1
|
Sun W, Dong J, Li W, Gao X, Liu J, Nan D. An Anthocyanin-Based Eco-Friendly Triboelectric Nanogenerator for pH Monitoring and Energy Harvesting. Molecules 2024; 29:1925. [PMID: 38731417 PMCID: PMC11085175 DOI: 10.3390/molecules29091925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/13/2024] Open
Abstract
In recent years, renewable and sustainable triboelectric nanogenerators have attracted attention due to their high energy conversion rate, and enhancing their functionality further contributes to their applicability across various fields. A pH-sensitive triboelectric nanogenerator (pH-TENG) has been prepared by electrostatic spinning technology, with anthocyanin as the pH indicator and environmentally friendly polyvinyl alcohol (PVA) as the substrate. Among many friction-negative materials, the pH-TENG exhibits the best combination with fluorinated ethylene propylene (FEP) and yields an open-circuit voltage of 62 V, a short-circuit current of 370 nA, and a transferred charge of 21.8 nC. At a frequency of 3 Hz, it can charge a 4.7 μF capacitor to 2 V within 45 s, effectively powering a thermometer. Furthermore, the presence of anthocyanin does not affect the pH-TENG's power generation performance and enables the monitoring of a wide range of environmental pH changes, with an ΔE change of 28.8 ± 7.6. Therefore, pH-TENG prepared with environmentally friendly materials can bring new available materials to the biological and medical fields.
Collapse
Affiliation(s)
- Wuliang Sun
- School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Junhui Dong
- School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Wenbo Li
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaobo Gao
- Institute of Applied Nanotechnology, Jiaxing 314031, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Jun Liu
- School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Ding Nan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
2
|
Noma T, Chen HY, Dhara B, Sotome M, Nomoto T, Arita R, Nakamura M, Miyajima D. Bulk Photovoltaic Effect Along the Nonpolar Axis in Organic-Inorganic Hybrid Perovskites. Angew Chem Int Ed Engl 2023; 62:e202309055. [PMID: 37635091 DOI: 10.1002/anie.202309055] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023]
Abstract
The origin of the bulk photovoltaic effect (BPVE) was considered as a built-in electric field formed by the macroscopic polarization of materials. Alternatively, the "shift current mechanism" has been gradually accepted as the more appropriate description of the BPVE. This mechanism implies that the photocurrent generated by the BPVE is a topological current featuring an ultrafast response and dissipation-less nature, which is very attractive for photodetector applications. Meanwhile, the origin of the BPVE in organic-inorganic hybrid perovskites (OIHPs) has not been discussed and is still widely accepted as the classical mechanism without any experimental evidence. Herein, we observed the BPVE along the nonpolar axis in OIHPs, which is inconsistent with the classical explanation. Furthermore, based on the nonlinear optical tensor correlation, we substantiated that the BPVE in OIHPs is originated in the shift current mechanism.
Collapse
Affiliation(s)
- Taishi Noma
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hsiao-Yi Chen
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Barun Dhara
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Masato Sotome
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Takuya Nomoto
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Ryotaro Arita
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Masao Nakamura
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Daigo Miyajima
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
- School of Science and Engineering, The Chinese University of Hong Kong, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
3
|
Hu G, Huang F, Liu JF. Piezoelectric manipulation of spin-orbit coupling in a Wurtzite heterostructure. Phys Chem Chem Phys 2023; 25:23001-23011. [PMID: 37594500 DOI: 10.1039/d3cp02902f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The combination of piezoelectricity and spin-orbit coupling (SOC) effect makes wurtzite semiconductors attractive for the development of exotic spin-related physics as well as spintronic applications. Triggering piezoelectricity, particularly by an external stimulus, provides a new perspective for manipulating SOC, but until now, a comprehensive understanding of this mechanism is lacking. Herein, by means of self-consistent calculations and Löwdin perturbation approach, we have explored the manipulation of SOC in the wurtzite (Al, Ga)N/GaN heterostructure by external stress-induced piezoelectric polarization. The results suggest that the Rashba SOC depends weakly on stress due to the wide-gap feature of the wurtzite crystal that makes Rashba SOC predominant by a bulk term instead of the structural inversion term. The piezoelectric polarization diminishes and even turns off Dresselhaus coupling by reducing the interfacial electric field. Moreover, piezoelectricity is shown to improve the poorly gate-tunable SOC. In the heterostructure with two occupied subbands, the Dresselhaus coupling of the second subband is more sensitive than the first one in response to stress. As an extension, we further demonstrate that the correlation effect in the wurtzite heterostructure can be significantly enhanced by piezoelectric polarization. This study offers an in-depth insight into piezoelectric modulation of spin-orbit physics, which has the potential for stimulating new quantum correlation states or designing functional spintronic devices.
