1
|
Elias RC, Yan B, Linic S. Probing Spatial Energy Flow in Plasmonic Catalysts from Charge Excitation to Heating: Nonhomogeneous Energy Distribution as a Fundamental Feature of Plasmonic Chemistry. J Am Chem Soc 2024; 146:29656-29663. [PMID: 39413765 DOI: 10.1021/jacs.4c10395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Plasmonic catalysts use light to drive chemical reactions. One critical question is how light energy moves at nanoscales in these complex systems, leading to chemical transformations. In this contribution, we map out this energy flow by developing approaches to measure spatial temperature distributions in heterogeneous plasmonic catalysts, consisting of three-dimensional networks of plasmonic nanoparticles anchored on an oxide support. We survey the local temperatures of molecules adsorbed on catalytically active plasmonic nanoparticles, the nanoparticles themselves, and the catalyst support, under steady-state continuous-wave illumination. We reveal the existence of large temperature gradients, in which the local temperatures of the molecules, nanoparticles, and the surrounding environment can vary greatly. We show that these temperature gradients are a natural consequence of plasmon relaxation, involving the interconversion between electromagnetic light energy, electronic excitations, and heating of various entities as these electronic excitations relax. The presence of these gradients is a fundamental and unique feature of gas-phase plasmonic catalysis.
Collapse
Affiliation(s)
- Rachel C Elias
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bill Yan
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Suljo Linic
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Stefancu A, Aizpurua J, Alessandri I, Bald I, Baumberg JJ, Besteiro LV, Christopher P, Correa-Duarte M, de Nijs B, Demetriadou A, Frontiera RR, Fukushima T, Halas NJ, Jain PK, Kim ZH, Kurouski D, Lange H, Li JF, Liz-Marzán LM, Lucas IT, Meixner AJ, Murakoshi K, Nordlander P, Peveler WJ, Quesada-Cabrera R, Ringe E, Schatz GC, Schlücker S, Schultz ZD, Tan EX, Tian ZQ, Wang L, Weckhuysen BM, Xie W, Ling XY, Zhang J, Zhao Z, Zhou RY, Cortés E. Impact of Surface Enhanced Raman Spectroscopy in Catalysis. ACS NANO 2024; 18:29337-29379. [PMID: 39401392 PMCID: PMC11526435 DOI: 10.1021/acsnano.4c06192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024]
Abstract
Catalysis stands as an indispensable cornerstone of modern society, underpinning the production of over 80% of manufactured goods and driving over 90% of industrial chemical processes. As the demand for more efficient and sustainable processes grows, better catalysts are needed. Understanding the working principles of catalysts is key, and over the last 50 years, surface-enhanced Raman Spectroscopy (SERS) has become essential. Discovered in 1974, SERS has evolved into a mature and powerful analytical tool, transforming the way in which we detect molecules across disciplines. In catalysis, SERS has enabled insights into dynamic surface phenomena, facilitating the monitoring of the catalyst structure, adsorbate interactions, and reaction kinetics at very high spatial and temporal resolutions. This review explores the achievements as well as the future potential of SERS in the field of catalysis and energy conversion, thereby highlighting its role in advancing these critical areas of research.
Collapse
Affiliation(s)
- Andrei Stefancu
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 Munich, Germany
| | - Javier Aizpurua
- IKERBASQUE,
Basque Foundation for Science, 48011 Bilbao, Basque Country Spain
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 San Sebastián-Donostia, Basque Country Spain
- Department
of Electricity and Electronics, University
of the Basque Country, 20018 San Sebastián-Donostia, Basque Country Spain
| | - Ivano Alessandri
- INSTM,
UdR Brescia, Via Branze
38, Brescia 25123, Italy
- Department
of Information Engineering (DII), University
of Brescia, Via Branze
38, Brescia 25123, Italy
- INO−CNR, Via Branze 38, Brescia 25123, Italy
| | - Ilko Bald
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24−25, D-14476 Potsdam, Germany
| | - Jeremy J. Baumberg
- Nanophotonics
Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England U.K.
| | | | - Phillip Christopher
- Department
of Chemical Engineering, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
| | - Miguel Correa-Duarte
- CINBIO,
Universidade de Vigo, Vigo 36310, Spain
- Biomedical
Research Networking Center for Mental Health (CIBERSAM), Southern Galicia Institute of Health Research (IISGS), Vigo 36310, Spain
| | - Bart de Nijs
- Nanophotonics
Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England U.K.
| | - Angela Demetriadou
- School
of Physics and Astronomy, University of
Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Renee R. Frontiera
- Department
of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Tomohiro Fukushima
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
- JST-PRESTO, Tokyo, 332-0012, Japan
| | - Naomi J. Halas
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Technical
University of Munich (TUM) and Institute for Advanced Study (IAS), Lichtenbergstrasse 2 a, D-85748, Garching, Germany
| | - Prashant K. Jain
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Materials
Research Laboratory, University of Illinois
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Zee Hwan Kim
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Holger Lange
- Institut
für Physik und Astronomie, Universität
Potsdam, 14476 Potsdam, Germany
- The Hamburg
Centre for Ultrafast Imaging, 22761 Hamburg, Germany
| | - Jian-Feng Li
- State
Key
Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, College of Energy, College
of Materials, Xiamen University, Xiamen 361005, China
| | - Luis M. Liz-Marzán
- IKERBASQUE,
Basque Foundation for Science, 48011 Bilbao, Basque Country Spain
- CINBIO,
Universidade de Vigo, Vigo 36310, Spain
- CIC biomaGUNE,
Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro
de Investigación Biomédica en Red, Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Ivan T. Lucas
- Nantes
Université, CNRS, IMN, F-44322 Nantes, France
| | - Alfred J. Meixner
- Institute
of Physical and Theoretical Chemistry, University
of Tubingen, 72076 Tubingen, Germany
| | - Kei Murakoshi
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
| | - Peter Nordlander
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Technical
University of Munich (TUM) and Institute for Advanced Study (IAS), Lichtenbergstrasse 2 a, D-85748, Garching, Germany
| | - William J. Peveler
- School of
Chemistry, Joseph Black Building, University
of Glasgow, Glasgow, G12 8QQ U.K.
| | - Raul Quesada-Cabrera
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Department
of Chemistry, Institute of Environmental Studies and Natural Resources
(i-UNAT), Universidad de Las Palmas de Gran
Canaria, Campus de Tafira, Las Palmas de GC 35017, Spain
| | - Emilie Ringe
- Department
of Materials Science and Metallurgy and Department of Earth Sciences, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - George C. Schatz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sebastian Schlücker
- Physical
Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, 45141 Essen, Germany
| | - Zachary D. Schultz
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Emily Xi Tan
- School of
Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
| | - Zhong-Qun Tian
- State
Key
Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, College of Energy, College
of Materials, Xiamen University, Xiamen 361005, China
| | - Lingzhi Wang
- Shanghai
Engineering Research Center for Multi-media Environmental Catalysis
and Resource Utilization, East China University
of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
- Key
Laboratory
for Advanced Materials and Joint International Research Laboratory
of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize
Scientist Joint Research Center, School of Chemistry and Molecular
Engineering, East China University of Science
and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
| | - Bert M. Weckhuysen
- Debye Institute
for Nanomaterials Science and Institute for Sustainable and Circular
Chemistry, Department of Chemistry, Utrecht
University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Wei Xie
- Key Laboratory
of Advanced Energy Materials Chemistry (Ministry of Education), Renewable
Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin 300071, China
| | - Xing Yi Ling
- School of
Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
- School
of
Chemical and Material Engineering, Jiangnan
University, Wuxi, 214122, People’s Republic
of China
- Lee Kong
Chian School of Medicine, Nanyang Technological
University, 59 Nanyang Drive, Singapore, 636921, Singapore
- Institute
for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Jinlong Zhang
- Shanghai
Engineering Research Center for Multi-media Environmental Catalysis
and Resource Utilization, East China University
of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
- Key
Laboratory
for Advanced Materials and Joint International Research Laboratory
of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize
Scientist Joint Research Center, School of Chemistry and Molecular
Engineering, East China University of Science
and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
| | - Zhigang Zhao
- Key
Lab
of Nanodevices and Applications, Suzhou Institute of Nano-Tech and
Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Nano Science
and Technology Institute, University of
Science and Technology of China (USTC), Suzhou 215123, China
| | - Ru-Yu Zhou
- State
Key
Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, College of Energy, College
of Materials, Xiamen University, Xiamen 361005, China
| | - Emiliano Cortés
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 Munich, Germany
| |
Collapse
|
3
|
Verma R, Sharma G, Polshettiwar V. The paradox of thermal vs. non-thermal effects in plasmonic photocatalysis. Nat Commun 2024; 15:7974. [PMID: 39266509 PMCID: PMC11393361 DOI: 10.1038/s41467-024-51916-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/16/2024] [Indexed: 09/14/2024] Open
Abstract
The debate surrounding the roles of thermal and non-thermal pathways in plasmonic catalysis has captured the attention of researchers and sparked vibrant discussions within the scientific community. In this review, we embark on a thorough exploration of this intriguing discourse, starting from fundamental principles and culminating in a detailed understanding of the divergent viewpoints. We probe into the core of the debate by elucidating the behavior of excited charge carriers in illuminated plasmonic nanostructures, which serves as the foundation for the two opposing schools of thought. We present the key arguments and evidence put forth by proponents of both the non-thermal and thermal pathways, providing a perspective on their respective positions. Beyond the theoretical divide, we discussed the evolving methodologies used to unravel these mechanisms. We discuss the use of Arrhenius equations and their variations, shedding light on the ensuing debates about their applicability. Our review emphasizes the significance of localized surface plasmon resonance (LSPR), investigating its role in collective charge oscillations and the decay dynamics that influence catalytic processes. We also talked about the nuances of activation energy, exploring its relationship with the nonlinearity of temperature and light intensity dependence on reaction rates. Additionally, we address the intricacies of catalyst surface temperature measurements and their implications in understanding light-triggered reaction dynamics. The review further discusses wavelength-dependent reaction rates, kinetic isotope effects, and competitive electron transfer reactions, offering an all-inclusive view of the field. This review not only maps the current landscape of plasmonic photocatalysis but also facilitates future explorations and innovations to unlock the full potential of plasmon-mediated catalysis, where synergistic approaches could lead to different vistas in chemical transformations.
Collapse
Affiliation(s)
- Rishi Verma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Gunjan Sharma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Vivek Polshettiwar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India.
| |
Collapse
|
4
|
Jeong J, Shin HH, Kim ZH. Unveiling the Mechanism of Plasmon Photocatalysis via Multiquantum Vibrational Excitation. ACS NANO 2024; 18:25290-25301. [PMID: 39185823 DOI: 10.1021/acsnano.4c08521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Plasmon photocatalysis reactions are thought to occur through vibrationally activated reactants, driven by nonthermal energy transfer from plasmon-induced hot carriers. However, a detailed quantum-state-level understanding and quantification of the activation have been lacking. Using anti-Stokes surface-enhanced Raman scattering (SERS) spectroscopy, we mapped the vibrational population distributions of reactants on plasmon-excited nanostructures. Our results reveal a highly nonthermal distribution with an anomalously enhanced population of multiquantum excited states (v ≥ 2). The shape of the distribution and its dependence on local field intensity and excitation wavelength cannot be explained by photothermal heating or vibronic optical transitions of the metal-molecule complex. Instead, it can be modeled by hot electron-molecule energy transfer mediated by the transient negative ions, establishing direct links among nonthermal reactant activation, plasmon-induced hot electrons, and negative ion resonances. Moreover, the presence of multiquantum excited reactants, which are far more reactive than those in the ground state or first excited state, presents opportunities for vibrationally controlling chemical selectivities.
