures, studying structural modifications and revealing pathways of intermolecular reactions. ![]()
Tailoring the size and connectivity of organic nanostructures is challenging but is often key in molecular electronics for tuning the properties of the quantum materials. Now an approach has been developed for building low-dimensional covalent architectures block by block on a surface by highly selective tip-induced intermolecular reactions.
Collapse
Affiliation(s)
- Qigang Zhong
- Institute of Applied Physics, Justus Liebig University Giessen, Giessen, Germany. .,Center for Materials Research, Justus Liebig University Giessen, Giessen, Germany.
| | - Alexander Ihle
- Institute of Applied Physics, Justus Liebig University Giessen, Giessen, Germany.,Center for Materials Research, Justus Liebig University Giessen, Giessen, Germany
| | - Sebastian Ahles
- Center for Materials Research, Justus Liebig University Giessen, Giessen, Germany.,Institute of Organic Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Hermann A Wegner
- Center for Materials Research, Justus Liebig University Giessen, Giessen, Germany.,Institute of Organic Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Andre Schirmeisen
- Institute of Applied Physics, Justus Liebig University Giessen, Giessen, Germany. .,Center for Materials Research, Justus Liebig University Giessen, Giessen, Germany.
| | - Daniel Ebeling
- Institute of Applied Physics, Justus Liebig University Giessen, Giessen, Germany. .,Center for Materials Research, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
12
|
Gisbert Y, Abid S, Kammerer C, Rapenne G. Molecular Gears: From Solution to Surfaces. Chemistry 2021; 27:12019-12031. [PMID: 34131971 DOI: 10.1002/chem.202101489] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 01/18/2023]
Abstract
This review highlights the major efforts devoted to the development of molecular gears over the past 40 years, from pioneering covalent bis-triptycyl systems undergoing intramolecular correlated rotation in solution, to the most recent examples of gearing systems anchored on a surface, which allow intermolecular transmission of mechanical power. Emphasis is laid on the different strategies devised progressively to control the architectures of molecular bevel and spur gears, as intramolecular systems in solution or intermolecular systems on surfaces, while aiming at increased efficiency, complexity and functionality.
Collapse
Affiliation(s)
- Yohan Gisbert
- CEMES, Université de Toulouse, CNRS, 29, rue Marvig, 31055, Toulouse, France
| | - Seifallah Abid
- CEMES, Université de Toulouse, CNRS, 29, rue Marvig, 31055, Toulouse, France
| | - Claire Kammerer
- CEMES, Université de Toulouse, CNRS, 29, rue Marvig, 31055, Toulouse, France
| | - Gwénaël Rapenne
- CEMES, Université de Toulouse, CNRS, 29, rue Marvig, 31055, Toulouse, France.,Division of Materials Science, Nara Institute of Science and Technology, 8916-5, Nara, Japan
| |
Collapse
|
13
|
Hinaut A, Scherb S, Freund S, Liu Z, Glatzel T, Meyer E. Influence of electrospray deposition on C 60 molecular assemblies. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:552-558. [PMID: 34221801 PMCID: PMC8218541 DOI: 10.3762/bjnano.12.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Maintaining clean conditions for samples during all steps of preparation and investigation is important for scanning probe studies at the atomic or molecular level. For large or fragile organic molecules, where sublimation cannot be used, high-vacuum electrospray deposition is a good alternative. However, because this method requires the introduction into vacuum of the molecules from solution, clean conditions are more difficult to be maintained. Additionally, because the presence of solvent on the surface cannot be fully eliminated, one has to take care of its possible influence. Here, we compare the high-vacuum electrospray deposition method to thermal evaporation for the preparation of C60 on different surfaces and compare, for sub-monolayer coverages, the influence of the deposition method on the formation of molecular assemblies. Whereas the island location is the main difference for metal surfaces, we observe for alkali halide and metal oxide substrates that the high-vacuum electrospray method can yield single isolated molecules accompanied by surface modifications.
