1
|
Lieske LA, Commodo M, Martin JW, Kaiser K, Benekou V, Minutolo P, D'Anna A, Gross L. Portraits of Soot Molecules Reveal Pathways to Large Aromatics, Five-/Seven-Membered Rings, and Inception through π-Radical Localization. ACS NANO 2023. [PMID: 37436943 PMCID: PMC10373522 DOI: 10.1021/acsnano.3c02194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Incipient soot early in the flame was studied by high-resolution atomic force microscopy and scanning tunneling microscopy to resolve the atomic structure and orbital densities of single soot molecules prepared on bilayer NaCl on Cu(111). We resolved extended catacondensed and pentagonal-ring linked (pentalinked) species indicating how small aromatics cross-link and cyclodehydrogenate to form moderately sized aromatics. In addition, we resolved embedded pentagonal and heptagonal rings in flame aromatics. These nonhexagonal rings suggest simultaneous growth through aromatic cross-linking/cyclodehydrogenation and hydrogen abstraction acetylene addition. Moreover, we observed three classes of open-shell π-radical species. First, radicals with an unpaired π-electron delocalized along the molecule's perimeter. Second, molecules with partially localized π-electrons at zigzag edges of a π-radical. Third, molecules with strong localization of a π-electron at pentagonal- and methylene-type sites. The third class consists of π-radicals localized enough to enable thermally stable bonds, as well as multiradical species such as diradicals in the open-shell triplet state. These π-diradicals can rapidly cluster through barrierless chain reactions enhanced by van der Waals interactions. These results improve our understanding of soot formation and the products formed by combustion and could provide insights for cleaner combustion and the production of hydrogen without CO2 emissions.
Collapse
Affiliation(s)
| | - Mario Commodo
- Istituto di Scienze e Tecnologie per l'Energia e la Mobilità Sostenibili, Consiglio Nazionale delle Ricerche, P.le Tecchio 80, 80125 Napoli, Italy
| | - Jacob W Martin
- Department of Physics and Astronomy, Curtin University, 6102 Perth, Australia
| | - Katharina Kaiser
- IBM Research Europe - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Vasiliki Benekou
- Institute of Organic Synthesis and Photoreactivity (ISOF), CNR Area della Ricerca di Bologna; Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Patrizia Minutolo
- Istituto di Scienze e Tecnologie per l'Energia e la Mobilità Sostenibili, Consiglio Nazionale delle Ricerche, P.le Tecchio 80, 80125 Napoli, Italy
| | - Andrea D'Anna
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale - Università degli Studi di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| | - Leo Gross
- IBM Research Europe - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| |
Collapse
|
2
|
Tang Y, Ejlli B, Niu K, Li X, Hao Z, Xu C, Zhang H, Rominger F, Freudenberg J, Bunz UHF, Muellen K, Chi L. On‐Surface Debromination of 2,3‐Bis(dibromomethyl)‐ and 2,3‐Bis(bromomethyl)naphthalene: Dimerization or Polymerization? Angew Chem Int Ed Engl 2022; 61:e202204123. [PMID: 35474405 PMCID: PMC9401070 DOI: 10.1002/anie.202204123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yanning Tang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Ren'ai road No. 199 Suzhou Jiangsu 215123 China
| | - Barbara Ejlli
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Organisch Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Kaifeng Niu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Ren'ai road No. 199 Suzhou Jiangsu 215123 China
| | - Xuechao Li
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Ren'ai road No. 199 Suzhou Jiangsu 215123 China
| | - Zhengming Hao
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Ren'ai road No. 199 Suzhou Jiangsu 215123 China
| | - Chaojie Xu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Ren'ai road No. 199 Suzhou Jiangsu 215123 China
| | - Haiming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Ren'ai road No. 199 Suzhou Jiangsu 215123 China
| | - Frank Rominger
- Organisch Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Jan Freudenberg
- Organisch Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Uwe H. F. Bunz
- Organisch Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Klaus Muellen
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Ren'ai road No. 199 Suzhou Jiangsu 215123 China
- Macao Institute of Materials Science and Engineering (MIMSE) MUST-SUDA Joint Research Center for Advanced Functional Materials Macau University of Science and Technology Taipa 999078 Macao China
| |
Collapse
|
3
|
Tang Y, Ejlli B, Niu K, Li X, Hao Z, Xu C, Zhang H, Rominger F, Freudenberg J, Bunz UHF, Muellen K, Chi L. On‐Surface Debromination of 2,3‐Bis(dibromomethyl)‐ and 2,3‐Bis(bromomethyl)naphthalene: Dimerization or Polymerization? Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yanning Tang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Ren'ai road No. 199 Suzhou Jiangsu 215123 China
| | - Barbara Ejlli
