1
|
Bae E, Kim S, Sung JH, Kim JH, Jung SH, Song KS, Cho WS. The oxidative stress-dependent pulmonary inflammation of inhalable multi-walled carbon nanotube-containing nano-concrete dust and its comparison with conventional concrete dust and DQ12. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135214. [PMID: 39029181 DOI: 10.1016/j.jhazmat.2024.135214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/26/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
Nano-concrete, which is an admixture of nanomaterials in concrete recipes, has been investigated to overcome the limitations of existing concrete, such as its stability and strength. However, there is no information on the human health effects of broken-down dust released during the construction and demolition efforts. In this study, we prepared an inhalable fraction of multi-walled carbon nanotube-containing nano-concrete dust and performed comparative toxicity studies with conventional concrete dust and DQ12 using a rat intratracheal instillation model. Although the recipes for concrete and nano-concrete are entirely different, the pulverized dust samples showed similar physicochemical properties, such as 0.46-0.48 µm diameter and chemical composition. Both concrete and nano-concrete dust exhibited similar patterns and magnitudes, representing acute neutrophilic inflammation and chronic active inflammation with lymphocyte infiltration. The toxicity endpoints of the tested particles at both time points showed an excellent correlation with the reactive oxygen species levels released from the alveolar macrophages, highlighting that alveolar macrophages are the primary target cells and that the oxidative stress paradigm is the main toxicity mechanism of the tested particles. In addition, the toxicity potentials of both concrete and nano-concrete dust were more than 10 times lower than that of DQ12.
Collapse
Affiliation(s)
- Eunsol Bae
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Songyeon Kim
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Jae Hyuck Sung
- Bio Division, Korea Conformity Laboratories, Incheon 21999, Republic of Korea
| | - Joo Hyung Kim
- Construction Division, Korea Conformity Laboratories, Cheongju 28115, Republic of Korea
| | - Sang Hwa Jung
- Construction Division, Korea Conformity Laboratories, Cheongju 28115, Republic of Korea
| | - Kyung-Seuk Song
- Bio Division, Korea Conformity Laboratories, Incheon 21999, Republic of Korea
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
2
|
Fadeel B, Keller AA. Nanosafety: a Perspective on Nano-Bio Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310540. [PMID: 38597766 DOI: 10.1002/smll.202310540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/28/2024] [Indexed: 04/11/2024]
Abstract
Engineered nanomaterials offer numerous benefits to society ranging from environmental remediation to biomedical applications such as drug or vaccine delivery as well as clean and cost-effective energy production and storage, and the promise of a more sustainable way of life. However, as nanomaterials of increasing sophistication enter the market, close attention to potential adverse effects on human health and the environment is needed. Here a critical perspective on nanotoxicological research is provided; the authors argue that it is time to leverage the knowledge regarding the biological interactions of nanomaterials to achieve a more comprehensive understanding of the human health and environmental impacts of these materials. Moreover, it is posited that nanomaterials behave like biological entities and that they should be regulated as such.
Collapse
Affiliation(s)
- Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Arturo A Keller
- Bren School of Environmental Science & Management, University of California Santa Barbara, California, CA, 93106, USA
| |
Collapse
|
3
|
Nel A. Carbon nanotube pathogenicity conforms to a unified theory for mesothelioma causation by elongate materials and fibers. ENVIRONMENTAL RESEARCH 2023; 230:114580. [PMID: 36965801 DOI: 10.1016/j.envres.2022.114580] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 05/30/2023]
Abstract
The purpose of this review is to elucidate how dimensional and durability characteristics of high aspect ratio nanomaterials (HARN), including carbon nanotubes (CNT) and metal nanowires (MeNW), contribute to understanding the fiber pathogenicity paradigm (FPP), including by explaining the structure-activity relationships (SAR) of a diverse range of natural and synthetic elongate materials that may or may not contribute to mesothelioma development in the lung. While the FPP was originally developed to explain the critical importance of asbestos and synthetic vitreous fiber length, width, aspect ratio and biopersistence in mesothelioma development, there are a vast number of additional inhalable materials that need to be considered in terms of pathogenic features that may contribute to mesothelioma or lack thereof. Not only does the ability to exert more exact control over the length and biopersistence of HARNs confirm the tenets of the FPP, but could be studied by implementating more appropriate toxicological tools for SAR analysis. This includes experimentation with carefully assembled libraries of CNTs and MeNWs, helping to establish more precise dimensional features for interfering in lymphatic drainage from the parietal pleura, triggering of lysosomal damage, frustrated phagocytosis and generation of chronic inflammation. The evidence includes data that long and rigid, but not short and flexible multi-wall CNTs are capable of generating mesotheliomas in rodents based on an adverse outcome pathway requiring access to pleural cavity, obstruction of pleural stomata, chronic inflammation and transformation of mesothelial cells. In addition to durability and dimensional characteristics, bending stiffness of CNTs is a critical factor in determining the shape and rigidity of pathogenic MWCNTs. While no evidence has been obtained in humans that CNT exposure leads to a mesothelioma outcome, it is important to monitor exposure levels and health effect impacts in workers to prevent adverse health outcomes in humans.