Collapse
Affiliation(s)
- Antoine Hinaut
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Sebastian Scherb
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Sara Freund
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Zhao Liu
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Thilo Glatzel
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Ernst Meyer
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| |
Collapse
|
14
|
Kühne T, Au-Yeung KH, Eisenhut F, Aiboudi O, Ryndyk DA, Cuniberti G, Lissel F, Moresco F. STM induced manipulation of azulene-based molecules and nanostructures: the role of the dipole moment. NANOSCALE 2020; 12:24471-24476. [PMID: 33305772 DOI: 10.1039/d0nr06809h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Among the different mechanisms that can be used to drive a molecule on a surface by the tip of a scanning tunneling microscope at low temperature, we used voltage pulses to move azulene-based single molecules and nanostructures on Au(111). Upon evaporation, the molecules partially cleave and form metallo-organic dimers while single molecules are very scarce, as confirmed by simulations. By applying voltage pulses to the different structures under similar conditions, we observe that only one type of dimer can be controllably driven on the surface, which has the lowest dipole moment of all investigated structures. Experiments under different bias and tip height conditions reveal that the electric field is the main driving force of the directed motion. We discuss the different observed structures and their movement properties with respect to their dipole moment and charge distribution on the surface.
Collapse
Affiliation(s)
- Tim Kühne
- Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Nishino T, Martin CJ, Takeuchi H, Lim F, Yasuhara K, Gisbert Y, Abid S, Saffon-Merceron N, Kammerer C, Rapenne G. Dipolar Nanocars Based on a Porphyrin Backbone. Chemistry 2020; 26:12010-12018. [PMID: 32530071 DOI: 10.1002/chem.202001999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/25/2020] [Indexed: 11/08/2022]
Abstract
The design and synthesis of a new family of nanocars is reported. To control their motion, we integrated a dipole which can be tuned thanks to strategic donor and acceptor substituents at the 5- and 15-positions of the porphyrin backbone. The two other meso positions are substituted with ethynyltriptycene moieties which are known to act as wheels. Full characterization of nine nanocars is presented as well as the electrochemistry of these push-pull molecules. DFT calculations allowed us to evaluate the magnitude of the dipoles and to understand the electrochemical behavior and how it is affected by the electron donating and accepting groups present. An X-ray crystal structure of one nanocar has also been obtained.
Collapse
Affiliation(s)
- Toshio Nishino
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Colin J Martin
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.,International Collaborative Laboratory for Supraphotoactive Systems, NAIST-CEMES, 29 rue Marvig, 31055, Toulouse, France
| | - Hiroki Takeuchi
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Florence Lim
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Kazuma Yasuhara
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Yohan Gisbert
- CEMES-CNRS, Université de Toulouse, 29, rue Marvig, 31055, Toulouse, France
| | - Seifallah Abid
- CEMES-CNRS, Université de Toulouse, 29, rue Marvig, 31055, Toulouse, France
| | - Nathalie Saffon-Merceron
- UPS, Université de Toulouse, Institut de Chimie de Toulouse, FR 2599, 118 route de Narbonne, 31062, Toulouse, France
| | - Claire Kammerer
- CEMES-CNRS, Université de Toulouse, 29, rue Marvig, 31055, Toulouse, France
| | - Gwénaël Rapenne
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.,International Collaborative Laboratory for Supraphotoactive Systems, NAIST-CEMES, 29 rue Marvig, 31055, Toulouse, France.,CEMES-CNRS, Université de Toulouse, 29, rue Marvig, 31055, Toulouse, France
| |
Collapse
|
16
|
Au Yeung KH, Kühne T, Eisenhut F, Kleinwächter M, Gisbert Y, Robles R, Lorente N, Cuniberti G, Joachim C, Rapenne G, Kammerer C, Moresco F. Transmitting Stepwise Rotation among Three Molecule-Gear on the Au(111) Surface. J Phys Chem Lett 2020; 11:6892-6899. [PMID: 32787202 DOI: 10.1021/acs.jpclett.0c01747] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The realization of a train of molecule-gears working under the tip of a scanning tunneling microscope (STM) requires a stable anchor of each molecule to the metal surface. Such an anchor can be promoted by a radical state of the molecule induced by a dissociation reaction. Our results, rationalized by density functional theory calculations, reveal that such an open radical state at the core of star-shaped pentaphenylcyclopentadiene (PPCP) favors anchoring. Furthermore, to allow the transmission of motion by STM manipulation, the molecule-gears should be equipped with specific groups facilitating the tip-molecule interactions. In our case, a tert-butyl group positioned at one tooth end of the gear benefits both the tip-induced manipulation and the monitoring of rotation. With this optimized molecule, we achieve reproducible and stepwise rotations of the single gears and transmit rotations for up to three interlocked units.
