1
|
Cheng S, Zhou T, Luo Y, Zhang J, Dong K, Zhang Q, Shu W, Zhang T, Zhang Q, Shi R, Yao Y, Wang H. Ultrasound-responsive Bi 2MoO 6-MXene heterojunction as ferroptosis inducers for stimulating immunogenic cell death against ovarian cancer. J Nanobiotechnology 2024; 22:408. [PMID: 38992664 PMCID: PMC11238442 DOI: 10.1186/s12951-024-02658-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Ovarian cancer (OC) has the highest fatality rate among all gynecological malignancies, necessitating the exploration of novel, efficient, and low-toxicity therapeutic strategies. Ferroptosis is a type of programmed cell death induced by iron-dependent lipid peroxidation and can potentially activate antitumor immunity. Developing highly effective ferroptosis inducers may improve OC prognosis. RESULTS In this study, we developed an ultrasonically controllable two-dimensional (2D) piezoelectric nanoagonist (Bi2MoO6-MXene) to induce ferroptosis. A Schottky heterojunction between Bi2MoO6 (BMO) and MXene reduced the bandgap width by 0.44 eV, increased the carrier-separation efficiency, and decreased the recombination rate of electron-hole pairs under ultrasound stimulation. Therefore, the reactive oxygen species yield was enhanced. Under spatiotemporal ultrasound excitation, BMO-MXene effectively inhibited OC proliferation by more than 90%, induced lipid peroxidation, decreased mitochondrial-membrane potential, and inactivated the glutathione peroxidase and cystathionine transporter protein system, thereby causing ferroptosis in tumor cells. Ferroptosis in OC cells further activated immunogenic cell death, facilitating dendritic cell maturation and stimulating antitumor immunity. CONCLUSION We have succeeded in developing a highly potent ferroptosis inducer (BMO-MXene), capable of inhibiting OC progression through the sonodynamic-ferroptosis-immunogenic cell death pathway.
Collapse
Affiliation(s)
- Shuangshuang Cheng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, 430022, Wuhan, China
| | - Ting Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, 430022, Wuhan, China
| | - Yue Luo
- Biomedical Materials Engineering Research Center, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, 430022, Wuhan, China
| | - Kejun Dong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, 430022, Wuhan, China
| | - Qi Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, 430022, Wuhan, China
| | - Wan Shu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, 430022, Wuhan, China
| | - Tangansu Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, 430022, Wuhan, China
| | - Qian Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, 430022, Wuhan, China
| | - Rui Shi
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, 430022, Wuhan, China
| | - Yuwei Yao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, 430022, Wuhan, China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, 430022, Wuhan, China.
- Clinical Research Center of Cancer Immunotherapy, Hubei, 430022, Wuhan, China.
| |
Collapse
|
2
|
Wang W, de la Fuente Diez J, Delsuc N, Peng J, Spezia R, Vuilleumier R, Chen Y. Piezoelectric and microfluidic tuning of an infrared cavity for vibrational polariton studies. LAB ON A CHIP 2024; 24:2497-2505. [PMID: 38606494 DOI: 10.1039/d3lc01101a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
We developed a microfluidic system for vibrational polariton studies, which consists of two microfluidic chips: one for solution mixing and another for tuning an infrared cavity made of a pair of gold mirrors and a PDMS (polydimethylsiloxane) spacer. We show that the cavity of the system can be accurately tuned with either piezoelectric actuators or microflow-induced pressure to result in resonant coupling between a cavity mode and a variational mode of the solution molecules. Acrylonitrile solutions were chosen to prove the concept of vabriational strong coupling (VSC) of a CN stretching mode with light inside the cavity. We also show that the Rabi splitting energy is linearly proportional to the square root of molecular concentration, thereby proving the relevance and reliability of the system for VSC studies.
Collapse
Affiliation(s)
- Wei Wang
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, rue Lhomond, 75005 Paris, France.
| | - Jaime de la Fuente Diez
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, rue Lhomond, 75005 Paris, France.
| | - Nicolas Delsuc
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, rue Lhomond, 75005 Paris, France.
| | - Juan Peng
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, rue Lhomond, 75005 Paris, France.
| | - Riccardo Spezia
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS, 4, place Jussieu, 75252 Paris Cedex 05, France
| | - Rodolphe Vuilleumier
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, rue Lhomond, 75005 Paris, France.
| | - Yong Chen
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, rue Lhomond, 75005 Paris, France.
