1
|
Wang J, Huang Y, Gao G, Liu H, Huang Y, Wang T, Li Z, Shu J, Zhang T. Accordion-Structured Hydrogel Battery Capable of Maintaining Ion Gradients for Extended Periods. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58617-58627. [PMID: 39423029 DOI: 10.1021/acsami.4c12092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Inspired by the electric eel, biomimetic, biocompatible energy storage, and power generation technologies show promise for applications in portable and wearable electronic devices by mimicking the electric cell tandem structure of the electric eel and utilizing ionic gradients between hydrogel compartments to generate electricity. Previously, inspired by the unique morphology of the torpedo fish, an artificial flexible power source that can output a large current was introduced. This power source uses a hydrogel-infused paper hybrid to create, accordionize, and reconfigure arbitrary-sized gel films in series and parallel, and the power output of the flexible battery was significantly enhanced. However, maintaining the ionic gradient of hydrogel batteries during storage remains a challenge. Here, by borrowing the isolation properties of the accordion structure, we propose a unique paper accordion structure design to fabricate an Accordion-Structured Hydrogel Battery (ASHB). Pretreatment of hydrogel-injected paper strips improved storage stability and maintained the ionic gradient of hydrogel cells in the nonworking state, so that the cell's gradient retention time after the assembly is completed is increased by at least 30 h compared to stacking, and its per-cell operating voltage is still able to reach. The design also makes the assembly and use of flexible batteries more modular and holistic. In the future, it may be possible to power the cells with ions generated by the human body or the metabolites of living organisms, leading to the development of more efficient, sustainable, and eco-friendly power solutions.
Collapse
Affiliation(s)
- Junyao Wang
- College of Mechanical Engineering, Northeast Electric Power University, Jilin 132013, China
| | - Yuyang Huang
- College of Mechanical Engineering, Northeast Electric Power University, Jilin 132013, China
| | - Guangze Gao
- College of Mechanical Engineering, Northeast Electric Power University, Jilin 132013, China
| | - Huan Liu
- College of Mechanical Engineering, Northeast Electric Power University, Jilin 132013, China
| | - Yuhan Huang
- College of Mechanical Engineering, Northeast Electric Power University, Jilin 132013, China
| | - Taipeng Wang
- College of Mechanical Engineering, Northeast Electric Power University, Jilin 132013, China
| | - Zhida Li
- College of Mechanical Engineering, Northeast Electric Power University, Jilin 132013, China
| | - Jianlang Shu
- College of Mechanical Engineering, Northeast Electric Power University, Jilin 132013, China
| | - Tinggang Zhang
- College of Mechanical Engineering, Northeast Electric Power University, Jilin 132013, China
| |
Collapse
|
2
|
Ghosh K, Morgan A, Garcia-Casas X, Kar-Narayan S. Tailoring of Self-Healable Polydimethylsiloxane Films for Mechanical Energy Harvesting. ACS APPLIED ENERGY MATERIALS 2024; 7:8185-8195. [PMID: 39421275 PMCID: PMC11480939 DOI: 10.1021/acsaem.4c01275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/17/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024]
Abstract
Triboelectric nanogenerators (TENGs) have emerged as potential energy sources, as they are capable of harvesting energy from low-frequency mechanical actions such as biological movements, moving parts of machines, mild wind, rain droplets, and others. However, periodic mechanical motion can have a detrimental effect on the triboelectric materials that constitute a TENG device. This study introduces a self-healable triboelectric layer consisting of an Ecoflex-coated self-healable polydimethylsiloxane (SH-PDMS) polymer that can autonomously repair mechanical injury at room temperature and regain its functionality. Different compositions of bis(3-aminopropyl)-terminated PDMS and 1,3,5-triformylbenzene were used to synthesize SH-PDMS films to determine the optimum healing time. The SH-PDMS films contain reversible imine bonds that break when the material is damaged and are subsequently restored by an autonomous healing process. However, the inherent stickiness of the SH-PDMS surface itself renders the material unsuitable for application in TENGs despite its attractive self-healing capability. We show that spin-coating a thin layer (≈32 μm) of Ecoflex on top of the SH-PDMS eliminates the stickiness issue while retaining the functionality of a triboelectric material. TENGs based on Ecoflex/SH-PDMS and nylon 6 films show excellent output and fatigue performance. Even after incisions were introduced at several locations in the Ecoflex/SH-PDMS film, the TENG spontaneously attained its original output performance after a period of 24 h of healing. This study presents a viable approach to enhancing the longevity of TENGs to harvest energy from continuous mechanical actions, paving the way for durable, self-healable mechanical energy harvesters.
Collapse
Affiliation(s)
- Kalyan Ghosh
- Department
of Materials Science & Metallurgy, University
of Cambridge, Cambridge CB3 0FS, United
Kingdom
| | - Alexander Morgan
- Department
of Materials Science & Metallurgy, University
of Cambridge, Cambridge CB3 0FS, United
Kingdom
| | - Xabier Garcia-Casas
- Nanotechnology
on Surfaces and Plasma Group, Materials
Science Institute of Seville (CSIC-University of Seville), C/Américo Vespucio 49, 41092 Seville, Spain
| | - Sohini Kar-Narayan
- Department
of Materials Science & Metallurgy, University
of Cambridge, Cambridge CB3 0FS, United
Kingdom
| |
Collapse
|
3
|
Lin Y, Wang H, Qiu W, Ye C, Kong D. Liquid Metal-Based Self-Healing Conductors for Flexible and Stretchable Electronics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43083-43092. [PMID: 39115969 DOI: 10.1021/acsami.4c10541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Flexible and stretchable electronics rely on compliant conductors as essential building materials. However, these materials are susceptible to wear and tear, leading to degradation over time. In response to this concern, self-healing conductors have been developed to prolong the lifespan of functional devices. These conductors can autonomously restore their properties following damage. Conventional self-healing conductors typically comprise solid conductive fillers and healing agents dispersed within polymer matrices. However, the solid additives increase the stiffness and reduce the stretchability of the resulting composites. There is growing interest in utilizing gallium-based liquid metal alloys due to their exceptional electrical conductivity and liquid-phase deformability. These liquid metals are considered attractive candidates for developing compliant conductors capable of automatic recovery. This perspective delves into the rapidly advancing field of liquid metal-based self-healing conductors, exploring their design, fabrication, and critical applications. Furthermore, this article also addresses the current challenges and future directions in this active area of research.
Collapse
Affiliation(s)
- Yong Lin
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Hao Wang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Weijie Qiu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Chenyang Ye
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Yu R, Feng S, Sun Q, Xu H, Jiang Q, Guo J, Dai B, Cui D, Wang K. Ambient energy harvesters in wearable electronics: fundamentals, methodologies, and applications. J Nanobiotechnology 2024; 22:497. [PMID: 39164735 PMCID: PMC11334586 DOI: 10.1186/s12951-024-02774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
In recent years, wearable sensor devices with exceptional portability and the ability to continuously monitor physiological signals in real time have played increasingly prominent roles in the fields of disease diagnosis and health management. This transformation has been largely facilitated by materials science and micro/nano-processing technologies. However, as this technology continues to evolve, the demand for multifunctionality and flexibility in wearable devices has become increasingly urgent, thereby highlighting the problem of stable and sustainable miniaturized power supplies. Here, we comprehensively review the current mainstream energy technologies for powering wearable sensors, including batteries, supercapacitors, solar cells, biofuel cells, thermoelectric generators, radio frequency energy harvesters, and kinetic energy harvesters, as well as hybrid power systems that integrate multiple energy conversion modes. In addition, we consider the energy conversion mechanisms, fundamental characteristics, and typical application cases of these energy sources across various fields. In particular, we focus on the crucial roles of different materials, such as nanomaterials and nano-processing techniques, for enhancing the performance of devices. Finally, the challenges that affect power supplies for wearable electronic products and their future developmental trends are discussed in order to provide valuable references and insights for researchers in related fields.
Collapse
Affiliation(s)
- Ruoyao Yu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaoqing Feng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qingwen Sun
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Xu
- School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qixia Jiang
- Department of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Jinhong Guo
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Dai
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Daxiang Cui
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kan Wang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
5
|
Liu F, Ye P, Cheng Q, Zhang D, Nie Y, Shen X, Zhu M, Xu H, Li S. By Introducing Multiple Hydrogen Bonds Endows MOF Electrodes with an Enhanced Structural Stability. Inorg Chem 2024; 63:14630-14640. [PMID: 39033405 DOI: 10.1021/acs.inorgchem.4c02159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Recently, metal-organic frameworks (MOFs) have attracted great interest in energy storage areas. However, the poor structural stability of MOFs derived from weak coordination bonds limits their applications. Here, quadruple hydrogen bonds (H-bonds) were introduced onto the MOFs to enhance their structural stability. Cross-linked networks could be formed between molecules owing to multiple H-bonds, strengthening the framework stability. Moreover, the dynamic reversibility of H-bonds could endow MOFs with self-healing ability. Furthermore, due to lower binding energy compared to coordination bonds, H-bonds break preferentially when subjected to internal stress, thus protecting the MOFs. Consequently, the as-prepared self-healing hybrid (SHH-Cu-MOF@Ti3C2TX) exhibited high capacitance retention (89.4%) after 5000 cycles at 1 A g-1, while that hybrid without dynamic H-bonds (H-Cu-MOF@Ti3C2TX) presented a 79.9% retention, delivering an enhancement in cycling stability. Moreover, an asymmetric supercapacitor (ASC) was fabricated by employing SHH-Cu-MOF@Ti3C2TX and activated carbon (AC) as the electrodes. The ASC delivered a specific capacitance (47.4 F g-1 at 1 A g-1), an energy density (16.9 Wh kg-1), and a power density (800 W kg-1) as well as good rate ability (retains 81% of its initial capacitance from 0.2 A g-1 to 5 A g-1).
Collapse
Affiliation(s)
- Feng Liu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Pingwei Ye
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Qiang Cheng
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daohong Zhang
- School of Chemistry and Materials science, South-Central Minzu University, Wuhan 430074, China
| | - Yijing Nie
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaojuan Shen
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Maiyong Zhu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hui Xu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sumin Li
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
6
|
Liu C, Kelley SO, Wang Z. Self-Healing Materials for Bioelectronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401219. [PMID: 38844826 DOI: 10.1002/adma.202401219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/21/2024] [Indexed: 08/29/2024]
Abstract
Though the history of self-healing materials stretches far back to the mid-20th century, it is only in recent years where such unique classes of materials have begun to find use in bioelectronics-itself a burgeoning area of research. Inspired by the natural ability of biological tissue to self-repair, self-healing materials play a multifaceted role in the context of soft, wireless bioelectronic systems, in that they can not only serve as a protective outer shell or substrate for the internal electronic circuitry-analogous to the mechanical barrier that skin provides for the human body-but also, and most importantly, act as an active sensing safeguard against mechanical damage to preserve device functionality and enhance overall durability. This perspective presents the historical overview, general design principles, recent developments, and future outlook of self-healing materials for bioelectronic devices, which integrates topics in many research disciplines-from materials science and chemistry to electronics and bioengineering-together.
Collapse
Affiliation(s)
- Claire Liu
- Chan Zuckerberg Biohub Chicago, Chicago, IL, 60607, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Shana O Kelley
- Chan Zuckerberg Biohub Chicago, Chicago, IL, 60607, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, 60611, USA
| | - Zongjie Wang
- Chan Zuckerberg Biohub Chicago, Chicago, IL, 60607, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
7
|
Wang P, Wang Z, Cao W, Zhu J. Facile Preparation of a Transparent, Self-Healing, and Recyclable Polysiloxane Elastomer Based on a Dynamic Imine and Boroxine Bond. Polymers (Basel) 2024; 16:1262. [PMID: 38732731 PMCID: PMC11085116 DOI: 10.3390/polym16091262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Transparent polysiloxane elastomers with good self-healing and reprocessing abilities have attracted significant attention in the field of artificial skin and flexible displays. Herein, we propose a simple one-pot method to fabricate a room temperature self-healable polysiloxane elastomer (HPDMS) by introducing dynamic and reversible imine bonds and boroxine into polydimethylsiloxane (PDMS) networks. The presence of imine bonds and boroxine is proved by FT-IR and NMR spectra. The obtained HPDMS elastomer is highly transparent with a transmittance of up to 80%. The TGA results demonstrated that the HPDMS elastomer has good heat resistance and can be used in a wide temperature range. A lower glass transition temperature (Tg, -127.4 °C) was obtained and revealed that the elastomer is highly flexible at room temperature. Because of the reformation of dynamic reversible imine bonds and boroxine, the HPDMS elastomers exhibited excellent autonomous self-healing properties. After healing for 3 h, the self-healing efficiency of HPDMS reached 96.3% at room temperature. Moreover, the elastomers can be repeatedly reprocessed multiple times under milder conditions. This work provides a simple but effective method to prepare transparent self-healable and reprocessable polysiloxane elastomers.