Collapse
Affiliation(s)
| | | | | | | | - Yohan Gisbert
- CEMES, Université de Toulouse, CNRS, 31055 Toulouse, France
| | - Roberto Robles
- Centro de Fisica de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain
| | - Nicolas Lorente
- Centro de Fisica de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain
- Donostia International Physics Center, 20018 Donostia-S. Sebastian, Spain
| | | | | | - Gwénaël Rapenne
- CEMES, Université de Toulouse, CNRS, 31055 Toulouse, France
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | |
Collapse
|
17
|
Rosławska A, Leon CC, Grewal A, Merino P, Kuhnke K, Kern K. Atomic-Scale Dynamics Probed by Photon Correlations. ACS NANO 2020; 14:6366-6375. [PMID: 32479059 PMCID: PMC7315641 DOI: 10.1021/acsnano.0c03704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Light absorption and emission have their origins in fast atomic-scale phenomena. To characterize these basic steps (e.g., in photosynthesis, luminescence, and quantum optics), it is necessary to access picosecond temporal and picometer spatial scales simultaneously. In this Perspective, we describe how state-of-the-art picosecond photon correlation spectroscopy combined with luminescence induced at the atomic scale with a scanning tunneling microscope (STM) enables such studies. We outline recent STM-induced luminescence work on single-photon emitters and the dynamics of excitons, charges, molecules, and atoms as well as several prospective experiments concerning light-matter interactions at the nanoscale. We also describe future strategies for measuring and rationalizing ultrafast phenomena at the nanoscale.
Collapse
Affiliation(s)
- Anna Rosławska
- Max-Planck-Institut
für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Christopher C. Leon
- Max-Planck-Institut
für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Abhishek Grewal
- Max-Planck-Institut
für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Pablo Merino
- Max-Planck-Institut
für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Instituto
de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, E28049 Madrid, Spain
- Instituto
de Física Fundamental, CSIC, Serrano 121, E28006 Madrid, Spain
| | - Klaus Kuhnke
- Max-Planck-Institut
für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Klaus Kern
- Max-Planck-Institut
für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Institut
de Physique, École Polytechnique
Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
18
|
Karan S, Geng Y, Decurtins S, Liu SX, Repp J. Gold-linked strings of donor–acceptor dyads: on-surface formation and mutual orientation. Chem Commun (Camb) 2020; 56:7901-7904. [DOI: 10.1039/d0cc02990d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Strings of fused donor–acceptors with their dipoles following a complicated correlation driven partially by next-nearest-neighbor effects on Au(111).
Collapse
Affiliation(s)
- Sujoy Karan
- Institute of Experimental and Applied Physics
- University of Regensburg
- 93053 Regensburg
- Germany
| | - Yan Geng
- Department of Chemistry and Biochemistry
- University of Bern
- 3012 Bern
- Switzerland
| | - Silvio Decurtins
- Department of Chemistry and Biochemistry
- University of Bern
- 3012 Bern
- Switzerland
| | - Shi-Xia Liu
- Department of Chemistry and Biochemistry
- University of Bern
- 3012 Bern
- Switzerland
| | - Jascha Repp
- Institute of Experimental and Applied Physics
- University of Regensburg
- 93053 Regensburg
- Germany
| |
Collapse
|
19
|
Abstract
The orientation of molecules is crucial in many chemical processes. Here, we report how single dipolar molecules can be oriented with maximum precision using the electric field of a scanning tunneling microscope. Rotation is found to occur around a fixed pivot point that is caused by the specific interaction of an oxygen atom in the molecule with the Ag(111) surface. Both directions of rotation are realized at will with 100% directionality. Consequently, the internal dipole moment of an individual molecule can be spatially mapped via its behavior in an applied electric field. The importance of the oxygen-surface interaction is demonstrated by the addition of a silver atom between a single molecule and the surface and the consequent loss of the pivot point.