Collapse
Affiliation(s)
- André Nel
- Distinguished Professor of Medicine and Research Director of the California Nano Systems Institute at UCLA, USA; Division of NanoMedicine, And Department of Medicine, David Geffen School of Medicine at UCLA, 52-175 Center for the Health Sciences, 10833 LeConte Ave, Los Angeles, CA, 90095, USA; California Nano Systems Institute at UCLA, 570 Westwood Plaza, Building 114, Los Angeles, CA, 90095, USA.
| |
Collapse
|
4
|
He Y, Lin X, Feng Y, Luo B, Liu M. Carbon Nanotube Ink Dispersed by Chitin Nanocrystals for Thermoelectric Converter for Self-Powering Multifunctional Wearable Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204675. [PMID: 36202755 PMCID: PMC9685456 DOI: 10.1002/advs.202204675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/19/2022] [Indexed: 05/22/2023]
Abstract
The screen-printing process of conductive ink can realize simple and large-scale manufacture of micro/nano patterns for producing wearable electronic products. Herein, chitin nanocrystals (ChNCs) are used as a dispersant for the preparation of multiwalled carbon nanotube (MWCNT) ink with high viscosity and uniformity by ultrasound treatment. ChNCs can interact with MWCNT in noncovalent ways, including π-π and hydrophobic interactions. ChNCs/MWCNT (CCNT) ink does not aggregate even after standing for 3 months with a maximum MWCNT concentration of 33 mg mL-1 and dispersion efficiency of 91.1%. Using CCNT ink, a paper-based thermoelectric generator (TEG) is manufactured by screen-printing technology. With good thermoelectric and strain sensing properties, CCNT coated paper can stably collect human energy at room temperature to realize self-powering. The CCNT coated paper-based TEG can convert thermal voltage signals into musical notes, monitor the changes in human behavior and respiratory rate, and monitor joint movements. Moreover, CCNT coated paper has no cytotoxicity by CCK-8 and live/dead staining. This work puts forward a strategy of green preparation of MWCNT-based ink by adding renewable chitin, which opens up a new way to apply MWCNT-based ink in self-powering wearable multifunctional sensors.
Collapse
Affiliation(s)
- Yunqing He
- Department of Materials Science and EngineeringCollege of Chemistry and Materials ScienceJinan UniversityGuangzhou511443P. R. China
| | - Xiaoying Lin
- Department of Materials Science and EngineeringCollege of Chemistry and Materials ScienceJinan UniversityGuangzhou511443P. R. China
| | - Yue Feng
- Department of Materials Science and EngineeringCollege of Chemistry and Materials ScienceJinan UniversityGuangzhou511443P. R. China
| | - Binghong Luo
- Department of Materials Science and EngineeringCollege of Chemistry and Materials ScienceJinan UniversityGuangzhou511443P. R. China
| | - Mingxian Liu
- Department of Materials Science and EngineeringCollege of Chemistry and Materials ScienceJinan UniversityGuangzhou511443P. R. China
| |
Collapse
|
5
|
Gupta SS, Singh KP, Gupta S, Dusinska M, Rahman Q. Do Carbon Nanotubes and Asbestos Fibers Exhibit Common Toxicity Mechanisms? NANOMATERIALS 2022; 12:nano12101708. [PMID: 35630938 PMCID: PMC9145953 DOI: 10.3390/nano12101708] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023]
Abstract
During the last two decades several nanoscale materials were engineered for industrial and medical applications. Among them carbon nanotubes (CNTs) are the most exploited nanomaterials with global production of around 1000 tons/year. Besides several commercial benefits of CNTs, the fiber-like structures and their bio-persistency in lung tissues raise serious concerns about the possible adverse human health effects resembling those of asbestos fibers. In this review, we present a comparative analysis between CNTs and asbestos fibers using the following four parameters: (1) fibrous needle-like shape, (2) bio-persistent nature, (3) high surface to volume ratio and (4) capacity to adsorb toxicants/pollutants on the surface. We also compare mechanisms underlying the toxicity caused by certain diameters and lengths of CNTs and asbestos fibers using downstream pathways associated with altered gene expression data from both asbestos and CNT exposure. Our results suggest that indeed certain types of CNTs are emulating asbestos fiber as far as associated toxicity is concerned.
Collapse
Affiliation(s)
- Suchi Smita Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051 Rostock, Germany; (S.S.G.); (K.P.S.); (S.G.)
| | - Krishna P. Singh
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051 Rostock, Germany; (S.S.G.); (K.P.S.); (S.G.)
| | - Shailendra Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051 Rostock, Germany; (S.S.G.); (K.P.S.); (S.G.)