| |
Collapse
|
3
|
Zhang H, Gao H, Geng J, Meng X, Xie H. In Situ Quantification of Strain-Induced Piezoelectric Potential of Dynamically Bending ZnO Microwires. SMALL METHODS 2023; 7:e2201342. [PMID: 36683180 DOI: 10.1002/smtd.202201342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The piezoelectric properties of semiconductor micro/nanowires (M/NWs) are crucial for optimizing semiconductors' electronic structure and carrier dynamics. However, the dynamic characterization of the piezoelectric properties of M/NWs remains challenging. Here, a Kelvin probe force microscopy technique based on a dual-probe atomic force microscope is developed to achieve in situ piezoelectric potential measurements of dynamic bending MWs. This technique can not only characterize the surface potential on different crystal faces of ZnO MWs in a natural state through controllable axial rotation, but also investigate the piezoelectric potential of the dynamically bending flake-like ZnO MW at different points and under different strain loads. The results show that the surface potentials of different faces/positions of the ZnO MWs are varied significantly, and determine that the quasi-static conditions piezo-strain factor of the flake-like ZnO MW is 0.28 V/%, while the factor was 0.14 V/% under low-frequency (⩽5 Hz) sinusoidal strain loading. This work provides a significant methodology to further study piezoelectric materials, and it aims to facilitate their applications in piezoelectric devices and systems.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, 150080, China
| | - Haibo Gao
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, 150080, China
| | - Junyuan Geng
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, 150080, China
| | - Xianghe Meng
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, 150080, China
| | - Hui Xie
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, 150080, China
| |
Collapse
|
4
|
Fan X, Wang R, Li M, Tang X, Xu C, Hao Q, Qiu T. High-specificity molecular sensing on an individual whispering-gallery-mode cavity: coupling-enhanced Raman scattering by photoinduced charge transfer and cavity effects. NANOSCALE HORIZONS 2023; 8:195-201. [PMID: 36468209 DOI: 10.1039/d2nh00450j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Optical whispering-gallery-mode (WGM) cavities have gained considerable interest because of their unique properties of enhanced light-matter interactions. Conventional WGM sensing is based on the mechanisms of mode shift, mode broadening, or mode splitting, which requires a small mode volume and an ultrahigh Q-factor. Besides, WGM sensing suffers from a lack of specificity in identifying substances, and additional chemical functionalization or incorporation of plasmonic materials is required for achieving good specificity. Herein, we propose a new sensing method based on an individual WGM cavity to achieve ultrasensitive and high-specificity molecular sensing, which combines the features of enhanced light-matter interactions on the WGM cavity and the "fingerprint spectrum" of surface-enhanced Raman scattering (SERS). This method identifies the substance by monitoring the Raman signal enhanced by the WGM cavity rather than monitoring the variation of the WGM itself. Therefore, ultrasensitive and high-specificity molecular sensing can be accomplished even on a low-Q cavity. The working principles of the proposed sensing method were also systematically investigated in terms of photoinduced charge transfer, Purcell effect, and optical resonance coupling. This work provides a new WGM sensing approach as well as a strategy for the design of a high-performance SERS substrate by creating an optical resonance mode.
Collapse
Affiliation(s)
- Xingce Fan
- School of Physics, Southeast University, Nanjing 211189, China.
| | - Ru Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Mingze Li
- School of Physics, Southeast University, Nanjing 211189, China.
| | - Xiao Tang
- School of Physics, Southeast University, Nanjing 211189, China.
| | - Chunxiang Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Qi Hao
- School of Physics, Southeast University, Nanjing 211189, China.
| | - Teng Qiu
- School of Physics, Southeast University, Nanjing 211189, China.
| |
Collapse
|
5
|
Wang Y, Xie W, Peng W, Li F, He Y. Fundamentals and Applications of ZnO-Nanowire-Based Piezotronics and Piezo-Phototronics. MICROMACHINES 2022; 14:mi14010047. [PMID: 36677109 PMCID: PMC9860666 DOI: 10.3390/mi14010047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 06/02/2023]
Abstract
The piezotronic effect is a coupling effect of semiconductor and piezoelectric properties. The piezoelectric potential is used to adjust the p-n junction barrier width and Schottky barrier height to control carrier transportation. At present, it has been applied in the fields of sensors, human-machine interaction, and active flexible electronic devices. The piezo-phototronic effect is a three-field coupling effect of semiconductor, photoexcitation, and piezoelectric properties. The piezoelectric potential generated by the applied strain in the piezoelectric semiconductor controls the generation, transport, separation, and recombination of carriers at the metal-semiconductor contact or p-n junction interface, thereby improving optoelectronic devices performance, such as photodetectors, solar cells, and light-emitting diodes (LED). Since then, the piezotronics and piezo-phototronic effects have attracted vast research interest due to their ability to remarkably enhance the performance of electronic and optoelectronic devices. Meanwhile, ZnO has become an ideal material for studying the piezotronic and piezo-phototronic effects due to its simple preparation process and better biocompatibility. In this review, first, the preparation methods and structural characteristics of ZnO nanowires (NWs) with different doping types were summarized. Then, the theoretical basis of the piezotronic effect and its application in the fields of sensors, biochemistry, energy harvesting, and logic operations (based on piezoelectric transistors) were reviewed. Next, the piezo-phototronic effect in the performance of photodetectors, solar cells, and LEDs was also summarized and analyzed. In addition, modulation of the piezotronic and piezo-phototronic effects was compared and summarized for different materials, structural designs, performance characteristics, and working mechanisms' analysis. This comprehensive review provides fundamental theoretical and applied guidance for future research directions in piezotronics and piezo-phototronics for optoelectronic devices and energy harvesting.