Collapse
|
20
|
Martin-Jimenez D, Ahles S, Mollenhauer D, Wegner HA, Schirmeisen A, Ebeling D. Bond-Level Imaging of the 3D Conformation of Adsorbed Organic Molecules Using Atomic Force Microscopy with Simultaneous Tunneling Feedback. PHYSICAL REVIEW LETTERS 2019; 122:196101. [PMID: 31144947 DOI: 10.1103/physrevlett.122.196101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 06/09/2023]
Abstract
The chemical structure and orientation of molecules on surfaces can be visualized using low temperature atomic force microscopy with CO-functionalized tips. Conventionally, this is done in constant-height mode by measuring the frequency shift of the oscillating force sensor. However, this method is unsuitable for analyzing 3D objects. We are using the tunneling current to track the topography while simultaneously obtaining submolecular resolution from the frequency shift signal. Thereby, the conformation of 3D molecules and the adsorption sites on the atomic lattice can be reliably determined.
Collapse
Affiliation(s)
- Daniel Martin-Jimenez
- Institute of Applied Physics (IAP), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Sebastian Ahles
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Doreen Mollenhauer
- Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Hermann A Wegner
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Andre Schirmeisen
- Institute of Applied Physics (IAP), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Daniel Ebeling
- Institute of Applied Physics (IAP), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| |
Collapse
|
21
|
Soe WH, Durand C, Guillermet O, Gauthier S, de Rouville HPJ, Srivastava S, Kammerer C, Rapenne G, Joachim C. Surface manipulation of a curved polycyclic aromatic hydrocarbon-based nano-vehicle molecule equipped with triptycene wheels. NANOTECHNOLOGY 2018; 29:495401. [PMID: 30207539 DOI: 10.1088/1361-6528/aae0d9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
With a central curved chassis, a four-wheeled molecule-vehicle was deposited on a Au(111) surface and imaged at low temperature using a scanning tunneling microscope. The curved conformation of the chassis and the consequent moderate interactions of the four wheels with the surface were observed. The dI/dV constant current maps of the tunneling electronic resonances close to the Au(111) Fermi level were recorded to identify the potential energy entry port on the molecular skeleton to trigger and control the driving of the molecule. A lateral pushing mode of molecular manipulation and the consequent recording of the manipulation signals confirm how the wheels can step-by-step rotate while passing over the Au(111) surface native herringbone reconstructions. Switching a phenyl holding a wheel to the chassis was not observed for triggering a lateral molecular motion inelastically and without any mechanic push by the tip apex. This points out the necessity to encode the sequence of the required wheels action on the profile of the potential energy surface of the excited states to be able to drive a molecule-vehicle.
Collapse
Affiliation(s)
- W-H Soe
- CEMES, Université de Toulouse, CNRS, 29 Rue J. Marvig, BP 94347, F-31055 Toulouse Cedex, France. International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Freund S, Pawlak R, Moser L, Hinaut A, Steiner R, Marinakis N, Constable EC, Meyer E, Housecroft CE, Glatzel T. Transoid-to-Cisoid Conformation Changes of Single Molecules on Surfaces Triggered by Metal Coordination. ACS OMEGA 2018; 3:12851-12856. [PMID: 31458009 PMCID: PMC6645055 DOI: 10.1021/acsomega.8b01792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/20/2018] [Indexed: 05/12/2023]
Abstract
Conformational isomers are stereoisomers that can interconvert over low potential barriers by rotation around a single bond. However, such bond rotation is hampered by geometrical constraints when molecules are adsorbed on surfaces. Here, we show that the adsorption of 4,4'-bis(4-carboxyphenyl)-6,6'-dimethyl-2,2'-bipyridine molecules on surfaces leads to the appearance of prochiral single molecules on NiO(001) and to enantiopure supramolecular domains on Au(111) surfaces containing the transoid-molecule conformation. Upon additional Fe adatom deposition, molecules undergo a controlled interconversion from a transoid-to-cisoid conformation as a result of coordination of the Fe atoms to the 2,2'-bipyridine moieties. As confirmed by atomic force microscopy images and X-ray photoelectron spectroscopy measurements, the resulting molecular structures become irreversibly achiral.
