1
|
Ahmed S, Perez-Mercader J. Interactions and Oscillatory Dynamics of Chemically Powered Soft Swimmers. J Phys Chem B 2025; 129:554-562. [PMID: 39714313 DOI: 10.1021/acs.jpcb.4c07069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
We report the interactions and dynamics of chemically powered soft swimmers that undergo autonomous oscillatory motion. The interaction of autonomous entities is the basis for the development of collective behaviors among biological organisms. Collective behaviors enable organisms to efficiently attain food and coordinate against threats. The basis of these behaviors is the interaction between nearest neighbors. Mimicking these interactions in artificial systems would enable their organization for the performance of complex tasks. Oscillatory phenomena are also ubiquitous in nature. Hence artificial oscillatory systems can serve as the most direct mimics and models of many biological systems. In this work, we report the interactions and dynamics of oscillatory swimmers propelled by the nonlinear oscillatory Belousov-Zhabotinsky (BZ) reaction. Individually, these swimmers displace by undergoing nonfully reciprocal oscillatory motion in conjunction with the BZ reaction. We find that, in addition to their individual oscillatory motion, multiple BZ swimmers exhibit successive oscillatory changes in their inter swimmer distance. This oscillatory attraction and repulsion between adjacent swimmers occurs in conjunction with the BZ waves and oxidation state of the catalyst. The effect of swimmer size and number on these dynamic interactions is interrogated. The level of chemical synchronization between multiple swimmers is determined. This work is a starting point for the design of collective behaviors utilizing autonomous chemically propelled soft swimmers.
Collapse
Affiliation(s)
- Suzanne Ahmed
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, 2907 E Gate City Blvd, Greensboro, North Carolina 27401, United States
- Department of Earth and Planetary Sciences and Origins of Life Initiative, Harvard University, 20 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Juan Perez-Mercader
- Department of Earth and Planetary Sciences and Origins of Life Initiative, Harvard University, 20 Oxford Street, Cambridge, Massachusetts 02138, United States
- Santa Fe Institute, Santa Fe, New Mexico 87501, United States
| |
Collapse
|
2
|
Cheng Q, Lu X, Tai Y, Luo T, Yang R. Light-Driven Microrobots for Targeted Drug Delivery. ACS Biomater Sci Eng 2024; 10:5562-5594. [PMID: 39147594 DOI: 10.1021/acsbiomaterials.4c01191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
As a new micromanipulation tool with the advantages of small size, flexible movement and easy manipulation, light-driven microrobots have a wide range of prospects in biomedical fields such as drug targeting and cell manipulation. Recently, microrobots have been controlled in various ways, and light field has become a research hotspot by its advantages of noncontact manipulation, precise localization, fast response, and biocompatibility. It utilizes the force or deformation generated by the light field to precisely control the microrobot, and combines with the drug release technology to realize the targeted drug application. Therefore, this paper provides an overview of light-driven microrobots with drug targeting to provide new ideas for the manipulation of microrobots. Here, this paper briefly categorizes the driving mechanisms and materials of light-driven microrobots, which mainly include photothermal, photochemical, and biological. Then, typical designs of light-driven microrobots with different driving mechanisms and control strategies for multiple physical fields are summarized. Finally, the applications of microrobots in the fields of drug targeting and bioimaging are presented as well as the future prospects of light-driven microrobots in the biomedical field are demonstrated.
Collapse
Affiliation(s)
- Qilong Cheng
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Xingqi Lu
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Yunhao Tai
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Tingting Luo
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Runhuai Yang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
3
|
Cui H, Pan W, Li T, Shen X, Chang Y, Pang W, Duan X. Rapid purification and enrichment of viral particles using self-propelled micromotors. NANOSCALE 2023; 15:17105-17112. [PMID: 37850316 DOI: 10.1039/d3nr02812g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Virus infections remain one of the principal causes of morbidity and mortality worldwide. The current gold standard approach for diagnosing pathogens requires access to reverse transcription-polymerase chain reaction (RT-PCR) technology. However, separation and enrichment of the targets from complex and diluted samples remains a major challenge. In this work, we proposed a micromotor-based sample preparation concept for the efficient separation and concentration of target viral particles before PCR. The micromotors are functionalized with antibodies with a 3D polymer linker and are capable of self-propulsion by the catalytic generation of oxygen bubbles for selective and positive virus enrichment. This strategy significantly improves the enrichment efficiency and recovery rate of virus (up to 80% at 104 tu mL-1 in a 1 mL volume within just 6 min) without external mixing equipment. The method allows the Ct value in regular PCR tests to appear 6-7 cycles earlier and a detection limit of 1 tu mL-1 for the target virus from swap samples. A point-of-need test kit is designed based on the micromotors which can be readily applied to pretreat a large volume of samples.