Collapse
Affiliation(s)
- Jaeyoung Jeong
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Hang Shin
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Zee Hwan Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Ehtesabi S, Richter M, Kupfer S, Gräfe S. Assessing plasmon-induced reactions by a combined quantum chemical-quantum/classical hybrid approach. NANOSCALE 2024; 16:15219-15229. [PMID: 39072363 PMCID: PMC11325215 DOI: 10.1039/d4nr02099e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Plasmon-driven reactions on metal nanoparticles feature rich and complex mechanistic contributions, involving a manifold of electronic states, near-field enhancement, and heat, among others. Although localized surface plasmon resonances are believed to initiate these reactions, the complex reactivity demands deeper exploration. This computational study investigates factors influencing chemical processes on plasmonic nanoparticles, exemplified by protonation of 4-mercaptopyridine (4-MPY) on silver nanoparticles. We examine the impact of molecular binding modes and molecule-molecule interactions on the nanoparticle's surface, near-field electromagnetic effects, and charge-transfer phenomena. Two proton sources were considered at ambient conditions, molecular hydrogen and water. Our findings reveal that the substrate's binding mode significantly affects not only the energy barriers governing the thermodynamics and kinetics of the reaction but also determine the directionality of light-driven charge-transfer at the 4-MPY-Ag interface, pivotal in the chemical contribution involved in the reaction mechanism. In addition, significant field enhancement surrounding the adsorbed molecule is observed (eletromagnetic contribution) which was found insufficient to modify the ground state thermodynamics. Instead, it initiates and amplifies light-driven charge-transfer and thus modulates the excited states' reactivity in the plasmonic-molecular hybrid system. This research elucidates protonation mechanisms on silver surfaces, highlighting the role of molecular-surface and molecule-molecule-surface orientation in plasmon-catalysis.
Collapse
Affiliation(s)
- Sadaf Ehtesabi
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Martin Richter
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Stephan Kupfer
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Stefanie Gräfe
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany.
- Fraunhofer Institute for Applied Optics and Precision Engineering, 07745 Jena, Germany
| |
Collapse
|
6
|
Zheng X, Pei Q, Tan J, Bai S, Luo Y, Ye S. Local electric field in nanocavities dictates the vibrational relaxation dynamics of interfacial molecules. Chem Sci 2024; 15:11507-11514. [PMID: 39055024 PMCID: PMC11268483 DOI: 10.1039/d4sc02463j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024] Open
Abstract
Plasmonic nanocavities enable the generation of strong light-matter coupling and exhibit great potential in plasmon-mediated chemical reactions (PMCRs). Although an electric field generated by nanocavities (E n) has recently been reported, its effect on the vibrational energy relaxation (VER) of the molecules in the nanocavities has not been explored. In this study, we reveal the impact of an electric field sensed by molecules (para-substituted thiophenol derivatives) in a nanocavity (E f) on VER processes by employing advanced time-resolved femtosecond sum frequency generation vibrational spectroscopy (SFG-VS) supplemented by electrochemical measurements. The magnitude of E n is almost identical (1.0 ± 0.2 V nm-1) beyond the experimental deviation while E f varies from 0.3 V nm-1 to 1.7 V nm-1 depending on the substituent. An exponential correlation between E f and the complete recovery time of the ground vibrational C[double bond, length as m-dash]C state (T 2) of the phenyl ring is observed. Substances with a smaller T 2 are strongly correlated with the reported macroscopic chemical reactivity. This finding may aid in enriching the current understanding of PMCRs and highlights the possibility of regulating vibrational energy flow into desired reaction coordinates by using a local electric field.
Collapse
Affiliation(s)
- Xiaoxuan Zheng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 China
| | - Quanbing Pei
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China Hefei Anhui 230088 China
| | - Shiyu Bai
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 China
- Hefei National Laboratory, University of Science and Technology of China Hefei Anhui 230088 China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 China
- Hefei National Laboratory, University of Science and Technology of China Hefei Anhui 230088 China
| |
Collapse
|
7
|
Lee A, Wu S, Yim JE, Zhao B, Sheldon MT. Hot Electrons in a Steady State: Interband vs Intraband Excitation of Plasmonic Gold. ACS NANO 2024; 18:19077-19085. [PMID: 38996185 PMCID: PMC11271177 DOI: 10.1021/acsnano.4c03702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
Understanding the dynamics of "hot", highly energetic electrons resulting from nonradiative plasmon decay is crucial for optimizing applications in photocatalysis and energy conversion. This study presents an analysis of electron kinetics within plasmonic metals, focusing on the steady-state behavior during continuous-wave (CW) illumination. Using an inelastic spectroscopy technique, we quantify the temperature and lifetimes of distinct carrier populations during excitation. A significant finding is the monotonic increase in hot electron lifetime with decreases in electronic temperature. We also observe a 1.22× increase in hot electron temperature during intraband excitation compared to interband excitation and a corresponding 2.34× increase in carrier lifetime. The shorter lifetimes during interband excitation are hypothesized to result from direct recombination of nonthermal holes and hot electrons, highlighting steady-state kinetics. Our results help bridge the knowledge gap between ultrafast and steady-state spectroscopies, offering critical insights for optimizing plasmonic applications.
Collapse
Affiliation(s)
- Annika Lee
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Shengxiang Wu
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ju Eun Yim
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Boqin Zhao
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Matthew T. Sheldon
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, University of California, Irvine, California 92617, United States
| |
Collapse
|
8
|
Ten A, Lomonosov V, Boukouvala C, Ringe E. Magnesium Nanoparticles for Surface-Enhanced Raman Scattering and Plasmon-Driven Catalysis. ACS NANO 2024; 18:18785-18799. [PMID: 38963330 PMCID: PMC11256891 DOI: 10.1021/acsnano.4c06858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
Nanostructures of some metals can sustain localized surface plasmon resonances, collective oscillations of free electrons excited by incident light. This effect results in wavelength-dependent absorption and scattering, enhancement of the incident electric field at the metal surface, and generation of hot carriers as a decay product. The enhanced electric field can be utilized to amplify the spectroscopic signal in surface-enhanced Raman scattering (SERS), while hot carriers can be exploited for catalytic applications. In recent years, cheaper and more earth abundant alternatives to traditional plasmonic Au and Ag have gained growing attention. Here, we demonstrate the ability of plasmonic Mg nanoparticles to enhance Raman scattering and drive chemical transformations upon laser irradiation. The plasmonic properties of Mg nanoparticles are characterized at the bulk and single particle level by optical spectroscopy and scanning transmission electron microscopy coupled with electron energy-loss spectroscopy and supported by numerical simulations. SERS enhancement factors of ∼102 at 532 and 633 nm are obtained using 4-mercaptobenzoic acid and 4-nitrobenzenethiol. Furthermore, the reductive coupling of 4-nitrobenzenethiol to 4,4'-dimercaptoazobenzene is observed on the surface of Mg nanoparticles under 532 nm excitation in the absence of reducing agents, indicating a plasmon-driven catalytic process. Once decorated with Pd, Mg nanostructures display an enhancement factor of 103 along with an increase in the rate of catalytic coupling. The results of this study demonstrate the successful application of plasmonic Mg nanoparticles in sensing and plasmon-enhanced catalysis.
Collapse
Affiliation(s)
- Andrey Ten
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
- Department
of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
| | - Vladimir Lomonosov
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
- Department
of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
| | - Christina Boukouvala
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
- Department
of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
| | - Emilie Ringe
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
- Department
of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
| |
Collapse
|
9
|
Mokkath JH. The impact of a dopant atom on the distribution of hot electrons and holes in Au-doped Ag nano-clusters. Phys Chem Chem Phys 2024; 26:12168-12178. [PMID: 38591187 DOI: 10.1039/d4cp00110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The generation of hot carriers (HCs) through the excitation of localized surface plasmon resonance (LSPR) in metal nanostructures is a fascinating phenomenon that fuels both fundamental and applied research. In this study, we employ first principles real-time time-dependent density-functional theory (rt-TDDFT) calculations to elucidate the creation and distribution of HCs within Au-doped Ag nanoclusters: Ag11Cl3P7H21, Ag10AucoreCl3P7H21, and Ag10AusurfCl3P7H21 nanoclusters. Our findings indicate that adjustments in HC distribution are achievable through the Au dopant atom, and precise control of HC distribution is possible by manipulating the location of the Au dopant atom. When employing a Gaussian laser pulse tailored to match the LSPR frequency, a substantial accumulation of HCs in the Ag-P bond is observed. This finding suggests a weakening of the Ag-P bonds and, consequently, the initiation of bond stretching. We propose that these findings open up possibilities for tuning HCs in Au-doped chemically functionalized Ag nanoclusters.
Collapse
Affiliation(s)
- Junais Habeeb Mokkath
- College of Integrative Studies, Abdullah Al Salem University (AASU), Block 3, Khaldiya, Kuwait
| |
Collapse
|
10
|
Zheng X, Ye Z, Akmal Z, He C, Zhang J, Wang L. Recent progress in SERS monitoring of photocatalytic reactions. Chem Soc Rev 2024; 53:656-683. [PMID: 38165865 DOI: 10.1039/d3cs00462g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical technique renowned for its ultra-high sensitivity. Extensive research in SERS has led to the development of a wide range of SERS substrates, including plasmonic metals, semiconductors, metal organic frameworks, and their assemblies. Some of these materials are also excellent photocatalysts, and by taking advantage of their bifunctional characteristics, the photocatalytic processes that occur on their surface can be monitored in situ via SERS. This provides us with unique opportunities to gain valuable insights into the intricate details of the photocatalytic processes that are challenging to access using other techniques. In this review, we highlight key development in in situ and/or real-time SERS-tracking of photocatalytic reactions. We begin by providing a brief account of recent developments in SERS substrates, followed by discussions on how SERS can be used to elucidate crucial aspects of photocatalytic processes, including: (1) the influence of the surrounding media on charge carrier extraction; (2) the direction of charge carrier transfer; (3) the pathway of photocatalytic activation; and (4) differentiation between the effects of photo-thermal and energetic electrons. Additionally, we discuss the benefits of tip-enhanced Raman spectroscopy (TERS) due to the ability to achieve high-spatial-resolution measurements. Finally, we address major challenges and propose potential directions for the future of SERS monitoring of photocatalytic reactions. By leveraging the capabilities of SERS, we can uncover new insights into photocatalytic processes, paving the way for advancements in sustainable energy and environmental remediation.