Collapse
Affiliation(s)
- Sara Freund
- Department
of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Rémy Pawlak
- Department
of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
- E-mail:
| | - Lucas Moser
- Department
of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Antoine Hinaut
- Department
of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Roland Steiner
- Department
of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Nathalie Marinakis
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, CH-4058 Basel, Switzerland
| | - Edwin C. Constable
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, CH-4058 Basel, Switzerland
| | - Ernst Meyer
- Department
of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Catherine E. Housecroft
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, CH-4058 Basel, Switzerland
| | - Thilo Glatzel
- Department
of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| |
Collapse
|
23
|
Farrokhpour H, Abedi S, Jouypazadeh H. Directional affinity of a spherical Gold nanoparticle for the adsorption of DNA bases. Colloids Surf B Biointerfaces 2018; 173:493-503. [PMID: 30336411 DOI: 10.1016/j.colsurfb.2018.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/10/2018] [Accepted: 10/01/2018] [Indexed: 11/19/2022]
Abstract
In this work, the adsorption activities of different facets of a spherical gold nanoparticle (Au(111), Au(100) and Au(110)) for adenine (ADE) and cytosine (CYT) in two different environments including gas phase and in the presence of solvent (water) have been investigated, separately. It has been found that the adsorption energy (Ead) and geometry of the DNA bases depend strongly on the kind of nanoparticle facet. The Au (110) facet showed the highest adsorption affinity for the ADE and CYT in both gas phase and water compared to Au(111) and Au(100) facets. Comparison of the Eads of bases calculated in the gas phase with those obtained in the presence of water showed that the electrostatic field of solvent decreases the Eads of bases, especially, for the Au (110) facet. The adsorption geometry of the CYT showed strong dependency on the kind of nanoparticle facet compared to ADE. Also, it has been shown that the direction and amount of charge transfer (CT) between the molecule and nanoparticle strongly depends on the kind of nanoparticle facet and environment. The CT is from the Au (111) facet to the ADE while the CT direction is reversed when the ADE is adsorbed on the Au (110) and Au (100) facets in the gas phase. The CT is from the CYT to three facets in the gas phase while its direction for the ADE and CYT adsorbed on Au (100) facet is reversed. The atoms in molecules (AIM) analysis has been employed to determine the bond paths (BPs) and bond critical points (BCPs) between the bases and facets. The infrared (IR) spectra of the bases adsorbed on the selected facets were calculated and compared with each other and with the spectra of the isolated bases. It was found that the symmetric and unsymmetric stretching of the NH of NH2 group, C-H stretching of the rings and CO stretching of bases can be used for the discrimination of the selected facets.
Collapse
Affiliation(s)
- Hossein Farrokhpour
- Department of chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Soraya Abedi
- Department of chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Hamidreza Jouypazadeh
- Department of chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
24
|
Krull C, Castelli M, Hapala P, Kumar D, Tadich A, Capsoni M, Edmonds MT, Hellerstedt J, Burke SA, Jelinek P, Schiffrin A. Iron-based trinuclear metal-organic nanostructures on a surface with local charge accumulation. Nat Commun 2018; 9:3211. [PMID: 30097562 PMCID: PMC6086834 DOI: 10.1038/s41467-018-05543-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/13/2018] [Indexed: 12/02/2022] Open
Abstract
Coordination chemistry relies on harnessing active metal sites within organic matrices. Polynuclear complexes-where organic ligands bind to several metal atoms-are relevant due to their electronic/magnetic properties and potential for functional reactivity pathways. However, their synthesis remains challenging; few geometries and configurations have been achieved. Here, we synthesise-via supramolecular chemistry on a noble metal surface-one-dimensional metal-organic nanostructures composed of terpyridine (tpy)-based molecules coordinated with well-defined polynuclear iron clusters. Combining low-temperature scanning probe microscopy and density functional theory, we demonstrate that the coordination motif consists of coplanar tpy's linked via a quasi-linear tri-iron node in a mixed (positive-)valence metal-metal bond configuration. This unusual linkage is stabilised by local accumulation of electrons between cations, ligand and surface. The latter, enabled by bottom-up on-surface synthesis, yields an electronic structure that hints at a chemically active polynuclear metal centre, paving the way for nanomaterials with novel catalytic/magnetic functionalities.