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Organisch Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Kaifeng Niu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Ren'ai road No. 199 Suzhou Jiangsu 215123 China
| | - Xuechao Li
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Ren'ai road No. 199 Suzhou Jiangsu 215123 China
| | - Zhengming Hao
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Ren'ai road No. 199 Suzhou Jiangsu 215123 China
| | - Chaojie Xu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Ren'ai road No. 199 Suzhou Jiangsu 215123 China
| | - Haiming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Ren'ai road No. 199 Suzhou Jiangsu 215123 China
| | - Frank Rominger
- Organisch Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Jan Freudenberg
- Organisch Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Uwe H. F. Bunz
- Organisch Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Klaus Muellen
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Ren'ai road No. 199 Suzhou Jiangsu 215123 China
- Macao Institute of Materials Science and Engineering (MIMSE) MUST-SUDA Joint Research Center for Advanced Functional Materials Macau University of Science and Technology Taipa 999078 Macao China
| |
Collapse
|
4
|
Li X, Ge H, Xue R, Wu M, Chi L. Anchoring and Reacting On-Surface to Achieve Programmability. JACS AU 2022; 2:58-65. [PMID: 35098221 PMCID: PMC8790738 DOI: 10.1021/jacsau.1c00397] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 05/25/2023]
Abstract
On-surface synthesis has developed into a modern method to fabricate low-dimensional molecular nanostructures with atomic precision. It impresses the chemistry community mostly via its simplicity, selectivity, and programmability during the synthesis. However, an insufficient mechanistic understanding of on-surface reactions and the discriminations in methodologies block it out from the conventional cognition of reaction and catalysis, which inhibits the extensive implication of on-surface synthesis. In this Perspective, we summarize the empirical paradigms of conceptually appealing programmability in on-surface synthesis. We endeavor to deliver the message that the impressive programmability is related to chemical heterogeneity which can also be coded at the molecular level and deciphered by the catalytic surfaces in varying chemical environments as specific chemical selectivity. With the assistance of structure-sensitive techniques, it is possible to recognize the chemical heterogeneity on surfaces to provide insight into the programmable on-surface construction of molecular nanoarchitectures and to reshape the correlation between the mechanistic understanding in on-surface synthesis and conventional chemistry.
Collapse
Affiliation(s)
- Xuechao Li
- Institute of Functional Nano &
Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional
Materials and Devices, Joint International Research Laboratory of
Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Haitao Ge
- Institute of Functional Nano &
Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional
Materials and Devices, Joint International Research Laboratory of
Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Renjie Xue
- Institute of Functional Nano &
Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional
Materials and Devices, Joint International Research Laboratory of
Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Minghui Wu
- Institute of Functional Nano &
Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional
Materials and Devices, Joint International Research Laboratory of
Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Lifeng Chi
- Institute of Functional Nano &
Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional
Materials and Devices, Joint International Research Laboratory of
Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Abbasi-Pérez D, Sang H, Junqueira FLQ, Sweetman A, Recio JM, Moriarty P, Kantorovich L. Cyclic Single Atom Vertical Manipulation on a Nonmetallic Surface. J Phys Chem Lett 2021; 12:11383-11390. [PMID: 34784484 DOI: 10.1021/acs.jpclett.1c02271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Motivated by the quest for experimental procedures capable of controlled manipulation of single atoms on surfaces, we set up a computational strategy that explores the cyclical vertical manipulation of a broad set of single atoms on the GaAs(110) surface. First-principles simulations of atomic force microscope tip-sample interactions were performed considering families of GaAs and Au-terminated tip apexes with varying crystalline termination. We identified a subset of tips capable of both picking up and depositing an adatom (Ga, As, Al, and Au) any number of times via a modify-restore cycle that "resets" the apex of the scanning probe to its original structure at the end of each cycle. Manipulation becomes successful within a certain window of lateral and vertical tip distances that are observed to be different for extracting and depositing each atom. A practical experimental protocol of special utility for potential cyclical manipulation of single atoms on a nonmetallic surface is proposed.