Collapse
Affiliation(s)
- Xinlu Zheng
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science &Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Ziwei Ye
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science &Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Zeeshan Akmal
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science &Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Chun He
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science &Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Jinlong Zhang
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science &Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Lingzhi Wang
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science &Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
11
|
Weight BM, Li X, Zhang Y. Theory and modeling of light-matter interactions in chemistry: current and future. Phys Chem Chem Phys 2023; 25:31554-31577. [PMID: 37842818 DOI: 10.1039/d3cp01415k] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Light-matter interaction not only plays an instrumental role in characterizing materials' properties via various spectroscopic techniques but also provides a general strategy to manipulate material properties via the design of novel nanostructures. This perspective summarizes recent theoretical advances in modeling light-matter interactions in chemistry, mainly focusing on plasmon and polariton chemistry. The former utilizes the highly localized photon, plasmonic hot electrons, and local heat to drive chemical reactions. In contrast, polariton chemistry modifies the potential energy curvatures of bare electronic systems, and hence their chemistry, via forming light-matter hybrid states, so-called polaritons. The perspective starts with the basic background of light-matter interactions, molecular quantum electrodynamics theory, and the challenges of modeling light-matter interactions in chemistry. Then, the recent advances in modeling plasmon and polariton chemistry are described, and future directions toward multiscale simulations of light-matter interaction-mediated chemistry are discussed.
Collapse
Affiliation(s)
- Braden M Weight
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, 14627, USA
| | - Xinyang Li
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Yu Zhang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
12
|
Warkentin CL, Frontiera RR. Quantifying the ultrafast and steady-state molecular reduction potential of a plasmonic photocatalyst. Proc Natl Acad Sci U S A 2023; 120:e2305932120. [PMID: 37874859 PMCID: PMC10623017 DOI: 10.1073/pnas.2305932120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
Plasmonic materials are promising photocatalysts as they are well suited to convert light into hot carriers and heat. Hot electron transfer is suggested as the driving force in many plasmon-driven reactions. However, to date, there are no direct molecular measures of the rate and yield of plasmon-to-molecule electron transfer or energy of these electrons on the timescale of plasmon decay. Here, we use ultrafast and spectroelectrochemical surface-enhanced Raman spectroscopy to quantify electron transfer from a plasmonic substrate to adsorbed methyl viologen molecules. We observe a reduction yield of 2.4 to 3.5% on the picosecond timescale, with plasmon-induced potentials ranging from [Formula: see text]3.1 to [Formula: see text]4.5 mV. Excitingly, some of these reduced species are stabilized and persist for tens of minutes. This work provides concrete metrics toward optimizing material-molecule interactions for efficient plasmon-driven photocatalysis.
Collapse
|
13
|
Luo B, Wang W, Zhao Y, Zhao Y. Hot-Electron Dynamics Mediated Medical Diagnosis and Therapy. Chem Rev 2023; 123:10808-10833. [PMID: 37603096 DOI: 10.1021/acs.chemrev.3c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Surface plasmon resonance excitation significantly enhances the absorption of light and increases the generation of "hot" electrons, i.e., conducting electrons that are raised from their steady states to excited states. These excited electrons rapidly decay and equilibrate via radiative and nonradiative damping over several hundred femtoseconds. During the hot-electron dynamics, from their generation to the ultimate nonradiative decay, the electromagnetic field enhancement, hot electron density increase, and local heating effect are sequentially induced. Over the past decade, these physical phenomena have attracted considerable attention in the biomedical field, e.g., the rapid and accurate identification of biomolecules, precise synthesis and release of drugs, and elimination of tumors. This review highlights the recent developments in the application of hot-electron dynamics in medical diagnosis and therapy, particularly fully integrated device techniques with good application prospects. In addition, we discuss the latest experimental and theoretical studies of underlying mechanisms. From a practical standpoint, the pioneering modeling analyses and quantitative measurements in the extreme near field are summarized to illustrate the quantification of hot-electron dynamics. Finally, the prospects and remaining challenges associated with biomedical engineering based on hot-electron dynamics are presented.
Collapse
Affiliation(s)
- Bing Luo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Wei Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yuxin Zhao
- The State Key Laboratory of Service Behavior and Structural Safety of Petroleum Pipe and Equipment Materials, CNPC Tubular Goods Research Institute (TGRI), Xi'an 710077, People's Republic of China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
14
|
Shin HH, Jeong J, Nam Y, Lee KS, Yeon GJ, Lee H, Lee SY, Park S, Park H, Lee JY, Kim ZH. Vibrationally Hot Reactants in a Plasmon-Assisted Chemical Reaction. J Am Chem Soc 2023. [PMID: 37220278 DOI: 10.1021/jacs.3c02681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Recent studies on plasmon-assisted chemical reactions postulate that the hot electrons of plasmon-excited nanostructures may induce a non-thermal vibrational activation of metal-bound reactants. However, the postulate has not been fully validated at the level of molecular quantum states. We directly and quantitatively prove that such activation occurs on plasmon-excited nanostructures: The anti-Stokes Raman spectra of reactants undergoing a plasmon-assisted reaction reveal that a particular vibrational mode of the reactant is selectively excited, such that the reactants possess >10 times more energy in the mode than is expected from the fully thermalized molecules at the given local temperature. Furthermore, a significant portion (∼20%) of the excited reactant is in vibrational overtone states with energies exceeding 0.5 eV. Such mode-selective multi-quantum excitation could be fully modeled by the resonant electron-molecule scattering theory. Such observations suggest that the vibrationally hot reactants are created by non-thermal hot electrons, not by thermally heated electrons or phonons of metals. The result validates the mechanism of plasmon-assisted chemical reactions and further offers a new method to explore the vibrational reaction control on metal surfaces.
Collapse
Affiliation(s)
- Hyun-Hang Shin
- Department of Chemistry, Seoul National University; Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jaeyoung Jeong
- Department of Chemistry, Seoul National University; Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yeonsig Nam
- Department of Chemistry, Sungkyunkwan University, Gyeonggi-do, Suwon 16419, Republic of Korea
| | - Kang Sup Lee
- Department of Chemistry, Seoul National University; Gwanak-gu, Seoul 08826, Republic of Korea
| | - Gyu Jin Yeon
- Department of Chemistry, Seoul National University; Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hankyul Lee
- Department of Chemistry, Seoul National University; Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seung Yeon Lee
- Department of Chemistry, Seoul National University; Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sangwon Park
- Department of Chemistry, Seoul National University; Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyungjun Park
- Department of Chemistry, Seoul National University; Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Gyeonggi-do, Suwon 16419, Republic of Korea
| | - Zee Hwan Kim
- Department of Chemistry, Seoul National University; Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
15
|
Chen K, Wang H. Origin of Superlinear Power Dependence of Reaction Rates in Plasmon-Driven Photocatalysis: A Case Study of Reductive Nitrothiophenol Coupling Reactions. NANO LETTERS 2023; 23:2870-2876. [PMID: 36921149 DOI: 10.1021/acs.nanolett.3c00195] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The superlinear dependence of the reaction rate on the power of the excitation light, which may arise from both thermal and nonthermal effects, has been a hallmark of plasmon-driven photocatalysis on nanostructured metal surfaces. However, it remains challenging to distinguish and quantify the thermal and nonthermal effects because even slight uncertainties in measuring the local temperatures at the active surface sites may lead to significant errors in assessing thermal and nonthermal contributions to the overall reaction rates. Here we employ surface-enhanced Raman scattering as a surface-sensitive in situ spectroscopic tool to correlate detailed kinetic features of plasmon-mediated molecular transformations to the local temperatures at the active sites on photocatalyst surfaces. Our spectroscopic results clearly reveal that the superlinearity in the power dependence of the reaction rate observed in a plasmon-driven model reaction, specifically the reductive coupling of para-nitrothiophenol adsorbates on Ag nanoparticle surfaces, originates essentially from photothermal heating rather than nonthermal plasmonic effects.
Collapse
Affiliation(s)
- Kexun Chen
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Hui Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
16
|
Jiang W, Low BQL, Long R, Low J, Loh H, Tang KY, Chai CHT, Zhu H, Zhu H, Li Z, Loh XJ, Xiong Y, Ye E. Active Site Engineering on Plasmonic Nanostructures for Efficient Photocatalysis. ACS NANO 2023; 17:4193-4229. [PMID: 36802513 DOI: 10.1021/acsnano.2c12314] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Plasmonic nanostructures have shown immense potential in photocatalysis because of their distinct photochemical properties associated with tunable photoresponses and strong light-matter interactions. The introduction of highly active sites is essential to fully exploit the potential of plasmonic nanostructures in photocatalysis, considering the inferior intrinsic activities of typical plasmonic metals. This review focuses on active site-engineered plasmonic nanostructures with enhanced photocatalytic performance, wherein the active sites are classified into four types (i.e., metallic sites, defect sites, ligand-grafted sites, and interface sites). The synergy between active sites and plasmonic nanostructures in photocatalysis is discussed in detail after briefly introducing the material synthesis and characterization methods. Active sites can promote the coupling of solar energy harvested by plasmonic metal to catalytic reactions in the form of local electromagnetic fields, hot carriers, and photothermal heating. Moreover, efficient energy coupling potentially regulates the reaction pathway by facilitating the excited state formation of reactants, changing the status of active sites, and creating additional active sites using photoexcited plasmonic metals. Afterward, the application of active site-engineered plasmonic nanostructures in emerging photocatalytic reactions is summarized. Finally, a summary and perspective of the existing challenges and future opportunities are presented. This review aims to deliver some insights into plasmonic photocatalysis from the perspective of active sites, expediting the discovery of high-performance plasmonic photocatalysts.
Collapse
Affiliation(s)
- Wenbin Jiang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Beverly Qian Ling Low
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Ran Long
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jingxiang Low
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongyi Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Karen Yuanting Tang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Casandra Hui Teng Chai
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Houjuan Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Hui Zhu
- Department of Chemistry, National University of Singapore, Singapore 117543, Republic of Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Yujie Xiong
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| |
Collapse
|
17
|
Oliveira de Souza D, Girardon JS, Hoffmann DJ, Berrier E. Dynamics of Citrate Coordination on Gold Nanoparticles Under Low Specific Power Laser-Induced Heating. Chemphyschem 2022; 24:e202200744. [PMID: 36495221 DOI: 10.1002/cphc.202200744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
SERS evolution recorded over a drop-coated coffee-ring pattern of citrate-capped gold colloids was investigated as a function of time under low-specific laser power. Spectral changes caused by plasmon-induced reaction could not be detected, but a long-term transient original spectral profile showing additional lines was observed. We performed deep qualitative and quantitative SERS intensity variation analysis based on the complementary use of extreme deviation and cross-correlation statistics, which provided further insights on the behavior of citrate-capping layers of gold nanoparticles upon laser illumination. More precisely, the cross-correlation analysis made possible to follow the so-called individual events denoting particular resonance structures, in which groups of modes were assigned to an evolution of citrate coordination on gold surface driven by photo-activation. As a consequence, the detection limit was increased and new lines were related to the presence of a very low amount of dicarboxy-acetone (DCA), which was already present in the system.