Collapse
Affiliation(s)
- Cornelius Krull
- School of Physics & Astronomy, Monash University, 19 Rainforest Walk, Clayton, 3800, Australia
| | - Marina Castelli
- School of Physics & Astronomy, Monash University, 19 Rainforest Walk, Clayton, 3800, Australia
- Monash Centre for Atomically Thin Materials, Monash University, 20 Research Way, Clayton, 3800, Australia
| | - Prokop Hapala
- Institute of Physics of the CAS, Cukrovarnicka 10, Prague, 16200, Czech Republic
| | - Dhaneesh Kumar
- School of Physics & Astronomy, Monash University, 19 Rainforest Walk, Clayton, 3800, Australia
- Monash Centre for Atomically Thin Materials, Monash University, 20 Research Way, Clayton, 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, 19 Rainforest Walk, Clayton, 3800, Australia
| | - Anton Tadich
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria, 3168, Australia
| | - Martina Capsoni
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia, Canada, V6T 1Z1
| | - Mark T Edmonds
- School of Physics & Astronomy, Monash University, 19 Rainforest Walk, Clayton, 3800, Australia
- Monash Centre for Atomically Thin Materials, Monash University, 20 Research Way, Clayton, 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, 19 Rainforest Walk, Clayton, 3800, Australia
| | - Jack Hellerstedt
- School of Physics & Astronomy, Monash University, 19 Rainforest Walk, Clayton, 3800, Australia
- Monash Centre for Atomically Thin Materials, Monash University, 20 Research Way, Clayton, 3800, Australia
- Institute of Physics of the CAS, Cukrovarnicka 10, Prague, 16200, Czech Republic
| | - Sarah A Burke
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia, Canada, V6T 1Z1
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
- Stewart Blusson Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, British Columbia, Canada, V6T 1Z4
| | - Pavel Jelinek
- Institute of Physics of the CAS, Cukrovarnicka 10, Prague, 16200, Czech Republic.
- RCPTM, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| | - Agustin Schiffrin
- School of Physics & Astronomy, Monash University, 19 Rainforest Walk, Clayton, 3800, Australia.
- Monash Centre for Atomically Thin Materials, Monash University, 20 Research Way, Clayton, 3800, Australia.
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, 19 Rainforest Walk, Clayton, 3800, Australia.
| |
Collapse
|
25
|
Vanossi A, Dietzel D, Schirmeisen A, Meyer E, Pawlak R, Glatzel T, Kisiel M, Kawai S, Manini N. Recent highlights in nanoscale and mesoscale friction. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:1995-2014. [PMID: 30116691 PMCID: PMC6071713 DOI: 10.3762/bjnano.9.190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/27/2018] [Indexed: 05/31/2023]
Abstract
Friction is the oldest branch of non-equilibrium condensed matter physics and, at the same time, the least established at the fundamental level. A full understanding and control of friction is increasingly recognized to involve all relevant size and time scales. We review here some recent advances on the research focusing of nano- and mesoscale tribology phenomena. These advances are currently pursued in a multifaceted approach starting from the fundamental atomic-scale friction and mechanical control of specific single-asperity combinations, e.g., nanoclusters on layered materials, then scaling up to the meso/microscale of extended, occasionally lubricated, interfaces and driven trapped optical systems, and eventually up to the macroscale. Currently, this "hot" research field is leading to new technological advances in the area of engineering and materials science.