Collapse
Affiliation(s)
- Haipeng Cui
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, P.R. China
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Wenwei Pan
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, P.R. China
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Tiechuan Li
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, P.R. China
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Xiaotian Shen
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, P.R. China
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Ye Chang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, P.R. China
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, P.R. China
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, P.R. China
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, P.R. China
| |
Collapse
|
4
|
Singh P, Kundu K, Seçkin S, Bhardwaj K, König TAF, Jaiswal A. The Rise of Structurally Anisotropic Plasmonic Janus Gold Nanostars. Chemistry 2023; 29:e202302100. [PMID: 37461223 DOI: 10.1002/chem.202302100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 09/12/2023]
Abstract
Nanostructures intrinsically possessing two different structural or functional features, often called Janus nanoparticles, are emerging as a potential material for sensing, catalysis, and biomedical applications. Herein, we report the synthesis of plasmonic gold Janus nanostars (NSs) possessing a smooth concave pentagonal morphology with sharp tips and edges on one side and, contrastingly, a crumbled morphology on the other. The methodology reported herein for their synthesis - a single-step growth reaction - is different from any other Janus nanoparticle preparation involving either template-assisted growth or a masking technique. Interestingly, the coexistence of lower- and higher-index facets was found in these Janus NSs. The general paradigm for synthesizing gold Janus NSs was investigated by understanding the kinetic control mechanism with the combinatorial effect of all the reagents responsible for the structure. The optical properties of the Janus NSs were realized by corelating their extinction spectra with the simulated data. The size-dependent surface-enhanced Raman scattering (SERS) activity of these Janus NSs was studied with 1,4-BDT as the model analyte. Finite-difference time-domain simulations for differently sized particles revealed the distribution of electromagnetic hot-spots over the particles resulting in enhancement of the SERS signal in a size-dependent manner.
Collapse
Affiliation(s)
- Prem Singh
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Koustav Kundu
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Sezer Seçkin
- Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Straße 6, 01069, Dresden, Germany
| | - Keshav Bhardwaj
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Tobias A F König
- Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Straße 6, 01069, Dresden, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Helmholtzstraße 18, 01062, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany
| | - Amit Jaiswal
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| |
Collapse
|
5
|
Feng K, Ureña Marcos JC, Mukhopadhyay AK, Niu R, Zhao Q, Qu J, Liebchen B. Self-Solidifying Active Droplets Showing Memory-Induced Chirality. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300866. [PMID: 37526332 PMCID: PMC10520641 DOI: 10.1002/advs.202300866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/20/2023] [Indexed: 08/02/2023]
Abstract
Most synthetic microswimmers do not reach the autonomy of their biological counterparts in terms of energy supply and diversity of motions. Here, this work reports the first all-aqueous droplet swimmer powered by self-generated polyelectrolyte gradients, which shows memory-induced chirality while self-solidifying. An aqueous solution of surface tension-lowering polyelectrolytes self-solidifies on the surface of acidic water, during which polyelectrolytes are gradually emitted into the surrounding water and induce linear self-propulsion via spontaneous symmetry breaking. The low diffusion coefficient of the polyelectrolytes leads to long-lived chemical trails which cause memory effects that drive a transition from linear to chiral motion without requiring any imposed symmetry breaking. The droplet swimmer is capable of highly efficient removal (up to 85%) of uranium from aqueous solutions within 90 min, benefiting from self-propulsion and flow-induced mixing. These results provide a route to fueling self-propelled agents which can autonomously perform chiral motion and collect toxins.