Collapse
Affiliation(s)
- Peng Wang
- College of Mechanics and Engineering Science, Hohai University, Nanjing 211100, China
| | - Zhuochao Wang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China; (Z.W.); (J.Z.)
| | - Wenxin Cao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China; (Z.W.); (J.Z.)
| | - Jiaqi Zhu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China; (Z.W.); (J.Z.)
| |
Collapse
|
8
|
Cai C, Meng X, Zhang L, Luo B, Liu Y, Liu T, Zhang S, Wang J, Chi M, Gao C, Bai Y, Wang S, Nie S. High Strength and Toughness Polymeric Triboelectric Materials Enabled by Dense Crystal-Domain Cross-Linking. NANO LETTERS 2024; 24:3826-3834. [PMID: 38498923 DOI: 10.1021/acs.nanolett.4c00918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Lightweight, easily processed, and durable polymeric materials play a crucial role in wearable sensor devices. However, achieving simultaneously high strength and toughness remains a challenge. This study addresses this by utilizing an ion-specific effect to control crystalline domains, enabling the fabrication of a polymeric triboelectric material with tunable mechanical properties. The dense crystal-domain cross-linking enhances energy dissipation, resulting in a material boasting both high tensile strength (58.0 MPa) and toughness (198.8 MJ m-3), alongside a remarkable 416.7% fracture elongation and 545.0 MPa modulus. Leveraging these properties, the material is successfully integrated into wearable self-powered devices, enabling real-time feedback on human joint movement. This work presents a valuable strategy for overcoming the strength-toughness trade-off in polymeric materials, paving the way for their enhanced applicability and broader use in diverse sensing applications.
Collapse
Affiliation(s)
- Chenchen Cai
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Xiangjiang Meng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Lixin Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Bin Luo
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Yanhua Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Tao Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Song Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Jinlong Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Mingchao Chi
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Cong Gao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Yayu Bai
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Shuangxi Nie
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| |
Collapse
|
9
|
Li S, Zhang J, He J, Liu W, Wang Y, Huang Z, Pang H, Chen Y. Functional PDMS Elastomers: Bulk Composites, Surface Engineering, and Precision Fabrication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304506. [PMID: 37814364 DOI: 10.1002/advs.202304506] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 10/11/2023]
Abstract
Polydimethylsiloxane (PDMS)-the simplest and most common silicone compound-exemplifies the central characteristics of its class and has attracted tremendous research attention. The development of PDMS-based materials is a vivid reflection of the modern industry. In recent years, PDMS has stood out as the material of choice for various emerging technologies. The rapid improvement in bulk modification strategies and multifunctional surfaces has enabled a whole new generation of PDMS-based materials and devices, facilitating, and even transforming enormous applications, including flexible electronics, superwetting surfaces, soft actuators, wearable and implantable sensors, biomedicals, and autonomous robotics. This paper reviews the latest advances in the field of PDMS-based functional materials, with a focus on the added functionality and their use as programmable materials for smart devices. Recent breakthroughs regarding instant crosslinking and additive manufacturing are featured, and exciting opportunities for future research are highlighted. This review provides a quick entrance to this rapidly evolving field and will help guide the rational design of next-generation soft materials and devices.
Collapse
Affiliation(s)
- Shaopeng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jiaqi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jian He
- Yizhi Technology (Shanghai) Co., Ltd, No. 99 Danba Road, Putuo District, Shanghai, 200062, China
| | - Weiping Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Center for Composites, COMAC Shanghai Aircraft Manufacturing Co. Ltd, Shanghai, 201620, China
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
- Maryland NanoCenter, University of Maryland, College Park, MD, 20742, USA
| | - Zhongjie Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yiwang Chen
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| |
Collapse
|
10
|
Luo J, Zhao X, Ju H, Chen X, Zhao S, Demchuk Z, Li B, Bocharova V, Carrillo JMY, Keum JK, Xu S, Sokolov AP, Chen J, Cao PF. Highly Recyclable and Tough Elastic Vitrimers from a Defined Polydimethylsiloxane Network. Angew Chem Int Ed Engl 2023; 62:e202310989. [PMID: 37783669 DOI: 10.1002/anie.202310989] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 10/02/2023] [Indexed: 10/04/2023]
Abstract
Despite intensive research on sustainable elastomers, achieving elastic vitrimers with significantly improved mechanical properties and recyclability remains a scientific challenge. Herein, inspired by the classical elasticity theory, we present a design principle for ultra-tough and highly recyclable elastic vitrimers with a defined network constructed by chemically crosslinking the pre-synthesized disulfide-containing polydimethylsiloxane (PDMS) chains with tetra-arm polyethylene glycol (PEG). The defined network is achieved by the reduced dangling short chains and the relatively uniform molecular weight of network strands. Such elastic vitrimers with the defined network, i.e., PDMS-disulfide-D, exhibit significantly improved mechanical performance than random analogous, previously reported PDMS vitrimers, and even commercial silicone-based thermosets. Moreover, unlike the vitrimers with random network that show obvious loss in mechanical properties after recycling, those with the defined network enable excellent thermal recyclability. The PDMS-disulfide-D also deliver comparable electrochemical signals if utilized as substrates for electromyography sensors after the recycling. The multiple relaxation processes are revealed via a unique physical approach. Multiple techniques are also applied to unravel the microscopic mechanism of the excellent mechanical performance and recyclability of such defined network.
Collapse
Affiliation(s)
- Jiancheng Luo
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN-37830, USA
| | - Xiao Zhao
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN-37830, USA
| | - Hao Ju
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiangjun Chen
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA-92093, USA
| | - Sheng Zhao
- Department of Chemistry, University of Tennessee, Knoxville, TN-37996, USA
| | - Zoriana Demchuk
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN-37830, USA
| | - Bingrui Li
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN-37996, USA
| | - Vera Bocharova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN-37830, USA
| | | | - Jong K Keum
- Center for Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN-37830, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN-37830, USA
| | - Sheng Xu
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA-92093, USA
| | - Alexei P Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN-37830, USA
- Department of Chemistry, University of Tennessee, Knoxville, TN-37996, USA
| | - Jiayao Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Peng-Fei Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
11
|
Xiao X, Mei Y, Ge Z, Xu Y, Huang Y, Deng W, Zou G, Hou H, Ji X. Electric-Eel-Type Bi-Ionic Gradient Battery. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37921590 DOI: 10.1021/acsami.3c13008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Electric eels generate electricity with a discharge voltage of up to 860 V under ionic gradients, providing a fascinating example to inspire viable and flexible power sources. However, hitherto reported eel-related devices are strictly restricted by complicated fabrication and environmental energy input. Herein, an electric-eel-type bi-ionic gradient battery (BGB) is performed by cationic and anionic polyelectrolyte hydrogels featuring simplified units and self-energy supply. Benefiting from ionic bonds with opposite charges in the polymer chain, bianion gradients as well as ion selective migration pathways are synchronously constructed and integrated units are enabled. As a result, an open-circuit voltage of 0.54 V and a short-circuit current density of 13 μA cm-2 are generated by a BGB unit. Moreover, a voltage output up to 60 V is derived from integrated BGB devices, demonstrating the potential to drive wearable and implantable electronics. In this case, these artificial electric systems could overcome the great challenges of environmentally friendly, biocompatible, low-cost, and soft power sources, providing in-depth insights into the development of clean and sustainable power generation technologies.
Collapse
Affiliation(s)
- Xiangting Xiao
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yu Mei
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhaofei Ge
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yunlong Xu
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yujie Huang
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Wentao Deng
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Guoqiang Zou
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hongshuai Hou
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiaobo Ji
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
12
|
Zeng W, Yang W, Chai L, Jiang Y, Deng L, Yang G. Liquid-Free, Self-Repairable, Recyclable, and Highly Stretchable Colorless Solid Ionic Conductive Elastomers for Strain/Temperature Sensors. Chemistry 2023; 29:e202301800. [PMID: 37496278 DOI: 10.1002/chem.202301800] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023]
Abstract
Solid-state ionic conductive elastomers (ICEs) can fundamentally overcome the disadvantages of hydrogels and ionogels (their liquid components tend to leak or evaporate), and are considered to be ideal materials for flexible ionic sensors. In this study, a liquid-free ionic polyurethane (PU) type conductive elastomer (ICE-2) was synthesized and studied. The PU type matrix with microphase separation endowed ICE-2 with excellent mechanical versatility. The disulfide bond exchange reaction in the hard phase and intermolecular hydrogen bonds contributed to damage repairing ability. ICE-2 exhibited good ionic conductivity (2.86×10-6 S/cm), high transparency (average transmittance >89 %, 400~800 nm), excellent mechanical properties (tensile strength of 3.06 MPa, elongation at break of 1760 %, and fracture energy of 14.98 kJ/m2 ), appreciable self-healing ability (healing efficiency >90 %), satisfactory environmental stability, and outstanding recyclability. The sensor constructed by ICE-2 could not only realize the perception of temperature changes, but also accurately and sensitively detect various human activities, including joint movements and micro-expression changes. This study provides a simple and effective strategy for the development of flexible and soft ionic conductors for sensors and human-machine interfaces.
Collapse
Affiliation(s)
- Wangyi Zeng
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
- National Engineering Research Center of, Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Wenhao Yang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
- National Engineering Research Center of, Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Liang Chai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
- National Engineering Research Center of, Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yanxin Jiang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
- National Engineering Research Center of, Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Longjiang Deng
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
- National Engineering Research Center of, Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Guang Yang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
- National Engineering Research Center of, Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
13
|
Suzuki M, Hayashi T, Hikino T, Kishi M, Matsuno T, Wada H, Kuroda K, Shimojima A. Integrated Extrinsic and Intrinsic Self-Healing of Polysiloxane Materials by Cleavable Molecular Cages Encapsulating Fluoride Ions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303655. [PMID: 37505433 PMCID: PMC10520642 DOI: 10.1002/advs.202303655] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/07/2023] [Indexed: 07/29/2023]
Abstract
Self-healing ability is crucial to increasing the lifetime and reliability of materials. In this study, spatiotemporal control of the healing of a polysiloxane material is achieved using a cleavable cage compound encapsulating a fluoride ion (F- ), which triggeres the dynamic rearrangement of the siloxane (Si-O-Si) networks. A self-healing siloxane-based elastomer is prepared by cross-linking polydimethylsiloxane (PDMS) with a F- -encapsulating cage-type germoxane (Ge-O-Ge) compound. This material can self-heal repeatedly under humid conditions. The F- released by hydrolytic cleavage of the cage framework contributes to rejoining of the cut pieces by promoting the local rearrangement of the siloxane networks. The use of a molecular cage encapsulating a catalyst for dynamic bond rearrangement provides a new concept for designing self-healing polysiloxane materials based on integrated extrinsic and intrinsic mechanisms.