Collapse
Affiliation(s)
| | | | - David J Hoffmann
- Electrical Engineering Department, Federal University of Espírito Santo (UFES), Vitória, ES, Brazil
| | - Elise Berrier
- Université de Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois - UCCS, Lille, France
| |
Collapse
|
18
|
Wei Y, Hao Q, Fan X, Li M, Yao L, Li G, Zhao X, Huang H, Qiu T. Investigation of the Plasmon-Activated C-C Coupling Reactions by Liquid-State SERS Measurement. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54320-54327. [PMID: 36441512 DOI: 10.1021/acsami.2c15223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The implementation of plasmonic materials in heterogeneous catalysis was limited due to the lack of experimental access in managing the plasmonic hot carriers. Herein, we propose a liquid-state surface-enhanced Raman scattering (SERS) technique to manipulate and visualize heterogeneous photocatalysis with transparent plasmonic chips. The liquid-state measurement conquers the difficulties that arise from the plasmon-induced thermal effects, and thus the plasmon based strategies can be extended to investigate a wider range of catalytic reactions. We demonstrated the selection of reaction products by modulating the plasmonic hot carriers and explored the mechanisms in several typical C-C coupling reactions with 4-bromothiophenol (4-BTP) as reactants. The real-time experimental results suggest brand new mechanisms of the formation of C-C bonds on plasmonic metal nanoparticles (NPs): the residue of 4-BTP, but not thiophenol (TP), is responsible for the C-C coupling. Furthermore, this technique was extended to study the evolution of the Suzuki-Miyaura reaction on nonplasmonic palladium metals by establishing the charge transfer channels between palladium and Au NPs. The cleavage and formation of chemical bonds in each individual reaction step were discerned, and the corresponding working mechanisms were clarified.
Collapse
Affiliation(s)
- Yunjia Wei
- School of Physics, Southeast University, Nanjing 211189, China
| | - Qi Hao
- School of Physics, Southeast University, Nanjing 211189, China
| | - Xingce Fan
- School of Physics, Southeast University, Nanjing 211189, China
| | - Mingze Li
- School of Physics, Southeast University, Nanjing 211189, China
| | - Lei Yao
- School of Physics, Southeast University, Nanjing 211189, China
| | - Guoqun Li
- School of Physics, Southeast University, Nanjing 211189, China
| | - Xing Zhao
- School of Physics, Southeast University, Nanjing 211189, China
| | - Hao Huang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Teng Qiu
- School of Physics, Southeast University, Nanjing 211189, China
| |
Collapse
|
19
|
Xu W, Zhao X, Zhang F, Liu J, Zhang K, Guo X, Wen J, Zhang J, Liu X, Wang Y, Yang S, Zhang Y. Confined growth of Ag nanoflakes induced by LSPR-driven carrier transfer in periodic nanopatterned arrays. NANOSCALE 2022; 14:14750-14759. [PMID: 36173260 DOI: 10.1039/d2nr03385b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The growth of metal nanostructures induced by surface plasmons has attracted widespread attention and provides a wide range of applications in the development of plasmonic nanochemistry, biosensors, photoelectrochemical coupling reactions, etc. Herein, a simple method is reported for the fabrication of Ag nanoflakes induced by the surface plasma on two-dimensional periodic nanopatterned arrays with the aid of 4-MBA molecules. The light radiation, molecules, and environmental gases are selected to track the formation mechanism of Ag nanoflakes. The in situ Raman observations and theoretical analyses confirm that small aromatic molecules with carboxyl groups play important roles in Ag nanoflake formation derived by localized surface plasmon resonance (LSPR)-driven carriers, which provide profound insights into the study of LSPR-driven carriers, participating in chemical reactions and the reconstruction of dense hot spots in nanogaps.
Collapse
Affiliation(s)
- Wei Xu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China.
| | - Xiaoyu Zhao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China.
| | - Fengyi Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China.
| | - Jia Liu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China.
| | - Kun Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China.
| | - Xiaojie Guo
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China.
| | - Jiahong Wen
- The College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
- Zhejiang Laboratory, Hangzhou 311100, P. R. China
| | - Jian Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China.
| | - Xiaolian Liu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China.
| | - Yaxin Wang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China.
| | - Shikuan Yang
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Yongjun Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China.
| |
Collapse
|
20
|
Forcherio GT, Ostovar B, Boltersdorf J, Cai YY, Leff AC, Grew KN, Lundgren CA, Link S, Baker DR. Single-Particle Insights into Plasmonic Hot Carrier Separation Augmenting Photoelectrochemical Ethanol Oxidation with Photocatalytically Synthesized Pd-Au Bimetallic Nanorods. ACS NANO 2022; 16:12377-12389. [PMID: 35894585 DOI: 10.1021/acsnano.2c03549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the nature of hot carrier pathways following surface plasmon excitation of heterometallic nanostructures and their mechanistic prevalence during photoelectrochemical oxidation of complex hydrocarbons, such as ethanol, remains challenging. This work studies the fate of carriers from Au nanorods before and after the presence of reductively photodeposited Pd at the single-particle level using scattering and emission spectroscopy, along with ensemble photoelectrochemical methods. A sub-2 nm epitaxial Pd0 shell was reductively grown onto colloidal Au nanorods via hot carriers generated from surface plasmon resonance excitation in the presence of [PdCl4]2-. These bimetallic Pd-Au nanorod architectures exhibited 14% quenched emission quantum yields and 9% augmented plasmon damping determined from their scattering spectra compared to the bare Au nanorods, consistent with injection/separation of intraband hot carriers into the Pd. Absorbed photon-to-current efficiency in photoelectrochemical ethanol oxidation was enhanced 50× from 0.00034% to 0.017% due to the photodeposited Pd. Photocurrent during ethanol oxidation improved 13× under solar-simulated AM1.5G and 40× for surface plasmon resonance-targeted irradiation conditions after photodepositing Pd, consistent with enhanced participation of intraband-excited sp-band holes and desorption of ethanol oxidation reaction intermediates owing to photothermal effects.
Collapse
Affiliation(s)
- Gregory T Forcherio
- U.S. Army Combat Capabilities Development Command - Army Research Laboratory, Adelphi, Maryland 20783 United States
- Electro-Optic Technology Division, Naval Surface Warfare Center, Crane, Indiana 47522 United States
| | | | - Jonathan Boltersdorf
- U.S. Army Combat Capabilities Development Command - Army Research Laboratory, Adelphi, Maryland 20783 United States
| | | | - Asher C Leff
- U.S. Army Combat Capabilities Development Command - Army Research Laboratory, Adelphi, Maryland 20783 United States
- General Technical Services, Adelphi, Maryland 20783, United States
| | - Kyle N Grew
- U.S. Army Combat Capabilities Development Command - Army Research Laboratory, Adelphi, Maryland 20783 United States
| | - Cynthia A Lundgren
- U.S. Army Combat Capabilities Development Command - Army Research Laboratory, Adelphi, Maryland 20783 United States
| | | | - David R Baker
- U.S. Army Combat Capabilities Development Command - Army Research Laboratory, Adelphi, Maryland 20783 United States
| |
Collapse
|
21
|
Abstract
The photodimerization of 4-aminothiophenol (PATP) into 4,4'-dimercaptobenzene (DMAB) has been extensively utilized as a paradigm reaction to probe the role of surface plasmons in nanoparticle-mediated light-driven processes. Here I report the first observation of the PATP-to-DMAB photoreaction in the absence of any plasmonic mediators. The reaction was observed to occur with different kinetics either for PATP adsorbed on non-plasmonic nanoparticles (TiO2 , ZnO, SiO2 ) or deposited as macroscopic droplets. Confocal microRaman spectroscopy enabled to investigate the reaction progress in different plasmon-free contexts, either aerobic or anaerobic, suggesting a new interpretation of the photodimerization process, based on direct laser-induced activation of singlet oxygen species. These results provide new insights in light-driven redox processes, elucidating the role of sample morphology, light and oxygen.
Collapse
Affiliation(s)
- Ivano Alessandri
- Sustainable Chemistry and Materials GroupDepartment of Information EngineeringUniversity of BresciaItaly
- INSTMConsorzio Nazionale per la Scienza e Tecnologia dei MaterialiRU Bresciavia Branze 3825123BresciaItaly
- INO-CNRRU Bresciavia Branze 4325123BresciaItaly
| |
Collapse
|
22
|
Schürmann R, Dutta A, Ebel K, Tapio K, Milosavljevic A, Bald I. Plasmonic reactivity of halogen thiophenols on gold nanoparticles studied by SERS and XPS. J Chem Phys 2022; 157:084708. [DOI: 10.1063/5.0098110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Localized surface plasmon resonances on noble metal nanoparticles (NPs) can efficiently drive reactions of adsorbed ligand molecules and provide versatile opportunities in chemical synthesis. The driving forces of these reactions are typically elevated temperatures, hot charge carriers or enhanced electric fields. In the present work the dehalogenation of halogenated thiophenols on the surface of AuNPs has been studied by surface enhanced Raman scattering (SERS) as a function of the photon energy to track the kinetics and identify reaction products. Reaction rates are found to be surprisingly similar for the different halothiophenols studied here, although the bond dissociation energies of the C-X bonds differ significantly. Complementary information about the electronic properties at the AuNP surface, namely work-function and valence band states, have been determined by X-ray photoelectron spectroscopy (XPS) of isolated AuNPs in the gas-phase. In this way, it is revealed how the electronic properties are altered by the adsorption of the ligand molecules, and we conclude that the reaction rates are mainly determined by the plasmonic properties of the AuNPs. SERS spectra reveal differences in the reaction product formation for the different halogen species and on this basis the possible reaction mechanisms are discussed to approach an understanding of opportunities and limitations in the design of catalytical systems with plasmonic NPs.
Collapse
Affiliation(s)
- Robin Schürmann
- Institute of Chemistry, University of Potsdam Institute of Chemistry, Germany
| | | | - Kenny Ebel
- University of Potsdam Institute of Chemistry, Germany
| | | | | | | |
Collapse
|
23
|
Chen Z, Cai Z, Liu W, Yan Z. Optical trapping and manipulation for single-particle spectroscopy and microscopy. J Chem Phys 2022; 157:050901. [DOI: 10.1063/5.0086328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Optical tweezers can control the position and orientation of individual colloidal particles in solution. Such control is often desirable but challenging for single-particle spectroscopy and microscopy, especially at the nanoscale. Functional nanoparticles that are optically trapped and manipulated in a three-dimensional (3D) space can serve as freestanding nanoprobes, which provide unique prospects of sensing and mapping the surrounding environment of the nanoparticles and studying their interactions with biological systems. In this perspective, we will first describe the optical forces underlying the optical trapping and manipulation of microscopic particles, then review the combinations and applications of different spectroscopy and microscopy techniques with optical tweezers. Finally, we will discuss the challenges of performing spectroscopy and microscopy on single nanoparticles with optical tweezers, the possible routes to address these challenges, and the new opportunities that will arise.