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway;
| | - Qamar Rahman
- Amity Institute of Biotechnology, Amity University, Lucknow 226028, India
- Correspondence:
| |
Collapse
|
6
|
Mirata S, Almonti V, Di Giuseppe D, Fornasini L, Raneri S, Vernazza S, Bersani D, Gualtieri AF, Bassi AM, Scarfì S. The Acute Toxicity of Mineral Fibres: A Systematic In Vitro Study Using Different THP-1 Macrophage Phenotypes. Int J Mol Sci 2022; 23:2840. [PMID: 35269982 PMCID: PMC8911508 DOI: 10.3390/ijms23052840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
Alveolar macrophages are the first line of defence against detrimental inhaled stimuli. To date, no comparative data have been obtained on the inflammatory response induced by different carcinogenic mineral fibres in the three main macrophage phenotypes: M0 (non-activated), M1 (pro-inflammatory) and M2 (alternatively activated). To gain new insights into the different toxicity mechanisms of carcinogenic mineral fibres, the acute effects of fibrous erionite, crocidolite and chrysotile in the three phenotypes obtained by THP-1 monocyte differentiation were investigated. The three mineral fibres apparently act by different toxicity mechanisms. Crocidolite seems to exert its toxic effects mostly as a result of its biodurability, ROS and cytokine production and DNA damage. Chrysotile, due to its low biodurability, displays toxic effects related to the release of toxic metals and the production of ROS and cytokines. Other mechanisms are involved in explaining the toxicity of biodurable fibrous erionite, which induces lower ROS and toxic metal release but exhibits a cation-exchange capacity able to alter the intracellular homeostasis of important cations. Concerning the differences among the three macrophage phenotypes, similar behaviour in the production of pro-inflammatory mediators was observed. The M2 phenotype, although known as a cell type recruited to mitigate the inflammatory state, in the case of asbestos fibres and erionite, serves to support the process by supplying pro-inflammatory mediators.
Collapse
Affiliation(s)
- Serena Mirata
- Department Earth, Environment and Life Sciences, University of Genova, 16132 Genova, Italy;
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy; (V.A.); (S.V.); (A.M.B.)
| | - Vanessa Almonti
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy; (V.A.); (S.V.); (A.M.B.)
- Department Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Dario Di Giuseppe
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (D.D.G.); (A.F.G.)
| | - Laura Fornasini
- ICCOM-CNR—Institute of Chemistry of OrganoMetallic Compounds, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (L.F.); (S.R.)
| | - Simona Raneri
- ICCOM-CNR—Institute of Chemistry of OrganoMetallic Compounds, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (L.F.); (S.R.)
| | - Stefania Vernazza
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy; (V.A.); (S.V.); (A.M.B.)
- Department Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Danilo Bersani
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124 Parma, Italy;
| | - Alessandro F. Gualtieri
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (D.D.G.); (A.F.G.)
| | - Anna Maria Bassi
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy; (V.A.); (S.V.); (A.M.B.)
- Department Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Sonia Scarfì
- Department Earth, Environment and Life Sciences, University of Genova, 16132 Genova, Italy;
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy; (V.A.); (S.V.); (A.M.B.)
| |
Collapse
|
7
|
Keshavan S, Gupta G, Martin S, Fadeel B. Multi-walled carbon nanotubes trigger lysosome-dependent cell death (pyroptosis) in macrophages but not in neutrophils. Nanotoxicology 2021; 15:1125-1150. [PMID: 34657549 DOI: 10.1080/17435390.2021.1988171] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Carbon nanotubes (CNTs) have been extensively investigated, and several studies have shown that multi-walled CNTs can trigger inflammation and fibrosis in animal models. However, while neutrophils are involved in inflammation, most in vitro studies have addressed macrophages. Here we explored the impact of three MWCNTs with varying morphology (i.e. long and rigid versus short and/or tangled) on primary human macrophages and macrophage-differentiated THP-1 cells versus primary human neutrophils and neutrophil-differentiated HL-60 cells. We found that long and rigid MWCNTs triggered caspase-dependent cell death in macrophages, accompanied by NLRP3 inflammasome activation and gasdermin D (GSDMD)-mediated release of pro-inflammatory IL-1β. The release of IL-1β was suppressed by disulfiram, an FDA-approved drug known to act as an inhibitor of membrane pore formation by GSDMD. Evidence of autophagic cell death was noted in macrophages exposed to higher concentrations of the long and rigid MWCNTs. Furthermore, lysosomal damage with cytosolic release of cathepsin B was observed in macrophages exposed to the latter MWCNTs. On the other hand, there was little evidence of uptake of MWCNTs in neutrophils and the cells failed to undergo MWCNT-triggered cell death. Our studies have demonstrated that long and rigid MWCNTs trigger pyroptosis in human macrophages.
Collapse
Affiliation(s)
- Sandeep Keshavan
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Govind Gupta
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sebastin Martin
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Cosnier F, Seidel C, Valentino S, Schmid O, Bau S, Vogel U, Devoy J, Gaté L. Retained particle surface area dose drives inflammation in rat lungs following acute, subacute, and subchronic inhalation of nanomaterials. Part Fibre Toxicol 2021; 18:29. [PMID: 34353337 PMCID: PMC8340536 DOI: 10.1186/s12989-021-00419-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/23/2021] [Indexed: 01/05/2023] Open
Abstract
Background An important aspect of nanomaterial (NM) risk assessment is establishing relationships between physicochemical properties and key events governing the toxicological pathway leading to adverse outcomes. The difficulty of NM grouping can be simplified if the most toxicologically relevant dose metric is used to assess the toxicological dose-response. Here, we thoroughly investigated the relationship between acute and chronic inflammation (based on polymorphonuclear neutrophil influx (% PMN) in lung bronchoalveolar lavage) and the retained surface area in the lung. Inhalation studies were performed in rats with three classes of NMs: titanium dioxides (TiO2) and carbon blacks (CB) as poorly soluble particles of low toxicity (PSLT), and multiwall carbon nanotubes (MWCNTs). We compared our results to published data from nearly 30 rigorously selected articles. Results This analysis combined data specially generated for this work on three benchmark materials - TiO2 P25, the CB Printex-90 and the MWCNT MWNT-7 - following subacute (4-week) inhalation with published data relating to acute (1-week) to subchronic (13-week) inhalation exposure to the classes of NMs considered. Short and long post-exposure recovery times (immediately after exposure up to more than 6 months) allowed us to examine both acute and chronic inflammation. A dose-response relationship across short-term and long-term studies was revealed linking pulmonary retained surface area dose (measured or estimated) and % PMN. This relationship takes the form of sigmoid curves, and is independent of the post-exposure time. Curve fitting equations depended on the class of NM considered, and sometimes on the duration of exposure. Based on retained surface area, long and thick MWCNTs (few hundred nm long with an aspect ratio greater than 25) had a higher inflammatory potency with 5 cm2/g lung sufficient to trigger an inflammatory response (at 6% PMN), whereas retained surfaces greater than 150 cm2/g lung were required for PSLT. Conclusions Retained surface area is a useful metric for hazard grouping purposes. This metric would apply to both micrometric and nanometric materials, and could obviate the need for direct measurement in the lung. Indeed, it could alternatively be estimated from dosimetry models using the aerosol parameters (rigorously determined following a well-defined aerosol characterization strategy). Supplementary Information The online version contains supplementary material available at 10.1186/s12989-021-00419-w.