Collapse
Affiliation(s)
- Mai Suzuki
- Department of Applied ChemistryFaculty of Science and EngineeringWaseda University3‐4‐1 Okubo, Shinjuku‐kuTokyo169‐8555Japan
| | - Taiki Hayashi
- Department of Applied ChemistryFaculty of Science and EngineeringWaseda University3‐4‐1 Okubo, Shinjuku‐kuTokyo169‐8555Japan
| | - Takuya Hikino
- Department of Advanced Science and EngineeringFaculty of Science and EngineeringWaseda University3‐4‐1 Okubo, Shinjuku‐kuTokyo169‐8555Japan
| | - Masafumi Kishi
- Department of Applied ChemistryFaculty of Science and EngineeringWaseda University3‐4‐1 Okubo, Shinjuku‐kuTokyo169‐8555Japan
| | - Takamichi Matsuno
- Department of Applied ChemistryFaculty of Science and EngineeringWaseda University3‐4‐1 Okubo, Shinjuku‐kuTokyo169‐8555Japan
- Kagami Memorial Research Institute for Materials Science and TechnologyWaseda University2‐8‐26 Nishiwaseda, Shinjuku‐kuTokyo169‐0051Japan
| | - Hiroaki Wada
- Department of Applied ChemistryFaculty of Science and EngineeringWaseda University3‐4‐1 Okubo, Shinjuku‐kuTokyo169‐8555Japan
- Kagami Memorial Research Institute for Materials Science and TechnologyWaseda University2‐8‐26 Nishiwaseda, Shinjuku‐kuTokyo169‐0051Japan
| | - Kazuyuki Kuroda
- Department of Applied ChemistryFaculty of Science and EngineeringWaseda University3‐4‐1 Okubo, Shinjuku‐kuTokyo169‐8555Japan
- Kagami Memorial Research Institute for Materials Science and TechnologyWaseda University2‐8‐26 Nishiwaseda, Shinjuku‐kuTokyo169‐0051Japan
| | - Atsushi Shimojima
- Department of Applied ChemistryFaculty of Science and EngineeringWaseda University3‐4‐1 Okubo, Shinjuku‐kuTokyo169‐8555Japan
- Kagami Memorial Research Institute for Materials Science and TechnologyWaseda University2‐8‐26 Nishiwaseda, Shinjuku‐kuTokyo169‐0051Japan
| |
Collapse
|
14
|
Kim MP. Multilayered Functional Triboelectric Polymers for Self-Powered Wearable Applications: A Review. MICROMACHINES 2023; 14:1640. [PMID: 37630176 PMCID: PMC10456717 DOI: 10.3390/mi14081640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Multifunctional wearable devices detect electric signals responsive to various biological stimuli and monitor present body motions or conditions, necessitating flexible materials with high sensitivity and sustainable operation. Although various dielectric polymers have been utilized in self-powered wearable applications in response to multiple external stimuli, their intrinsic limitations hinder further device performance enhancement. Because triboelectric devices comprising dielectric polymers are based on triboelectrification and electrostatic induction, multilayer-stacking structures of dielectric polymers enable significant improvements in device performance owing to enhanced interfacial polarization through dissimilar permittivity and conductivity between each layer, resulting in self-powered high-performance wearable devices. Moreover, novel triboelectric polymers with unique chemical structures or nano-additives can control interfacial polarization, allowing wearable devices to respond to multiple external stimuli. This review summarizes the recent insights into multilayered functional triboelectric polymers, including their fundamental dielectric principles and diverse applications.
Collapse
Affiliation(s)
- Minsoo P Kim
- Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
15
|
Wang P, Wang Z, Liu L, Ying G, Cao W, Zhu J. Self-Healable and Reprocessable Silicon Elastomers Based on Imine-Boroxine Bonds for Flexible Strain Sensor. Molecules 2023; 28:6049. [PMID: 37630300 PMCID: PMC10458376 DOI: 10.3390/molecules28166049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/30/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Silicon elastomers with excellent self-healing and reprocessing abilities are highly desirable for the advancement of next-generation energy, electronic, and robotic applications. In this study, a dual cross-linked self-healing polysiloxane elastomer was facilely fabricated by introducing an exchangeable imine bond and boroxine into polydimethylsiloxane (PDMS) networks. The PDMS elastomers exhibited excellent self-healing properties due to the synergistic effect of dynamic reversible imine bonds and boroxine. After healing for 2 h, the mechanical strength of the damaged elastomers completely and rapidly recovered at room temperature. Furthermore, the prepared PDMS elastomers could be repeatedly reprocessed multiple times under milder conditions without significant degradation in mechanical performance. In addition, a stretchable and self-healable electrical sensor was developed by integrating carbon nanotubes (CNTs) with the PDMS elastomer, which can be employed to monitor multifarious human motions in real time. Therefore, this work provides a new inspiration for preparing self-healable and reprocessable silicone elastomers for future flexible electronics.
Collapse
Affiliation(s)
- Peng Wang
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China; (L.L.); (G.Y.)
| | - Zhuochao Wang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China; (Z.W.); (J.Z.)
| | - Lu Liu
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China; (L.L.); (G.Y.)
| | - Guobing Ying
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China; (L.L.); (G.Y.)
| | - Wenxin Cao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China; (Z.W.); (J.Z.)
| | - Jiaqi Zhu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China; (Z.W.); (J.Z.)
| |
Collapse
|
16
|
Choi D, Lee Y, Lin ZH, Cho S, Kim M, Ao CK, Soh S, Sohn C, Jeong CK, Lee J, Lee M, Lee S, Ryu J, Parashar P, Cho Y, Ahn J, Kim ID, Jiang F, Lee PS, Khandelwal G, Kim SJ, Kim HS, Song HC, Kim M, Nah J, Kim W, Menge HG, Park YT, Xu W, Hao J, Park H, Lee JH, Lee DM, Kim SW, Park JY, Zhang H, Zi Y, Guo R, Cheng J, Yang Z, Xie Y, Lee S, Chung J, Oh IK, Kim JS, Cheng T, Gao Q, Cheng G, Gu G, Shim M, Jung J, Yun C, Zhang C, Liu G, Chen Y, Kim S, Chen X, Hu J, Pu X, Guo ZH, Wang X, Chen J, Xiao X, Xie X, Jarin M, Zhang H, Lai YC, He T, Kim H, Park I, Ahn J, Huynh ND, Yang Y, Wang ZL, Baik JM, Choi D. Recent Advances in Triboelectric Nanogenerators: From Technological Progress to Commercial Applications. ACS NANO 2023; 17:11087-11219. [PMID: 37219021 PMCID: PMC10312207 DOI: 10.1021/acsnano.2c12458] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/20/2023] [Indexed: 05/24/2023]
Abstract
Serious climate changes and energy-related environmental problems are currently critical issues in the world. In order to reduce carbon emissions and save our environment, renewable energy harvesting technologies will serve as a key solution in the near future. Among them, triboelectric nanogenerators (TENGs), which is one of the most promising mechanical energy harvesters by means of contact electrification phenomenon, are explosively developing due to abundant wasting mechanical energy sources and a number of superior advantages in a wide availability and selection of materials, relatively simple device configurations, and low-cost processing. Significant experimental and theoretical efforts have been achieved toward understanding fundamental behaviors and a wide range of demonstrations since its report in 2012. As a result, considerable technological advancement has been exhibited and it advances the timeline of achievement in the proposed roadmap. Now, the technology has reached the stage of prototype development with verification of performance beyond the lab scale environment toward its commercialization. In this review, distinguished authors in the world worked together to summarize the state of the art in theory, materials, devices, systems, circuits, and applications in TENG fields. The great research achievements of researchers in this field around the world over the past decade are expected to play a major role in coming to fruition of unexpectedly accelerated technological advances over the next decade.
Collapse
Affiliation(s)
- Dongwhi Choi
- Department
of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
| | - Younghoon Lee
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department
of Mechanical Engineering, Soft Robotics Research Center, Seoul National University, Seoul 08826, South Korea
- Department
of Mechanical Engineering, Gachon University, Seongnam 13120, Korea
| | - Zong-Hong Lin
- Department
of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
- Department
of Biomedical Engineering, National Taiwan
University, Taipei 10617, Taiwan
- Frontier
Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sumin Cho
- Department
of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
| | - Miso Kim
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Chi Kit Ao
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Siowling Soh
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Changwan Sohn
- Division
of Advanced Materials Engineering, Jeonbuk
National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
- Department
of Energy Storage/Conversion Engineering of Graduate School (BK21
FOUR), Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
| | - Chang Kyu Jeong
- Division
of Advanced Materials Engineering, Jeonbuk
National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
- Department
of Energy Storage/Conversion Engineering of Graduate School (BK21
FOUR), Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
| | - Jeongwan Lee
- Department
of Physics, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Minbaek Lee
- Department
of Physics, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Seungah Lee
- School
of Materials Science & Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Jungho Ryu
- School
of Materials Science & Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Parag Parashar
- Department
of Biomedical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| | - Yujang Cho
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaewan Ahn
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Feng Jiang
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798, Singapore
- Institute of Flexible
Electronics Technology of Tsinghua, Jiaxing, Zhejiang 314000, China
| | - Pooi See Lee
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Gaurav Khandelwal
- Nanomaterials
and System Lab, Major of Mechatronics Engineering, Faculty of Applied
Energy System, Jeju National University, Jeju 632-43, South Korea
- School
of Engineering, University of Glasgow, Glasgow G128QQ, U. K.
| | - Sang-Jae Kim
- Nanomaterials
and System Lab, Major of Mechatronics Engineering, Faculty of Applied
Energy System, Jeju National University, Jeju 632-43, South Korea
| | - Hyun Soo Kim
- Electronic
Materials Research Center, Korea Institute
of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department
of Physics, Inha University, Incheon 22212, Republic of Korea
| | - Hyun-Cheol Song
- Electronic
Materials Research Center, Korea Institute
of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KIST-SKKU
Carbon-Neutral Research Center, Sungkyunkwan
University (SKKU), Suwon 16419, Republic
of Korea
| | - Minje Kim
- Department
of Electrical Engineering, College of Engineering, Chungnam National University, 34134, Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Junghyo Nah
- Department
of Electrical Engineering, College of Engineering, Chungnam National University, 34134, Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Wook Kim
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Habtamu Gebeyehu Menge
- Department
of Mechanical Engineering, College of Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 17058, Republic of Korea
| | - Yong Tae Park
- Department
of Mechanical Engineering, College of Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 17058, Republic of Korea
| | - Wei Xu
- Research
Centre for Humanoid Sensing, Zhejiang Lab, Hangzhou 311100, P. R. China
| | - Jianhua Hao
- Department
of Applied Physics, The Hong Kong Polytechnic
University, Hong Kong, P.R. China
| | - Hyosik Park
- Department
of Energy Science and Engineering, Daegu
Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Ju-Hyuck Lee
- Department
of Energy Science and Engineering, Daegu
Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Dong-Min Lee
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Sang-Woo Kim
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
- Samsung
Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, 115, Irwon-ro, Gangnam-gu, Seoul 06351, South Korea
- SKKU
Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Ji Young Park
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Haixia Zhang
- National
Key Laboratory of Science and Technology on Micro/Nano Fabrication;
Beijing Advanced Innovation Center for Integrated Circuits, School
of Integrated Circuits, Peking University, Beijing 100871, China
| | - Yunlong Zi
- Thrust
of Sustainable Energy and Environment, The
Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangdong 511400, China
| | - Ru Guo
- Thrust
of Sustainable Energy and Environment, The
Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangdong 511400, China
| | - Jia Cheng
- State
Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical
Engineering, Tsinghua University, Beijing 100084, China
| | - Ze Yang
- State
Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical
Engineering, Tsinghua University, Beijing 100084, China
| | - Yannan Xie
- College
of Automation & Artificial Intelligence, State Key Laboratory
of Organic Electronics and Information Displays & Institute of
Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu
National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Sangmin Lee
- School
of Mechanical Engineering, Chung-ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Jihoon Chung
- Department
of Mechanical Design Engineering, Kumoh
National Institute of Technology (KIT), 61 Daehak-ro, Gumi, Gyeongbuk 39177, South Korea
| | - Il-Kwon Oh
- National
Creative Research Initiative for Functionally Antagonistic Nano-Engineering,
Department of Mechanical Engineering, School of Mechanical and Aerospace
Engineering, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Ji-Seok Kim
- National
Creative Research Initiative for Functionally Antagonistic Nano-Engineering,
Department of Mechanical Engineering, School of Mechanical and Aerospace
Engineering, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Tinghai Cheng
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Qi Gao
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Gang Cheng
- Key
Lab for Special Functional Materials, Ministry of Education, National
& Local Joint Engineering Research Center for High-efficiency
Display and Lighting Technology, School of Materials Science and Engineering,
and Collaborative Innovation Center of Nano Functional Materials and
Applications, Henan University, Kaifeng 475004, China
| | - Guangqin Gu
- Key
Lab for Special Functional Materials, Ministry of Education, National
& Local Joint Engineering Research Center for High-efficiency
Display and Lighting Technology, School of Materials Science and Engineering,
and Collaborative Innovation Center of Nano Functional Materials and
Applications, Henan University, Kaifeng 475004, China
| | - Minseob Shim
- Department
of Electronic Engineering, College of Engineering, Gyeongsang National University, 501, Jinjudae-ro, Gaho-dong, Jinju 52828, South Korea
| | - Jeehoon Jung
- Department
of Electrical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology
(UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, South Korea
| | - Changwoo Yun
- Department
of Electrical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology
(UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, South Korea
| | - Chi Zhang
- CAS
Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano
Energy and Sensor, Beijing Institute of
Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoxu Liu
- CAS
Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano
Energy and Sensor, Beijing Institute of
Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufeng Chen
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Suhan Kim
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Xiangyu Chen
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Jun Hu
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Xiong Pu
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Zi Hao Guo
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Xudong Wang
- Department
of Materials Science and Engineering, University
of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jun Chen
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Xiao Xiao
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Xing Xie
- School
of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mourin Jarin
- School
of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hulin Zhang
- College
of Information and Computer, Taiyuan University
of Technology, Taiyuan 030024, P. R. China
| | - Ying-Chih Lai
- Department
of Materials Science and Engineering, National
Chung Hsing University, Taichung 40227, Taiwan
- i-Center
for Advanced Science and Technology, National
Chung Hsing University, Taichung 40227, Taiwan
- Innovation
and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan
| | - Tianyiyi He
- Department
of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore
| | - Hakjeong Kim
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Inkyu Park
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Junseong Ahn
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Nghia Dinh Huynh
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Ya Yang
- CAS
Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano
Energy and Sensor, Beijing Institute of
Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- Center
on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
| | - Zhong Lin Wang
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jeong Min Baik
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
- KIST-SKKU
Carbon-Neutral Research Center, Sungkyunkwan
University (SKKU), Suwon 16419, Republic
of Korea
| | - Dukhyun Choi
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| |
Collapse
|
17
|
Bao R, Tao J, Zhao J, Dong M, Li J, Pan C. Integrated intelligent tactile system for a humanoid robot. Sci Bull (Beijing) 2023; 68:1027-1037. [PMID: 37120379 DOI: 10.1016/j.scib.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/06/2023] [Accepted: 04/14/2023] [Indexed: 05/01/2023]
Abstract
Tactile perception is the basis of human motion. Achieving artificial tactility is one of the challenges in the fields of smart robotics and artificial intelligence (AI), because touch emulation relies on high-performance pressure sensor arrays, signal reading, information processing, and feedback control. In this paper, we report an integrated intelligent tactile system (IITS) that is integrated with a humanoid robot to achieve human-like artificial tactile perception. The IITS is a closed-loop system that includes a multi-channel tactile sensing e-skin, a data acquisition and information processing chip, and a feedback control. With customized preset values of threshold pressures, the IITS-integrated robot can flexibly grasp various objects. The IITS has potential applications in the design of prosthetic hands, space manipulators, deep-sea exploration robots, and human-robot interactions.