Collapse
Affiliation(s)
- Gongwei Hu
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China.
| | - Fobao Huang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jun-Feng Liu
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Is F, Mohanta MK, Sarkar AD. Insights into selected 2D piezo Rashba semiconductors for self-powered flexible piezo spintronics: material to contact properties. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:253001. [PMID: 36958043 DOI: 10.1088/1361-648x/acc70f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
The new paradigm in electronics consists in realizing the seamless integration of many properties latent in nanomaterials, such as mechanical flexibility, strong spin-orbit coupling (Rashba spin splitting-RSS), and piezoelectricity. Taking cues from the pointers given on 1D ZnO nanowires (ACS Nano2018121811-20), the concept can be extended to multifunctional two-dimensional (2D) materials, which can serve as an ideal platform in next-generation electronics such as self-powered flexible piezo-spintronic device. However, a microscopically clear understanding reachable from the state-of-the-art density functional theory-based approaches is a prerequisite to advancing this research domain. Atomic-scale insights gained from meticulously performed scientific computations can firmly anchor the growth of this important research field, and that is of undeniable relevance from scientific and technological outlooks. This article reviews the scientific advance in understanding 2D materials hosting all the essential properties, i.e. flexibility, piezoelectricity, and RSS. Important 2D semiconducting monolayers that deserve a special mention, include monolayers of buckled MgX (X = S, Se, Te), CdTe, ZnTe, Janus structures of transition metal trichalcogenides, Janus tellurene and 2D perovskites. van Der Waals multilayers are also built to design multifunctional materials via modulation of the stacking sequence and interlayer coupling between the constituent layers. External electric field, strain engineering and charge doping are perturbations mainly used to tune the spintronic properties. Finally, the contact properties of these monolayers are also crucial for their actual implementation in electronic devices. The nature of the contacts, Schottky/Ohmic, needs to be carefully examined first as it controls the device's performance. In this regard, the rare occurrence of Ohmic contact in graphene/MgS van der Waals hetero bilayer has been presented in this review article.
Collapse
Affiliation(s)
- Fathima Is
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Manish Kumar Mohanta
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Abir De Sarkar
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| |
Collapse
|
5
|
Xue HP, Sun R, Yang X, Comstock A, Liu Y, Ge B, Liu JN, Wei YS, Yang QL, Gai XS, Gong ZZ, Xie ZK, Li N, Sun D, Zhang XQ, He W, Cheng ZH. Dual Topology of Dirac Electron Transport and Photogalvanic Effect in Low-Dimensional Topological Insulator Superlattices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208343. [PMID: 36617232 DOI: 10.1002/adma.202208343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Dual topological insulators, simultaneously protected by time-reversal symmetry and crystalline symmetry, open great opportunities to explore different symmetry-protected metallic surface states. However, the conventional dual topological states located on different facets hinder integration into planar opto-electronic/spintronic devices. Here, dual topological superlattices (TSLs) Bi2 Se3 -(Bi2 /Bi2 Se3 )N with limited stacking layer number N are constructed. Angle-resolved photoelectron emission spectra of the TSLs identify the coexistence and adjustment of dual topological surface states on Bi2 Se3 facet. The existence and tunability of spin-polarized dual-topological bands with N on Bi2 Se3 facet result in an unconventionally weak antilocalization effect (WAL) with variable WAL coefficient α (maximum close to 3/2) from quantum transport experiments. Most importantly, it is identified that the spin-polarized surface electrons from dual topological bands exhibit circularly and linearly polarized photogalvanic effect (CPGE and LPGE). It is anticipated that the stacked dual-topology and stacking layer number controlled bands evolution provide a platform for realizing intrinsic CPGE and LPGE. The results show that the surface electronic structure of the dual TSLs is highly tunable and well-regulated for quantum transport and photoexcitation, which shed light on engineering for opto-electronic/spintronic applications.