Collapse
Affiliation(s)
- Frédéric Cosnier
- Institut National de Recherche et de Sécurité, 1 Rue du Morvan, CS 60027, 54519, Vandœuvre-les-Nancy Cedex, France.
| | - Carole Seidel
- Institut National de Recherche et de Sécurité, 1 Rue du Morvan, CS 60027, 54519, Vandœuvre-les-Nancy Cedex, France
| | - Sarah Valentino
- Institut National de Recherche et de Sécurité, 1 Rue du Morvan, CS 60027, 54519, Vandœuvre-les-Nancy Cedex, France
| | - Otmar Schmid
- Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,Comprehensive Pneumology Center, Munich (CPC-M) - Member of the German Center for Lung Research (DZL), 81377, Munich, Germany
| | - Sébastien Bau
- Institut National de Recherche et de Sécurité, 1 Rue du Morvan, CS 60027, 54519, Vandœuvre-les-Nancy Cedex, France
| | - Ulla Vogel
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen, Denmark.,Department of Health Technology by DTU Food, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Jérôme Devoy
- Institut National de Recherche et de Sécurité, 1 Rue du Morvan, CS 60027, 54519, Vandœuvre-les-Nancy Cedex, France
| | - Laurent Gaté
- Institut National de Recherche et de Sécurité, 1 Rue du Morvan, CS 60027, 54519, Vandœuvre-les-Nancy Cedex, France
| |
Collapse
|
9
|
Zhang C, Wu L, de Perrot M, Zhao X. Carbon Nanotubes: A Summary of Beneficial and Dangerous Aspects of an Increasingly Popular Group of Nanomaterials. Front Oncol 2021; 11:693814. [PMID: 34386422 PMCID: PMC8353320 DOI: 10.3389/fonc.2021.693814] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
Carbon nanotubes (CNTs) are nanomaterials with broad applications that are produced on a large scale. Animal experiments have shown that exposure to CNTs, especially one type of multi-walled carbon nanotube, MWCNT-7, can lead to malignant transformation. CNTs have characteristics similar to asbestos (size, shape, and biopersistence) and use the same molecular mechanisms and signaling pathways as those involved in asbestos tumorigenesis. Here, a comprehensive review of the characteristics of carbon nanotubes is provided, as well as insights that may assist in the design and production of safer nanomaterials to limit the hazards of currently used CNTs.
Collapse
Affiliation(s)
- Chengke Zhang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Licun Wu
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, China
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Marc de Perrot
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Department Immunology, University of Toronto, Toronto, ON, Canada
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
10
|
Jeon S, Lee DK, Jeong J, Yang SI, Kim JS, Kim J, Cho WS. The reactive oxygen species as pathogenic factors of fragmented microplastics to macrophages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 281:117006. [PMID: 33812130 DOI: 10.1016/j.envpol.2021.117006] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/14/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
The presence of microplastics in the various food web raised concerns on human health, but little is known about the target cells and mechanism of toxicity of microplastics. In this study, we evaluated the toxicity of microplastics using relevant cell lines to the oral route of exposure. Approximately 100 μm-sized fragment-type polypropylene (PP) and polystyrene (PS) particles were prepared by sieving after pulverization and further applied the accelerated weathering using ultraviolet and heat. Thus, the panel of microplastics includes fresh PP (f-PP), fresh PS (f-PS), weathered PP (w-PP), and weathered PS (w-PS). The spherical PS with a similar size was used as a reference particle. Treatment of all types of PP and PS did not show any toxic effects to the Caco-2 cells and HepG2 cells. However, the treatment of microplastics to THP-1 macrophages showed significant toxicity in the order of f-PS > f-PP > w-PS > w-PP. The weathering process significantly reduced the reactive oxygen species (ROS) generation potential of both microplastics because the weathered microplastics have an increased affinity to bind serum protein which acts as a ROS scavenger. The intrinsic ROS generation potential of microplastics showed a good correlation with the toxicity endpoints including cytotoxicity and pro-inflammatory cytokines in THP-1 macrophages. In conclusion, the results of this study suggest that the target cell type of microplastics via oral administration can be macrophages and the pathogenic factor to THP-1 macrophages is the intrinsic ROS generation potential of microplastics. Nevertheless, the toxic effect of microplastics tested in this study was much less than that of nano-sized particles.