Collapse
Affiliation(s)
- Kai Feng
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | | | - Aritra K. Mukhopadhyay
- Institut für Physik Kondensierter MaterieTechnische Universität Darmstadt64289DarmstadtGermany
| | - Ran Niu
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Jinping Qu
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Benno Liebchen
- Institut für Physik Kondensierter MaterieTechnische Universität Darmstadt64289DarmstadtGermany
| |
Collapse
|
6
|
Ussembayev YY, De Witte N, Liu X, Belmonte A, Bus T, Lubach S, Beunis F, Strubbe F, Schenning APHJ, Neyts K. Uni- and Bidirectional Rotation and Speed Control in Chiral Photonic Micromotors Powered by Light. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207095. [PMID: 36793159 DOI: 10.1002/smll.202207095] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/10/2023] [Indexed: 05/18/2023]
Abstract
Liquid crystalline polymers are attractive materials for untethered miniature soft robots. When they contain azo dyes, they acquire light-responsive actuation properties. However, the manipulation of such photoresponsive polymers at the micrometer scale remains largely unexplored. Here, uni- and bidirectional rotation and speed control of polymerized azo-containing chiral liquid crystalline photonic microparticles powered by light is reported. The rotation of these polymer particles is first studied in an optical trap experimentally and theoretically. The micro-sized polymer particles respond to the handedness of a circularly polarized trapping laser due to their chirality and exhibit uni- and bidirectional rotation depending on their alignment within the optical tweezers. The attained optical torque causes the particles to spin with a rotation rate of several hertz. The angular speed can be controlled by small structural changes, induced by ultraviolet (UV) light absorption. After switching off the UV illumination, the particle recovers its rotation speed. The results provide evidence of uni- and bidirectional motion and speed control in light-responsive polymer particles and offer a new way to devise light-controlled rotary microengines at the micrometer scale.
Collapse
Affiliation(s)
- Yera Ye Ussembayev
- LCP research group, Ghent University, Technologiepark 126, Gent, 9052, Belgium
- Center for Nano and Biophotonics, Ghent University, Technologiepark 126, Gent, 9052, Belgium
| | - Noah De Witte
- LCP research group, Ghent University, Technologiepark 126, Gent, 9052, Belgium
| | - Xiaohong Liu
- Stimuli-responsive Functional Materials and Devices, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Alberto Belmonte
- Stimuli-responsive Functional Materials and Devices, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Tom Bus
- Stimuli-responsive Functional Materials and Devices, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Sjoukje Lubach
- Stimuli-responsive Functional Materials and Devices, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Filip Beunis
- LCP research group, Ghent University, Technologiepark 126, Gent, 9052, Belgium
- Center for Nano and Biophotonics, Ghent University, Technologiepark 126, Gent, 9052, Belgium
| | - Filip Strubbe
- LCP research group, Ghent University, Technologiepark 126, Gent, 9052, Belgium
- Center for Nano and Biophotonics, Ghent University, Technologiepark 126, Gent, 9052, Belgium
| | - Albert P H J Schenning
- Stimuli-responsive Functional Materials and Devices, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Kristiaan Neyts
- LCP research group, Ghent University, Technologiepark 126, Gent, 9052, Belgium
- Center for Nano and Biophotonics, Ghent University, Technologiepark 126, Gent, 9052, Belgium
| |
Collapse
|
7
|
Ramos Docampo MA. On Nanomachines and Their Future Perspectives in Biomedicine. Adv Biol (Weinh) 2023; 7:e2200308. [PMID: 36690500 DOI: 10.1002/adbi.202200308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Indexed: 01/25/2023]
Abstract
Nano/micromotors are a class of active matter that can self-propel converting different types of input energy into kinetic energy. The huge efforts that are made in this field over the last years result in remarkable advances. Specifically, a high number of publications have dealt with biomedical applications that these motors may offer. From the first attempts in 2D cell cultures, the research has evolved to tissue and in vivo experimentation, where motors show promising results. In this Perspective, an overview over the evolution of motors with focus on bio-relevant environments is provided. Then, a discussion on the advances and challenges is presented, and eventually some remarks and perspectives of the field are outlined.