Collapse
Affiliation(s)
- Hao-Pu Xue
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Sun
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Organic and Carbon Electronics Lab (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Xu Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Andrew Comstock
- Organic and Carbon Electronics Lab (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Yangrui Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Binghui Ge
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Jia-Nan Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan-Sheng Wei
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing-Lin Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue-Song Gai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi-Zhao Gong
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zong-Kai Xie
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dali Sun
- Organic and Carbon Electronics Lab (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Xiang-Qun Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei He
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhao-Hua Cheng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| |
Collapse
|
6
|
Wang Y, Xie W, Peng W, Li F, He Y. Fundamentals and Applications of ZnO-Nanowire-Based Piezotronics and Piezo-Phototronics. MICROMACHINES 2022; 14:mi14010047. [PMID: 36677109 PMCID: PMC9860666 DOI: 10.3390/mi14010047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 06/02/2023]
Abstract
The piezotronic effect is a coupling effect of semiconductor and piezoelectric properties. The piezoelectric potential is used to adjust the p-n junction barrier width and Schottky barrier height to control carrier transportation. At present, it has been applied in the fields of sensors, human-machine interaction, and active flexible electronic devices. The piezo-phototronic effect is a three-field coupling effect of semiconductor, photoexcitation, and piezoelectric properties. The piezoelectric potential generated by the applied strain in the piezoelectric semiconductor controls the generation, transport, separation, and recombination of carriers at the metal-semiconductor contact or p-n junction interface, thereby improving optoelectronic devices performance, such as photodetectors, solar cells, and light-emitting diodes (LED). Since then, the piezotronics and piezo-phototronic effects have attracted vast research interest due to their ability to remarkably enhance the performance of electronic and optoelectronic devices. Meanwhile, ZnO has become an ideal material for studying the piezotronic and piezo-phototronic effects due to its simple preparation process and better biocompatibility. In this review, first, the preparation methods and structural characteristics of ZnO nanowires (NWs) with different doping types were summarized. Then, the theoretical basis of the piezotronic effect and its application in the fields of sensors, biochemistry, energy harvesting, and logic operations (based on piezoelectric transistors) were reviewed. Next, the piezo-phototronic effect in the performance of photodetectors, solar cells, and LEDs was also summarized and analyzed. In addition, modulation of the piezotronic and piezo-phototronic effects was compared and summarized for different materials, structural designs, performance characteristics, and working mechanisms' analysis. This comprehensive review provides fundamental theoretical and applied guidance for future research directions in piezotronics and piezo-phototronics for optoelectronic devices and energy harvesting.
Collapse
Affiliation(s)
- Yitong Wang
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Wanli Xie
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Wenbo Peng
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Fangpei Li
- State Key Laboratory of Solidification Processing, Key Laboratory of Radiation Detection Materials and Devices, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yongning He
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| |
Collapse
|
7
|
Zhao X, Wang Z, Chen J, Wang B. Topological properties of Xene tuned by perpendicular electric field and exchange field in the presence of Rashba spin-orbit coupling. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 35:095401. [PMID: 36544393 DOI: 10.1088/1361-648x/aca9af] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Xene (X=Si, Ge, Sn) is a typical and promising two-dimensional topological insulator with many novel topological properties. Here, we investigate the topological properties of Xene tuned by a perpendicularly applied electric field, exchange field, and Rashba spin-orbit coupling (RSOC) using the tight-binding (TB) method. We show that in the presence of RSOC, the system can be converted from a quantum spin Hall (QSH) insulator into a conventional band insulator (BI) by a weak perpendicular electric field or into a quantum anomalous Hall (QAH) insulator by a weak exchange field. Additionally, a suitable combination of electric and exchange fields can give rise to a valley-polarized metallic (VPM) state. Furthermore, we explore the competition between the electric field and exchange field in tuning the topological states owing to the Rashba coupling effect. When the electric field is stronger than the exchange field, the system tends to be in a topologically trivial BI state; otherwise, it will be a QAH insulator. More intriguingly, for a fixed exchange field and RSOC, as the perpendicular electric field increase continuously from zero, the system undergoes multiphase (e.g. QSH-VPM-BI) transitions. This paves the way for designing multiphase transition devices through external single-field regulation.
Collapse
Affiliation(s)
- Xiangyang Zhao
- School of Physics, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Zongtan Wang
- School of Aeronautics and Astronautics, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Jiapeng Chen
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, People's Republic of China
| | - Biao Wang
- School of Physics, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
- School of Aeronautics and Astronautics, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
8
|
Liang G, Zhai G, Ma J, Wang H, Zhao J, Wu X, Zhang X. Strain-induced circular photogalvanic current in Dirac semimetal Cd 3As 2 films epitaxied on a GaAs(111)B substrate. NANOSCALE 2022; 14:2383-2392. [PMID: 35088779 DOI: 10.1039/d1nr05812f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dirac semimetal (DSM) Cd3As2 has drawn great attention for exploring the novel quantum phenomena and high-speed optoelectronic applications. The circular photogalvanic effect (CPGE) current, resulting from the optically-excited spin orientation transport, was theoretically predicted to vanish in an ideal Dirac system due to the symmetric photoexcitation about the Dirac point. Here, we reported the observation of the CPGE photocurrent in epitaxial Cd3As2 thin films grown on a GaAs(111)B substrate. The signature of the CPGE is confirmed by its sign reversal upon switching the helicity of optical radiation, as well as its dependence on the excitation incident angle and power. By comparison of the CPGE response between the films with different thicknesses, it is suggested that the observed CPGE results from the reduced structure symmetry and substantially modified electronic band structure of the Cd3As2 thin film that undergoes large epitaxial strain. Our experimental findings provide a valuable reference for the band engineering and exotic helicity-dependent photocurrent phenomena in DSMs towards their potential opto-spintronic device applications.