Collapse
Affiliation(s)
| | - Hongqian Sang
- Department of Physics, King's College London, London WC2R 2LS, U.K
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Filipe L Q Junqueira
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Adam Sweetman
- School of Physics & Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - J Manuel Recio
- MALTA-Consolider Team and Department of Analytical and Physical Chemistry, Universidad de Oviedo, Oviedo 33006, Spain
| | - Philip Moriarty
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Lev Kantorovich
- Department of Physics, King's College London, London WC2R 2LS, U.K
| |
Collapse
|
6
|
MacLean O, Guo SY, Timm M, Polanyi JC. Long-range migration of H-atoms from electron-induced dissociation of HS on Si(111). JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:474001. [PMID: 34407523 DOI: 10.1088/1361-648x/ac1ec5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
The electron-induced dissociation of chemisorbed HS to give recoiling H-atoms was investigated on a Si(111)-7 × 7 surface at 270 K by scanning tunnelling microscopy and modelled by density functional theory. Two different H-atom migratory pathways were identified: 'short-range' (S-R; 37%) and 'long-range' (L-R; 42%). In S-R reaction the H-atom recoiled by only 4 Å whereas in L-R the average H-recoil distance was 17 Å extending up to 72 Å. Chemisorbed H-atoms were not detected in the remaining 22% of dissociative events. Excitation involved three successive events, e-+ HS. Molecular dynamics calculations of S-R and L-R recoil of H-atoms were performed using a model based on electron-induced H ⋅ S repulsion. In S-R the repulsion gave the H-atom sufficient energy to dissociate HS, but not enough to result in capture of the H-atom by the adjacent rest Si-atom. In L-R a higher translational energy of the recoiling H, above 0.2 eV, caused the H-atom to 'bounce' off surface atoms and migrate L-R. The finding that H-atom L-R migration followed the ballistics and 'bounce' mechanism is indicative of the generality of this mode of L-R recoil.
Collapse
Affiliation(s)
- Oliver MacLean
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Si Yue Guo
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Matthew Timm
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - John C Polanyi
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
7
|
On-Surface Synthesis of Ligands to Elaborate Coordination Polymers on an Au(111) Surface. NANOMATERIALS 2021; 11:nano11082102. [PMID: 34443932 PMCID: PMC8401198 DOI: 10.3390/nano11082102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022]
Abstract
On-surface metal-organic polymers have emerged as a class of promising 2D materials. Here, we propose a new strategy to obtain coordination polymers by transforming supramolecular networks into coordination polymers by surface-assisted cyclo-dehydrogenation of organic building blocks. All nanostructures are fully characterized by using scanning tunneling microscopy under ultra-high vacuum on a gold surface. We demonstrated that the balance between molecule-molecule interaction and molecule-substrate interaction can be drastically modified by a strong modification of the geometry of the molecules thanks to a thermal annealing. This new way is an efficient method to elaborate on-surface coordination polymers.