Collapse
Affiliation(s)
- Soyeon Jeon
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 Beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Dong-Keun Lee
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 Beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Jiyoung Jeong
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 Beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Sung Ik Yang
- Department of Applied Chemistry, Kyung Hee University, Yongin-si, 17104, Republic of Korea
| | - Ji-Su Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56216, Republic of Korea
| | - Jinsik Kim
- Korea Conformity Laboratories, 8, Gaetbeol-ro 145 Beon-gil, Yeonsu-gu, Incheon, 21999, Republic of Korea.
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 Beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
| |
Collapse
|
11
|
Murphy F, Dekkers S, Braakhuis H, Ma-Hock L, Johnston H, Janer G, di Cristo L, Sabella S, Jacobsen NR, Oomen AG, Haase A, Fernandes T, Stone V. An integrated approach to testing and assessment of high aspect ratio nanomaterials and its application for grouping based on a common mesothelioma hazard. NANOIMPACT 2021; 22:100314. [PMID: 35559971 DOI: 10.1016/j.impact.2021.100314] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/25/2021] [Accepted: 03/25/2021] [Indexed: 06/15/2023]
Abstract
Here we describe the development of an Integrated Approach to Testing and Assessment (IATA) to support the grouping of different types (nanoforms; NFs) of High Aspect Ratio Nanomaterials (HARNs), based on their potential to cause mesothelioma. Hazards posed by the inhalation of HARNs are of particular concern as they exhibit physical characteristics similar to pathogenic asbestos fibres. The approach for grouping HARNs presented here is part of a framework to provide guidance and tools to group similar NFs and aims to reduce the need to assess toxicity on a case-by-case basis. The approach to grouping is hypothesis-driven, in which the hypothesis is based on scientific evidence linking critical physicochemical descriptors for NFs to defined fate/toxicokinetic and hazard outcomes. The HARN IATA prompts users to address relevant questions (at decision nodes; DNs) regarding the morphology, biopersistence and inflammatory potential of the HARNs under investigation to provide the necessary evidence to accept or reject the grouping hypothesis. Each DN in the IATA is addressed in a tiered manner, using data from simple in vitro or in silico methods in the lowest tier or from in vivo approaches in the highest tier. For these proposed methods we provide justification for the critical descriptors and thresholds that allow grouping decisions to be made. Application of the IATA allows the user to selectively identify HARNs which may pose a mesothelioma hazard, as demonstrated through a literature-based case study. By promoting the use of alternative, non-rodent approaches such as in silico modelling, in vitro and cell-free tests in the initial tiers, the IATA testing strategy streamlines information gathering at all stages of innovation through to regulatory risk assessment while reducing the ethical, time and economic burden of testing.
Collapse
Affiliation(s)
- Fiona Murphy
- NanoSafety Group, Heriot-Watt University, Edinburgh, UK.
| | - Susan Dekkers
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Hedwig Braakhuis
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Lan Ma-Hock
- BASF SE, Dept. Material Physics and Dept of Experimental Toxicology & Ecology, Ludwigshafen, Germany
| | | | - Gemma Janer
- LEITAT Technological Center, Barcelona, Spain
| | | | | | | | - Agnes G Oomen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Andrea Haase
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | | | - Vicki Stone
- NanoSafety Group, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
12
|
Kim SH, Lee DH, Lee JH, Yang JY, Shin HS, Lee J, Jung K, Jeong J, Oh JH, Lee JK. Evaluation of the Skin Sensitization Potential of Carbon Nanotubes Using Alternative In Vitro and In Vivo Assays. TOXICS 2020; 8:E122. [PMID: 33339241 PMCID: PMC7767201 DOI: 10.3390/toxics8040122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 01/10/2023]
Abstract
Carbon nanotubes (CNTs) are one of the major types of nanomaterials that have various industrial and biomedical applications. However, there is a risk of accidental exposure to CNTs in individuals involved in their large-scale production and in individuals who use products containing CNTs. This study aimed to evaluate the skin sensitization induced by CNTs using two alternative tests. We selected single-wall carbon nanotubes and multi-walled carbon nanotubes for this study. First, the physiochemical properties of the CNTs were measured, including the morphology, size, and zeta potential, under various conditions. Thereafter, we assessed the sensitization potential of the CNTs using the ARE-Nrf2 Luciferase KeratinoSens™ assay, an in vitro alternative test method. In addition, the CNTs were evaluated for their skin sensitization potential using the LLNA: BrdU-FCM in vivo alternative test method. In this study, we report for the first time the sensitization results of CNTs using the KeratinoSens™ and LLNA: BrdU-FCM test methods in this study. This study found that both CNTs do not induce skin sensitization. These results suggest that the KeratinoSens™ and LLNA: BrdU-FCM assay may be useful as alternative assays for evaluating the potential of some nanomaterials that can induce skin sensitization.