Collapse
Affiliation(s)
- Gaoming Liang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guihao Zhai
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jialin Ma
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hailong Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianhua Zhao
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaoguang Wu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinhui Zhang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
9
|
Mohanta MK, Is F, Kishore A, De Sarkar A. Spin-Current Modulation in Hexagonal Buckled ZnTe and CdTe Monolayers for Self-Powered Flexible-Piezo-Spintronic Devices. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40872-40879. [PMID: 34470109 DOI: 10.1021/acsami.1c09267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The next-generation spintronic device demands the gated control of spin transport across the semiconducting channel through the replacement of the external gate voltage source by the piezo potential, as experimentally demonstrated in Zhu et al. ACS Nano, 2018, 12 (2), 1811-1820. Consequently, a high level of out-of-plane piezoelectricity together with a large Rashba spin splitting is sought after in semiconducting channel materials. Inspired by this experiment, a new hexagonal buckled two-dimensional (2D) semiconductor, ZnTe, and its iso-electronic partner, CdTe, are proposed herewith. These 2D materials show a strong spin-orbit coupling (SOC), which is evidenced by a large Rashba constant of 1.06 and 1.27 eV·Å, respectively, in ZnTe and CdTe monolayers. Moreover, these Rashba semiconductors exhibit a giant out-of-plane piezoelectric coefficient (d33) = 88.68 and 172.61 pm/V, and can thereby generate a high piezo potential for gating purposes in spin field-effect transistors (spin-FETs). While the low elastic stiffness implies the mechanical flexibility or stretchability in these monolayers. The Rashba constants are found to be effectively modulated via external perturbations, such as strain and electric field. The wide band gap provides ample room for modulation in its electronic properties via external perturbations. Such scope is severely limited in previously reported narrow band gap Rashba semiconductors. The fascinating results found in this work indicate their great potential for applications in next-generation self-powered flexible-piezo-spintronic devices. Moreover, a new class of hexagonal buckled ZnX (X: S, Se, or Te) monolayers is proposed herein based on their previously synthesized bulk counterparts, while their electronic, mechanical, piezoelectric, and thermal properties have been thoroughly investigated using the state-of-art density functional theory (DFT).
Collapse
Affiliation(s)
- Manish Kumar Mohanta
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Fathima Is
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Amal Kishore
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Abir De Sarkar
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| |
Collapse
|
10
|
Mohanta MK, Arora A, De Sarkar A. Conflux of tunable Rashba effect and piezoelectricity in flexible magnesium monochalcogenide monolayers for next-generation spintronic devices. NANOSCALE 2021; 13:8210-8223. [PMID: 33885124 DOI: 10.1039/d1nr00149c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The coupling of piezoelectric properties with Rashba spin-orbit coupling (SOC) has proven to be the limit breaker that paves the way for a self-powered spintronic device (ACS Nano, 2018, 12, 1811-1820). For further advancement in next-generation devices, a new class of buckled, hexagonal magnesium-based chalcogenide monolayers (MgX; X = S, Se, Te) have been predicted which are direct band gap semiconductors satisfying all the stability criteria. The MgTe monolayer shows a strong SOC with a Rashba constant of 0.63 eV Å that is tunable to the extent of ±0.2 eV Å via biaxial strain. Also, owing to its broken inversion symmetry and buckling geometry, MgTe has a very large in-plane as well as out-of-plane piezoelectric coefficient. These results indicate its prospects for serving as a channel semiconducting material in self-powered piezo-spintronic devices. Furthermore, a prototype for a digital logic device can be envisioned using the ac pulsed technology via a perpendicular electric field. Heat transport is significantly suppressed in these monolayers as observed from their intrinsic low lattice thermal conductivity at room temperature: MgS (9.32 W m-1 K-1), MgSe (4.93 W m-1 K-1) and MgTe (2.02 W m-1 K-1). Further studies indicate that these monolayers can be used as photocatalytic materials for the simultaneous production of hydrogen and oxygen on account of having suitable band edge alignment and high charge carrier mobility. This work provides significant theoretical insights into both the fundamental and applied properties of these new buckled MgX monolayers, which are highly suitable for futuristic applications at the nanoscale in low-power, self-powered multifunctional electronic and spintronic devices and solar energy harvesting.