Collapse
|
8
|
Geagea E, Jeannoutot J, Féron M, Palmino F, Thomas CM, Rochefort A, Chérioux F. Collective radical oligomerisation induced by an STM tip on a silicon surface. NANOSCALE 2021; 13:349-354. [PMID: 33346311 DOI: 10.1039/d0nr08291k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Over the past decade, on-surface fabrication of organic nanostructures has been widely investigated for the development of molecular electronic components, catalysts, and new materials. Here, we introduce a new strategy to obtain alkyl oligomers in a controlled manner using on-surface radical oligomerisations that are triggered by electrons between the tip of a scanning tunnelling microscope and the Si(111)√3 ×√3 R30°-B surface. This electron transfer event only occurs when the bias voltage is below -4.5 V and allows access to reactive radical species under exceptionally mild conditions. This transfer can effectively 'switch on' a sequence leading to the formation of oligomers of defined size distribution thanks to the on-surface confinement of the reactive species. Our approach enables new ways to initiate and control radical oligomerisations with tunnelling electrons, leading to molecularly precise nanofabrication.
Collapse
Affiliation(s)
- Elie Geagea
- Univ. Bourgogne Franche-Comte, FEMTO-ST, UFC, CNRS, 15B Avenue des Montboucons, F-25030 Besancon cedex, France.
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
In the past decade, on-surface chemistry has provided fascinating concepts for the construction of covalently bonded molecular nanostructures and the exploration of new synthetic pathways that may be different from chemical synthesis in solution. Although the intermolecular reaction of precursor molecules may lead to the formation of the desired low-dimensional molecular architectures, it remains challenging to realize defect-free syntheses over large areas. Recently, intramolecular on-surface reactions have attracted increasing attention because they offer promising ways to synthesize functional organic molecules, especially those with extended conjugated π-systems. In this Perspective, we summarize the recent achievements in the field of on-surface intramolecular reactions and discuss future prospects.
Collapse
Affiliation(s)
- Biao Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P.R. China
| | - Bin Dong
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P.R. China
| | - Lifeng Chi
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
10
|
Su J, Wu X, Song S, Telychko M, Lu J. Substrate induced strain for on-surface transformation and synthesis. NANOSCALE 2020; 12:7500-7508. [PMID: 32227066 DOI: 10.1039/d0nr01270j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Intermolecular strain has long been used to steer and promote chemical reactions towards desired products in wet chemical synthesis. However, similar protocols have not been adopted for the on-surface synthesis on solid substrates due to the complexity of reaction processes. Recent advances in the sub-molecular resolution with scanning probe microscopy allow us to capture on-surface reaction pathways and to gain substantial insights into the role of strain in chemical reactions. The primary focus of this review is to highlight the recent findings on strain-induced on-surface reactions. Such substrate-induced processes can be applied to alter the chemical reactivity and to drive on-surface chemical reactions in different manners, which provides a promising alternative approach for on-surface synthesis. This review aims to shed light on the utilization of substrate-induced strain for on-surface transformation and synthesis of atomically-precise novel functional nanomaterials.
Collapse
Affiliation(s)
- Jie Su
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| | | | | | | | | |
Collapse
|
11
|
Hieulle J, Silly F. Two-Dimensional Hydrogen-Bonded Nanoarchitecture Composed of Rectangular 3,4,9,10-Perylenetetracarboxylic Diimide and Boomerang-Shaped Molecules Resulting from the Dissociation of 1,3,5-Tris(4-aminophenyl)benzene. ACS OMEGA 2020; 5:3964-3968. [PMID: 32149223 PMCID: PMC7057330 DOI: 10.1021/acsomega.9b03453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
The self-assembly of 3,4,9,10-perylenetetracarboxylic diimide (PTCDI) with the star-shaped 1,3,5-tris(4-aminophenyl)benzene (TAPB) on Au(111) is investigated using scanning tunneling microscopy. PTCDI forms a compact canted arrangement on the gold surface. When TAPB is sublimated at a high temperature, the molecule dissociates into a 4-aminophenyl group and a boomerang-shaped compound. The boomerang molecule self-assembles with PTCDI to create a two-dimensional (2D) nanoarchitecture stabilized by N-H···O-C hydrogen bonds between the dissociated TAPB and PTCDI. The molecular ratio of this multicomponent structure is 1:1.