Collapse
Affiliation(s)
- Miguel A Ramos Docampo
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| |
Collapse
|
8
|
Liu T, Xie L, Price CAH, Liu J, He Q, Kong B. Controlled propulsion of micro/nanomotors: operational mechanisms, motion manipulation and potential biomedical applications. Chem Soc Rev 2022; 51:10083-10119. [PMID: 36416191 DOI: 10.1039/d2cs00432a] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Inspired by natural mobile microorganisms, researchers have developed micro/nanomotors (MNMs) that can autonomously move by transducing different kinds of energies into kinetic energy. The rapid development of MNMs has created tremendous opportunities for biomedical fields including diagnostics, therapeutics, and theranostics. Although the great progress has been made in MNM research, at a fundamental level, the accepted propulsion mechanisms are still a controversial matter. In practical applications such as precision nanomedicine, the precise control of the motion, including the speed and directionality, of MNMs is also important, which makes advanced motion manipulation desirable. Very recently, diverse MNMs with different propulsion strategies, morphologies, sizes, porosities and chemical structures have been fabricated and applied for various uses. Herein, we thoroughly summarize the physical principles behind propulsion strategies, as well as the recent advances in motion manipulation methods and relevant biomedical applications of these MNMs. The current challenges in MNM research are also discussed. We hope this review can provide a bird's eye overview of the MNM research and inspire researchers to create novel and more powerful MNMs.
Collapse
Affiliation(s)
- Tianyi Liu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, China. .,DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| | - Lei Xie
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, China.
| | - Cameron-Alexander Hurd Price
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| | - Jian Liu
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK. .,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China.,College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, PR China
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, China.
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, China. .,Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, China
| |
Collapse
|
9
|
Chen X, Xu Y, Lou K, Peng Y, Zhou C, Zhang HP, Wang W. Programmable, Spatiotemporal Control of Colloidal Motion Waves via Structured Light. ACS NANO 2022; 16:12755-12766. [PMID: 35857820 DOI: 10.1021/acsnano.2c04596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Traveling waves in a reaction-diffusion system are essential for long-range communication in living organisms and inspire biomimetic materials of similar capabilities. One recent example is the traveling motion waves among photochemically oscillating, silver (Ag)-containing colloids. Being able to manipulate these colloidal waves holds the key for potential applications. Here, we have discovered that these motion waves can be confined by light patterns and that the chemical clocks of silver particles are moved forward by reducing local light intensity. Using these discoveries as design principles, we have applied structured light technology for the precise and programmable control of colloidal motion waves, including their origins, propagation directions, paths, shapes, annihilation, frequency, and speeds. We have also used the controlled propagation of colloidal waves to guide chemical messages along a predefined path to activate a population of micromotors located far from the signal. Our demonstrated capabilities in manipulating colloidal waves in space and time offer physical insights on their operation and expand their usefulness in the fundamental study of reaction-diffusion processes. Moreover, our findings inspire biomimetic strategies for the directional transport of mass, energy, and information at micro- or even nanoscales.
Collapse
Affiliation(s)
- Xi Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yankai Xu
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kai Lou
- Guangzhou Kayja-Optics Technology Co., Ltd., Guangzhou 511458, China
| | - Yixin Peng
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Chao Zhou
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - H P Zhang
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
10
|
Chen X, Xu Y, Zhou C, Lou K, Peng Y, Zhang HP, Wang W. Unraveling the physiochemical nature of colloidal motion waves among silver colloids. SCIENCE ADVANCES 2022; 8:eabn9130. [PMID: 35613263 PMCID: PMC9132452 DOI: 10.1126/sciadv.abn9130] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Traveling waves are common in biological and synthetic systems, including the recent discovery that silver (Ag) colloids form traveling motion waves in H2O2 and under light. Here, we show that this colloidal motion wave is a heterogeneous excitable system. The Ag colloids generate traveling chemical waves via reaction-diffusion, and either self-propel through self-diffusiophoresis ("ballistic waves") or are advected by diffusio-osmotic flows from gradients of neutral molecules ("swarming waves"). Key results include the experimental observation of traveling waves of OH- with pH-sensitive fluorescent dyes and a Rogers-McCulloch model that qualitatively and quantitatively reproduces the key features of colloidal waves. These results are a step forward in elucidating the Ag-H2O2-light oscillatory system at individual and collective levels. In addition, they pave the way for using colloidal waves either as a platform for studying nonlinear phenomena, or as a tool for colloidal transport and for information transmission in microrobot ensembles.