Collapse
Affiliation(s)
- Sung-Hyun Kim
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju 28159, Chungcheongbuk-do, Korea; (D.H.L.); (J.H.L.); (J.-Y.Y.); (H.-S.S.); (J.L.); (K.J.); (J.J.); (J.-H.O.)
| | | | | | | | | | | | | | | | | | - Jong Kwon Lee
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju 28159, Chungcheongbuk-do, Korea; (D.H.L.); (J.H.L.); (J.-Y.Y.); (H.-S.S.); (J.L.); (K.J.); (J.J.); (J.-H.O.)
| |
Collapse
|
13
|
Effect of the uniaxial orientation on the polymer/filler nanocomposites using phosphonate-modified single-walled carbon nanotube with hydro- or fluorocarbons. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03388-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Lee DK, Ha S, Jeon S, Jeong J, Kim DJ, Lee SW, Cho WS. The sp3/sp2 carbon ratio as a modulator of in vivo and in vitro toxicity of the chemically purified detonation-synthesized nanodiamond via the reactive oxygen species generation. Nanotoxicology 2020; 14:1213-1226. [PMID: 32924690 DOI: 10.1080/17435390.2020.1813825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nanodiamonds have been suggested as biocompatible materials and are suitable for various biomedical applications, but little is known about how to synthesize safer nanodiamonds. Herein, seven different detonation-synthesized nanodiamonds (DNDs) with sequential sp3/sp2 carbon ratios were assembled by controlling the chemical purification parameters and the role of sp3/sp2 carbon ratio on the toxicity of DNDs was investigated. Carbon black and nickel oxide nanoparticles were used as reference particles. The intrinsic reactive oxygen species (ROS) generation potential of DNDs was estimated by a 2'7'-dichlorofluorescein diacetate (DCFH-DA) assay, and these values showed a good negative correlation with the sp3/sp2 carbon ratios, which implies that ROS generation increased as the sp3/sp2 carbon ratio decreased. As a model to investigate inflammogenic potential of DND samples, a rat intratracheal instillation model was used as the lung is very sensitive to nanoparticle exposures. The sp3/sp2 carbon ratios or the estimated values of ROS generation potential showed excellent linear correlations with the number of neutrophils and pro-inflammatory cytokines in bronchoalveolar lavage fluid at 24 h after instillation. Treatment of DND samples to THP-1 derived macrophages also showed that the sp3/sp2 carbon ratios or the estimated values of ROS generation potential were closely related with the toxicity endpoints such as cell viability and pro-inflammatory cytokines. Taken together, these data demonstrate that the sp3/sp2 carbon ratio is the key determinant for the toxicity of DNDs, which can be a useful tool for the safer-by-design approach of DNDs and the safety assessment of carbon nanoparticles.
Collapse
Affiliation(s)
- Dong-Keun Lee
- Lab of Toxicology, Department of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Sangwook Ha
- Plasma Technology Research Center, National Fusion Research Institute, Gunsan-si, Republic of Korea
| | - Soyeon Jeon
- Lab of Toxicology, Department of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Jiyoung Jeong
- Lab of Toxicology, Department of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Dong-Jae Kim
- Laboratory Animal Resource Center, DGIST, Daegu, Republic of Korea
| | - Seung Whan Lee
- Plasma Technology Research Center, National Fusion Research Institute, Gunsan-si, Republic of Korea
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Health Sciences, Dong-A University, Busan, Republic of Korea
| |
Collapse
|
15
|
Lee DK, Jeon S, Jeong J, Song KS, Cho WS. Carbon nanomaterial-derived lung burden analysis using UV-Vis spectrophotometry and proteinase K digestion. Part Fibre Toxicol 2020; 17:43. [PMID: 32917232 PMCID: PMC7488454 DOI: 10.1186/s12989-020-00377-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/02/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The quantification of nanomaterials accumulated in various organs is crucial in studying their toxicity and toxicokinetics. However, some types of nanomaterials, including carbon nanomaterials (CNMs), are difficult to quantify in a biological matrix. Therefore, developing improved methodologies for quantification of CNMs in vital organs is instrumental in their continued modification and application. RESULTS In this study, carbon black, nanodiamond, multi-walled carbon nanotube, carbon nanofiber, and graphene nanoplatelet were assembled and used as a panel of CNMs. All CNMs showed significant absorbance at 750 nm, while their bio-components showed minimal absorbance at this wavelength. Quantification of CNMs using their absorbance at 750 nm was shown to have more than 94% accuracy in all of the studied materials. Incubating proteinase K (PK) for 2 days with a mixture of lung tissue homogenates and CNMs showed an average recovery rate over 90%. The utility of this method was confirmed in a murine pharyngeal aspiration model using CNMs at 30 μg/mouse. CONCLUSIONS We developed an improved lung burden assay for CNMs with an accuracy > 94% and a recovery rate > 90% using PK digestion and UV-Vis spectrophotometry. This method can be applied to any nanomaterial with sufficient absorbance in the near-infrared band and can differentiate nanomaterials from elements in the body, as well as the soluble fraction of the nanomaterial. Furthermore, a combination of PK digestion and other instrumental analysis specific to the nanomaterial can be applied to organ burden analysis.