Collapse
Affiliation(s)
| | - Fabien Silly
- E-mail: . Phone: +33(0)169088019. Fax: +33(0)169088446
| |
Collapse
|
12
|
Su J, Telychko M, Song S, Lu J. Triangulenes: From Precursor Design to On‐Surface Synthesis and Characterization. Angew Chem Int Ed Engl 2020; 59:7658-7668. [DOI: 10.1002/anie.201913783] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Su
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Centre for Advanced 2D Materials (CA2DM) National University of Singapore 6 Science Drive 2 Singapore 117546 Singapore
| | - Mykola Telychko
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Centre for Advanced 2D Materials (CA2DM) National University of Singapore 6 Science Drive 2 Singapore 117546 Singapore
| | - Shaotang Song
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Jiong Lu
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Centre for Advanced 2D Materials (CA2DM) National University of Singapore 6 Science Drive 2 Singapore 117546 Singapore
| |
Collapse
|
13
|
Su J, Telychko M, Song S, Lu J. Triangulenes: From Precursor Design to On‐Surface Synthesis and Characterization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913783] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Su
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Centre for Advanced 2D Materials (CA2DM) National University of Singapore 6 Science Drive 2 Singapore 117546 Singapore
| | - Mykola Telychko
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Centre for Advanced 2D Materials (CA2DM) National University of Singapore 6 Science Drive 2 Singapore 117546 Singapore
| | - Shaotang Song
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Jiong Lu
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Centre for Advanced 2D Materials (CA2DM) National University of Singapore 6 Science Drive 2 Singapore 117546 Singapore
| |
Collapse
|
14
|
Kawai S, Krejčí O, Nishiuchi T, Sahara K, Kodama T, Pawlak R, Meyer E, Kubo T, Foster AS. Three-dimensional graphene nanoribbons as a framework for molecular assembly and local probe chemistry. SCIENCE ADVANCES 2020; 6:eaay8913. [PMID: 32158948 PMCID: PMC7048429 DOI: 10.1126/sciadv.aay8913] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 12/06/2019] [Indexed: 05/06/2023]
Abstract
Recent advances in state-of-the-art probe microscopy allow us to conduct single molecular chemistry via tip-induced reactions and direct imaging of the inner structure of the products. Here, we synthesize three-dimensional graphene nanoribbons by on-surface chemical reaction and take advantage of tip-induced assembly to demonstrate their capability as a playground for local probe chemistry. We show that the radical caused by tip-induced debromination can be reversibly terminated by either a bromine atom or a fullerene molecule. The experimental results combined with theoretical calculations pave the way for sequential reactions, particularly addition reactions, by a local probe at the single-molecule level decoupled from the surface.
Collapse
Affiliation(s)
- Shigeki Kawai
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Ondřej Krejčí
- Department of Applied Physics, Aalto University, P.O. Box 11100, FI-00076 Aalto, Finland
| | - Tomohiko Nishiuchi
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Keisuke Sahara
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Takuya Kodama
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Rémy Pawlak
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Ernst Meyer
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Takashi Kubo
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Adam S. Foster
- Department of Applied Physics, Aalto University, P.O. Box 11100, FI-00076 Aalto, Finland
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany
| |
Collapse
|
15
|
Kaiser K, Scriven LM, Schulz F, Gawel P, Gross L, Anderson HL. An sp-hybridized molecular carbon allotrope, cyclo[18]carbon. Science 2019; 365:1299-1301. [DOI: 10.1126/science.aay1914] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/02/2019] [Indexed: 01/25/2023]
Abstract
Carbon allotropes built from rings of two-coordinate atoms, known as cyclo[n]carbons, have fascinated chemists for many years, but until now they could not be isolated or structurally characterized because of their high reactivity. We generated cyclo[18]carbon (C18) using atom manipulation on bilayer NaCl on Cu(111) at 5 kelvin by eliminating carbon monoxide from a cyclocarbon oxide molecule, C24O6. Characterization of cyclo[18]carbon by high-resolution atomic force microscopy revealed a polyynic structure with defined positions of alternating triple and single bonds. The high reactivity of cyclocarbon and cyclocarbon oxides allows covalent coupling between molecules to be induced by atom manipulation, opening an avenue for the synthesis of other carbon allotropes and carbon-rich materials from the coalescence of cyclocarbon molecules.