Collapse
Affiliation(s)
- Rongrong Bao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Tao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Dong
- Beijing Institute of Tracking and Telecommunications Technology, Beijing 100094, China
| | - Jing Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Utrera-Barrios S, Verdejo R, López-Manchado MÁ, Hernández Santana M. Self-Healing Elastomers: A sustainable solution for automotive applications. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
19
|
Wan X, Mu T, Yin G. Intrinsic Self-Healing Chemistry for Next-Generation Flexible Energy Storage Devices. NANO-MICRO LETTERS 2023; 15:99. [PMID: 37037957 PMCID: PMC10086096 DOI: 10.1007/s40820-023-01075-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
The booming wearable/portable electronic devices industry has stimulated the progress of supporting flexible energy storage devices. Excellent performance of flexible devices not only requires the component units of each device to maintain the original performance under external forces, but also demands the overall device to be flexible in response to external fields. However, flexible energy storage devices inevitably occur mechanical damages (extrusion, impact, vibration)/electrical damages (overcharge, over-discharge, external short circuit) during long-term complex deformation conditions, causing serious performance degradation and safety risks. Inspired by the healing phenomenon of nature, endowing energy storage devices with self-healing capability has become a promising strategy to effectively improve the durability and functionality of devices. Herein, this review systematically summarizes the latest progress in intrinsic self-healing chemistry for energy storage devices. Firstly, the main intrinsic self-healing mechanism is introduced. Then, the research situation of electrodes, electrolytes, artificial interface layers and integrated devices based on intrinsic self-healing and advanced characterization technology is reviewed. Finally, the current challenges and perspective are provided. We believe this critical review will contribute to the development of intrinsic self-healing chemistry in the flexible energy storage field.
Collapse
Affiliation(s)
- Xin Wan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Tiansheng Mu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| | - Geping Yin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| |
Collapse
|
20
|
Crosslinked reprocessable phosphor/polyurethane composite networks with thermal induced self-healing capacity and ultraviolet conducted fluorescence effect. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2023.110310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
21
|
Lin MF, Chang PY, Lee CH, Wu XX, Jeng RJ, Chen CP. Biowaste Eggshell Membranes for Bio-triboelectric Nanogenerators and Smart Sensors. ACS OMEGA 2023; 8:6699-6707. [PMID: 36844511 PMCID: PMC9948195 DOI: 10.1021/acsomega.2c07292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
In this study, we used a simple and cost-effective method to fabricate triboelectric nanogenerators (TENGs) based on biowaste eggshell membranes (EMs). We prepared stretchable electrodes with various types of EMs (hen, duck, goose, and ostrich) and employed them as positive friction materials for bio-TENGs. A comparison of the electrical properties of the hen, duck, goose, and ostrich EMs revealed that the output voltage of the ostrich EM could reach up to 300 V, due to its abundant functional groups, natural fiber structure, high surface roughness, high surface charge, and high dielectric constant. The output power of the resulting device reached 0.18 mW, sufficient to power 250 red light-emitting diodes simultaneously, as well as a digital watch. This device also displayed good durability when subjected to 9000 cycles at 30 N at a frequency of 3 Hz. Furthermore, we designed an ostrich EM-TENG as a smart sensor for the detection of body motion, including leg movement and the pressing of different numbers of fingers.
Collapse
Affiliation(s)
- Meng-Fang Lin
- Department
of Materials Engineering, Ming Chi University
of Technology, New Taipei
City 24301, Taiwan
- Center
for Plasma and Thin Film Technologies, Ming
Chi University of Technology, New
Taipei City 24301, Taiwan
- Research
Center for Intelligent Medical Devices, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Po-Yen Chang
- Department
of Materials Engineering, Ming Chi University
of Technology, New Taipei
City 24301, Taiwan
- Center
for Plasma and Thin Film Technologies, Ming
Chi University of Technology, New
Taipei City 24301, Taiwan
- Institute
of Polymer Science and Engineering, National
Taiwan University, Taipei 106, Taiwan
| | - Chia-Hsien Lee
- Department
of Materials Engineering, Ming Chi University
of Technology, New Taipei
City 24301, Taiwan
- Center
for Plasma and Thin Film Technologies, Ming
Chi University of Technology, New
Taipei City 24301, Taiwan
| | - Xin-Xian Wu
- Department
of Materials Engineering, Ming Chi University
of Technology, New Taipei
City 24301, Taiwan
- Center
for Plasma and Thin Film Technologies, Ming
Chi University of Technology, New
Taipei City 24301, Taiwan
| | - Ru-Jong Jeng
- Institute
of Polymer Science and Engineering, National
Taiwan University, Taipei 106, Taiwan
| | - Chih-Ping Chen
- Department
of Materials Engineering, Ming Chi University
of Technology, New Taipei
City 24301, Taiwan
- Center
for Plasma and Thin Film Technologies, Ming
Chi University of Technology, New
Taipei City 24301, Taiwan
| |
Collapse
|
22
|
Wang SC, Zhang B, Kang L, Liang C, Chen D, Liu G, Guo X. Flexible and Robust Triboelectric Nanogenerators with Chemically Prepared Metal Electrodes and a Plastic Contact Interface Based on Low-Cost Pressure-Sensitive Adhesive. SENSORS (BASEL, SWITZERLAND) 2023; 23:2021. [PMID: 36850631 PMCID: PMC9958571 DOI: 10.3390/s23042021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Triboelectric nanogenerators (TENGs) are devices that can harvest energy from mechanical motions; such devices can be used to power wearable sensors and various low-power electronics. To increase the lifetime of the device, scientists mainly use the method of making TENG in a hard skeleton to simplify the complex possible relative movements between two triboelectric parts. However, the hard skeletons cannot be embedded in soft and lightweight clothing. To make matters worse, the materials used in the garments must be able to withstand high mechanical forces when worn, such as the pressure of more than 100 KPa exerted by body pressure or everyday knocks. Notably, the TENGs are usually made of fragile materials, such as vacuum-evaporated metal electrodes and nano-sized coatings, on the contact interface; these electrodes and coatings often chip or wear off under the action of external loads. In this work, we succeeded in creating a thin, light-weight, but extremely robust garment-integrated triboelectric nanogenerator (G-TENG) that can be embedded in clothing and pass the water wash test. First, we chemically deposited a durable electrode with flexible properties for G-TENG using a novel technique called polymer-assisted metal deposition (PAMD). The as-formed metal electrodes are firmly bonded to the plastic substrate by a sub-10 nm adhesive polymer brush and can withstand a pressure of 22.5 MPa and a tear force of 0.7 MPa. We then removed the traditionally used fragile nanoparticle materials and the non-durable poly-dimethylsiloxane (PDMS) layer at the triboelectric interface, and then used a cost-effective, durable and slightly flowable pressure-sensitive adhesive to form a plastic contact interface. Such a soft plastic interface can ensure full contact of the triboelectric materials, which is excellent in complex environments and ultimately improves the power generation efficiency of the devices. The as-formed low-cost energy harvesting device could become an industry standard for future smart clothing.
Collapse
Affiliation(s)
- Shuai-Chen Wang
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, New Territories, Hong Kong SAR 999077, China
| | - Binbin Zhang
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, New Territories, Hong Kong SAR 999077, China
- Biomedical Engineering, The City University of Hong Kong, New Territories, Hong Kong SAR 999077, China
| | - Lijing Kang
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, New Territories, Hong Kong SAR 999077, China
| | - Cunman Liang
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR 999077, China
| | - Dongdong Chen
- Epro Advance Technology Limited, Hong Kong Factory, 35 Wang Lok Street, Yuen Long Industrial Estate, New Territories, Hong Kong SAR 999077, China
| | - Guoqiang Liu
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xuyun Guo
- School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials Bio-Engineering Research Centre (AMBER), D02 PN40 Dublin, Ireland
| |
Collapse
|
23
|
Ye T, Fei L, Chen X, Yin Y, Wang C. Mechanoluminescent Device: In Situ Renewable Carbazole Derivatives Sandwiched by Self-Healing Disulfide-Containing Polyurethane for Mechanical Signals Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4623-4634. [PMID: 36644925 DOI: 10.1021/acsami.2c21879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Mechanoluminescent (ML) materials can emit visible light by utilizing mechanical energy, which shows unique advantages in visual mechanical sensing, displays, and biomechanical monitoring due to the correlation between force stimulation and luminescence intensity. Most organic ML materials exhibit luminescence intensity attenuation, disappearing completely with force stimulation and failing to recover. Here, organic luminogens (Cz-alkyl6) can be synthesized by introducing a soft alkyl chain into the carbazole, which exhibits ML emission with self-assembly units. Furthermore, organic luminogens can be generated repeatedly by simply recrystallizing the fracture crystal in situ after a short thermal treatment (70 °C) within 14 s. More importantly, the quantitative correlation between force pressure and ML intensity has been established by a sandwich-type ML device based on a novel carbazole derivative (Cz-alkyl6). The ML device presents a capacity for detecting mechanical signals up to 13 N according to its ML intensity (≤275 a.u.), exhibiting potential application value in engineering damage detection, anticounterfeiting, and advanced visual mechanical sensing.