Collapse
Affiliation(s)
- Dong-Keun Lee
- Lab of Toxicology, Department of Health Sciences, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315 Republic of Korea
| | - Soyeon Jeon
- Lab of Toxicology, Department of Health Sciences, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315 Republic of Korea
| | - Jiyoung Jeong
- Lab of Toxicology, Department of Health Sciences, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315 Republic of Korea
| | - Kyung Seuk Song
- Korea Conformity Laboratories, 8, Gaetbeol-ro 145 beon-gil, Yeonsu-gu, 21999 Incheon, Republic of Korea
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Health Sciences, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315 Republic of Korea
| |
Collapse
|
16
|
Fadeel B, Kostarelos K. Grouping all carbon nanotubes into a single substance category is scientifically unjustified. NATURE NANOTECHNOLOGY 2020; 15:164. [PMID: 32123379 DOI: 10.1038/s41565-020-0654-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Kostas Kostarelos
- University of Manchester, Manchester, UK
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), Barcelona, Spain
| |
Collapse
|
17
|
Lee DK, Jeon S, Jeong J, Yu IJ, Song KS, Kang A, Yun WS, Kim JS, Cho WS. Potential Role of Soluble Metal Impurities in the Acute Lung Inflammogenicity of Multi-Walled Carbon Nanotubes. NANOMATERIALS 2020; 10:nano10020379. [PMID: 32098206 PMCID: PMC7075329 DOI: 10.3390/nano10020379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/27/2022]
Abstract
Multi-walled carbon nanotubes (MWCNTs) have variable metal impurities, but little is known about the impact of soluble metal impurities on the toxicity of MWCNTs. Here, we evaluated the role of soluble metal impurities to the acute inflammogenic potential of MWCNTs, using five types of high purity MWCNTs (>95%). MWCNTs and their soluble fractions collected at 24 h after incubation in phosphate-buffered saline showed diverse metal impurities with variable concentrations. The fiber-free soluble fractions produced variable levels of reactive oxygen species (ROS), and the iron level was the key determinant for ROS production. The acute inflammation at 24 h after intratracheal instillation of MWCNTs to rats at 0.19, 0.63, and 1.91 mg MWCNT/kg body weight (bw) or fiber-free supernatants from MWCNT suspensions at 1.91 and 7.64 mg MWCNT/kg bw showed that the number of granulocytes, a marker for acute inflammation, was significantly increased with a good dose-dependency. The correlation study showed that neither the levels of iron nor the ROS generation potential of the soluble fractions showed any correlations with the inflammogenic potential. However, the total concentration of transition metals in the soluble fractions showed a good correlation with the acute lung inflammogenic potential. These results implied that metal impurities, especially transitional metals, can contribute to the acute inflammogenic potential of MWCNTs, although the major parameter for the toxicity of MWCNTs is size and shape.
Collapse
Affiliation(s)
- Dong-Keun Lee
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea; (D.-K.L.); (S.J.); (J.J.)
| | - Soyeon Jeon
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea; (D.-K.L.); (S.J.); (J.J.)
| | - Jiyoung Jeong
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea; (D.-K.L.); (S.J.); (J.J.)
| | - Il Je Yu
- HCTm Co., LTD., 74, Seoicheon-ro 578 beon-gil Majang-myeon, Icheon-si, Gyeonggi-do 17383, Korea;
| | - Kyung Seuk Song
- Korea Conformity Laboratories, 8, Gaetbeol-ro 145 beon-gil, Yeonsu-gu, Incheon 21999, Korea;
| | - Aeyeon Kang
- Department of Chemistry, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea; (A.K.); (W.S.Y.)
| | - Wan Soo Yun
- Department of Chemistry, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea; (A.K.); (W.S.Y.)
| | - Jong Sung Kim
- Department of Community Health and Epidemiology, Dalhousie University, Halifax, NS B3H4R2, Canada;
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea; (D.-K.L.); (S.J.); (J.J.)
- Correspondence: ; Tel.:+82-51-200-7563
| |
Collapse
|
18
|
Cox LA. Dose-response modeling of NLRP3 inflammasome-mediated diseases: asbestos, lung cancer, and malignant mesothelioma as examples. Crit Rev Toxicol 2020; 49:614-635. [PMID: 31905042 DOI: 10.1080/10408444.2019.1692779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Can a single fiber of amphibole asbestos increase the risk of lung cancer or malignant mesothelioma (MM)? Traditional linear no-threshold (LNT) risk assessment assumptions imply that the answer is yes: there is no safe exposure level. This paper draws on recent scientific progress in inflammation biology, especially elucidation of the activation thresholds for NLRP3 inflammasomes and resulting chronic inflammation, to model dose-response relationships for malignant mesothelioma and lung cancer risks caused by asbestos exposures. The modeling integrates a physiologically based pharmacokinetics (PBPK) front end with inflammation-driven two-stage clonal expansion (I-TSCE) models of carcinogenesis to describe how exposure leads to chronic inflammation, which in turn promotes carcinogenesis. Together, the combined PBPK and I-TSCE modeling predict that there are practical thresholds for exposure concentration below which asbestos exposure does not cause chronic inflammation in less than a lifetime, and therefore does not increase chronic inflammation-dependent cancer risks. Quantitative examples using model parameter estimates drawn from the literature suggest that practical thresholds may be within about a factor of 2 of some past exposure levels for some workers. The I-TSCE modeling framework explains previous puzzling aspects of asbestos epidemiology, such as why age at first exposure is a better predictor of lifetime MM risk than exposure duration. It may be a valuable tool for risk analysts when LNT assumptions are not justified due to inflammation response thresholds mediating dose-response relationships.