Collapse
|
16
|
Su J, Telychko M, Hu P, Macam G, Mutombo P, Zhang H, Bao Y, Cheng F, Huang ZQ, Qiu Z, Tan SJR, Lin H, Jelínek P, Chuang FC, Wu J, Lu J. Atomically precise bottom-up synthesis of π-extended [5]triangulene. SCIENCE ADVANCES 2019; 5:eaav7717. [PMID: 31360763 PMCID: PMC6660211 DOI: 10.1126/sciadv.aav7717] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 06/20/2019] [Indexed: 05/10/2023]
Abstract
The zigzag-edged triangular graphene molecules (ZTGMs) have been predicted to host ferromagnetically coupled edge states with the net spin scaling with the molecular size, which affords large spin tunability crucial for next-generation molecular spintronics. However, the scalable synthesis of large ZTGMs and the direct observation of their edge states have been long-standing challenges because of the molecules' high chemical instability. Here, we report the bottom-up synthesis of π-extended [5]triangulene with atomic precision via surface-assisted cyclodehydrogenation of a rationally designed molecular precursor on metallic surfaces. Atomic force microscopy measurements unambiguously resolve its ZTGM-like skeleton consisting of 15 fused benzene rings, while scanning tunneling spectroscopy measurements reveal edge-localized electronic states. Bolstered by density functional theory calculations, our results show that [5]triangulenes synthesized on Au(111) retain the open-shell π-conjugated character with magnetic ground states.
Collapse
Affiliation(s)
- Jie Su
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Mykola Telychko
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Pan Hu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Gennevieve Macam
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Pingo Mutombo
- Institute of Physics, The Czech Academy of Sciences, Prague 16200, Czech Republic
| | - Hejian Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yang Bao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Fang Cheng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Zhi-Quan Huang
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Zhizhan Qiu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Sherman J. R. Tan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Hsin Lin
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Pavel Jelínek
- Institute of Physics, The Czech Academy of Sciences, Prague 16200, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, Olomouc 78371, Czech Republic
| | - Feng-Chuan Chuang
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| |
Collapse
|
17
|
Reecht G, Krane N, Lotze C, Franke KJ. π-Radical Formation by Pyrrolic H Abstraction of Phthalocyanine Molecules on Molybdenum Disulfide. ACS NANO 2019; 13:7031-7035. [PMID: 31136150 DOI: 10.1021/acsnano.9b02117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
For a molecular radical to be stable, the environment needs to be inert. Furthermore, an unpaired electron is less likely to react chemically when it is placed in an extended orbital. Here, we use the tip of a scanning tunneling microscope to abstract one of the pyrrolic hydrogen atoms from phthalocyanine (H2Pc) deposited on a single layer of molybdenum disulfide (MoS2) on Au(111). We show the successful dissociation reaction by current-induced three-level fluctuations reflecting the inequivalent positions of the remaining H atom in the pyrrole center. Tunneling spectroscopy reveals two narrow resonances inside the semiconducting energy gap of MoS2 with their spatial extent resembling the highest occupied molecular orbital (HOMO) of H2Pc. By comparison to simple density functional calculations of the isolated molecule, we show that these correspond to a single occupation of the Coulomb-split highest molecular orbital of HPc. We conclude that the dangling σ bond after N-H bond cleavage is filled by an electron from the delocalized HOMO. The extended nature of the HOMO together with the inert nature of the MoS2 layer favors the stabilization of this radical state.