Collapse
Affiliation(s)
- Ting Ye
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Liang Fei
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Xin Chen
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Yunjie Yin
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Chaoxia Wang
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
24
|
Zhou Y, Li L, Han Z, Li Q, He J, Wang Q. Self-Healing Polymers for Electronics and Energy Devices. Chem Rev 2023; 123:558-612. [PMID: 36260027 DOI: 10.1021/acs.chemrev.2c00231] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Polymers are extensively exploited as active materials in a variety of electronics and energy devices because of their tailorable electrical properties, mechanical flexibility, facile processability, and they are lightweight. The polymer devices integrated with self-healing ability offer enhanced reliability, durability, and sustainability. In this Review, we provide an update on the major advancements in the applications of self-healing polymers in the devices, including energy devices, electronic components, optoelectronics, and dielectrics. The differences in fundamental mechanisms and healing strategies between mechanical fracture and electrical breakdown of polymers are underlined. The key concepts of self-healing polymer devices for repairing mechanical integrity and restoring their functions and device performance in response to mechanical and electrical damage are outlined. The advantages and limitations of the current approaches to self-healing polymer devices are systematically summarized. Challenges and future research opportunities are highlighted.
Collapse
Affiliation(s)
- Yao Zhou
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Li Li
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zhubing Han
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Qi Li
- State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Jinliang He
- State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Qing Wang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
25
|
Chou S, Lu H, Liu T, Chen Y, Fu Y, Shieh Y, Lai Y, Chen S. An Environmental-Inert and Highly Self-Healable Elastomer Obtained via Double-Terminal Aromatic Disulfide Design and Zwitterionic Crosslinked Network for Use as a Triboelectric Nanogenerator. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2202815. [PMID: 36453583 PMCID: PMC9839881 DOI: 10.1002/advs.202202815] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/11/2022] [Indexed: 06/17/2023]
Abstract
Due to the ongoing development of portable/mobile electronics, sources to power have received widespread attention. Compared to chemical batteries as power sources, triboelectric nanogenerators (TENGs) possess lots of advantages, including the ability to harvest energy via human motions, flexible structures, environment-friendliness, and long-life characteristics. Although many self-healable TENGs are reported, the achievement of a muscle-like elasticity and the ability to recover from inevitable damage under extreme conditions (such as a high/low temperature and/or humidity) remain a challenge. Herein, a "double-terminal aromatic disulfide" on a structure with zwitterions as branched chains is reported to engineer the high-efficient self-healable elastomer for application in a flexible TENG. The as-designed material exhibits a repeatable elastic recovery (at 250% elongation) and a self-healing efficiency with an ultimate tensile stress of 96% over 2 h, representing an improvement on previously reported disulfide-based elastomers. The elastomer can autonomously recover by 50% even at a subzero temperature of -30 °C within 24 h. The elastomer-based TENG, as a self-driven sensor for detecting human behavior, is demonstrated to exhibit stable outputs and self-healing in the temperature range of -30 to 60 °C, and so is expected to promote the development of self-powered electronics for next-generation human-machine communications.
Collapse
Affiliation(s)
- Syun‐Hong Chou
- Department of Materials Science and EngineeringNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
| | - Hong‐Wei Lu
- Department of Materials Science and EngineeringNational Chung Hsing UniversityTaichung40227Taiwan
| | - Ta‐Chung Liu
- Department of Biomedical EngineeringNational Yang Ming Chiao Tung UniversityTaipei112304Taiwan
| | - Yi‐Ting Chen
- Department of Materials Science and EngineeringNational Chung Hsing UniversityTaichung40227Taiwan
| | - Yen‐Lin Fu
- Department of Materials Science and EngineeringNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
| | - Yung‐Hsin Shieh
- Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Ying‐Chih Lai
- Department of Materials Science and EngineeringNational Chung Hsing UniversityTaichung40227Taiwan
- Innovation and Development Center of Sustainable Agriculturei‐Center for Advanced Science and TechnologyNational Chung Hsing UniversityTaichung40227Taiwan
| | - San‐Yuan Chen
- Department of Materials Science and EngineeringNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
- Graduate Institute of Biomedical ScienceChina Medical UniversityTaichung City406040Taiwan
- Frontier Research Centre on Fundamental and Applied Sciences of MattersNational Tsing Hua UniversityHsinchu300044Taiwan
- School of DentistryCollege of Dental MedicineKaohsiung Medical UniversityKaohsiung City80708Taiwan
| |
Collapse
|
26
|
Yang X, Su G, Huang X, Liu J, Zhou T, Zhang X. Noncovalent Assembly Enabled Strong yet Tough Materials with Room-Temperature Malleability and Healability. ACS NANO 2022; 16:13002-13013. [PMID: 35929760 DOI: 10.1021/acsnano.2c05518] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The manufacturing of both metals and polymer materials strongly relies on melt processing at relatively high temperatures which needs complex shaping-cooling equipment, long molding time, and considerable energy consumption. Reducing the processing temperature to achieve room-temperature malleability is heavily desired for low-carbon demands but continues to be a great challenge. Here, we demonstrate a noncovalent assembly strategy to fabricate room-temperature malleable composites embedded by liquid metals with excellent toughness (105.88 MJ m-3, higher than most traditional plastics and metallic aluminum) and strong mechanical strength (35.49 MPa). The dissociation-reconstruction of supramolecular bonding interactions between assembled nanoparticles and polymer matrix allow the malleable composite with two interchangeable supramolecular states to achieve programming at room temperature stimulated by water vapor and give it self-healing ability (self-healing efficiency of ∼100%; the healed sample can lift about 52,300 times its own weight). Furthermore, the composite also exhibits metallic luster and prospective application in thermal dissipation. This strategy might be an efficient way for the development of a method for strong and tough materials structurally designed to achieve programming at moderate conditions.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, P.R. China
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xin Huang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, P.R. China
| | - Jize Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, P.R. China
| | - Tao Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, P.R. China
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, P.R. China
| |
Collapse
|
27
|
Miwa Y, Udagawa T, Kutsumizu S. Repulsive segregation of fluoroalkyl side chains turns a cohesive polymer into a mechanically tough, ultrafast self-healable, nonsticky elastomer. Sci Rep 2022; 12:12009. [PMID: 35879386 PMCID: PMC9314360 DOI: 10.1038/s41598-022-16156-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022] Open
Abstract
Dynamic crosslinking of flexible polymer chains via attractive and reversible interactions is widely employed to obtain autonomously self-healable elastomers. However, this design leads to a trade-off relationship between the strength and self-healing speed of the material, i.e., strong crosslinks provide a mechanically strong elastomer with slow self-healing property. To address this issue, we report an "inversion" concept, in which attractive poly(ethyl acrylate-random-methyl acrylate) chains are dynamically crosslinked via repulsively segregated fluoroalkyl side chains attached along the main chain. The resulting elastomer self-heals rapidly (> 90% within 15 min) via weak but abundant van der Waals interactions among matrix polymers, while the dynamic crosslinking provides high fracture stress (≈2 MPa) and good toughness (≈17 MJ m-3). The elastomer has a nonsticky surface and selectively self-heals only at the damaged faces due to the surface segregation of the fluoroalkyl chains. Moreover, our elastomer strongly adheres to polytetrafluoroethylene plates (≈60 N cm-2) via hot pressing.
Collapse
Affiliation(s)
- Yohei Miwa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu, 501-1193, Japan. .,PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan.
| | - Taro Udagawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu, 501-1193, Japan
| | - Shoichi Kutsumizu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
28
|
Fu H, Long Z, Lai M, Cao J, Zhou R, Gong J, Chen Y. Quantum Dot Hybridization of Piezoelectric Polymer Films for Non-Transfer Integration of Flexible Biomechanical Energy Harvesters. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29934-29944. [PMID: 35730788 DOI: 10.1021/acsami.2c07297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This work presents a low-temperature engineering strategy, from quantum dot (QD) synthesis to fabrication of a hybrid from a homogeneous dispersion to thermal annealing with elaborate use of a small organic molecule dopamine, for achieving a kind of ZnO QD-hybridized piezoelectric polymer film directly integrated into a flexible electrode and a plastic substrate. This strategy is the key for non-transfer assembly of flexible piezoelectric nanogenerators (FPENGs) with both mechanical robustness and high electrical performance via direct lamination. The rational addition of dopamine plays multiple roles of (1) significantly decreasing the size of ZnO particles to a QD level (3.77 nm), (2) formation of a stable and homogeneous dispersion of a ZnO QDs/piezoelectric polyvinylidene fluoride-co-hexafluoropropylene copolymer for uniform hybridization of a piezoelectric film, and (3) increment of the piezoelectric phase via induced crystallization at a low annealing temperature. This dopamine-assisted low-temperature annealing strategy for a hybrid piezoelectric film with a high d33 value (∼31.56 pC/N, 30.56% larger than that of a pure piezoelectric polymer film) required no additional high-voltage polarization treatment and effectively avoided the delamination, distortion, or melt phenomenon between the piezoelectric layer, flexible electrode, and plastic protective layer caused by the high temperature and thermal stress. The obtained FPENGs showed significantly enhanced output performance and mechanical robustness under repeated impact and large amounts of strain conditions. Their specific output voltage and charge density were stably maintained at 7.16 V and 2.40 nC/cm2, which were 30.7 and 50.0% higher than those of FPENGs based on a pure piezoelectric polymer film, respectively. They were further used as biomechanical energy harvesters for generating electricity to charge capacitor energy storage devices for power electronics and self-powered sensors for visual motion-detecting systems, indicating their promising applications in both wearable technology and smart homes.
Collapse
Affiliation(s)
- Haiyan Fu
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
- Jiangxi Key Laboratory of Advanced Materials and Applications for Solar Cells, Xinyu University, Xinyu 338004, China
| | - Zuchang Long
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Mingxuan Lai
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Junhao Cao
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Rihui Zhou
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Jianliang Gong
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Yiwang Chen
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
29
|
Zhang J, Jian Y, Tong J, Deng H, Du Y, Shi X. Hollow chitosan hydrogel tube with controllable wrinkled pattern via film-to-tube fabrication. Carbohydr Polym 2022; 287:119333. [DOI: 10.1016/j.carbpol.2022.119333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/22/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022]
|
30
|
Liu Y, Yu Z, Wang B, Xu X, Feng H, Li P, Zhu J, Ma S. High-performance epoxy covalent adaptable networks enabled by alicyclic anhydride monoesters. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Zhu M, Li J, Yu J, Li Z, Ding B. Superstable and Intrinsically Self-Healing Fibrous Membrane with Bionic Confined Protective Structure for Breathable Electronic Skin. Angew Chem Int Ed Engl 2022; 61:e202200226. [PMID: 35212123 DOI: 10.1002/anie.202200226] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 11/10/2022]
Abstract
Considerable effort has been devoted to the fabrication of electronic skin that can imitate the self-healing and sensing function of biological skin. Almost all self-healing electronic skins are composed of airtight elastomers or hydrogels, which will cause skin inflammation. Fibrous membranes are ideal materials for preparing highly sensitive breathable electronic skins. However, the development of intrinsically self-healing fibrous membranes with high stability is still a challenge. Here, a novel interface protective strategy is reported to develop intrinsically self-healing fibrous membranes with a bionic confined structure for the first time, which were further assembled into an all-fiber structured electronic skin through interfacial hydrogen bonding. The electronic skin is multifunctional with self-powering, self-healing, breathability, stretchability, and thermochromism functionalities, which is highly promising for application in intelligent wearable sensing systems.