Collapse
Affiliation(s)
- Zhenzhen Chen
- The University of North Carolina at Chapel Hill, United States of America
| | - Zhewei Cai
- Clarkson University, United States of America
| | - Wenbo Liu
- The University of North Carolina at Chapel Hill, United States of America
| | - Zijie Yan
- University of North Carolina at Chapel Hill, United States of America
| |
Collapse
|
24
|
Affiliation(s)
- Ivano Alessandri
- Sustainable Chemistry and Materials Group Department of Information Engineering University of Brescia Italy
- INSTM Consorzio Nazionale per la Scienza e Tecnologia dei Materiali RU Brescia via Branze 38 25123 Brescia Italy
- INO-CNR RU Brescia via Branze 43 25123 Brescia Italy
| |
Collapse
|
25
|
Ngo DN, Ho VTTX, Kim G, Song MS, Kim MR, Choo J, Joo SW, Lee SY. Raman Thermometry Nanopipettes in Cancer Photothermal Therapy. Anal Chem 2022; 94:6463-6472. [PMID: 35435669 DOI: 10.1021/acs.analchem.1c04452] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Raman thermometry based on surface-enhanced Raman scattering has been developed using nanopipettes in cancer cell photothermal therapy (PTT). Gold nanorods (AuNRs) are robustly epoxied on glass pipettes with a high surface coverage of ∼95% and less than 10 nm-wide nanogaps for intracellular thermometry and photothermal cancer therapy. The temperature changes could be estimated from the N≡C band shifts of 4-fluorophenyl isocyanide (FPNC)-adsorbed AuNRs on the Raman thermometry nanopipette (RTN) surfaces. An intracellular temperature change of ∼2.7 °C produced by altering the [Ca2+] in A431 cells was detected using the RTN in vitro, as checked from fura-2 acetoxymethyl ester (fura-2 AM) fluorescence images. For in vivo experiments, local temperature rises of ∼19.2 °C were observed in the mouse skin, whereas infrared camera images could not tract due to spatial resolution. In addition, a tumor growth suppression was observed in the PTT processes after an administration of the three AuNR-coated nanopipettes combined with a 671 nm laser irradiation for 5 min in 30 days. These results demonstrate not only the localized temperature sensing ability of FPNC-tagged AuNR nanopipettes in cell biology but also anti-cancer effects in photothermal cancer therapy.
Collapse
Affiliation(s)
- Dinh Nghi Ngo
- Department of Chemistry, Soongsil University, Seoul 06978, South Korea
| | | | - Gun Kim
- Laboratory of Veterinary Pharmacology, College of Veterinary Medical Science and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Min Seok Song
- Laboratory of Veterinary Pharmacology, College of Veterinary Medical Science and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Mi Ri Kim
- Laboratory of Veterinary Pharmacology, College of Veterinary Medical Science and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul 06978, South Korea
| | - So Yeong Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medical Science and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| |
Collapse
|
26
|
Liu Y, Zhang L, Liu X, Zhang Y, Yan Y, Zhao Y. In situ SERS monitoring of plasmon-driven catalytic reaction on gap-controlled Ag nanoparticle arrays under 785 nm irradiation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120803. [PMID: 35007906 DOI: 10.1016/j.saa.2021.120803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Plasmon-enhanced photocatalysis has attracted considerable attention due to its low energy consumption and high energy throughput. Surface-enhanced Raman scattering (SERS) is a highly sensitive and label-free nondestructive tool to investigate plasmon-driven photocatalytic reactions. Herein, we present a facile method to fabricate gap-controlled Ag nanoparticle (NP) arrays with uniform and high-density distribution of hot spots, which can be employed as both efficient plasmonic photocatalysts and stable SERS platforms. The plasmon-driven catalytic reaction of 4-nitrobenzenethiol (4NBT), which transforms it into p, p'-dimercaptoazobenzene (DMAB), is detected by using an in situ SERS technique at the excited wavelength of 785 nm. According to the temperature and laser power density dependent photocatalytic reaction rates observed on the Ag NP arrays, we quantitatively determined that the reductive coupling of 4NBT is more likely to occur as the gap decreases. The finite-difference time-domain (FDTD) simulation results demonstrate that the plasmonic hot spots are significantly enhanced with a decrease in gap, which in turn reduces activation energy. The gap-controlled Ag NP arrays are efficient for both promotion and detection of plasmon-driven catalytic reactions, and may pave a pathway for implementing efficient plasmonic photocatalytic platforms.
Collapse
Affiliation(s)
- Yanqi Liu
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China
| | - Lisheng Zhang
- The Beijing Key Laboratory for Nano-photonics and Nano-structure, Department of Physics, Capital Normal University, Beijing 100048, China
| | - Xuan Liu
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China
| | - Yongzhi Zhang
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China
| | - Yinzhou Yan
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China
| | - Yan Zhao
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
27
|
Park J, Kodaimati MS, Belding L, Root SE, Schatz GC, Whitesides GM. Controlled Hysteresis of Conductance in Molecular Tunneling Junctions. ACS NANO 2022; 16:4206-4216. [PMID: 35230085 DOI: 10.1021/acsnano.1c10155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The problem this paper addresses is the origin of the hysteretic behavior in two-terminal molecular junctions made from an EGaIn electrode and self-assembled monolayers of alkanethiolates terminated in chelates (transition metal dichlorides complexed with 2,2'-bipyridine; BIPY-MCl2). The hysteresis of conductance displayed by these BIPY-MCl2 junctions changes in magnitude depending on the identity of the metal ion (M) and the window of the applied voltage across the junction. The hysteretic behavior of conductance in these junctions appears only in an incoherent (Fowler-Nordheim) tunneling regime. When the complexed metal ion is Mn(II), Fe(II), Co(II), or Ni(II), both incoherent tunneling and hysteresis are observed for a voltage range between +1.0 V and -1.0 V. When the metal ion is Cr(II) or Cu(II), however, only resonant (one-step) tunneling is observed, and the junctions exhibit no hysteresis and do not enter the incoherent tunneling regime. Using this correlation, the conductance characteristics of BIPY-MCl2 junctions can be controlled. This voltage-induced change of conductance demonstrates a simple, fast, and reversible way (i.e., by changing the applied voltage) to modulate conductance in molecular tunneling junctions.
Collapse
Affiliation(s)
- Junwoo Park
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
- Department of Chemistry, Sogang University, Mapo-gu, Seoul 04107, Republic of Korea
| | - Mohamad S Kodaimati
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Lee Belding
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Samuel E Root
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - George M Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
28
|
Yu Z, Frontiera RR. Intermolecular Forces Dictate Vibrational Energy Transfer in Plasmonic-Molecule Systems. ACS NANO 2022; 16:847-854. [PMID: 34936347 DOI: 10.1021/acsnano.1c08431] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasmonic materials are a promising category of photocatalysts for solar energy harvesting and conversion. However, there are some significant obstacles that need to be overcome to make plasmonic catalysts commercially available. One major challenge is to obtain a systematic understanding of how to design and optimize plasmonic systems from the perspective of both plasmonic materials and reagent molecules to achieve highly efficient and selective catalysis. It is well-known that the contributions of plasmon-molecule interactions such as plasmon-induced resonant energy transfer and charge transfer to the catalytic mechanism are rather complicated and possibly multifold. Observation of these phenomena is challenging due to the highly heterogeneous nature of plasmonic substrates as well as the large difference in sizes and optical cross sections between plasmonic materials and molecules. In this work, we use a molecular perspective to examine the crucial process of energy transfer between plasmons and molecules, with the goal of determining which experimental parameters can be used to control this energy flow. We employ ultrafast surface-enhanced anti-Stokes and Stokes Raman spectroscopy to investigate vibrational energy transfer in plasmonic-molecule systems. By comparing the energy transfer kinetics of five different aromatic thiols on the picosecond time scale, we find that intermolecular forces play an important role in energy distribution in molecules adsorbed to plasmonic materials, which changes the amount of energy deposited onto the molecule and the lifetime of the energy deposited. Our work implies that careful consideration of catalyst loading and molecule adsorption geometry is crucial for enhancing or suppressing the rate and efficiency of plasmon-driven energy transfer.
Collapse
Affiliation(s)
- Ziwei Yu
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Renee R Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
29
|
Zurkova M, Šloufová I, Gajdošová V, Vlčková B. Plasmon-Catalysed Decarboxylation of Dicarboxybipyridine Ligands in Ru(II) Complexes Chemisorbed on Ag Nanoparticles: Conditions, Proposed Mechanism and Role of Ag(0) Adsorption Sites. Phys Chem Chem Phys 2022; 24:15034-15047. [DOI: 10.1039/d2cp00765g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plasmon-catalyzed decarboxylation reactions of Ru(II) bis(2,2‘-bipyridine)(4,4‘-dicarboxy-bipyridine) denoted as Ru(bpy)2(dcbpy) and Ru(II) tris(4,4‘-dicarboxy-bipyridine) denoted as Ru(dcbpy)3 complexes in hydrosol systems with Ag nanoparticles (NPs) conditioned by the presence of Ag(0) adsorption...
Collapse
|
30
|
Blackburn TJ, Tyler SM, Pemberton JE. Optical Spectroscopy of Surfaces, Interfaces, and Thin Films. Anal Chem 2022; 94:515-558. [DOI: 10.1021/acs.analchem.1c05323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Thomas J. Blackburn
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Sarah M. Tyler
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Jeanne E. Pemberton
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| |
Collapse
|
31
|
Podder C, Gong X, Pan H. Ultrafast, Non-Equilibrium and Transient Heating and Sintering of Nanocrystals for Nanoscale Metal Printing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103436. [PMID: 34617399 DOI: 10.1002/smll.202103436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The carrier excitation, relaxation, energy transport, and conversion processes during light-nanocrystal (NC) interactions have been intensively investigated for applications in optoelectronics, photocatalysis, and photovoltaics. However, there are limited studies on the non-equilibrium heating under relatively high laser excitation that leads to NCs sintering. Here, the authors use femtosecond laser two-pulse correlation and in-situ optical transmission probing to investigate the non-equilibrium heating of NCs and transient sintering dynamics. First, a two-pulse correlation study reveals that the sintering rate strongly increases when the two heating laser pulses are temporally separated by <10 ps. Second, the sintering rate is found to increase nonlinearly with laser fluence when heating with ≈700 fs laser pulses. By three-temperature modeling, the NC sintering mechanism mediated by electron induced ligand transformation is suggested. The ultrafast and non-equilibrium process facilitates sintering in dry (spin-coated) and wet (solvent suspended) environments. The nonlinear dependence of sintering rate on laser fluence is exploited to print sub-diffraction-limited features in NC suspension. The smallest feature printed is ≈200 nm, which is ≈¼ of the laser wavelength. These findings provide a new perspective toward nanomanufacturing development based on probing and engineering ultrafast transport phenomena in functional NCs.