Collapse
Affiliation(s)
- Yitong Wang
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Wanli Xie
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Wenbo Peng
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Fangpei Li
- State Key Laboratory of Solidification Processing, Key Laboratory of Radiation Detection Materials and Devices, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yongning He
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| |
Collapse
|
6
|
Mustaffa MA, Arith F, Noorasid NS, Zin MSIM, Leong KS, Ali FA, Mustafa ANM, Ismail MM. Towards a Highly Efficient ZnO Based Nanogenerator. MICROMACHINES 2022; 13:2200. [PMID: 36557499 PMCID: PMC9783523 DOI: 10.3390/mi13122200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
A nanogenerator (NG) is an energy harvester device that converts mechanical energy into electrical energy on a small scale by relying on physical changes. Piezoelectric semiconductor materials play a key role in producing high output power in piezoelectric nanogenerator. Low cost, reliability, deformation, and electrical and thermal properties are the main criteria for an excellent device. Typically, there are several main types of piezoelectric materials, zinc oxide (ZnO) nanorods, barium titanate (BaTiO3) and lead zirconate titanate (PZT). Among those candidate, ZnO nanorods have shown high performance features due to their unique characteristics, such as having a wide-bandgap semiconductor energy of 3.3 eV and the ability to produce more ordered and uniform structures. In addition, ZnO nanorods have generated considerable output power, mainly due to their elastic nanostructure, mechanical stability and appropriate bandgap. Apart from that, doping the ZnO nanorods and adding doping impurities into the bulk ZnO nanorods are shown to have an influence on device performance. Based on findings, Ni-doped ZnO nanorods are found to have higher output power and surface area compared to other doped. This paper discusses several techniques for the synthesis growth of ZnO nanorods. Findings show that the hydrothermal method is the most commonly used technique due to its low cost and straightforward process. This paper reveals that the growth of ZnO nanorods using the hydrothermal method has achieved a high power density of 9 µWcm-2.
Collapse
Affiliation(s)
- Mohammad Aiman Mustaffa
- Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, Melaka 76100, Malaysia
| | - Faiz Arith
- Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, Melaka 76100, Malaysia
| | - Nur Syamimi Noorasid
- Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, Melaka 76100, Malaysia
| | - Mohd Shahril Izuan Mohd Zin
- Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, Melaka 76100, Malaysia
| | - Kok Swee Leong
- Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, Melaka 76100, Malaysia
| | - Fara Ashikin Ali
- Faculty of Electrical and Electronic Engineering Technology, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, Melaka 76100, Malaysia
| | - Ahmad Nizamuddin Muhammad Mustafa
- Faculty of Electrical and Electronic Engineering Technology, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, Melaka 76100, Malaysia
- Department of Materials, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK
| | - Mohd Muzafar Ismail
- Faculty of Electrical and Electronic Engineering Technology, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, Melaka 76100, Malaysia
| |
Collapse
|
7
|
Truong J, Stoner A, Sytu MRC, Tatlock TR, Cho DH, Hahm JI. Elucidation of Strain-Dependent, Zinc Oxide Nanorod Response for Nanorod-Guided Fluorescence Intensity. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3558. [PMID: 36296748 PMCID: PMC9609619 DOI: 10.3390/nano12203558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
In this work, we examine how strain exerted on individual ZnO nanorods (NRs) can influence the fluorescence signals that are emitted from fluorophore molecules and subsequently coupled into and guided along the NR. We elucidate the relationships between the incremental levels of compressive and tensile strain on the NRs and measured fluorescence intensity of a model fluorophore, rhodamine 6G (R6G), as a function of the position on the NRs. We reveal that compressive strain on the NRs leads to a decrease in the guided fluorescence signal, while tensile strain leads to an increase in the fluorescence intensity. Compared to an unstrained state, approximately 35% decrease (increase) in R6G fluorescence intensity was observed from ZnO NRs when they were under compressive strain of -14% (tensile strain of +10%). Further, our systematic acquisition of the incremental addition of uniaxial strain result in a linear relationship of the coupled fluorescence signal and the amount of applied strain. The degree of fluorescence intensification on nanorod ends (DoF), which is a quantitative indicator for the amount of R6G signals coupled into and waveguided to the NR ends compared to those on the main body, also exhibits a linear relationship with strain. These outcomes, in turn, demonstrate that strain alters the waveguiding capabilities of ZnO NRs in a predictable manner, which can be exploited to modulate and optimize fluorescence and other light signals emitted by a nearby source. Considering the wide utility of ZnO NRs in photonics, optoelectronics, and sensors, insights from our study may be highly valuable to effectively controlling and enhancing optical signals from chemical and biological analytes through strain.