Collapse
Affiliation(s)
- Miaomiao Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.,Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jialu Li
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.,Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Zhaoling Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.,Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China.,Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.,Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
32
|
Dang C, Zhang F, Li Y, Jin Z, Cheng Y, Feng Y, Wang X, Zhang C, Chen Y, Shao C, Zheng Q, Qi H. Lithium Bonds Enable Small Biomass Molecule-Based Ionoelastomers with Multiple Functions for Soft Intelligent Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200421. [PMID: 35426235 DOI: 10.1002/smll.202200421] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Lipoic acid (LA), which originates from animals and plants, is a small biomass molecule and has recently shown great application value in soft conductors. However, the severe depolymerization of LA places a significant limitation on its utilization. A strategy of using Li-bonds as both depolymerization quenchers and dynamic mediators to melt transform LA into high-performance ionoelastomers (IEs) is proposed. They feature dry networks while simultaneously combining transparency, stretchability, conductivity, self-healing ability, non-corrosive property, re-mouldability, strain-sensitivity, recyclability, and degradability. Most of the existing soft conductors' drawbacks, such as the tedious synthesis, non-renewable polymer networks, limited functions, and single-use only, are successfully solved. In addition, the multi-functions allow IEs to be used as soft sensors in human-computer interactive games and wireless remote sports assistants. Notably, the recycled IE also provides an efficient conductive filler for transparent ionic papers, which can be used to design soft transparent triboelectric nanogenerators for energy harvesting and multidirectional motion sensing. This work creates a new direction for future research involving intelligent soft electronics.
Collapse
Affiliation(s)
- Chao Dang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, P. R. China
| | - Fei Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518175, P. R. China
| | - Yuehu Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, P. R. China
| | - Zixian Jin
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518175, P. R. China
| | - Yabin Cheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518175, P. R. China
| | - Yufan Feng
- Center for Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning, 116034, P. R. China
| | - Xijun Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, P. R. China
| | - Cunzhi Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, P. R. China
| | - Yian Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, P. R. China
| | - Changyou Shao
- Center for Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning, 116034, P. R. China
| | - Qingbin Zheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518175, P. R. China
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, P. R. China
| |
Collapse
|
33
|
Nellepalli P, Kim MP, Park J, Noh SM, Ye Z, Jung HW, Ko H, Oh JK. Dynamic and Reprocessable Fluorinated Poly(hindered urea) Network Materials Containing Ionic Liquids to Enhance Triboelectric Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17806-17817. [PMID: 35385641 DOI: 10.1021/acsami.2c01963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Triboelectric nanogenerators (TENGs), a newly developed energy harvesting device that converts surrounding environmental mechanical stimuli into electricity, have been significantly explored as an ideal long-term power source for electrical devices. Despite recent advances, the development of advanced TENG devices with sufficient outputs to sustainably power electronic devices and rapid self-healability under mild conditions to improve their lifetime and function is highly demanded. Here, we report a robust self-healable and reprocessable TENG fabricated with a covalent adaptive network based on mechanically strong fluorinated poly(hindered urea) (F-PHU) integrated with ionic liquid as an efficient dielectric material to improve its triboelectric efficiency and self-healing capability simultaneously. The synthesis and integration of a well-defined reactive copolymer having both pendant fluorinated and t-butylamino bulky groups are the key to fabricate robust F-PHU networks containing fluorinated dangling chains that can interact with ionic liquids to induce ionic polarization, which raises the dielectric constant and thus increases triboelectric performance. They also are cross-linked with dynamic bulky urea linkages for rapid self-healability and high reprocessability through their reversible exchange reactions at moderate temperatures. The developed ionic F-PHU materials exhibit a high TENG output performance (power density of 173.0 mW/m2) as well as high TENG output recovery upon repairing their surface damages. This work demonstrates that such a synergistic design of triboelectric ionic F-PHU materials could have great potential for applications requiring high-performance and long-lasting energy harvesting.
Collapse
Affiliation(s)
- Pothanagandhi Nellepalli
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Minsoo P Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Junyoung Park
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seung Man Noh
- Research Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
| | - Zhibin Ye
- Department of Chemical and Materials Engineering, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Hyun Wook Jung
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
34
|
Wang C, Shi Q, Lee C. Advanced Implantable Biomedical Devices Enabled by Triboelectric Nanogenerators. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1366. [PMID: 35458075 PMCID: PMC9032723 DOI: 10.3390/nano12081366] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023]
Abstract
Implantable biomedical devices (IMDs) play essential roles in healthcare. Subject to the limited battery life, IMDs cannot achieve long-term in situ monitoring, diagnosis, and treatment. The proposal and rapid development of triboelectric nanogenerators free IMDs from the shackles of batteries and spawn a self-powered healthcare system. This review aims to overview the development of IMDs based on triboelectric nanogenerators, divided into self-powered biosensors, in vivo energy harvesting devices, and direct electrical stimulation therapy devices. Meanwhile, future challenges and opportunities are discussed according to the development requirements of current-level self-powered IMDs to enhance output performance, develop advanced triboelectric nanogenerators with multifunctional materials, and self-driven close-looped diagnosis and treatment systems.
Collapse
Affiliation(s)
- Chan Wang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore; (C.W.); (Q.S.)
- Center for Intelligent Sensors and MEMS, National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Qiongfeng Shi
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore; (C.W.); (Q.S.)
- Center for Intelligent Sensors and MEMS, National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore; (C.W.); (Q.S.)
- Center for Intelligent Sensors and MEMS, National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
- NUS Graduate School-Integrative Sciences and Engineering Program (ISEP), National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
35
|
An Overview of Hierarchical Design of Textile-Based Sensor in Wearable Electronics. CRYSTALS 2022. [DOI: 10.3390/cryst12040555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Smart textiles have recently aroused tremendous interests over the world because of their broad applications in wearable electronics, such as human healthcare, human motion detection, and intelligent robotics. Sensors are the primary components of wearable and flexible electronics, which convert various signals and external stimuli into electrical signals. While traditional electronic sensors based on rigid silicon wafers can hardly conformably attach on the human body, textile materials including fabrics, yarns, and fibers afford promising alternatives due to their characteristics including light weight, flexibility, and breathability. Of fundamental importance are the needs for fabrics simultaneously having high electrical and mechanical performance. This article focused on the hierarchical design of the textile-based flexible sensor from a structure point of view. We first reviewed the selection of newly developed functional materials for textile-based sensors, including metals, conductive polymers, carbon nanomaterials, and other two-dimensional (2D) materials. Then, the hierarchical structure design principles on different levels from microscale to macroscale were discussed in detail. Special emphasis was placed on the microstructure control of fibers, configurational engineering of yarn, and pattern design of fabrics. Finally, the remaining challenges toward industrialization and commercialization that exist to date were presented.
Collapse
|
36
|
Dong H, Sun J, Liu X, Jiang X, Lu S. Highly Sensitive and Stretchable MXene/CNTs/TPU Composite Strain Sensor with Bilayer Conductive Structure for Human Motion Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15504-15516. [PMID: 35344347 DOI: 10.1021/acsami.1c23567] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The universal application of wearable strain sensors in various situations for human-activity monitoring is considerably limited by the contradiction between high sensitivity and broad working range. There still remains a huge challenge to design sensors featuring simultaneous broad working range and high sensitivity. Herein, a typical bilayer-conductive structure Ti3C2Tx MXene/carbon nanotubes (CNTs)/thermoplastic polyurethane (TPU) composite film was developed by a simple and scalable vacuum filtration process utilizing a porous electrospun thermoplastic polyurethane (TPU) mat as a skeleton. The MXene/CNTs/TPU strain sensor is composed of two parts: a brittle densely stacked MXene upper lamella and a flexible MXene/CNT-decorated fibrous network lower layer. Benefiting from the synergetic effect of the two parts along with hydrogen-bonding interactions between the porous TPU fiber mat and MXene sheets, the MXene/CNTs/TPU strain sensor possesses both a broad working range (up to 330%) and high sensitivity (maximum gauge factor of 2911) as well as superb long-term durability (2600 cycles under the strain of 50%). Finally, the sensor can be successfully employed for human movement monitoring, from tiny facial expressions, respiration, and pulse beat to large-scale finger and elbow bending, demonstrating a promising and attractive application for wearable devices and human-machine interaction.
Collapse
Affiliation(s)
- Hui Dong
- College of Material Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
| | - Jingchao Sun
- College of Science, Shenyang Aerospace University, Shenyang 110136, China
| | - Xingmin Liu
- College of Material Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
| | - Xiaodan Jiang
- College of Material Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
| | - Shaowei Lu
- College of Material Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
| |
Collapse
|
37
|
Aazem I, Mathew DT, Radhakrishnan S, Vijoy KV, John H, Mulvihill DM, Pillai SC. Electrode materials for stretchable triboelectric nanogenerator in wearable electronics. RSC Adv 2022; 12:10545-10572. [PMID: 35425002 PMCID: PMC8987949 DOI: 10.1039/d2ra01088g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/25/2022] [Indexed: 01/16/2023] Open
Abstract
Stretchable Triboelectric Nanogenerators (TENGs) for wearable electronics are in significant demand in the area of self-powered energy harvesting and storage devices. Designing a suitable electrode is one of the major challenges in developing a fully wearable TENG device and requires research aimed at exploring new materials and methods to develop stretchable electrodes. This review article is dedicated to presenting recent developments in exploring new materials for flexible TENGs with special emphasis on electrode components for wearable devices. In addition, materials that can potentially deliver properties such as transparency, self-healability and water-resistance are also reviewed. Inherently stretchable materials and a combination of soft and rigid materials including polymers and their composites, inorganic and ceramic materials, 2D materials and carbonaceous nanomaterials are also addressed. Additionally, various fabrication strategies and geometrical patterning techniques employed for designing highly stretchable electrodes for wearable TENG devices are also explored. The challenges reflected in the present approaches as well as feasible suggestions for future advancements are discussed. Schematic illustration of the general requirements of components of a wearable TENG.![]()
Collapse
Affiliation(s)
- Irthasa Aazem
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, Atlantic Technological University, ATU Sligo Ash Lane, Sligo F91 YW50 Ireland .,Health and Biomedical (HEAL) Strategic Research Centre, Atlantic Technological University, ATU Sligo Ash Lane Sligo F91 YW50 Ireland
| | - Dhanu Treasa Mathew
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology Kerala 682022 India.,Inter University Centre for Nanomaterials and Devices, Cochin University of Science and Technology Kerala 682022 India
| | - Sithara Radhakrishnan
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology Kerala 682022 India.,Inter University Centre for Nanomaterials and Devices, Cochin University of Science and Technology Kerala 682022 India
| | - K V Vijoy
- International School of Photonics, Cochin University of Science and Technology Kerala 682022 India
| | - Honey John
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology Kerala 682022 India.,Inter University Centre for Nanomaterials and Devices, Cochin University of Science and Technology Kerala 682022 India
| | - Daniel M Mulvihill
- Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow Glasgow G12 8QQ UK
| | - Suresh C Pillai
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, Atlantic Technological University, ATU Sligo Ash Lane, Sligo F91 YW50 Ireland .,Health and Biomedical (HEAL) Strategic Research Centre, Atlantic Technological University, ATU Sligo Ash Lane Sligo F91 YW50 Ireland
| |
Collapse
|
38
|
Sun W, Luo N, Liu Y, Li H, Wang D. A New Self-Healing Triboelectric Nanogenerator Based on Polyurethane Coating and Its Application for Self-Powered Cathodic Protection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10498-10507. [PMID: 35179862 DOI: 10.1021/acsami.2c00881] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the increasing demand for carbon neutrality, the development of renewable and recycle green energy has attracted wide attention from researchers. A novel self-healing triboelectric nanogenerator (TENG) was constructed by applying a linear silicone-modified polyurethane (PU) coating as a triboelectric layer, which was obtained by reacting hydroxypropyl silicone oil and hexamethylene diisocyanate under the catalysis of Sn. The linear self-healing coating as the friction electrode could effectively alleviate the damages of TENG devices during long-term energy harvesting. When the triboelectric layer of the TENG device shows abrasion, the broken silicone-modified polyurethane polymer chains would gradually be cross-linked again through hydrogen bonding to achieve a self-healing effect. The entire self-healing process of the friction coating could be completed in 30 min at room temperature. The PU-based self-healing TENG exhibits an evident and stable output performance with a short-circuit current of 31.9 μA and output voltage of 517.5 V after multiple cutting-healing cycles, which could light 480 commercial LEDs. Besides, a self-powered cathodic protection system supplied by the self-healing TENG was constructed, which could transfer negative triboelectric charges to the protected metal surface to achieve an anti-corrosion effect by harvesting mechanical energy. Due to the self-healing characteristics of the TENG device as the power supply part, this intelligent system possesses great application potential in the long-term corrosion protection of multiple metal application industries, such as the marine industry.