Collapse
|
19
|
Kim JK, Jo MS, Kim Y, Kim TG, Shin JH, Kim BW, Kim HP, Lee HK, Kim HS, Ahn K, Oh SM, Cho WS, Yu IJ. 28-Day inhalation toxicity study with evaluation of lung deposition and retention of tangled multi-walled carbon nanotubes. Nanotoxicology 2019; 14:250-262. [PMID: 31855090 DOI: 10.1080/17435390.2019.1700568] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Lung deposition and retention measurements are now required by the newly revised OECD inhalation toxicity testing guidelines 412 and 413 when evaluating the clearance and biopersistence of poorly soluble nanomaterials, such as multi-walled carbon nanotubes (MWCNTs). However, evaluating the lung deposition concentration is challenging with certain nanomaterials, such as carbon-based and iron-based nanomaterials, as it is difficult to differentiate them from endogenous elements. Therefore, the current 28-day inhalation toxicity study investigated the lung retention kinetics of tangled MWCNTs. Male Sprague Dawley rats were exposed to MWCNTs at 0, 0.257, 1.439, and 4.253 mg/m3 for 28 days (6 h/day, 5 days/week, 4 weeks). Thereafter, the rats were sacrificed at day 1, 7, and 28 post-exposure and the pulmonary inflammatory response evaluated by analyzing the bronchoalveolar lavage fluid. Plus, the blood biochemistry, hematology, and histopathology of the lungs were also examined. The lung deposition and retention of MWCNTs were determined based on the elemental carbon content in the lungs after tissue digestion. The number of polymorphonuclear cells and LDH concentration were both found to be significantly higher with the medium and high concentrations (1.439 and 4.253 mg/m3) and dose dependent. The estimated retention half-life for the high concentration (4.253 mg/m3) was about 35 days. The results of this study indicate that tangled MWCNTs seem to have a relatively shorter retention half-life when compared to previous reports on rigid MWCNTs, and the no-observed adverse effect level (NOAEL) for the tested tangled MWCNTs was 0.257 mg/m3 in a previous rat 28-day subacute inhalation toxicity study.
Collapse
Affiliation(s)
- Jin Kwon Kim
- Department of Nanofusion Technology, Hoseo University, Asan, Korea
| | | | | | | | - Jae Hoon Shin
- Occupational Lung Diseases Research Institute, KCOMWEL, Incheon, Korea
| | - Boo Wook Kim
- Occupational Lung Diseases Research Institute, KCOMWEL, Incheon, Korea
| | - Hoi Pin Kim
- Department of Nanofusion Technology, Hoseo University, Asan, Korea
| | | | - Hee Sang Kim
- HCTm CO.,LTD, Icheon, Korea.,Department of Mechanical Engineering, Hanyang University, Ansan, Korea
| | - Kangho Ahn
- Department of Mechanical Engineering, Hanyang University, Ansan, Korea
| | - Seung Min Oh
- Department of Nanofusion Technology, Hoseo University, Asan, Korea
| | - Wan-Seob Cho
- Laboratory of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Korea
| | | |
Collapse
|
20
|
Ede JD, Ong KJ, Goergen M, Rudie A, Pomeroy-Carter CA, Shatkin JA. Risk Analysis of Cellulose Nanomaterials by Inhalation: Current State of Science. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E337. [PMID: 30832338 PMCID: PMC6474143 DOI: 10.3390/nano9030337] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/31/2019] [Accepted: 02/23/2019] [Indexed: 01/04/2023]
Abstract
Cellulose nanomaterials (CNs) are emerging advanced materials with many unique properties and growing commercial significance. A life-cycle risk assessment and environmental health and safety roadmap identified potential risks from inhalation of powdered CNs in the workplace as a key gap in our understanding of safety and recommended addressing this data gap to advance the safe and successful commercialization of these materials. Here, we (i) summarize the currently available published literature for its contribution to our current understanding of CN inhalation hazard and (ii) evaluate the quality of the studies for risk assessment purposes using published study evaluation tools for nanomaterials to assess the weight of evidence provided. Our analysis found that the quality of the available studies is generally inadequate for risk assessment purposes but is improving over time. There have been some advances in knowledge about the effects of short-term inhalation exposures of CN. The most recent in vivo studies suggest that short-term exposure to CNs results in transient inflammation, similarly to other poorly soluble, low toxicity dusts such as conventional cellulose, but is markedly different from fibers with known toxicity such as certain types of multiwalled carbon nanotubes or asbestos. However, several data gaps remain, and there is still a lack of understanding of the effects from long-term, low-dose exposures that represent realistic workplace conditions, essential for a quantitative assessment of potential health risk. Therefore, taking precautions when handling dry forms of CNs to avoid dust inhalation exposure is warranted.
Collapse
Affiliation(s)
- James D Ede
- Vireo Advisors, LLC, Boston, MA 02130-4323, USA.
| | | | - Michael Goergen
- P3Nano, U.S. Endowment for Forestry and Communities, Greenville, SC 29601, USA.
| | - Alan Rudie
- Forest Products Laboratory, USDA Forest Service, Madison, WI 53726-2398, USA.
| | | | | |
Collapse
|