Collapse
Affiliation(s)
- Manish Kumar Mohanta
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, Mohali, Punjab-140306, India.
| | - Anu Arora
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, Mohali, Punjab-140306, India.
| | - Abir De Sarkar
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, Mohali, Punjab-140306, India.
| |
Collapse
|
11
|
Zhu L, Wang YC, Li D, Wang L, Wang ZL. Enhanced Spin-Orbit Coupled Photoluminescence of Perovskite CsPbBr 3 Quantum Dots by Piezo-Phototronic Effect. NANO LETTERS 2020; 20:8298-8304. [PMID: 33044827 DOI: 10.1021/acs.nanolett.0c03470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Piezo-phototronic effect is a fundamental effect of semiconductors lacking of central symmetry with geometries from one-dimensional (1D) nanowire to 3D bulk. Here, we present that the piezo-phototronic effect can even tune a spin-orbit coupled photoluminescence (PL) based on all-inorganic perovskite CsPbBr3 quantum dots (QDs). Although the cubic structure of CsPbBr3 QDs is nonpiezoelectric, a cooling treatment can change it to an orthorhombic structure, which is proven to possess a piezoelectric property. The spin-orbit coupled PL intensity is demonstrated to be dependent on the polarization of the excited light. Because of the manipulation of the spin-split energy levels via the piezo-phototronic effect, the spin-orbit coupled PL intensities under a -0.9% compressive strain for linearly and circularly polarized light excitations can be enhanced by 136% and 146%, respectively. These findings reveal fundamental understandings of the spin-orbit coupled PL dynamics and demonstrate promising optoelectronic applications of the piezo-phototronic effect in these QDs.
Collapse
Affiliation(s)
- Laipan Zhu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yi-Chi Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ding Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Longfei Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
12
|
Wang Y, Zhao J, Xia Y, Liu P. Configuration optimization of bionic piezoelectric hair sensor for acoustic/tactile detection. BIOINSPIRATION & BIOMIMETICS 2020; 15:056015. [PMID: 32357350 DOI: 10.1088/1748-3190/ab8f6c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Specialized sensory hairs are important biological sensors for arthropods to detect and recognize environmental conditions including acoustic, pressure and airflow signals. However, the present design methodology of such biomimic micro devices are mainly depending on shape mimicking, which greatly restricts their performance. In this paper, a novel genetic algorithm based optimization model for design of piezoelectric functional hair is developed for improving its acoustic pressure or tactile sensitivity. Furthermore, the sensing mechanism of axially polarized piezoelectric hair is explored and the main influencing factors on sensitivity including hair configuration and axial strain distribution are determined. Then, a series of optimized hair configurations are obtained in a specific frequency band from 1 Hz to 500 Hz, whose average sensitivity of 2.21 × 10-3 V Pa-1 is 10 times greater than that of the straight hair of 2.15 × 10-4 V Pa-1 with the same size. For tactile load detection, the output voltage of the optimized hair is about 1.5 times as much as that of the straight hair. The obtained hairs are similar with the spider's trichobothria and tactile hair, which presents an explanation of biological hairs sensitive to dynamic and static loads.
Collapse
Affiliation(s)
- Yan Wang
- School of Automotive Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | | | | | | |
Collapse
|
13
|
Why do nanowires grow with their c-axis vertically-aligned in the absence of epitaxy? Sci Rep 2020; 10:6554. [PMID: 32300133 PMCID: PMC7162979 DOI: 10.1038/s41598-020-63500-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/01/2020] [Indexed: 01/12/2023] Open
Abstract
Images of uniform and upright nanowires are fascinating, but often, they are quite puzzling, when the substrate is clearly not an epitaxial template. Here, we reveal the physics underlying one such hidden growth guidance mechanism through a specific example - the case of ZnO nanowires grown on silicon oxide. We show how electric fields exerted by the insulating substrate may be manipulated through the surface charge to define the orientation and polarity of the nanowires. Surface charge is ubiquitous on the surfaces of semiconductors and insulators, and as a result, substrate electric fields need always be considered. Our results suggest a new concept, according to which the growth of wurtzite semiconductors may often be described as a process of electric-charge-induced self-assembly, wherein the internal built-in field in the polar material tends to align in parallel to an external field exerted by the substrate to minimize the interfacial energy of the system.