Collapse
Affiliation(s)
- Weixiang Sun
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Ning Luo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao 266100, China
| | - Yubo Liu
- Qingdao Center of Resource Chemistry and New Materials, Qingdao 266100, China
| | - Hao Li
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Daoai Wang
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao 266100, China
| |
Collapse
|
39
|
Sun J, Zhao E, Liang J, Li H, Zhao S, Wang G, Gu X, Tang BZ. Diradical-Featured Organic Small-Molecule Photothermal Material with High-Spin State in Dimers for Ultra-Broadband Solar Energy Harvesting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108048. [PMID: 34882850 DOI: 10.1002/adma.202108048] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Organic materials with radical characteristics are gaining increasing attention, due to their potential implications in highly efficient utilization of solar energy. Manipulating intermolecular interactions is crucial for tuning radical properties, as well as regulating their absorption bands, and thus improving the photothermal conversion efficiency. Herein, a diradical-featured organic small-molecule croconium derivative, CR-DPA-T, is reported for highly efficient utilization of solar energy. Upon aggregation, CR-DPA-T exists in dimer form, stabilized by the strong intermolecular π-π interactions, and exhibits a rarely reported high-spin state. Benefiting from the synergic effects of radical characteristics and strong intermolecular π-π interactions, CR-DPA-T powder absorbs broadly from 300 to 2000 nm. In-depth investigations with transient absorption analysis reveal that the strong intermolecular π-π interactions can promote nonradiative relaxation by accelerating internal conversion and facilitating intermolecular charge transfer (ICT) between dimeric molecules to open up faster internal conversion pathways. Remarkably, CR-DPA-T powder demonstrates a high photothermal efficiency of 79.5% under 808 nm laser irradiation. By employing CR-DPA-T as a solar harvester, a CR-DPA-T-loaded flexible self-healing poly(dimethylsiloxane) (H-PDMS) film, named as H-PDMS/CR-DPA-T self-healing film, is fabricated and employed for solar-thermal applications. These findings provide a feasible guideline for developing highly efficient diradical-featured organic photothermal materials.
Collapse
Affiliation(s)
- Jiangman Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Engui Zhao
- School of Science, Harbin Institute of Technology, Shenzhen, HIT Campus of University Town, Shenzhen, 518055, China
| | - Jie Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuhong Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guan Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, China
| |
Collapse
|
40
|
Zhu M, Li J, Yu J, Li Z, Ding B. Superstable and Intrinsically Self‐healing Fibrous Membrane with Bionic Confined Protective Structure for Breathable Electronic Skin. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200226] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Miaomiao Zhu
- Donghua University State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering 2999 North Renmin Road, Songjiang 201620 CHINA
| | - Jialu Li
- Donghua University Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles 2999 North Renmin Road, Songjiang 201620 CHINA
| | - Jianyong Yu
- Donghua University Innovation Center for Textile Science and Technology 201620 CHINA
| | - Zhaoling Li
- Donghua University Key Laboratory of Textile Science and Technology 201620 CHINA
| | - Bin Ding
- Donghua University College of Textiles 2999 North Renmin Road, Songjiang District 201620 Shanghai CHINA
| |
Collapse
|
41
|
Wang N, Feng L, Xu XD, Feng S. Dynamic Covalent Bond Cross-linked Luminescent Silicone Elastomer with Self-healing and Recyclable Property. Macromol Rapid Commun 2022; 43:e2100885. [PMID: 35112755 DOI: 10.1002/marc.202100885] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Indexed: 11/10/2022]
Abstract
Two aldehyde-modified tetraphenylene derivatives with different functionality are synthesized and exhibit different fluorescence properties. By incorporating tetraphenylene derivatives into polydimethylsiloxane (PDMS) networks, two elastomers are prepared through dynamic covalent crosslinking. The elastomers show excellent fluorescence properties, mechanical properties, thermal stability as well as self-healing and recycle properties. At the same time, the mechanical properties of the elastomers are influenced by the functionality of the tetraphenylene derivatives and the molecular weight of the PDMS. The self-healing process take place quickly and the recycling process can be carried out by solution processing and hot pressing. It shows the similar tensile properties between the prisitine and healed samples. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ning Wang
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan, Shandong Province, 250100, China
| | - Lei Feng
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan, Shandong Province, 250100, China
| | - Xing-Dong Xu
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan, Shandong Province, 250100, China
| | - Shengyu Feng
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan, Shandong Province, 250100, China
| |
Collapse
|
42
|
Mashkoor F, Lee SJ, Yi H, Noh SM, Jeong C. Self-Healing Materials for Electronics Applications. Int J Mol Sci 2022; 23:622. [PMID: 35054803 PMCID: PMC8775691 DOI: 10.3390/ijms23020622] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 12/22/2022] Open
Abstract
Self-healing materials have been attracting the attention of the scientists over the past few decades because of their effectiveness in detecting damage and their autonomic healing response. Self-healing materials are an evolving and intriguing field of study that could lead to a substantial increase in the lifespan of materials, improve the reliability of materials, increase product safety, and lower product replacement costs. Within the past few years, various autonomic and non-autonomic self-healing systems have been developed using various approaches for a variety of applications. The inclusion of appropriate functionalities into these materials by various chemistries has enhanced their repair mechanisms activated by crack formation. This review article summarizes various self-healing techniques that are currently being explored and the associated chemistries that are involved in the preparation of self-healing composite materials. This paper further surveys the electronic applications of self-healing materials in the fields of energy harvesting devices, energy storage devices, and sensors. We expect this article to provide the reader with a far deeper understanding of self-healing materials and their healing mechanisms in various electronics applications.
Collapse
Affiliation(s)
- Fouzia Mashkoor
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Sun Jin Lee
- Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Korea;
| | - Hoon Yi
- Mechanical Technology Group, Global Manufacturing Center, Samsung Electro-Mechanics, 150 Maeyeong-ro, Yeongtong-gu, Suwon 16674, Korea;
| | - Seung Man Noh
- Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Korea;
| | - Changyoon Jeong
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|
43
|
Nellepalli P, Patel T, Kim MP, Park J, Ye Z, Jung HW, Ko H, Oh JK. Self-healable triboelectric nanogenerators based on ionic poly(hindered urea) network materials cross-linked with fluorinated block copolymers. Polym Chem 2022. [DOI: 10.1039/d2py00252c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The versatility of a reactive block copolymer approach to fabricate ionic poly(hindered urea)-based covalent adaptive networks having pendant fluorinated species formulated with ionic liquid for effective self-healable triboelectric nanogenerators.
Collapse
Affiliation(s)
- Pothanagandhi Nellepalli
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada H4B 1R6
| | - Twinkal Patel
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada H4B 1R6
| | - Minsoo P. Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Junyoung Park
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Zhibin Ye
- Department of Chemical and Materials Engineering, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Hyun Wook Jung
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada H4B 1R6
| |
Collapse
|
44
|
Yang Z, Zhu Z, Chen Z, Liu M, Zhao B, Liu Y, Cheng Z, Wang S, Yang W, Yu T. Recent Advances in Self-Powered Piezoelectric and Triboelectric Sensors: From Material and Structure Design to Frontier Applications of Artificial Intelligence. SENSORS 2021; 21:s21248422. [PMID: 34960515 PMCID: PMC8703550 DOI: 10.3390/s21248422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
The development of artificial intelligence and the Internet of things has motivated extensive research on self-powered flexible sensors. The conventional sensor must be powered by a battery device, while innovative self-powered sensors can provide power for the sensing device. Self-powered flexible sensors can have higher mobility, wider distribution, and even wireless operation, while solving the problem of the limited life of the battery so that it can be continuously operated and widely utilized. In recent years, the studies on piezoelectric nanogenerators (PENGs) and triboelectric nanogenerators (TENGs) have mainly concentrated on self-powered flexible sensors. Self-powered flexible sensors based on PENGs and TENGs have been reported as sensing devices in many application fields, such as human health monitoring, environmental monitoring, wearable devices, electronic skin, human–machine interfaces, robots, and intelligent transportation and cities. This review summarizes the development process of the sensor in terms of material design and structural optimization, as well as introduces its frontier applications in related fields. We also look forward to the development prospects and future of self-powered flexible sensors.
Collapse
Affiliation(s)
- Zetian Yang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China; (Z.Y.); (Z.Z.); (Z.C.); (M.L.); (B.Z.); (Y.L.); (Z.C.); (S.W.); (T.Y.)
| | - Zhongtai Zhu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China; (Z.Y.); (Z.Z.); (Z.C.); (M.L.); (B.Z.); (Y.L.); (Z.C.); (S.W.); (T.Y.)
| | - Zixuan Chen
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China; (Z.Y.); (Z.Z.); (Z.C.); (M.L.); (B.Z.); (Y.L.); (Z.C.); (S.W.); (T.Y.)
| | - Mingjia Liu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China; (Z.Y.); (Z.Z.); (Z.C.); (M.L.); (B.Z.); (Y.L.); (Z.C.); (S.W.); (T.Y.)
| | - Binbin Zhao
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China; (Z.Y.); (Z.Z.); (Z.C.); (M.L.); (B.Z.); (Y.L.); (Z.C.); (S.W.); (T.Y.)
| | - Yansong Liu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China; (Z.Y.); (Z.Z.); (Z.C.); (M.L.); (B.Z.); (Y.L.); (Z.C.); (S.W.); (T.Y.)
| | - Zefei Cheng
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China; (Z.Y.); (Z.Z.); (Z.C.); (M.L.); (B.Z.); (Y.L.); (Z.C.); (S.W.); (T.Y.)
| | - Shuo Wang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China; (Z.Y.); (Z.Z.); (Z.C.); (M.L.); (B.Z.); (Y.L.); (Z.C.); (S.W.); (T.Y.)
| | - Weidong Yang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China; (Z.Y.); (Z.Z.); (Z.C.); (M.L.); (B.Z.); (Y.L.); (Z.C.); (S.W.); (T.Y.)
- Correspondence:
| | - Tao Yu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China; (Z.Y.); (Z.Z.); (Z.C.); (M.L.); (B.Z.); (Y.L.); (Z.C.); (S.W.); (T.Y.)
- The Shanghai Key Laboratory of Space Mapping and Remote Sensing for Planetary Exploration, Tongji University, Shanghai 200092, China
| |
Collapse
|
45
|
Sun F, Xu J, Liu T, Li F, Poo Y, Zhang Y, Xiong R, Huang C, Fu J. An autonomously ultrafast self-healing, highly colourless, tear-resistant and compliant elastomer tailored for transparent electromagnetic interference shielding films integrated in flexible and optical electronics. MATERIALS HORIZONS 2021; 8:3356-3367. [PMID: 34657943 DOI: 10.1039/d1mh01199e] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Considering the operation reliability of flexible and optical electronics (FOEs) in dynamic and real-world environments, autonomous self-healing electromagnetic interference (EMI) shielding materials with high transparency, good stretchability and excellent tear-resistance are urgently required but always difficult to achieve due to the poor dynamics of their elastic substrates. Herein, we propose a facile strategy to design a highly dynamic polyurea elastomer (PDMS-MPI-HDI) featuring with ultrahigh optical transparency (>94%), ultralow elastic modulus (<1 MPa), high tear-resistant stretchability (800%), and ultrafast autonomous self-healing (100 s for scratch-healing). Taking PDMS-MPI-HDI as a substrate for embedding silver nanowires (Ag NWs), the first transparent, stretchable and self-healable EMI shielding materials (Ag NWs/PDMS-MPI-HDI) are presented. Failure behavior of Ag NWs/PDMS-MPI-HDI is highly tolerant of prefabricated cracks under deformation. Due to the robust interfacial adhesion between Ag NWs and PDMS-MPI-HDI, the fractured Ag NW network can autonomously self-reconstruct during the healing process of PDMS-MPI-HDI substrates, contributing to the complete restoration of EMI shielding effectiveness (SE) and full erasure of scratches at both the resting and stretching states. Besides, Ag NWs/PDMS-MPI-HDI exhibits fast autonomous self-healing at high (60 °C) and low (0 °C) temperatures, and in artificial sweat, which is essential for FOEs applicable in various practical environments.