Collapse
Affiliation(s)
- Andrea Vanossi
- CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste, Italy
- International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Dirk Dietzel
- Institute of Applied Physics, University of Giessen, 33492 Giessen, Germany
| | - Andre Schirmeisen
- Institute of Applied Physics, University of Giessen, 33492 Giessen, Germany
| | - Ernst Meyer
- Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel, Switzerland
| | - Rémy Pawlak
- Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel, Switzerland
| | - Thilo Glatzel
- Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel, Switzerland
| | - Marcin Kisiel
- Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel, Switzerland
| | - Shigeki Kawai
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Nicola Manini
- Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano, Italy
| |
Collapse
|
26
|
Abstract
In 2016, the Nobel Prize in Chemistry was awarded for pioneering work on molecular machines. Half a year later, in Toulouse, the first molecular car race, a "nanocar race", was held by using the tip of a scanning tunneling microscope as an electrical remote control. In this Focus Review, we discuss the current state-of-the-art in research on molecular machines at interfaces. In the first section, we briefly explain the science behind the nanocar race, followed by a selection of recent examples of controlling molecules on surfaces. Finally, motion synchronization and the functions of molecular machines at liquid interfaces are discussed. This new concept of molecular tuning at interfaces is also introduced as a method for the continuous modification and optimization of molecular structure for target functions.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Taizo Mori
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Waka Nakanishi
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
27
|
Cui X, Troadec C, Wee ATS, Huang YL. Surface Nanostructure Formation and Atomic-Scale Templates for Nanodevices. ACS OMEGA 2018; 3:3285-3293. [PMID: 31458585 PMCID: PMC6641249 DOI: 10.1021/acsomega.8b00014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/09/2018] [Indexed: 05/20/2023]
Abstract
The holy grail in nanoelectronics is the construction of nanodevices with high density, low cost, and high performance per device and per integrated circuit. One approach is the fabrication of surface nanostructures and atomic-scale templates via the autonomous assembly of atoms and/or molecules on well-defined surfaces. To steer the atomic or molecular growth processes and create a wide range of surface nanostructures with desired properties, a comprehensive understanding of the mechanisms that control the surface self-assembly processes is required. The capability to manipulate the nanodevices at the submolecular level with good controllability is also of paramount importance. This review highlights some key recent developments in the fabrication of low-dimensional nanostructures based on supramolecular self-assembly on predefined surfaces, with particular emphasis on the rapidly expanding field of two-dimensional materials. Special attention is also given to the latest progress in single-molecule manipulation for future device applications.
Collapse
Affiliation(s)
- Xiaoyang Cui
- Institute
of Materials Research & Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
- Department
of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Cedric Troadec
- Institute
of Materials Research & Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Andrew T. S. Wee
- Institute
of Materials Research & Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
- Department
of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
- E-mail: (A.T.S.W.)
| | - Yu Li Huang
- Institute
of Materials Research & Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
- Department
of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
- E-mail: (Y.L.H.)
| |
Collapse
|
28
|
Abstract
This review article presents our accomplished work on the synthesis of molecular triptycene wheels and their introduction into nanovehicles such as wheelbarrows and nanocars, equipped with two and four wheels, respectively. The architecture of nanovehicles is based on polycyclic aromatic hydrocarbons, which provide a potential cargo zone. Our strategy allowed us to obtain planar or curved nanocars, exhibiting different mobilities on metallic surfaces. Our curved nanocar participated in the first nanocar race organized in Toulouse (France) on 28 and 29 April 2017.
Collapse
|
29
|
Ariga K, Mori T, Shrestha LK. Nanoarchitectonics from Molecular Units to Living-Creature-Like Motifs. CHEM REC 2017; 18:676-695. [PMID: 29205796 DOI: 10.1002/tcr.201700070] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/14/2017] [Indexed: 01/20/2023]
Abstract
Important points for the fabrication of functional materials are the creation of nanoscale/molecular-scale units and architecting them into functional materials and systems. Recently, a new conceptual paradigm, nanoarchitectonics, has been proposed to combine nanotechnology and other methodologies including supramolecular chemistry, self-assembly and self-organization to satisfy major features of nanoscience and promote the creation of functional materials and systems. In this account article, our recent research results in materials development based on the nanoarchitectonics concept are summarized in two stories, (i) nanoarchitectonics from fullerenes as the simplest nano-units and (ii) dimension-dependent nanoarchitectonics from various structural units. The former demonstrates creativity of the nanoarchitectonics concept only with simple construction stuffs on materials fabrications, and a wide range of material applicability for the nanoarchitectonics strategy is realized in the latter ones.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-0827, Japan
| | - Taizo Mori
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Lok Kumar Shrestha
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|