Collapse
|
14
|
Zheng J, Zhou Y, Zhang Y, Li L, Zhang Y. C-V characteristics of piezotronic metal-insulator-semiconductor transistor. Sci Bull (Beijing) 2020; 65:161-168. [PMID: 36659080 DOI: 10.1016/j.scib.2019.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/11/2019] [Accepted: 10/22/2019] [Indexed: 01/21/2023]
Abstract
Third generation semiconductors for piezotronics and piezo-phototronics, such as ZnO and GaN, have both piezoelectric and semiconducting properties. Piezotronic devices normally exhibit high strain sensitivity because strain-induced piezoelectric charges control or tune the carrier transport at junctions, contacts and interfaces. The distribution width of piezoelectric charges in a junction is one of important parameters. Capacitance-voltage (C-V) characteristics can be used to estimate the distribution width of strain-induced piezoelectric charges. Piezotronic metal-insulator-semiconductor (MIS) has been modelled by analytical solutions and numerical simulations in this paper, which can serve as guidance for C-V measurements and experimental designs of piezotronic devices.
Collapse
Affiliation(s)
- Jiayang Zheng
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China; Department of Computer Science, University of Rochester, Rochester, NY 14627, USA
| | - Yongli Zhou
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| | - Yaming Zhang
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Lijie Li
- Multidisciplinary Nanotechnology Centre, College of Engineering, Swansea University, Swansea SA1 8EN, UK.
| | - Yan Zhang
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China; Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China; College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Zhang Y, Li J, Yin Y, Zhang W, Jia C. In-plane rotation and transition from rectification to bipolar resistive switching in ZnO/SrTiO 3:Nb heterojunctions by substrate pretreatment. RSC Adv 2019; 9:37668-37674. [PMID: 35542304 PMCID: PMC9075763 DOI: 10.1039/c9ra07252g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/13/2019] [Indexed: 11/21/2022] Open
Abstract
The growth behavior and electrical transport properties of ZnO films was found to be strongly dependent on the deionized water soaking treatment of 0.7 wt% (111) SrTiO3:Nb substrates. Comparing the ZnO films on soaked SrTiO3:Nb substrates with those on unsoaked ones, the out-of-plane orientation of ZnO films are both along the c-axis, while there is an in-plane rotation of ZnO thin films. According to the variable frequency capacitance-voltage measurements, a much higher interface state density is found in the ZnO/soaked-SrTiO3:Nb heterojunction than that in the ZnO/unsoaked-SrTiO3:Nb heterojunction. Moreover, a rectification and bipolar resistive switching effect were observed in the ZnO/unsoaked-SrTiO3:Nb and ZnO/soaked-SrTiO3:Nb heterojunctions, respectively. The transition from rectification to a bipolar resistive switching effect can be ascribed to an increase of oxygen vacancies, the migration of which plays an important part in the resistive switching.
Collapse
Affiliation(s)
- Ying Zhang
- Henan Key Laboratory of Photovoltaic Materials, Laboratory of Low-dimensional Material Science, Henan University Kaifeng 475000 People's Republic of China
| | - Jiachen Li
- Henan Key Laboratory of Photovoltaic Materials, Laboratory of Low-dimensional Material Science, Henan University Kaifeng 475000 People's Republic of China
| | - Yanfeng Yin
- Henan Key Laboratory of Photovoltaic Materials, Laboratory of Low-dimensional Material Science, Henan University Kaifeng 475000 People's Republic of China
| | - Weifeng Zhang
- Henan Key Laboratory of Photovoltaic Materials, Laboratory of Low-dimensional Material Science, Henan University Kaifeng 475000 People's Republic of China
| | - Caihong Jia
- Henan Key Laboratory of Photovoltaic Materials, Laboratory of Low-dimensional Material Science, Henan University Kaifeng 475000 People's Republic of China
| |
Collapse
|
16
|
Wang YM, Yu JL, Zeng XL, Chen YH, Liu Y, Cheng SY, Lai YF, Yin CM, He K, Xue QK. Temperature and excitation wavelength dependence of circular and linear photogalvanic effect in a three dimensional topological insulator Bi 2Se 3. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:415702. [PMID: 31220819 DOI: 10.1088/1361-648x/ab2b55] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The circular (CPGE) and linear photogalvanic effect (LPGE) of a three-dimensional topological insulator Bi2Se3 thin film of seven quintuple layers excited by near-infrared (1064 nm) and mid-infrared (10.6 [Formula: see text]m) radiations have been investigated. The comparison of the CPGE current measured parallel and perpendicular to the incident plane, together with the comparison of the CPGE current under front and back illuminations, indicates that the CPGE under front illumination of 1064 nm light is dominated by the top surface states of the Bi2Se3 thin film. The CPGE current excited by 10.6 [Formula: see text]m light is about one order larger than that excited by 1064 nm light, which may be attributed to the smaller cancelation effect of the CPGE generated in the two-dimensional electron gas when excited by 10.6 [Formula: see text]m light. Under the excitation of 1064 nm light, the LPGE current is dominated by the component which shows an even parity of incident angles, while the LPGE current excited by 10.6 [Formula: see text]m light is mainly contributed by the component which is an odd parity of incident angles. Both of the CPGE and LPGE currents excited by 1064 nm decrease with increasing temperature, which may be owing to the decrease of the momentum relaxation time and the stronger electron-electron scattering with increasing temperature, respectively.