Collapse
Affiliation(s)
- Xi Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yankai Xu
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Zhou
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Kai Lou
- Guangzhou Kayja-Optics Technology Co. Ltd., Guangzhou 511458, China
| | - Yixin Peng
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - H. P. Zhang
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Corresponding author. (W.W.); (H.P.Z.)
| | - Wei Wang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Corresponding author. (W.W.); (H.P.Z.)
| |
Collapse
|
11
|
Gao C, Feng Y, Wilson DA, Tu Y, Peng F. Micro-Nano Motors with Taxis Behavior: Principles, Designs, and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106263. [PMID: 35032145 DOI: 10.1002/smll.202106263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/13/2021] [Indexed: 06/14/2023]
Abstract
As a novel mobile nanodevice, micro-nano motors (MNMs) can convert the energy of the surrounding environment into mechanical motion. With this unique ability, they promise revolutionary potential in bio-applications including precise drug delivery, bio-sensing, and noninvasive surgery. Yet for practically reaching the target and fulfilling these tasks in dynamically changing bio-environment, environment adaptivity beyond propulsion is important yet challenging. MNMs with taxis behavior/autonomous target-seeking ability offer a desirable solution. These motors can adaptively move to the target location and complete the task. Thanks to the persistent efforts of researchers, tactic MNMs have shown automatic navigation to target under various energy fields, not only in static environments, but also in shear rheological conditions that simulate blood flow. Therefore, tactic motors with self-targeting capability lay a concrete foundation for targeted drug delivery, cell transplantation, and thrombus ablation. This review systematically presents the moving principle, design, and biological applications of tactic MNMs under different energy fields. Through in-depth analysis of state-of-art progress, the obstacles of the field and possible solutions are discussed. With the continuous innovation and breakthroughs of multi-disciplinary researchers, MNMs with taxis behavior are expected to provide a revolutionary solution for cancer and other major diseases in the biomedical field.
Collapse
Affiliation(s)
- Chao Gao
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ye Feng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Daniela A Wilson
- Institute for Molecules and Materials, Radboud University, Nijmegen, 6525 XZ, The Netherlands
| | - Yingfeng Tu
- School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
12
|
Li S, Liu X, Zhang H, Mao Y, Zhang T, Wang J. Shape-tunable polymeric Janus nanoparticles with hollow cavities derived from polymerization induced self-assembly based crosslinked vesicles. Chem Commun (Camb) 2022; 58:2228-2231. [PMID: 35073392 DOI: 10.1039/d1cc06966g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The fabrication of shape-tunable polymeric Janus nanoparticles with hollow cavities derived from polymerization induced self-assembly based crosslinked vesicles is reported for the first time in this work. These novel polymeric JNPs can be applied to an extensive range of applications, wherein nanoparticles with controllable hollow morphologies are needed.
Collapse
Affiliation(s)
- Shanshan Li
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xiaobo Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Hao Zhang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yuhua Mao
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Tangxin Zhang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jianli Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
13
|
Wang Q, Zhou C, Huang L, Wang W. "Ballistic" waves among chemically oscillating micromotors. Chem Commun (Camb) 2021; 57:8492-8495. [PMID: 34350918 DOI: 10.1039/d1cc02558a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coordinating a group of chemically powered micromotors holds great importance in potential applications that involve a large population in a complex environment, yet information transmission at a population scale remains challenging. To this end, we demonstrate how propagating waves emerge among a population of spontaneously oscillating micromotors that dash toward a direction prescribed by their Janus orientations (termed a "ballistic" wave). Moreover, chemical communication among these micromotors enables the tuning of the speed and frequency of individual micromotors and their waves, by varying the population density or the viscosity of the medium.
Collapse
Affiliation(s)
- Qizhang Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.
| | | | | | | |
Collapse
|
14
|
Engineering Active Micro and Nanomotors. MICROMACHINES 2021; 12:mi12060687. [PMID: 34208386 PMCID: PMC8231110 DOI: 10.3390/mi12060687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022]
Abstract
Micro- and nanomotors (MNMs) are micro/nanoparticles that can perform autonomous motion in complex fluids driven by different power sources. They have been attracting increasing attention due to their great potential in a variety of applications ranging from environmental science to biomedical engineering. Over the past decades, this field has evolved rapidly, with many significant innovations contributed by global researchers. In this review, we first briefly overview the methods used to propel motors and then present the main strategies used to design proper MNMs. Next, we highlight recent fascinating applications of MNMs in two examplary fields, water remediation and biomedical microrobots, and conclude this review with a brief discussion of challenges in the field.