Collapse
|
8
|
Muslimov AE, Tarasov AP, Kanevsky VM. Interference Phenomena and Stimulated Emission in ZnO Films on Sapphire. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6409. [PMID: 36143718 PMCID: PMC9503717 DOI: 10.3390/ma15186409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
We studied the texturing, roughness, and morphology features of ZnO films grown on the R (11¯02)-, M (101¯0)-, A (112¯0)-, and C (0001)-planes of sapphire, as well as their optical and luminescent properties. We showed that the growth conditions, substrate orientation, and the presence of a buffer layer significantly affected the structure and morphology of the growing films, which was reflected in their optical and radiative properties. In particular, films grown on the A- and M- planes of sapphire showed the highest UV radiation brightness values and exhibited stimulated emissions upon pulsed photoexcitation. The dependence of the topography of the film surface on the substrate orientation allowed the formation of a smooth continuous film with pronounced interference properties using the R- and M- planes of sapphire. A change in the crystallographic orientation, as well as a significant enhancement in crystallinity and luminescence, were observed for ZnO films grown on R-plane sapphire substrates with a gold buffer layer as compared to films grown on bare substrates. At the same time, the use of gold facilitates a significant smoothing of the film's surface, retaining its interference properties. The sensitivity of interference and laser properties to changes in the external environment, as well as the ease of fabrication of such structures, create prospects for their application as key elements of optical converters, chemical and biological sensors, and sources of coherent radiation.
Collapse
|
9
|
Hu H, Liang H, Fan J, Guo L, Li H, de Rooij NF, Umar A, Algarni H, Wang Y, Zhou G. Assembling Hollow Cactus-Like ZnO Nanorods with Dipole-Modified Graphene Nanosheets for Practical Room-Temperature Formaldehyde Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13186-13195. [PMID: 35275633 DOI: 10.1021/acsami.1c20680] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Formaldehyde (HCHO) sensing plays a critical role for indoor environment monitoring in smart home systems. Inspired by the unique hierarchical structure of cactus, we have prepared a ZnO/ANS-rGO composite for room-temperature (RT) HCHO sensing, through assembling hollow cactus-like ZnO nanorods with 5-aminonaphthalene-1-sulfonic acid (ANS)-modified graphene nanosheets in a facile and template-free manner. Interestingly, it was found that the ZnO morphology could be simply tuned from flower clusters to hollow cactus-like nanostructures, along with the increase of the reaction time during the assembly process. The ZnO/ANS-rGO-based sensors exhibited superior RT HCHO-sensing performance with an ultrahigh response (68%, 5 ppm), good repeatability, long-term stability, and an outstanding practical limit of detection (LOD: 0.25 ppm) toward HCHO, which is the lowest practical LOD reported so far. Furthermore, for the first time, a 30 m3 simulation test cabinet was adapted to evaluate the practical gas-sensing performance in an indoor environment. As a result, an instantaneous response of 5% to 0.4 ppm HCHO was successfully achieved in the simulation test. The corresponding sensing mechanism was interpreted from two aspects including high charge transport capability of ANS-rGO and the distinct gas adsorbability derived from nanostructures, respectively. The combination of a biomimetic hierarchical structure and supramolecular assembly provides a promising strategy to design HCHO-sensing materials with high practicability.
Collapse
Affiliation(s)
- Huiyun Hu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Hongping Liang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Jincheng Fan
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Lanpeng Guo
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Hao Li
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Nicolaas Frans de Rooij
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Ahmad Umar
- Promising Centre for Sensors and Electronic Devices, Department of Chemistry, Faculty of Science and Arts, Najran University, Najran 11001, Kingdom of Saudi Arabia
| | - Hamed Algarni
- Department of Physics, King Khalid University, Abha 61421, Kingdom of Saudi Arabia
| | - Yao Wang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
10
|
Lu J, Liu Y, Liu W, Lin Y, Ji Y, Jiang M, Kan C, Xu C. Dynamically regulated electroluminescence via strain engineering. OPTICS LETTERS 2022; 47:1323-1326. [PMID: 35290304 DOI: 10.1364/ol.447598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Dynamic regulation of the light-emission wavelength has important scientific significance for developing new electroluminescent devices and expanding the application scope to the fields of lighting, display, sensing, and human-machine interaction. In this work, an electroluminescent device with a dynamically tunable emission wavelength is achieved based on the piezoresistive effect. The tunable range can reach up to 12 nm as the external strain increases from 0% to 0.148%. Also, the luminescence mechanism of the device is systematically analyzed, and is shown to be mainly due to the transition of electrons in the ground state to the excitation state caused by thermal tunneling excitation with the participation of multi-phonons. The shift of the emission wavelength originates from the narrowing of the energy band structure under the tensile strain and the change of the crystal field around the defect centers. This work provides a new, to the best of our knowledge, strategy for the development of wavelength-tunable light-emitting devices.
Collapse
|
11
|
Qin FF, Zhu GY, Yang JB, Wei L, Cui QN, Wang YJ. Unidirectional single-mode lasing realization and temperature-induced mode switching in asymmetric GaN coupled cavities. NANOSCALE 2022; 14:1921-1928. [PMID: 35048943 DOI: 10.1039/d1nr07203j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Effective lasing mode control and unidirectional coupling of semiconductor microlasers are vital to boost their applications in optical interconnects, on-chip communication, and bio-sensors. In this study, symmetric and asymmetric GaN floating microdisks and coupled cavities are designed based on the Vernier effect and then fabricated via electron beam lithography, dry-etching of GaN, and isotropic wet-etching of silicon (Si) support. The lasing properties, including model number, threshold, radiation direction, and mode switching method, are studied. Compared to its symmetrical structure, both experimental and simulated optical field distributions indicate that the lasing outgoing direction can be controlled with a vertebral angle on the disk. The whispering gallery mode (WGM) lasing of the structures, with a quasi-single-mode lasing at 374.36 nm, a dual-mode lasing at 372.36 nm, and 373.64 nm at coupled cavities, are obtained statically. More interestingly, a switching between dual-mode and single-mode can be achieved dynamically via a thermal-induced mode shifting.