Collapse
Affiliation(s)
- Y M Wang
- Institute of Micro/Nano Devices and Solar Cells, School of Physics and Information Engineering, Fuzhou University, Fuzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pan C, Zhai J, Wang ZL. Piezotronics and Piezo-phototronics of Third Generation Semiconductor Nanowires. Chem Rev 2019; 119:9303-9359. [PMID: 31364835 DOI: 10.1021/acs.chemrev.8b00599] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With the fast development of nanoscience and nanotechnology in the last 30 years, semiconductor nanowires have been widely investigated in the areas of both electronics and optoelectronics. Among them, representatives of third generation semiconductors, such as ZnO and GaN, have relatively large spontaneous polarization along their longitudinal direction of the nanowires due to the asymmetric structure in their c-axis direction. Two-way or multiway couplings of piezoelectric, photoexcitation, and semiconductor properties have generated new research areas, such as piezotronics and piezo-phototronics. In this review, an in-depth discussion of the mechanisms and applications of nanowire-based piezotronics and piezo-phototronics is presented. Research on piezotronics and piezo-phototronics has drawn much attention since the effective manipulation of carrier transport, photoelectric properties, etc. through the application of simple mechanical stimuli and, conversely, since the design of new strain sensors based on the strain-induced change in semiconductor properties.
Collapse
Affiliation(s)
- Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100083 , P. R. China.,School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Junyi Zhai
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100083 , P. R. China.,School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100083 , P. R. China.,School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China.,School of Material Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
18
|
Chen W, Roca I Cabarrocas P. Rational design of nanowire solar cells: from single nanowire to nanowire arrays. NANOTECHNOLOGY 2019; 30:194002. [PMID: 30654343 DOI: 10.1088/1361-6528/aaff8d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this review, we report several rational designs of nanowire-based solar cells from single nanowire to nanowire arrays. Two methods of nanowires fabrication: via 'top-down' and 'bottom-up', and two types of configurations including axial and radial junction are presented for nanowire-based solar cells. To enhance absorption, several photon management schemes are shown in detail, including anti-reflection coating, diffractive grating, and plasmonics. Considering the rational design of nanowire arrays, we summarize a total of seven solar cell structures including axial junctions, radial junctions, substrate interfacial junctions, planar junctions, conductors, junctionless and tandem. Each type is supported by examples which are presented and discussed. Finally, a general comparison between bulk and nanowire solar cell efficiencies is given.
Collapse
Affiliation(s)
- Wanghua Chen
- Faculty of Science, Ningbo University, 315211 Ningbo, People's Republic of China. LPICM, CNRS, Ecole Polytechnique, Université Paris-Saclay, F-91128 Palaiseau, France. IPVF, Institut Photovoltaïque d'Île-de-France, F-91120 Palaiseau, France
| | | |
Collapse
|
19
|
Chen B, Fu X, Lysevych M, Tan HH, Jagadish C. Four-Dimensional Probing of Phase-Reaction Dynamics in Au/GaAs Nanowires. NANO LETTERS 2019; 19:781-786. [PMID: 30677299 DOI: 10.1021/acs.nanolett.8b03870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanoeutectic phase reaction covers the fundamental study of a chemical and physical reaction of multiple phases at the nanoscale. Here, we report the direct visualization of phase-reaction dynamics in Au/GaAs nanowires (NWs) using four-dimensional (4D) electron microscopy. The NW phase reactions were initiated with a pump laser pulse, while the following dynamics in the Au/GaAs NW was probed by a precisely time-delayed electron pulse. Single-pulse imaging reveals that the cubic zinc-blende NW presents a transient length increase within the time duration of ∼150 ns, giving the appearance of intermediate phase reactions at an early stage. A final length reduction of the NW is observed after the phase reactions have fully ended. In contrast, only length reduction is seen throughout the entire process in GaAs/AlGaAs core-shell and hexagonal wurtzite GaAs NWs. The reasons for the above intriguing phenomena are discussed. The eutectic-related phenomena in both zinc-blende and wurtzite materials offer a comprehensive understanding of phase-reaction dynamics in polytypic structures commonly available in compound semiconductors.