Collapse
|
15
|
Zhang X, Fu Q, Duan H, Song J, Yang H. Janus Nanoparticles: From Fabrication to (Bio)Applications. ACS NANO 2021; 15:6147-6191. [PMID: 33739822 DOI: 10.1021/acsnano.1c01146] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Janus nanoparticles (JNPs) refer to the integration of two or more chemically discrepant composites into one structure system. Studies into JNPs have been of significant interest due to their interesting characteristics stemming from their asymmetric structures, which can integrate different functional properties and perform more synergetic functions simultaneously. Herein, we present recent progress of Janus particles, comprehensively detailing fabrication strategies and applications. First, the classification of JNPs is divided into three blocks, consisting of polymeric composites, inorganic composites, and hybrid polymeric/inorganic JNPs composites. Then, the fabrication strategies are alternately summarized, examining self-assembly strategy, phase separation strategy, seed-mediated polymerization, microfluidic preparation strategy, nucleation growth methods, and masking methods. Finally, various intriguing applications of JNPs are presented, including solid surfactants agents, micro/nanomotors, and biomedical applications such as biosensing, controlled drug delivery, bioimaging, cancer therapy, and combined theranostics. Furthermore, challenges and future works in this field are provided.
Collapse
Affiliation(s)
- Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| |
Collapse
|
16
|
Zhang X, Xie W, Wang H, Zhang Z. Magnetic matchstick micromotors with switchable motion modes. Chem Commun (Camb) 2021; 57:3797-3800. [PMID: 33876125 DOI: 10.1039/d1cc00773d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ability to in situ tune various motion modes of micromotors is challenging, yet critical for any practical applications of micromotors in complex microenvironments. Here, we designed and synthesized magnetic matchstick micromotors with two motion modes, a persistent rotational motion and a straight-line motion, that can be readily and reversibly switched in situ by an external magnetic field. Such micromotors with switchable motion modes hold considerable promise for local environment sensing and probing at the microscale.
Collapse
Affiliation(s)
- Xiaoliang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | | | | | | |
Collapse
|
17
|
Zheng YT, Zhao BS, Zhang HB, Jia H, Wu M. Colorimetric aptasensor for fumonisin B1 detection by regulating the amount of bubbles in closed bipolar platform. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Lemineur JF, Noël JM, Combellas C, Kanoufi F. Revealing the sub-50 ms electrochemical conversion of silver halide nanocolloids by stochastic electrochemistry and optical microscopy. NANOSCALE 2020; 12:15128-15136. [PMID: 32657309 DOI: 10.1039/d0nr03799k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Silver based ionic crystal nanoparticles (NPs) are interesting nanomaterials for energy storage and conversion, e.g. their colloidal solutions could be used as a reversible redox nanofluid in semi-solid redox flow cells. In this context, the reductive transformation of Brownian silver halide, AgX, NPs into silver NPs is probed by single NP electrochemistry, complemented by operando high resolution monitoring. However, their light sensitivity and poor conductivity make the operando monitoring of their chemical activity challenging. The electrochemical collisions of single AgX NPs onto a negatively biased electrode evidence a full conversion through multiple reduction steps within 3-10 ms. This is further corroborated by simulation of the conversion process and operando through a high resolution optical microscopy technique (Backside Absorbing Layer Microscopy, BALM). Both techniques are interesting strategies to infer at the single NP level the intrinsic charge capacity and charging rate of redox active Brownian nanomaterials, demonstrating the interest of the fast and reversible AgX/Ag system as a redox nanofluid.
Collapse
Affiliation(s)
| | - Jean-Marc Noël
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France.