Collapse
Affiliation(s)
- F F Qin
- Peter Grünberg Research Centre, College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210003, China.
| | - G Y Zhu
- Peter Grünberg Research Centre, College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210003, China.
| | - J B Yang
- College of Arts & Science, National University of Defense Technology, Changsha, 410003, China.
| | - L Wei
- Peter Grünberg Research Centre, College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210003, China.
| | - Q N Cui
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Y J Wang
- Peter Grünberg Research Centre, College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210003, China.
| |
Collapse
|
12
|
Dai B, Biesold GM, Zhang M, Zou H, Ding Y, Wang ZL, Lin Z. Piezo-phototronic effect on photocatalysis, solar cells, photodetectors and light-emitting diodes. Chem Soc Rev 2021; 50:13646-13691. [PMID: 34821246 DOI: 10.1039/d1cs00506e] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The piezo-phototronic effect (a coupling effect of piezoelectric, photoexcitation and semiconducting properties, coined in 2010) has been demonstrated to be an ingenious and robust strategy to manipulate optoelectronic processes by tuning the energy band structure and photoinduced carrier behavior. The piezo-phototronic effect exhibits great potential in improving the quantum yield efficiencies of optoelectronic materials and devices and thus could help increase the energy conversion efficiency, thus alleviating the energy shortage crisis. In this review, the fundamental principles and challenges of representative optoelectronic materials and devices are presented, including photocatalysts (converting solar energy into chemical energy), solar cells (generating electricity directly under light illumination), photodetectors (converting light into electrical signals) and light-emitting diodes (LEDs, converting electric current into emitted light signals). Importantly, the mechanisms of how the piezo-phototronic effect controls the optoelectronic processes and the recent progress and applications in the above-mentioned materials and devices are highlighted and summarized. Only photocatalysts, solar cells, photodetectors, and LEDs that display piezo-phototronic behavior are reviewed. Material and structural design, property characterization, theoretical simulation calculations, and mechanism analysis are then examined as strategies to further enhance the quantum yield efficiency of optoelectronic devices via the piezo-phototronic effect. This comprehensive overview will guide future fundamental and applied studies that capitalize on the piezo-phototronic effect for energy conversion and storage.
Collapse
Affiliation(s)
- Baoying Dai
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Gill M Biesold
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Meng Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Haiyang Zou
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Yong Ding
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Zhong Lin Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
13
|
Liu Y, Dai R, Jiang M, Tang K, Wan P, Kan C. Enhanced luminescence/photodetecting bifunctional devices based on ZnO:Ga microwire/p-Si heterojunction by incorporating Ag nanowires. NANOSCALE ADVANCES 2021; 3:5605-5617. [PMID: 36133259 PMCID: PMC9418426 DOI: 10.1039/d1na00428j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/07/2021] [Indexed: 06/16/2023]
Abstract
With the disadvantages of indirect band gap, low carrier mobility, and large lattice mismatch with other semiconductor materials, one of the current challenges in Si-based materials and structures is to prepare low-dimensional high-performance optoelectronic devices. In this work, an individual ZnO microwire via Ga-incorproration (ZnO:Ga MW) was employed to prepare a light-emitting/detecting bifunctional heterojunction structure, combined with p-type Si crystal wafer as a hole transporting layer. In a forward-bias regime, red luminescence peaking at around 680 nm was captured. While, the fabricated heterojunction device also exhibited an obvious photoresponse in the ultraviolet wavelengths. Interestingly, the introduction of Ag nanowires (AgNWs) are utilized to increase light output with amplitude 4 times higher than with that of naked wire-based LEDs. Similarly, the performance parameters of the fabricated n-AgNWs@ZnO:Ga MW/p-Si heterojunction photodetector are significantly enhanced, containing a responsivity of 5.52 A W-1, detectivity of 2.34 × 1012 Jones, external quantum efficiency of 1.9 × 103% illuminated under 370 nm at -1 V. We compare this work with previous reported photodetectors based on various ZnO/Si-based materials and structures, some performance parameters are not superior, but our constructed n-AgNWs@ZnO:Ga MW/p-Si heterojunction photodetector has comparable overall characteristics, and our findings stand out especially for providing an inexpensive and suitable pathway for developing low-cost, miniaturized and integrated ultraviolet photodetectors. The demonstration of AgNWs enhanced low-dimensional light-emitting/detecting bifunctional photodiodes can offer a promising scheme to construct high-performance Si-based optoelectronic devices.