Collapse
Affiliation(s)
- Bin Chen
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Xuewen Fu
- Condensed Matter Physics & Materials Science Department , Brookhaven National Laboratory , Upton , New York 11973 , United States
| | | | | | | |
Collapse
|
20
|
Xiong D, Deng W, Tian G, Gao Y, Chu X, Yan C, Jin L, Su Y, Yan W, Yang W. A piezo-phototronic enhanced serrate-structured ZnO-based heterojunction photodetector for optical communication. NANOSCALE 2019; 11:3021-3027. [PMID: 30698573 DOI: 10.1039/c8nr09418g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
ZnO-based heterojunction photodetectors have been widely used in various fields such as optical imaging and health monitoring. As for the traditional planar heterojunction interface, their limited optical absorption will place restrictions on the full photoelectric potential of ZnO nanorods, which severely restrains the commercial applications of ZnO-based photodetectors. Herein, using an intrinsically octahedral structure of p-type Cu2O and one-dimensional ZnO arrays, the newly designed serrate-structured heterojunction was constructed, whose unique serrate-structured interface of ZnO/Cu2O is highly conducive to the aggrandizing of optical absorption. The as-fabricated photodetector could achieve a high on/off ratio up to 1000 and an optimum photocurrent of 24.90 μA under 1.41 mW mm-2 (405 nm) illumination without bias voltage, which was 2.5 times higher than that of the planar-structured photodetector, and the response time was as quick as 1.6 ms. When the additional external strain was 0.39%, the performance was dramatically enhanced more than 5 times due to the synergism of the piezo-phototronic effect and the serrate-structured design. Based on this, we successfully developed designed photodetector arrays with an excellent optical communication performance of transmitting information. Prospectively, this kind of unique serrate-structured heterojunction design will open up a possible opportunity for high performance photodetectors based on structural engineering.
Collapse
Affiliation(s)
- Da Xiong
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhang YH, Li YL, Gong FL, Xie KF, Zhang HL, Fang SM. Double-platelet Pd@ZnO microcrystals for NO2 chemical sensors: their facile synthesis and DFT investigation. Phys Chem Chem Phys 2019; 21:22039-22047. [DOI: 10.1039/c9cp04242c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The growth and evolution processes of double-platelet, single-platelet and spherical ZnO microcrystallines are investigated.
Collapse
Affiliation(s)
- Yong-Hui Zhang
- College of Materials and Chemical Engineering
- Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| | - Yu-Liang Li
- College of Materials and Chemical Engineering
- Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| | - Fei-Long Gong
- College of Materials and Chemical Engineering
- Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| | - Ke-Fei Xie
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- P. R. China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- Key Laboratory of Special Function Materials and Structure Design (MOE)
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| | - Shao-Ming Fang
- College of Materials and Chemical Engineering
- Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| |
Collapse
|
22
|
Jeong S, Kim MW, Jo YR, Kim TY, Leem YC, Kim SW, Kim BJ, Park SJ. Crystal-Structure-Dependent Piezotronic and Piezo-Phototronic Effects of ZnO/ZnS Core/Shell Nanowires for Enhanced Electrical Transport and Photosensing Performance. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28736-28744. [PMID: 30070111 DOI: 10.1021/acsami.8b06192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report the crystal-structure-dependent piezotronic and piezo-phototronic effects of ZnO/ZnS core/shell nanowires (CS NWs) having different shell layer crystalline structures. The wurtzite (WZ) ZnO/WZ ZnS CS NWs showed higher electrical transport and photosensing properties under external strain than the WZ ZnO/zinc blende (ZB) ZnS CS NWs. The WZ ZnO/WZ ZnS CS NWs under a compressive strain of -0.24% showed 4.4 and 8.67 times larger increase in the output current (1.93 × 10-4 A) and photoresponsivity (8.76 × 10-1 A/W) than those under no strain. However, the WZ ZnO/ZB ZnS CS NWs under the same strain condition showed 3.2 and 2.16 times larger increase in the output current (1.13 × 10-4 A) and photoresponsivity (2.16 × 10-1 A/W) than those under no strain. This improvement is ascribed to strain-induced piezopolarization charges at both the WZ ZnO NWs and the grains of the WZ ZnS shell layer in WZ ZnO/WZ ZnS CS NWs, whereas piezopolarization charges are induced only in the ZnO core region of the WZ ZnO/ZB ZnS CS NWs. These charges can change the type-II band alignment in the ZnO and ZnS interfacial region as well as the Schottky barrier height at the junction between the semiconductor and the metal, thus facilitating electrical transport and reducing the recombination probability of charge carriers under UV irradiation.
Collapse
Affiliation(s)
| | | | | | - Tae-Yun Kim
- School of Advanced Materials Science and Engineering , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | | | - Sang-Woo Kim
- School of Advanced Materials Science and Engineering , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | | | | |
Collapse
|