Collapse
Affiliation(s)
- Chinmoy Podder
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Xiangtao Gong
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Heng Pan
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, 65401, USA
| |
Collapse
|
32
|
Reinhardt PA, Crawford AP, West CA, DeLong G, Link S, Masiello DJ, Willets KA. Toward Quantitative Nanothermometry Using Single-Molecule Counting. J Phys Chem B 2021; 125:12197-12205. [PMID: 34723520 DOI: 10.1021/acs.jpcb.1c08348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Photothermal heating of nanoparticles has applications in nanomedicine, photocatalysis, photoelectrochemistry, and data storage, but accurate measurements of temperature at the nanoparticle surface are lacking. Here we demonstrate progress toward a super-resolution DNA nanothermometry technique capable of reporting the surface temperature on single plasmonic nanoparticles. Gold nanoparticles are functionalized with double-stranded DNA, and the extent of DNA denaturation under heating conditions serves as a reporter of temperature. Fluorescently labeled DNA oligomers are used to probe the denatured DNA through transient binding interactions. By counting the number of fluorescent binding events as a function of temperature, we reconstruct DNA melting curves that reproduce trends seen for solution-phase DNA. In addition, we demonstrate our ability to control the temperature of denaturation by changing the Na+ concentration and the base pair length of the double-stranded DNA on the nanoparticle surface. This degree of control allows us to select narrow temperature windows to probe, providing quantitative measurements of temperature at nanoscale surfaces.
Collapse
Affiliation(s)
- Phillip A Reinhardt
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Abigail P Crawford
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Claire A West
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Gabe DeLong
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Stephan Link
- Department of Chemistry and Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - David J Masiello
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Katherine A Willets
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
33
|
Dongare PD, Zhao Y, Renard D, Yang J, Neumann O, Metz J, Yuan L, Alabastri A, Nordlander P, Halas NJ. A 3D Plasmonic Antenna-Reactor for Nanoscale Thermal Hotspots and Gradients. ACS NANO 2021; 15:8761-8769. [PMID: 33900744 DOI: 10.1021/acsnano.1c01046] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plasmonic nanoantennas focus light below the diffraction limit, creating strong field enhancements, typically within a nanoscale junction. Placing a nanostructure within the junction can greatly enhance the nanostructure's innate optical absorption, resulting in intense photothermal heating that could ultimately compromise both the nanostructure and the nanoantenna. Here, we demonstrate a three-dimensional "antenna-reactor" geometry that results in large nanoscale thermal gradients, inducing large local temperature increases in the confined nanostructure reactor while minimizing the temperature increase of the surrounding antenna. The nanostructure is supported on an insulating substrate within the antenna gap, while the antenna maintains direct contact with an underlying thermal conductor. Elevated local temperatures are quantified, and high local temperature gradients that thermally reshape only the internal reactor element within each antenna-reactor structure are observed. We also show that high local temperature increases of nominally 200 °C are achievable within antenna-reactors patterned into large extended arrays. This simple strategy can facilitate standoff optical generation of high-temperature hotspots, which may be useful in applications such as small-volume, high-throughput chemical processes, where reaction efficiencies depend exponentially on local temperature.
Collapse
|
34
|
Abstract
ConspectusHot carriers are highly energetic species that can perform a large spectrum of chemical reactions. They are generated on the surfaces of nanostructures via direct interband, phonon-assisted intraband, and geometry-assisted decay of localized surface plasmon resonances (LSPRs), which are coherent oscillations of conductive electrons. LSPRs can be induced on the surface of noble metal (Ag or Au) nanostructures by illuminating the surfaces with electromagnetic irradiation. These noble metals can be coupled with catalytic metals, such as Pt, Pd, and Ru, to develop bimetallic nanostructures with unique catalytic activities. The plasmon-driven catalysis on bimetallic nanostructures is light-driven, which essentially enables green chemistry in organic synthesis. During the past decade, surface-enhanced Raman spectroscopy (SERS) has been actively utilized to study the mechanisms of plasmon-driven reactions on mono- and bimetallic nanostructures. SERS has provided a wealth of knowledge about the mechanisms of numerous plasmon-driven redox, coupling, and scissoring reactions. However, the nanoscale catalytic properties of both mono- and bimetallic nanostructures as well as the underlying physical cause of their catalytic reactivity and selectivity remained unclear for decades.In this Account, we focus on the most recent findings reported by our and other research groups that shed light on the nanoscale properties of mono- and bimetallic nanostructures. This information was revealed by tip-enhanced Raman spectroscopy (TERS), a modern analytical technique that has single-molecule sensitivity and subnanometer spatial resolution. TERS findings have shown that plasmonic reactivity and the selectivity of bimetallic nanostructures are governed by the nature of the catalytic metal and the strength of the rectified electric field on their surfaces. TERS has also revealed that the catalytic properties of bimetallic nanostructures directly depend on the interplay between the catalytic and plasmonic metals. We anticipate that these findings will be used to tailor synthetic approaches that are used to fabricate novel nanostructures with desired catalytic properties. The experimental and theoretical results discussed in this Account will facilitate a better understanding of TERS and explain artifacts that could be encountered upon TERS imaging of a large variety of samples. Consequently, plasmon-driven chemistry should be considered as an essential part of near-field microscopy.
Collapse
Affiliation(s)
- Zhandong Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
- The Institute for Quantum Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
35
|
Warkentin CL, Yu Z, Sarkar A, Frontiera RR. Decoding Chemical and Physical Processes Driving Plasmonic Photocatalysis Using Surface-Enhanced Raman Spectroscopies. Acc Chem Res 2021; 54:2457-2466. [PMID: 33957039 DOI: 10.1021/acs.accounts.1c00088] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In order to mitigate the advancing effects of environmental pollution and climate change, immediate action is needed on social, political, and industrial fronts. One segment of industry that contributes significantly to this current crisis is bulk chemical production, where fossil fuels are primarily used to drive reactions at high temperatures and pressures. Toward mitigating the environmental impact of these processes, solar energy has shown promise as a clean and renewable alternative for the photocatalytic synthesis of chemicals. In recent decades, plasmonic materials have emerged as candidates for making this a reality. Because of their unique and tunable interactions with light, plasmonic materials can be used to create energy-rich nanoscale environments. In fact, there is a growing library of chemical reactions that can utilize this plasmonic energy to drive industrially relevant chemistries under standard ambient conditions. However, the efficiency of these reactions is typically low, and a lack of mechanistic understanding of how energy is transferred from plasmons to molecules hinders reaction optimization for use on large scales.To decode the complex chemical and physical processes involved in plasmon-driven photocatalytic reactions, we use surface-enhanced Raman spectroscopy (SERS). In this Account, we detail SERS techniques that we have used and are developing to study molecular transformations, charge transfer, and plasmonic heating in dynamic plasmon-molecule systems on time scales ranging from seconds to femtoseconds. SERS is an ideal analytical tool for understanding plasmon-molecule interactions, as it gives highly specific information about molecular vibrations with high sensitivity, down to the single-molecule level. Importantly, SERS allows for simultaneous pumping of a plasmonic resonance and probing of the enhanced Raman signal from nearby molecules. We have already used these techniques to study a plasmon-driven methyl migration with nanoscale spatial specificity and to understand the charge transfer mechanism and role of heating in the plasmon-mediated dimerization of 4-nitrobenzenethiol. Importantly, from this work we conclude that direct charge transfer, not heating, may play a significant role in driving many plasmon-driven reactions. Despite these recent insights, more work is needed in order to obtain a comprehensive understanding of the broad range of chemistries accessible in plasmon-molecule systems. In the future, our continued development of these SERS-based techniques shows promise in answering questions regarding direct charge transfer, resonance energy transfer, and excitation conditions in plasmon-mediated chemistries.
Collapse
Affiliation(s)
| | - Ziwei Yu
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Arghya Sarkar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Renee R. Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
36
|
van Swieten T, van Omme T, van den Heuvel DJ, Vonk SJ, Spruit RG, Meirer F, Garza HHP, Weckhuysen BM, Meijerink A, Rabouw FT, Geitenbeek RG. Mapping Elevated Temperatures with a Micrometer Resolution Using the Luminescence of Chemically Stable Upconversion Nanoparticles. ACS APPLIED NANO MATERIALS 2021; 4:4208-4215. [PMID: 34085030 PMCID: PMC8162758 DOI: 10.1021/acsanm.1c00657] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/15/2021] [Indexed: 05/16/2023]
Abstract
The temperature-sensitive luminescence of nanoparticles enables their application as remote thermometers. The size of these nanothermometers makes them ideal to map temperatures with a high spatial resolution. However, high spatial resolution mapping of temperatures >373 K has remained challenging. Here, we realize nanothermometry with high spatial resolutions at elevated temperatures using chemically stable upconversion nanoparticles and confocal microscopy. We test this method on a microelectromechanical heater and study the temperature homogeneity. Our experiments reveal distortions in the luminescence spectra that are intrinsic to high-resolution measurements of samples with nanoscale photonic inhomogeneities. In particular, the spectra are affected by the high-power excitation as well as by scattering and reflection of the emitted light. The latter effect has an increasing impact at elevated temperatures. We present a procedure to correct these distortions. As a result, we extend the range of high-resolution nanothermometry beyond 500 K with a precision of 1-4 K. This work will improve the accuracy of nanothermometry not only in micro- and nanoelectronics but also in other fields with photonically inhomogeneous substrates.
Collapse
Affiliation(s)
- Thomas
P. van Swieten
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht 3584 CC, The Netherlands
| | - Tijn van Omme
- DENSsolutions
B.V., Informaticalaan 12, Delft 2628 ZD, The Netherlands
| | - Dave J. van den Heuvel
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht 3584 CC, The Netherlands
| | - Sander J.W. Vonk
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht 3584 CC, The Netherlands
| | - Ronald G. Spruit
- DENSsolutions
B.V., Informaticalaan 12, Delft 2628 ZD, The Netherlands
| | - Florian Meirer
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | | | - Bert M. Weckhuysen
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - Andries Meijerink
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht 3584 CC, The Netherlands
| | - Freddy T. Rabouw
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - Robin G. Geitenbeek
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| |
Collapse
|
37
|
Guselnikova O, Audran G, Joly JP, Trelin A, Tretyakov EV, Svorcik V, Lyutakov O, Marque SRA, Postnikov P. Establishing plasmon contribution to chemical reactions: alkoxyamines as a thermal probe. Chem Sci 2021; 12:4154-4161. [PMID: 34163688 PMCID: PMC8179441 DOI: 10.1039/d0sc06470j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/22/2021] [Indexed: 11/21/2022] Open
Abstract
The nature of plasmon interaction with organic molecules is a subject of fierce discussion about thermal and non-thermal effects. Despite the abundance of physical methods for evaluating the plasmonic effects, chemical insight has not been reported yet. In this contribution, we propose a chemical insight into the plasmon effect on reaction kinetics using alkoxyamines as an organic probe through their homolysis, leading to the generation of nitroxide radicals. Alkoxyamines (TEMPO- and SG1-substituted) with well-studied homolysis behavior are covalently attached to spherical Au nanoparticles. We evaluate the kinetic parameters of homolysis of alkoxyamines attached on a plasmon-active surface under heating and irradiation at a wavelength of plasmon resonance. The estimation of kinetic parameters from experiments with different probes (Au-TEMPO, Au-SG1, Au-SG1-TEMPO) allows revealing the apparent differences associated with the non-thermal contribution of plasmon activation. Moreover, our findings underline the dependency of kinetic parameters on the structure of organic molecules, which highlights the necessity to consider the nature of organic transformations and molecular structure in plasmon catalysis.