Collapse
Affiliation(s)
- Yang Liu
- College of Science, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics No. 29 Jiangjun Road Nanjing 211106 P. R. China
| | - Ruiming Dai
- College of Science, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics No. 29 Jiangjun Road Nanjing 211106 P. R. China
| | - Mingming Jiang
- College of Science, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics No. 29 Jiangjun Road Nanjing 211106 P. R. China
| | - Kai Tang
- College of Science, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics No. 29 Jiangjun Road Nanjing 211106 P. R. China
| | - Peng Wan
- College of Science, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics No. 29 Jiangjun Road Nanjing 211106 P. R. China
| | - Caixia Kan
- College of Science, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics No. 29 Jiangjun Road Nanjing 211106 P. R. China
| |
Collapse
|
14
|
Zhang S, Shi X, Yan S, Zhang X, Ge K, Han CB, Zhai T. Single-Mode Lasing in Plasmonic-Enhanced Woven Microfibers for Multifunctional Sensing. ACS Sens 2021; 6:3416-3423. [PMID: 34432432 DOI: 10.1021/acssensors.1c01278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Single-mode plasmonic lasing has great potential for use in photonic and sensing applications. In this work, single-mode lasing is realized using a plasmonic-enhanced woven microfiber that shows ultrahigh sensitivity to the ambient environment. This plasmonic-enhanced microfiber is fabricated by spraying Ag nanospheres onto rhodamine 6G-doped polymer microfibers. Single-mode laser emission with an ultranarrow linewidth (0.1 nm) and a low threshold (18.8 kW/mm2) is achieved in the microfiber using the effects of mode selection and plasmonic enhancement provided by the Ag nanospheres. A large wavelength shift in the single-mode lasing is observed when the proposed laser is used as a sensor and exposed to a humid or acidic environment. The wavelength shift is attributed to refractive index variations in the microfiber caused by either moisture absorption or chemical reactions. In humidity sensing, the laser's sensitivity is as high as 826.6 pm/% relative humidity (RH) and the detection limit is 0.051% RH. An innovative strategy for acetic acid gas sensing is proposed that uses the chemical reaction with rhodamine 6G, and its minimum response time is 5 min. Because of the microfiber's excellent fabric compatibility, a wearable sensor is fabricated by weaving the plasmonic-enhanced microfiber into clothes, and this sensor demonstrates extreme bending stability. The results reported here provide a novel approach to the design and fabrication of ultrasensitive wearable sensors for multifunctional sensing applications.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Xiaoyu Shi
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Shaoxin Yan
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiao Zhang
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Kun Ge
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Chang Bao Han
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Tianrui Zhai
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
15
|
Peng Y, Yang N, Xu Q, Dai Y, Wang Z. Recent Advances in Flexible Tactile Sensors for Intelligent Systems. SENSORS (BASEL, SWITZERLAND) 2021; 21:5392. [PMID: 34450833 PMCID: PMC8401379 DOI: 10.3390/s21165392] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022]
Abstract
Tactile sensors are an important medium for artificial intelligence systems to perceive their external environment. With the rapid development of smart robots, wearable devices, and human-computer interaction interfaces, flexible tactile sensing has attracted extensive attention. An overview of the recent development in high-performance tactile sensors used for smart systems is introduced. The main transduction mechanisms of flexible tactile sensors including piezoresistive, capacitive, piezoelectric, and triboelectric sensors are discussed in detail. The development status of flexible tactile sensors with high resolution, high sensitive, self-powered, and visual capabilities are focused on. Then, for intelligent systems, the wide application prospects of flexible tactile sensors in the fields of wearable electronics, intelligent robots, human-computer interaction interfaces, and implantable electronics are systematically discussed. Finally, the future prospects of flexible tactile sensors for intelligent systems are proposed.
Collapse
Affiliation(s)
| | | | | | | | - Zhiqiang Wang
- Information Science Academy of China Electronics Technology Group Corporation, Beijing 100086, China; (Y.P.); (N.Y.); (Q.X.); (Y.D.)
| |
Collapse
|
16
|
Affiliation(s)
- Rongrong Bao
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 100083 P. R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Center on Nanoenergy Research School of Physical Science and Technology Guangxi University Nanning Guangxi 530004 P. R. China
| | - Juan Tao
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 100083 P. R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Center on Nanoenergy Research School of Physical Science and Technology Guangxi University Nanning Guangxi 530004 P. R. China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 100083 P. R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Center on Nanoenergy Research School of Physical Science and Technology Guangxi University Nanning Guangxi 530004 P. R. China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 100083 P. R. China
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta Georgia 30332-0245 USA
| |
Collapse
|
17
|
Li F, Jiang M, Cheng Y, Zhang Y, Yang Z, Peng Y, Ma W, Chen Q, Wang C, Liu K, Wang R, Lu J, Pan C. Single-mode lasing of CsPbBr 3 perovskite NWs enabled by the Vernier effect. NANOSCALE 2021; 13:4432-4438. [PMID: 33620064 DOI: 10.1039/d0nr08644d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inorganic lead halide perovskite (CsPbX3, X = Cl, Br, I) NWs (NWs) have been employed in lasers due to their intriguing attributes of tunable wavelength, low threshold, superior stability, and easy preparation. However, current CsPbX3 NW lasers usually work in a multi-mode modal, impeding their practical applications in optical communication due to the associated false signaling. In this work, high-performance single-mode lasing has been demonstrated by designing and fabricating coupled cavities in the high-quality single-crystal CsPbBr3 NWs via the focused ion beam (FIB) milling approach. The single-mode laser shows a threshold of 20.1 μJ cm-2 and a high quality factor of ∼2800 profiting from the Vernier effect, as demonstrated by the experiments and finite-different time-domain (FDTD) simulations. These results demonstrate the promising potentials of the CsPbX3 NW lasers in optical communication and integrated optoelectronic devices.