Collapse
Affiliation(s)
- Gaël Reecht
- Fachbereich Physik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Nils Krane
- Fachbereich Physik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Christian Lotze
- Fachbereich Physik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Katharina J Franke
- Fachbereich Physik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| |
Collapse
|
18
|
Clair S, de Oteyza DG. Controlling a Chemical Coupling Reaction on a Surface: Tools and Strategies for On-Surface Synthesis. Chem Rev 2019; 119:4717-4776. [PMID: 30875199 PMCID: PMC6477809 DOI: 10.1021/acs.chemrev.8b00601] [Citation(s) in RCA: 346] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Indexed: 01/06/2023]
Abstract
On-surface synthesis is appearing as an extremely promising research field aimed at creating new organic materials. A large number of chemical reactions have been successfully demonstrated to take place directly on surfaces through unusual reaction mechanisms. In some cases the reaction conditions can be properly tuned to steer the formation of the reaction products. It is thus possible to control the initiation step of the reaction and its degree of advancement (the kinetics, the reaction yield); the nature of the reaction products (selectivity control, particularly in the case of competing processes); as well as the structure, position, and orientation of the covalent compounds, or the quality of the as-formed networks in terms of order and extension. The aim of our review is thus to provide an extensive description of all tools and strategies reported to date and to put them into perspective. We specifically define the different approaches available and group them into a few general categories. In the last part, we demonstrate the effective maturation of the on-surface synthesis field by reporting systems that are getting closer to application-relevant levels thanks to the use of advanced control strategies.
Collapse
Affiliation(s)
- Sylvain Clair
- Aix
Marseille Univ., Université de Toulon, CNRS, IM2NP, Marseille, France
| | - Dimas G. de Oteyza
- Donostia
International Physics Center, San
Sebastián 20018, Spain
- Centro
de Física de Materiales CSIC-UPV/EHU-MPC, San Sebastián 20018, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
19
|
Zuzak R, Dorel R, Kolmer M, Szymonski M, Godlewski S, Echavarren AM. Higher Acenes by On‐Surface Dehydrogenation: From Heptacene to Undecacene. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802040] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Rafal Zuzak
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAMFaculty of Physics, Astronomy, and Applied Computer ScienceJagiellonian University Łojasiewicza 11 30-348 Kraków Poland
| | - Ruth Dorel
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Marek Kolmer
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAMFaculty of Physics, Astronomy, and Applied Computer ScienceJagiellonian University Łojasiewicza 11 30-348 Kraków Poland
| | - Marek Szymonski
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAMFaculty of Physics, Astronomy, and Applied Computer ScienceJagiellonian University Łojasiewicza 11 30-348 Kraków Poland
| | - Szymon Godlewski
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAMFaculty of Physics, Astronomy, and Applied Computer ScienceJagiellonian University Łojasiewicza 11 30-348 Kraków Poland
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Orgànica i AnalíticaUniversitat Rovira i Virgil C/Marcel⋅lí Domingo s/n 43007 Tarragona Spain
| |
Collapse
|
20
|
Zuzak R, Dorel R, Kolmer M, Szymonski M, Godlewski S, Echavarren AM. Higher Acenes by On-Surface Dehydrogenation: From Heptacene to Undecacene. Angew Chem Int Ed Engl 2018; 57:10500-10505. [PMID: 29791082 PMCID: PMC6099251 DOI: 10.1002/anie.201802040] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Indexed: 11/24/2022]
Abstract
A unified approach to the synthesis of the series of higher acenes up to previously unreported undecacene has been developed through the on-surface dehydrogenation of partially saturated precursors. These molecules could be converted into the parent acenes by both atomic manipulation with the tip of a scanning tunneling and atomic force microscope (STM/AFM) as well as by on-surface annealing. The structure of the generated acenes has been visualized by high-resolution non-contact AFM imaging and the evolution of the transport gap with the increase of the number of fused benzene rings has been determined on the basis of scanning tunneling spectroscopy (STS) measurements.