Collapse
Affiliation(s)
- Olga Guselnikova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Russian Federation
| | - Gérard Audran
- Aix-Marseille Univ, CNRS, ICR case 551 Avenue Escadrille Normandie-Niemen 13397 Marseille Cedex 20 France
| | - Jean-Patrick Joly
- Aix-Marseille Univ, CNRS, ICR case 551 Avenue Escadrille Normandie-Niemen 13397 Marseille Cedex 20 France
| | - Andrii Trelin
- Department of Solid-State Engineering, University of Chemistry and Technology Prague Czech Republic
| | - Evgeny V Tretyakov
- N.D. Zelinsky Institute of Organic Chemistry Leninsky Prospect, 47 Moscow 119991 Russia
| | - Vaclav Svorcik
- Department of Solid-State Engineering, University of Chemistry and Technology Prague Czech Republic
| | - Oleksiy Lyutakov
- Department of Solid-State Engineering, University of Chemistry and Technology Prague Czech Republic
| | - Sylvain R A Marque
- Aix-Marseille Univ, CNRS, ICR case 551 Avenue Escadrille Normandie-Niemen 13397 Marseille Cedex 20 France
| | - Pavel Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Russian Federation
- Department of Solid-State Engineering, University of Chemistry and Technology Prague Czech Republic
| |
Collapse
|
38
|
Yang W, Liu Y, McBride JR, Lian T. Ultrafast and Long-Lived Transient Heating of Surface Adsorbates on Plasmonic Semiconductor Nanocrystals. NANO LETTERS 2021; 21:453-461. [PMID: 33263400 DOI: 10.1021/acs.nanolett.0c03911] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plasmonic photocatalysts have demonstrated promising potential for enhancing the selectivity and efficiency of important chemical transformations. However, the relative contributions of nonphotothermal (i.e., hot carrier) and photothermal pathways remain a question of intense current debate, and the time scale and extent of surface adsorbate temperature change are still poorly understood. Using p-type Cu2-xSe nanocrystals as a semiconductor plasmonic platform and adsorbed Rhodamine B as a surface thermometer and hot carrier acceptor, we measure directly by transient absorption spectroscopy that the adsorbate temperature rises and decays with time constants of 1.4 ± 0.4 and 471 ± 126 ps, respectively, after the excitation of Cu2-xSe plasmon band at 800 nm. These time constants are similar to those for Cu2-xSe lattice temperature, suggesting that fast thermal equilibrium between the adsorbates and nanocrystal lattice is the main adsorbate heating pathway. This finding provides insights into the transient heating effect on surface adsorbates and their roles in plasmonic photocatalysis.
Collapse
Affiliation(s)
- Wenxing Yang
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
- Department of Chemistry - Ångström Laboratory, Physical Chemistry, Uppsala University, SE-75120 Uppsala, Sweden
| | - Yawei Liu
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - James R McBride
- Department of Chemistry, The Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| |
Collapse
|
39
|
Koopman W, Sarhan RM, Stete F, Schmitt CNZ, Bargheer M. Decoding the kinetic limitations of plasmon catalysis: the case of 4-nitrothiophenol dimerization. NANOSCALE 2020; 12:24411-24418. [PMID: 33300518 DOI: 10.1039/d0nr06039a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plasmon-mediated chemistry presents an intriguing new approach to photocatalysis. However, the reaction enhancement mechanism is not well understood. In particular, the relative importance of plasmon-generated hot charges and photoheating is strongly debated. In this article, we evaluate the influence of microscopic photoheating on the kinetics of a model plasmon-catalyzed reaction: the light-induced 4-nitrothiophenol (4NTP) to 4,4'-dimercaptoazobenzene (DMAB) dimerization. Direct measurement of the reaction temperature by nanoparticle Raman-thermometry demonstrated that the thermal effect plays a dominant role in the kinetic limitations of this multistep reaction. At the same time, no reaction is possible by dark heating to the same temperature. This shows that plasmon nanoparticles have the unique ability to enhance several steps of complex tandem reactions simultaneously. These results provide insight into the role of hot electron and thermal effects in plasmonic catalysis of complex organic reactions, which is highly important for the ongoing development of plasmon based photosynthesis.
Collapse
Affiliation(s)
- Wouter Koopman
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| | | | | | | | | |
Collapse
|
40
|
Cortés E, Besteiro LV, Alabastri A, Baldi A, Tagliabue G, Demetriadou A, Narang P. Challenges in Plasmonic Catalysis. ACS NANO 2020; 14:16202-16219. [PMID: 33314905 DOI: 10.1021/acsnano.0c08773] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The use of nanoplasmonics to control light and heat close to the thermodynamic limit enables exciting opportunities in the field of plasmonic catalysis. The decay of plasmonic excitations creates highly nonequilibrium distributions of hot carriers that can initiate or catalyze reactions through both thermal and nonthermal pathways. In this Perspective, we present the current understanding in the field of plasmonic catalysis, capturing vibrant debates in the literature, and discuss future avenues of exploration to overcome critical bottlenecks. Our Perspective spans first-principles theory and computation of correlated and far-from-equilibrium light-matter interactions, synthesis of new nanoplasmonic hybrids, and new steady-state and ultrafast spectroscopic probes of interactions in plasmonic catalysis, recognizing the key contributions of each discipline in realizing the promise of plasmonic catalysis. We conclude with our vision for fundamental and technological advances in the field of plasmon-driven chemical reactions in the coming years.
Collapse
Affiliation(s)
- Emiliano Cortés
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 München, Germany
| | | | - Alessandro Alabastri
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street MS-378, Houston, Texas 77005, United States
| | - Andrea Baldi
- DIFFER - Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven, The Netherlands
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Giulia Tagliabue
- Laboratory of Nanoscience for Energy Technologies (LNET), EPFL, 1015 Lausanne, Switzerland
| | - Angela Demetriadou
- School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Prineha Narang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
41
|
Single Particle Approaches to Plasmon-Driven Catalysis. NANOMATERIALS 2020; 10:nano10122377. [PMID: 33260302 PMCID: PMC7761459 DOI: 10.3390/nano10122377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 11/22/2022]
Abstract
Plasmonic nanoparticles have recently emerged as a promising platform for photocatalysis thanks to their ability to efficiently harvest and convert light into highly energetic charge carriers and heat. The catalytic properties of metallic nanoparticles, however, are typically measured in ensemble experiments. These measurements, while providing statistically significant information, often mask the intrinsic heterogeneity of the catalyst particles and their individual dynamic behavior. For this reason, single particle approaches are now emerging as a powerful tool to unveil the structure-function relationship of plasmonic nanocatalysts. In this Perspective, we highlight two such techniques based on far-field optical microscopy: surface-enhanced Raman spectroscopy and super-resolution fluorescence microscopy. We first discuss their working principles and then show how they are applied to the in-situ study of catalysis and photocatalysis on single plasmonic nanoparticles. To conclude, we provide our vision on how these techniques can be further applied to tackle current open questions in the field of plasmonic chemistry.
Collapse
|
42
|
Sartin MM, Su HS, Wang X, Ren B. Tip-enhanced Raman spectroscopy for nanoscale probing of dynamic chemical systems. J Chem Phys 2020; 153:170901. [PMID: 33167627 DOI: 10.1063/5.0027917] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Dynamics are fundamental to all aspects of chemistry and play a central role in the mechanism and product distribution of a chemical reaction. All dynamic processes are influenced by the local environment, so it is of fundamental and practical value to understand the structure of the environment and the dynamics with nanoscale resolution. Most techniques for measuring dynamic processes have microscopic spatial resolution and can only measure the average behavior of a large ensemble of sites within their sampling volumes. Tip-enhanced Raman spectroscopy (TERS) is a powerful tool for overcoming this limitation due to its combination of high chemical specificity and spatial resolution that is on the nanometer scale. Adapting it for the study of dynamic systems remains a work in progress, but the increasing sophistication of TERS is making such studies more routine, and there are now growing efforts to use TERS to examine more complex processes. This Perspective aims to promote development in this area of research by highlighting recent progress in using TERS to understand reacting and dynamic systems, ranging from simple model reactions to complex processes with practical applications. We discuss the unique challenges and opportunities that TERS presents for future studies.
Collapse
Affiliation(s)
- Matthew M Sartin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hai-Sheng Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
43
|
Yuan L, Lou M, Clark BD, Lou M, Zhou L, Tian S, Jacobson CR, Nordlander P, Halas NJ. Morphology-Dependent Reactivity of a Plasmonic Photocatalyst. ACS NANO 2020; 14:12054-12063. [PMID: 32790328 DOI: 10.1021/acsnano.0c05383] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The shape of a plasmonic nanoparticle strongly controls its light-matter interaction, which in turn affects how specific morphologies may be used in applications such as sensing, photodetection, and active pixel displays. Here, we show that particle shape also controls plasmonic photocatalytic activity. Three different Al nanocrystal morphologies, octopods, nanocubes, and nanocrystals, all with very similar plasmon resonance frequencies, were used as photocatalysts for the H2 dissociation reaction. We observe widely varying reaction rates for the three different morphologies. Octopods show a 10 times higher reaction rate than nanocrystals and a 5 times higher rate than nanocubes, with lower apparent activation energies than either nanocubes or nanocrystals by 45% and 49%, respectively. A theoretical model of hot electron direct transfer from photoexcited Al nanoparticles to H2 molecules is consistent with this observed morphological dependence. This research strongly suggests that nanoparticle geometry, in addition to plasmon resonance energy, is a critical factor in plasmonic photocatalyst design.