Collapse
Affiliation(s)
- Fangtao Li
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences, Beijing 100083, P. R. China. and Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P.R. China.
| | - Mingming Jiang
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Yang Cheng
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Centre of Quantum Matter, School of Physics, Peking University, Beijing 100871, P. R. China
| | - Yufei Zhang
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences, Beijing 100083, P. R. China.
| | - Zheng Yang
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences, Beijing 100083, P. R. China.
| | - Yiyao Peng
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences, Beijing 100083, P. R. China.
| | - Wenda Ma
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qiushuo Chen
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences, Beijing 100083, P. R. China.
| | - Chunfeng Wang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Centre of Quantum Matter, School of Physics, Peking University, Beijing 100871, P. R. China
| | - Rongming Wang
- Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P.R. China.
| | - Junfeng Lu
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences, Beijing 100083, P. R. China. and School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China and State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Centre of Quantum Matter, School of Physics, Peking University, Beijing 100871, P. R. China and Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
18
|
Chen Q, Peng Y, Li F, Ma W, Zhuge MH, Wu W, Sun J, Yang X, Lu J, Pan C. Strain-modulated high-quality ZnO cavity modes on different crystal orientations. NANOTECHNOLOGY 2020; 31:225202. [PMID: 31952068 DOI: 10.1088/1361-6528/ab6d24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dynamically regulated coherent light emission offers a significant impact on improving white light generation, optical communication, on-chip photonic integration, and sensing. Here, we have demonstrated two mechanisms of strain-induced dynamic regulation of ZnO lasing modes through an individual ZnO microbelt and microrod prepared by vapor-phase transport method. We systematically explained the dependence on externally applied strain and crystal orientation. Compared with the reduced size of resonant cavity played a major role in the microbelt, the resonant wavelength variation of the microrod under tensile stress is affected by the change in both the cavity size and the refractive index, which tends to antagonize in the direction of movement. It shows that the refractive index can be effectively regulated only when the stress is in the same direction along the c-axis. The results on the linear relationship between the resonance wavelength variation and applied strain imply the capacity of the devices to detect tiny stresses due to the ultra-narrow line width of the cavity mode with a high-quality factor of ∼104. It not only has a positive influence in the field of the modulated coherent light source, but also provides a feasible strategy for implementing color-resolved non-contact strain sensors.
Collapse
Affiliation(s)
- Qiushuo Chen
- College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, People's Republic of China. CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lu J, Li F, Ma W, Hu J, Peng Y, Yang Z, Chen Q, Xu C, Pan C, Wang ZL. Two Photon-Pumped Whispering-Gallery Mode Lasing and Dynamic Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900916. [PMID: 31763135 PMCID: PMC6864518 DOI: 10.1002/advs.201900916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/06/2019] [Indexed: 05/22/2023]
Abstract
Realizing the dynamic regulation of nonlinear optical signals has a great scientific significance for the development of new-type nonlinear optoelectronic devices and expands its application in the field of laser technology, spectroscopy, material structure analysis, etc. Here, two photon absorption-induced whispering-gallery mode lasing from a single ZnO microresonator with a relatively low lasing threshold (15 µW) and high quality factor (Q ≈ 3200) under ambient conditions is demonstrated. Furthermore, success is achieved in obtaining the dynamic regulation of two photon-pumped lasing mode in the UV gain region. The corresponding resonant wavelength can be tuned dynamically from 388.99 and 391.12 to 390.01 and 392.12 nm for TE33 and TE32 modes, respectively. This work provides a new strategy for building high-performance mode-adjustable frequency upconversion lasers.
Collapse
Affiliation(s)
- Junfeng Lu
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐Nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Fangtao Li
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐Nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
| | - Wenda Ma
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐Nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Jufang Hu
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐Nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
| | - Yiyao Peng
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐Nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Zheng Yang
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐Nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Qiushuo Chen
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐Nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
| | - Chunxiang Xu
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Caofeng Pan
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐Nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Zhong Lin Wang
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐Nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGA30332‐0245USA
| |
Collapse
|
20
|
Zhuge MH, Yang Z, Zhang J, Zheng Y, Song Q, Pang C, Liu X, Ullah S, Pan C, Raghavan N, Zhang XH, Li H, Ma Y, Yang Q, Hasan T. Fiber-Integrated Reversibly Wavelength-Tunable Nanowire Laser Based on Nanocavity Mode Coupling. ACS NANO 2019; 13:9965-9972. [PMID: 31398003 DOI: 10.1021/acsnano.9b05110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As an ideal miniaturized light source, wavelength-tunable nanolasers capable of emitting a wide spectrum stimulate intense interests for on-chip optoelectronics, optical communications, and spectroscopy. However, realization of such devices remains a major challenge because of extreme difficulties in achieving continuously reversibly tunable gain media and high quality (Q)-factor resonators on the nanoscale simultaneously. Here, exploiting single bandgap-graded CdSSe NWs and a Fabry-Pérot/whispering gallery mode (FP/WGM) coupling cavity, a free-standing fiber-integrated reversibly wavelength-tunable nanolaser covering a 42 nm wide spectrum at room temperature with high stability and reproducibility is demonstrated. In addition, a 1.13 nm tuning spectral resolution is realized. The substrate-free device design enables integration in optical fiber communications and information. With reversible and wide, continuous tunability of emission color and precise control per step, our work demonstrates a general approach to nanocavity coupling affording high Q-factors, enabling an ideal miniaturized module for a broad range of applications in optics and optoelectronics, with optical fiber integration.