Collapse
Affiliation(s)
- Rafal Zuzak
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Ruth Dorel
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Marek Kolmer
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Marek Szymonski
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Szymon Godlewski
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Departament de Química Orgànica i Analítica, Universitat Rovira i Virgil, C/Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| |
Collapse
|
21
|
Polyyne formation via skeletal rearrangement induced by atomic manipulation. Nat Chem 2018; 10:853-858. [PMID: 29967394 PMCID: PMC6071858 DOI: 10.1038/s41557-018-0067-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 04/17/2018] [Indexed: 12/02/2022]
Abstract
Rearrangements that change the connectivity of a carbon skeleton are often useful in synthesis, but it can be difficult to follow their mechanisms. Scanning probe microscopy can be used to manipulate a skeletal rearrangement at the single-molecule level, while monitoring the geometry of reactants, intermediates and final products with atomic resolution. We studied the reductive rearrangement of 1,1-dibromo alkenes to polyynes on a NaCl surface at 5 K, a reaction that resembles the Fritsch–Buttenberg–Wiechell (FBW) rearrangement. Voltage pulses were used to cleave one C–Br bond, forming a radical, then to cleave the remaining C•–Br bond triggering the rearrangement. These experiments provide structural insight into the bromo-vinyl radical intermediates, showing that the C=C•–Br unit is nonlinear. Long polyynes, up to the octayne Ph–(C≡C)8–Ph, have been prepared in this way. The control of skeletal rearrangements opens a new window on carbon-rich materials and extends the toolbox for molecular synthesis by atom manipulation.
Collapse
|
22
|
Fan Q, Werner S, Tschakert J, Ebeling D, Schirmeisen A, Hilt G, Hieringer W, Gottfried JM. Precise Monoselective Aromatic C-H Bond Activation by Chemisorption of Meta-Aryne on a Metal Surface. J Am Chem Soc 2018; 140:7526-7532. [PMID: 29750508 DOI: 10.1021/jacs.8b01658] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aromatic C-H bond activation has attracted much attention due to its versatile applications in the synthesis of aryl-containing chemicals. The major challenge lies in the minimization of the activation barrier and maximization of the regioselectivity. Here, we report the highly selective activation of the central aromatic C-H bond in meta-aryne species anchored to a copper surface, which catalyzes the C-H bond dissociation. Two prototype molecules, i.e., 4',6'-dibromo- meta-terphenyl and 3',5'-dibromo- ortho-terphenyl, have been employed to perform C-C coupling reactions on Cu(111). The chemical structures of the resulting products have been clarified by a combination of scanning tunneling microscopy and noncontact atomic force microscopy. Both methods demonstrate a remarkable weakening of the targeted C-H bond. Density functional theory calculations reveal that this efficient C-H activation stems from the extraordinary chemisorption of the meta-aryne on the Cu(111) surface, resulting in the close proximity of the targeted C-H group to the Cu(111) surface and the absence of planarity of the phenyl ring. These effects lead to a lowering of the C-H dissociation barrier from 1.80 to 1.12 eV, in agreement with the experimental data.
Collapse
Affiliation(s)
- Qitang Fan
- Department of Chemistry , Philipps University Marburg , Hans-Meerwein-Straße 4 , 35037 Marburg , Germany
| | - Simon Werner
- Department of Chemistry , Philipps University Marburg , Hans-Meerwein-Straße 4 , 35037 Marburg , Germany
| | - Jalmar Tschakert
- Institute of Applied Physics (IAP) , Justus Liebig University Gießen , Heinrich-Buff-Ring 16 , 35392 Gießen , Germany
| | - Daniel Ebeling
- Institute of Applied Physics (IAP) , Justus Liebig University Gießen , Heinrich-Buff-Ring 16 , 35392 Gießen , Germany
| | - André Schirmeisen
- Institute of Applied Physics (IAP) , Justus Liebig University Gießen , Heinrich-Buff-Ring 16 , 35392 Gießen , Germany
| | - Gerhard Hilt
- Institute of Chemistry , Carl von Ossietzky University Oldenburg , Carl-von-Ossietzky-Straße 9-11 , 26111 Oldenburg , Germany
| | - Wolfgang Hieringer
- Theoretical Chemistry and Interdisciplinary Center for Molecular Materials (ICMM), Department of Chemistry and Pharmacy , Friedrich-Alexander-Universität Erlangen-Nürnberg , Egerlandstraße 3 , 91058 Erlangen , Germany
| | - J Michael Gottfried
- Department of Chemistry , Philipps University Marburg , Hans-Meerwein-Straße 4 , 35037 Marburg , Germany
| |
Collapse
|