Collapse
Affiliation(s)
- Lin Yuan
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Minhan Lou
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Benjamin D Clark
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Minghe Lou
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Linan Zhou
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Shu Tian
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Christian R Jacobson
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Peter Nordlander
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Physics & Astronomy, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Naomi J Halas
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Physics & Astronomy, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
44
|
Schürmann R, Luxford TFM, Vinklárek IS, Kočišek J, Zawadzki M, Bald I. Interaction of 4-nitrothiophenol with low energy electrons: Implications for plasmon mediated reactions. J Chem Phys 2020; 153:104303. [DOI: 10.1063/5.0018784] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Robin Schürmann
- Physical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Thomas F. M. Luxford
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Ivo S. Vinklárek
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Jaroslav Kočišek
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Mateusz Zawadzki
- Department of Atomic, Molecular and Optical Physics, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Ilko Bald
- Physical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| |
Collapse
|
45
|
Qi Y, Brasiliense V, Ueltschi TW, Park JE, Wasielewski MR, Schatz GC, Van Duyne RP. Plasmon-Driven Chemistry in Ferri-/Ferrocyanide Gold Nanoparticle Oligomers: A SERS Study. J Am Chem Soc 2020; 142:13120-13129. [DOI: 10.1021/jacs.0c05031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yue Qi
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Vitor Brasiliense
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Tyler W. Ueltschi
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ji Eun Park
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael R. Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - George C. Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Richard P. Van Duyne
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
46
|
Zhang C, Kong T, Fu Z, Zhang Z, Zheng H. Hot electron and thermal effects in plasmonic catalysis of nanocrystal transformation. NANOSCALE 2020; 12:8768-8774. [PMID: 32101225 DOI: 10.1039/c9nr10041e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plasmonic metal nanoparticles have the ability to harvest visible light and cause effective energy conversion, and they are considered as promising catalysts to drive chemical reactions. Although plasmonic catalysis has been widely used to mediate the reaction of organic molecules, the mechanism of contribution of thermal and hot carriers remains unclear. The catalysis of hot carriers is normally proposed as the dominant role of plasmonic catalysis, while the contribution of plasmonic thermal effects is often ignored, since the molecules on the metal surface are unstable at high temperatures. Here, plasmon catalytic nanocrystal transformation including oxidation reaction and optimization of the crystal structure is employed to investigate the plasmonic contributions of hot electron and thermal effects in plasmonic catalysis. It is found that the transformation rate and the corresponding product are very different with and without the assistance of hot electron catalysis. The thermal effect plays a dominant role in plasmon-catalyzed material transformation, and hot electrons can promote the oxidation reaction by facilitating the generation of active oxygen. The investigation provides insight into the specific role of hot electron and thermal effects in plasmonic catalysis, which is critically important for exploiting the highly localized fast plasmonic thermal effect and for designing energy-efficient plasmonic catalysts.
Collapse
Affiliation(s)
- Chengyun Zhang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China.
| | | | | | | | | |
Collapse
|
47
|
Schorr NB, Counihan MJ, Bhargava R, Rodríguez-López J. Impact of Plasmonic Photothermal Effects on the Reactivity of Au Nanoparticle Modified Graphene Electrodes Visualized Using Scanning Electrochemical Microscopy. Anal Chem 2020; 92:3666-3673. [DOI: 10.1021/acs.analchem.9b04754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, Bazan GC, Bell SEJ, Boisen A, Brolo AG, Choo J, Cialla-May D, Deckert V, Fabris L, Faulds K, García de Abajo FJ, Goodacre R, Graham D, Haes AJ, Haynes CL, Huck C, Itoh T, Käll M, Kneipp J, Kotov NA, Kuang H, Le Ru EC, Lee HK, Li JF, Ling XY, Maier SA, Mayerhöfer T, Moskovits M, Murakoshi K, Nam JM, Nie S, Ozaki Y, Pastoriza-Santos I, Perez-Juste J, Popp J, Pucci A, Reich S, Ren B, Schatz GC, Shegai T, Schlücker S, Tay LL, Thomas KG, Tian ZQ, Van Duyne RP, Vo-Dinh T, Wang Y, Willets KA, Xu C, Xu H, Xu Y, Yamamoto YS, Zhao B, Liz-Marzán LM. Present and Future of Surface-Enhanced Raman Scattering. ACS NANO 2020; 14:28-117. [PMID: 31478375 PMCID: PMC6990571 DOI: 10.1021/acsnano.9b04224] [Citation(s) in RCA: 1441] [Impact Index Per Article: 360.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/03/2019] [Indexed: 04/14/2023]
Abstract
The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.
Collapse
Affiliation(s)
- Judith Langer
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
| | | | - Javier Aizpurua
- Materials
Physics Center (CSIC-UPV/EHU), and Donostia
International Physics Center, Paseo Manuel de Lardizabal 5, Donostia-San
Sebastián 20018, Spain
| | - Ramon A. Alvarez-Puebla
- Departamento
de Química Física e Inorgánica and EMaS, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Baptiste Auguié
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Guillermo C. Bazan
- Department
of Materials and Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106-9510, United States
| | - Steven E. J. Bell
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Anja Boisen
- Department
of Micro- and Nanotechnology, The Danish National Research Foundation
and Villum Foundation’s Center for Intelligent Drug Delivery
and Sensing Using Microcontainers and Nanomechanics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Alexandre G. Brolo
- Department
of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3 V6, Canada
- Center
for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Jaebum Choo
- Department
of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Dana Cialla-May
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Volker Deckert
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Laura Fabris
- Department
of Materials Science and Engineering, Rutgers
University, 607 Taylor Road, Piscataway New Jersey 08854, United States
| | - Karen Faulds
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - F. Javier García de Abajo
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
- The Barcelona
Institute of Science and Technology, Institut
de Ciencies Fotoniques, Castelldefels (Barcelona) 08860, Spain
| | - Royston Goodacre
- Department
of Biochemistry, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Duncan Graham
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Amanda J. Haes
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Christy L. Haynes
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christian Huck
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Tamitake Itoh
- Nano-Bioanalysis
Research Group, Health Research Institute, National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan
| | - Mikael Käll
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Janina Kneipp
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Str. 2, Berlin-Adlershof 12489, Germany
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hua Kuang
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Eric C. Le Ru
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Hiang Kwee Lee
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Jian-Feng Li
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Yi Ling
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Stefan A. Maier
- Chair in
Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich 80539, Germany
| | - Thomas Mayerhöfer
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Martin Moskovits
- Department
of Chemistry & Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Kei Murakoshi
- Department
of Chemistry, Faculty of Science, Hokkaido
University, North 10 West 8, Kita-ku, Sapporo,
Hokkaido 060-0810, Japan
| | - Jwa-Min Nam
- Department
of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Yukihiro Ozaki
- Department
of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | | | - Jorge Perez-Juste
- Departamento
de Química Física and CINBIO, University of Vigo, Vigo 36310, Spain
| | - Juergen Popp
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Annemarie Pucci
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Stephanie Reich
- Department
of Physics, Freie Universität Berlin, Berlin 14195, Germany
| | - Bin Ren
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - George C. Schatz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Timur Shegai
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Sebastian Schlücker
- Physical
Chemistry I, Department of Chemistry and Center for Nanointegration
Duisburg-Essen, University of Duisburg-Essen, Essen 45141, Germany
| | - Li-Lin Tay
- National
Research Council Canada, Metrology Research
Centre, Ottawa K1A0R6, Canada
| | - K. George Thomas
- School
of Chemistry, Indian Institute of Science
Education and Research Thiruvananthapuram, Vithura Thiruvananthapuram 695551, India
| | - Zhong-Qun Tian
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Richard P. Van Duyne
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Tuan Vo-Dinh
- Fitzpatrick
Institute for Photonics, Department of Biomedical Engineering, and
Department of Chemistry, Duke University, 101 Science Drive, Box 90281, Durham, North Carolina 27708, United States
| | - Yue Wang
- Department
of Chemistry, College of Sciences, Northeastern
University, Shenyang 110819, China
| | - Katherine A. Willets
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Chuanlai Xu
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Hongxing Xu
- School
of Physics and Technology and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yikai Xu
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Yuko S. Yamamoto
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Bing Zhao
- State Key
Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
49
|
Baffou G, Bordacchini I, Baldi A, Quidant R. Simple experimental procedures to distinguish photothermal from hot-carrier processes in plasmonics. LIGHT, SCIENCE & APPLICATIONS 2020; 9:108. [PMID: 32612818 PMCID: PMC7321931 DOI: 10.1038/s41377-020-00345-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/27/2020] [Accepted: 06/08/2020] [Indexed: 05/11/2023]
Abstract
Light absorption and scattering of plasmonic metal nanoparticles can lead to non-equilibrium charge carriers, intense electromagnetic near-fields, and heat generation, with promising applications in a vast range of fields, from chemical and physical sensing to nanomedicine and photocatalysis for the sustainable production of fuels and chemicals. Disentangling the relative contribution of thermal and non-thermal contributions in plasmon-driven processes is, however, difficult. Nanoscale temperature measurements are technically challenging, and macroscale experiments are often characterized by collective heating effects, which tend to make the actual temperature increase unpredictable. This work is intended to help the reader experimentally detect and quantify photothermal effects in plasmon-driven chemical reactions, to discriminate their contribution from that due to photochemical processes and to cast a critical eye on the current literature. To this aim, we review, and in some cases propose, seven simple experimental procedures that do not require the use of complex or expensive thermal microscopy techniques. These proposed procedures are adaptable to a wide range of experiments and fields of research where photothermal effects need to be assessed, such as plasmonic-assisted chemistry, heterogeneous catalysis, photovoltaics, biosensing, and enhanced molecular spectroscopy.
Collapse
Affiliation(s)
- Guillaume Baffou
- Institut Fresnel, CNRS, Aix Marseille University, Centrale Marseille, Marseille, France
| | - Ivan Bordacchini
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Andrea Baldi
- DIFFER – Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven, The Netherlands
- Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Romain Quidant
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland
| |
Collapse
|
50
|
Kumar N, Thomas S, Rao R, Maiti N, Kshirsagar RJ. Plasmon-Induced Dimerization of Thiazolidine-2,4-dione on Silver Nanoparticles: Revealed by Surface-Enhanced Raman Scattering Study. J Phys Chem A 2019; 123:9770-9780. [PMID: 31633920 DOI: 10.1021/acs.jpca.9b07367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Surface-enhanced Raman scattering (SERS) study carried on thiazolidine-2,4-dione (TZD), a pharmacologically active heterocyclic compound, points to the presence of TZD dimer formed by plasmon-induced dimerization reaction of TZD on the surface of silver nanoparticles (Ag NP) at TZD concentrations of 10-3 M and above. The evidence for the presence of dimer was obtained from the appearance of a prominent band at 1566 cm-1 corresponding to the ν(C═C) band (a characteristic vibrational band observed for the Knoevenagel condensation reaction products) which is absent in the normal Raman scattering (NRS) spectra of TZD solid/solution. The observed spectrum compares well with the calculated spectrum of dimer obtained using density functional theory (DFT) calculations. The dimerization reaction is plausibly induced by the transfer of hot electrons generated by the nonradiative plasmon decay of Ag NP, and the proposed reaction mechanism is discussed. However, at lower concentrations (10-4-10-6 M), the characteristic dimer peak (1566 cm-1) is absent and the SERS spectra resemble more the NRS spectrum of TZD with a few changes. The spectral analysis supported by DFT calculations showed that TZD molecules undergo deprotonation and get adsorbed on the Ag NP surface as enolate forms. The proximity of TZD molecules on the surface of Ag NP is a necessary factor for the dimerization to occur. At lower concentrations, most molecules lie apart and reactions between molecules become less feasible, and they remain as monomers on the surface, while at higher concentrations the molecules are closer to each other on the Ag NP surface favoring the dimerization reaction to take place, leading to the formation of the dimer.
Collapse
Affiliation(s)
- Naveen Kumar
- Homi Bhabha National Institute , Anushaktinagar, Mumbai , 400 094 , India
| | | | - Rekha Rao
- Homi Bhabha National Institute , Anushaktinagar, Mumbai , 400 094 , India
| | - N Maiti
- Homi Bhabha National Institute , Anushaktinagar, Mumbai , 400 094 , India
| | - R J Kshirsagar
- Homi Bhabha National Institute , Anushaktinagar, Mumbai , 400 094 , India
| |
Collapse
|