Collapse
Affiliation(s)
- Ming-Hua Zhuge
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Zongyin Yang
- Cambridge Graphene Centre , University of Cambridge , Cambridge CB3 0FA , United Kingdom
| | - Jianpei Zhang
- Sichuan Zhongguang Lightning Protection Technologies Co., Ltd. , Chengdu 611731 , China
| | - Yazhi Zheng
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Qinghai Song
- Integrated Nanoscience Lab, Department of Electrical and Information Engineering , Harbin Institute of Technology , Shenzhen 518055 , China
| | - Chenlei Pang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Xu Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Salman Ullah
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Caofeng Pan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , National Center for Nanoscience and Technology (NCNST) , Beijing 100083 , China
| | - Nagarajan Raghavan
- Engineering Product Development (EPD) Pillar , Singapore University of Technology and Design , 8 Somapah Road , Singapore 487372 , Singapore
| | - Xing-Hong Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Haifeng Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Yaoguang Ma
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Qing Yang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310027 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan 030006 , China
| | - Tawfique Hasan
- Cambridge Graphene Centre , University of Cambridge , Cambridge CB3 0FA , United Kingdom
| |
Collapse
|
21
|
Multi-Element Topochemical-Molten Salt Synthesis of One-Dimensional Piezoelectric Perovskite. iScience 2019; 17:1-9. [PMID: 31247446 PMCID: PMC6598643 DOI: 10.1016/j.isci.2019.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/15/2019] [Accepted: 06/06/2019] [Indexed: 11/23/2022] Open
Abstract
One-dimensional perovskites are an interesting material for energy and optoelectronic applications. However, exploring the full wealth of architectures these materials could allow, through multi-element doping of A-sites and B-sites, is still a challenge. Here, we report a high-yield synthetic strategy for 1D perovskites via a two-step method based on a multi-element topochemical-molten salt method. Typically, a high yield of 1D multicomponent perovskite niobates (Li0.06Na0.47K0.47)(Nb0.94Sb0.06)O3 (LNKNS2) is rapidly achieved from as-synthesized 1D K2(Nb0.94Sb0.06)8O21 with multi-element B-sites. In this process, 1D K2(Nb0.94Sb0.06)8O21 has been first achieved, and the proportion of the ions in A-sites is affected by the radius and molar ratio of ions. The z axis direction of K2(Nb0.94Sb0.06)8O21 rod is transformed into the x axis direction of LNKNS2 rod. Furthermore, the output voltage of the 1D niobates-based flexible piezoelectric device (FPD) was nearly 600% compared with that of the isotropic niobates-based FPD. This work also allows convenient fabrication of other 1D multicomponent perovskites.
Collapse
|
22
|
Ma W, Lu J, Yang Z, Peng D, Li F, Peng Y, Chen Q, Sun J, Xi J, Pan C. Crystal-Orientation-Related Dynamic Tuning of the Lasing Spectra of CdS Nanobelts by Piezoelectric Polarization. ACS NANO 2019; 13:5049-5057. [PMID: 31013417 DOI: 10.1021/acsnano.9b01735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Realizing dynamic wavelength tunability could bring about tremendous impacts in laser technology, pressure nanosensing, and lab-on-a-chip devices. Here, we demonstrate an original strategy to operate the lasing mode shift through reversible length changes of a CdS nanobelt, which is determined by the direction of piezoelectric polarization. The relationships between the direction of applied strain, the lasing mode shift, and the tunable effective refractive index are elaborated in detail. The correlation between the piezoelectric polarization-induced lasing mode red shift and the blue shift in the wavelength of the lasing mode output caused by the Poisson effect is discussed in depth, as well. Our study comprehensively considers the influence of both the cavity size variations and refractive index changes on the control of the lasing mode and provides a deeper understanding of the strain-induced lasing mode shift.
Collapse
Affiliation(s)
- Wenda Ma
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Junfeng Lu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zheng Yang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Dengfeng Peng
- College of Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Fangtao Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100083 , China
| | - Yiyao Peng
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Qiushuo Chen
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100083 , China
| | - Junlu Sun
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100083 , China
| | - Jianguo Xi
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100083 , China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
- Center on Nanoenergy Research, School of Physical Science and Technology , Guangxi University , Nanning 530004 , China
- College of Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , China
| |
Collapse
|