Collapse
Affiliation(s)
- FuYao Sun
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University, 210037, China.
- School of Chemical Engineering, Nanjing University of Science and Technology, 210094, China.
| | - JianHua Xu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University, 210037, China.
- School of Chemical Engineering, Nanjing University of Science and Technology, 210094, China.
| | - Tong Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, 210094, China.
| | - FeiFei Li
- School of Electronic Science and Engineering, Nanjing University, 210023, China.
| | - Yin Poo
- School of Electronic Science and Engineering, Nanjing University, 210023, China.
| | - YaNa Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, 210094, China.
| | - RanHua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University, 210037, China.
| | - ChaoBo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University, 210037, China.
| | - JiaJun Fu
- School of Chemical Engineering, Nanjing University of Science and Technology, 210094, China.
| |
Collapse
|
46
|
Prospects of Wireless Energy-Aware Sensors for Smart Factories in the Industry 4.0 Era. ELECTRONICS 2021. [DOI: 10.3390/electronics10232929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Advanced sensors are becoming essential for modern factories, as they contribute by gathering comprehensive data about machines, processes, and human-machine interaction. They play an important role in improving manufacturing performance, in-factory logistics, predictive maintenance, supply chains, and digitalization in general. Wireless sensors and wireless sensor networks (WSNs) provide, in this context, significant advantages as they are flexible and easily deployable. They have reduced installation and maintenance costs and contributed by reducing cables and preinstalled infrastructure, leading to improved reliability. WSNs can be retrofitted in machines to provide direct information from inside the processes. Recent developments have revealed exciting possibilities to enhance energy harvesting (EH) and wireless energy transmission, enabling a reliable use of wireless sensors in smart factories. This review provides an overview of the potential of energy aware WSNs for industrial applications and shows relevant techniques for realizing a sustainable energy supply based on energy harvesting and energy transfer. The focus is on high-performance converter solutions and improvement of frequency, bandwidth, hybridization of the converters, and the newest trends towards flexible converters. We report on possibilities to reduce the energy consumption in wireless communication on the node level and on the network level, enabling boosting network efficiency and operability. Based on the existing technologies, energy aware WSNs can nowadays be realized for many applications in smart factories. It can be expected that they will play a great role in the future as an enabler for digitalization in this decisive economic sector.
Collapse
|
47
|
He C, Liang F, Veeramuthu L, Cho C, Benas J, Tzeng Y, Tseng Y, Chen W, Rwei A, Kuo C. Super Tough and Spontaneous Water-Assisted Autonomous Self-Healing Elastomer for Underwater Wearable Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102275. [PMID: 34519441 PMCID: PMC8564429 DOI: 10.1002/advs.202102275] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/15/2021] [Indexed: 05/19/2023]
Abstract
Self-healing soft electronic material composition is crucial to sustain the device long-term durability. The fabrication of self-healing soft electronics exposed to high moisture environment is a significant challenge that has yet to be fully achieved. This paper presents the novel concept of a water-assisted room-temperature autonomous self-healing mechanism based on synergistically dynamic covalent Schiff-based imine bonds with hydrogen bonds. The supramolecular water-assisted self-healing polymer (WASHP) films possess rapid self-healing kinetic behavior and high stretchability due to a reversible dissociation-association process. In comparison with the pristine room-temperature self-healing polymer, the WASHP demonstrates favorable mechanical performance at room temperature and a short self-healing time of 1 h; furthermore, it achieves a tensile strain of 9050%, self-healing efficiency of 95%, and toughness of 144.2 MJ m-3 . As a proof of concept, a versatile WASHP-based light-emitting touch-responsive device (WASHP-LETD) and perovskite quantum dot (PeQD)-based white LED backlight are designed. The WASHP-LETD has favorable mechanical deformation performance under pressure, bending, and strain, whereas the WASHP-PeQDs exhibit outstanding long-term stability even over a period exceeding one year in a boiling water environment. This paper provides a mechanically robust approach for producing eco-friendly, economical, and waterproof e-skin device components.
Collapse
Affiliation(s)
- Cyuan‐Lun He
- Institute of Organic and Polymeric MaterialsResearch and Development Center of Smart Textile TechnologyNational Taipei University of TechnologyNo. 1, Sec. 3, Chung‐Hsiao East RoadTaipei10608Taiwan
| | - Fang‐Cheng Liang
- Institute of Organic and Polymeric MaterialsResearch and Development Center of Smart Textile TechnologyNational Taipei University of TechnologyNo. 1, Sec. 3, Chung‐Hsiao East RoadTaipei10608Taiwan
| | - Loganathan Veeramuthu
- Institute of Organic and Polymeric MaterialsResearch and Development Center of Smart Textile TechnologyNational Taipei University of TechnologyNo. 1, Sec. 3, Chung‐Hsiao East RoadTaipei10608Taiwan
| | - Chia‐Jung Cho
- Institute of Organic and Polymeric MaterialsResearch and Development Center of Smart Textile TechnologyNational Taipei University of TechnologyNo. 1, Sec. 3, Chung‐Hsiao East RoadTaipei10608Taiwan
| | - Jean‐Sebastien Benas
- Institute of Organic and Polymeric MaterialsResearch and Development Center of Smart Textile TechnologyNational Taipei University of TechnologyNo. 1, Sec. 3, Chung‐Hsiao East RoadTaipei10608Taiwan
| | - Yung‐Ru Tzeng
- Institute of Organic and Polymeric MaterialsResearch and Development Center of Smart Textile TechnologyNational Taipei University of TechnologyNo. 1, Sec. 3, Chung‐Hsiao East RoadTaipei10608Taiwan
| | - Yen‐Lin Tseng
- Institute of Organic and Polymeric MaterialsResearch and Development Center of Smart Textile TechnologyNational Taipei University of TechnologyNo. 1, Sec. 3, Chung‐Hsiao East RoadTaipei10608Taiwan
| | - Wei‐Cheng Chen
- Institute of Organic and Polymeric MaterialsResearch and Development Center of Smart Textile TechnologyNational Taipei University of TechnologyNo. 1, Sec. 3, Chung‐Hsiao East RoadTaipei10608Taiwan
| | - Alina Rwei
- Department of Chemical EngineeringDelft University of TechnologyDelft2629 HZNetherlands
| | - Chi‐Ching Kuo
- Institute of Organic and Polymeric MaterialsResearch and Development Center of Smart Textile TechnologyNational Taipei University of TechnologyNo. 1, Sec. 3, Chung‐Hsiao East RoadTaipei10608Taiwan
| |
Collapse
|
48
|
Zhou LN, Wu JP, Song WZ, Wang XX, Wang N, Yu M, Fan ZY, Ramakrishna S, Long YZ. High output achieved by sliding electrification of an electrospun nano-grating. NANOSCALE 2021; 13:17417-17427. [PMID: 34647562 DOI: 10.1039/d1nr04769h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The rapid development of flexible and wearable electronics has proposed a trend towards miniaturization, mobility, versatility and artificial intelligence. Triboelectric nanogenerators (TENGs) can make use of micro/nano multi-functional materials to harvest and store energy from the surrounding environment efficiently, which can drive smart portable electronics operating continuously and steadily. The increase in the output power density of the triboelectric nanogenerator requires new designs. In this work, a new grating TENG was proposed, and the two friction layers were fabricated by near-field electrospinning and conventional electrospinning with two parallel electrodes as a collector, respectively. The basic model of the simulation was simplified according to the highly ordered structure and the repeatability of the TENG grating structure. The effect of the effective contact area on the output of the TENG was further proved by fitting the calculation regularity of the two models with the experimental results. At the same time, the effect of the redundant electrode on the output of the TENG was verified by experiments. We found that this nanogenerator can achieve a very high output of 1800 W m-2 due to a more refined grating structure combined with modification of the contact area. The TENG can also be used as a selfpowered sensor to detect mechanical signals, which requires no additional power source to drive it. Meanwhile, the anisotropic nature of the TENG can also be utilized to sense angles, lock devices or encrypt information. This output control technology provides a more effective idea for future output power improvement, that is, a new generation of high-output TENGs can be designed by effectively adjusting the corresponding contact area and electrode area.
Collapse
Affiliation(s)
- Li-Na Zhou
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| | - Jun-Peng Wu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| | - Wei-Zhi Song
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| | - Xiao-Xiong Wang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| | - Ning Wang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| | - Miao Yu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| | - Zhi-Yong Fan
- Department of Electronic & Computer Engineering, The Hong Kong University of Science & Technology, Kowloon, Hong Kong, China
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117574
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, and State Key Laboratory of Bio-Fibers & Eco-Textiles, Qingdao University, Qingdao 266071, China
| |
Collapse
|
49
|
Singh S, Tripathi RK, Gupta MK, Dzhardimalieva GI, Uflyand IE, Yadav B. 2-D self-healable polyaniline-polypyrrole nanoflakes based triboelectric nanogenerator for self-powered solar light photo detector with DFT study. J Colloid Interface Sci 2021; 600:572-585. [PMID: 34034119 DOI: 10.1016/j.jcis.2021.05.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 01/03/2023]
Abstract
This work demonstrates an easy and cost-effective synthesis of PANI-PPY conducting nanoflakes (NFs) with a self-healing capability. Scanning electron microscopic (SEM) analysis shows the minimum width of NFs as 30 nm, while HRTEM analysis confirms the shape, size, and semi-crystalline nature of the polymer. These PANI-PPY NFs were used to fabricate a contact separation mode triboelectric nanogenerator (TENG) based self-powered photosensor which gave the maximum output voltage (149 V), maximum output current (16 µA), current density 0.56 µAcm-2, and power density 83.56 µWcm-2. Detailed literature survey shows the comparative study of PANI-PPY NF's with other photo-sensing materials. This literature review highlights the tremendous ability of PANI-PPY to self-restore and ultra-fast self-powering nature. This work also demonstrates a very easy and cost-effective method to develop polymeric nanomaterials via temperature-assisted polymerization, which need only a stirrer with a hot plate. Theoretical analysis (DFT calculations using Gaussian 09 and Gauss view 05) shows a consistent increase in stability when the number of molecules in the polymer chains analyzed was increased. The developed self-healing triboelectric nanogenerators exhibited stable performance before and after healing.
Collapse
Affiliation(s)
- Shakti Singh
- Nanomaterials and Sensors Research Laboratory, Department of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Ravi Kant Tripathi
- Nanomaterials and Sensors Research Laboratory, Department of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Manoj Kumar Gupta
- CSIR-Avanced Materials and Processes Research Institute, Bhopal 462026, India
| | - Gulzhian I Dzhardimalieva
- Laboratory of Metallopolymers, The Institute of Problems of Chemical Physics RAS, Academician Semenov Avenue 1, Chernogolovka, Moscow Region 142432, Russian Federation
| | - Igor E Uflyand
- Department of Chemistry, Southern Federal University, B. Sadovaya Str. 105/42, Rostov-on-Don 344006, Russian Federation
| | - BalChandra Yadav
- Nanomaterials and Sensors Research Laboratory, Department of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India.
| |
Collapse
|
50
|
Gai Y, Li H, Li Z. Self-Healing Functional Electronic Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101383. [PMID: 34288411 DOI: 10.1002/smll.202101383] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Indexed: 05/20/2023]
Abstract
Electronic devices with various functions bring great convenience and revolutionize the way we live. They are inevitable to degrade over time because of physical or chemical fatigue and damage during practical operation. To make these devices have the ability to autonomously heal from cracks and restore their mechanical and electrical properties, self-healing materials emerged as the time requires for constructing robust and self-healing electronic devices. Here the development of self-healing electronic devices with different functions, for example, energy harvesting, energy storage, sensing, and transmission, is reviewed. The new application scenarios and existing challenges are explored, and possible strategies and perspectives for future practical applications are discussed.
Collapse
Affiliation(s)
- Yansong Gai
- Center on Nanoenergy Research, School of Chemistry and Chemical Engineering, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Hu Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhou Li
- Center on Nanoenergy Research, School of Chemistry and Chemical Engineering, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|