| | | | | |
Collapse
|
19
|
Xu P, Duan S, Xiao Z, Yang Z, Wang W. Light-powered active colloids from monodisperse and highly tunable microspheres with a thin TiO 2 shell. SOFT MATTER 2020; 16:6082-6090. [PMID: 32568346 DOI: 10.1039/d0sm00719f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The emerging field of active matter, and its subset active colloid, is in great need of good model systems consisting of moving entities that are uniform and highly tunable. In this article, we address this challenge by introducing core-shell SiO2-TiO2 microspheres, prepared by chemically coating a thin layer of TiO2 on an inert core, that are highly monodisperse in size (polydispersity 4.1%) and regular in shape (circularity 0.93). Compared with similar samples prepared by the classic sol-gel method, Janus TiO2-Pt active colloids prepared with core-shell TiO2 spheres move faster and boast a much clearer Janus interface. Moreover, a unique feature of these core-shell TiO2 microspheres is their great tunability in the colloid size, shell thickness, and even the type of the core particle. These advantages are highlighted in two examples, one demonstrating a TiO2-Pt active colloid with a magnetic core that enables magnetic manipulation, and the other demonstrating the collective expansion and contraction of a uniform cluster of core-shell TiO2 colloids under UV light illumination. We believe that TiO2 microspheres produced by this core-shell technique compare favorably with many other types of active colloids being employed as model systems, and thus open up many research possibilities.
Collapse
Affiliation(s)
- Pengzhao Xu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Shifang Duan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Zuyao Xiao
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Zhou Yang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| |
Collapse
|
20
|
Dong RY, Zhang Y, Lou K, Granick S. Micromotor That Carries Its Own Fuel Internally. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7701-7705. [PMID: 32571028 DOI: 10.1021/acs.langmuir.0c01486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Micromotors enjoy burgeoning interest but a limitation of their design is to require continuous supply of new fuel. The preponderance of extant micromotors depend, for their motion, on irradiation by light or exposure to acid in their environment. Here we demonstrate a motor that carries its own fuel internally, in this sense representing an analogue, in micron-sized objects, of the internal combustion engine. The fuel is DPCP (diphenylcyclopropenone) microcrystal, a solid-state chemical that after ignition by UV light requires no further irradiation to sustain a chemical reaction that emits carbon monoxide gas that can be used to propel the particle on which this chemical resides. It is loaded asymmetrically onto inexpensive microparticles to produce internally fueled propulsion with speed up to ∼20 μm/s over distances up to 15 times the capsule length in water. Once ignited, the motors maintain their direction of motion and move without need for light to follow their path. Possible strategies to extend the idea beyond the current proof of concept are discussed.
Collapse
Affiliation(s)
- Ruo-Yu Dong
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, South Korea
| | - Yifan Zhang
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, South Korea
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Kai Lou
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, South Korea
| | - Steve Granick
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, South Korea
- Departments of Chemistry and Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| |
Collapse
|
21
|
Popescu MN. Chemically Active Particles: From One to Few on the Way to Many. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6861-6870. [PMID: 32233489 PMCID: PMC7331135 DOI: 10.1021/acs.langmuir.9b03973] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/01/2020] [Indexed: 06/01/2023]
Abstract
Chemically active particles suspended in a liquid solution can achieve self-motility by locally changing the chemical composition of the solution via catalytic reactions at their surfaces. They operate intrinsically out of equilibrium, continuously extracting free energy from the environment to power the dissipative self-motility. The effective interactions involving active particles are, in general, nonreciprocal and anisotropic, even if the particles have simple shapes (e.g., Janus spheres). Accordingly, for chemically active particles a very rich behavior of collective motion and self-assembly may be expected to emerge, including phenomena such as microphase separation in the form of kinetically stable, finite-sized aggregates. Here, I succinctly review a number of recent experimental studies that demonstrate the self-assembly of structures, involving chemically active Janus particles, which exhibit various patterns of motion. These examples illustrate concepts such as "motors made out of motors" (as suggestively named by Fischer [Fischer, P. Nat. Phys. 2018, 14, 1072]). The dynamics of assembly and structure formation observed in these systems can provide benchmark, in-depth testing of the current understanding of motion and effective interactions produced by chemical activity. Finally, one notes that these significant achievements are likely just the beginning of the field. Recently reported particles endowed with time-dependent chemical activity or switchable reaction mechanisms open the way for exciting developments, such as periodic reshaping of self-assembled structures based on man-made internal clocks.
Collapse
|
22
|
Sridhar V, Park BW, Guo S, van Aken PA, Sitti M. Multiwavelength-Steerable Visible-Light-Driven Magnetic CoO-TiO 2 Microswimmers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24149-24155. [PMID: 32351105 PMCID: PMC7256931 DOI: 10.1021/acsami.0c06100] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
While current light-driven microswimmers require high-intensity light, UV light, or toxic fuels to propel them, powering them with low-intensity UV-free visible light without fuels is essential to enable their potential high-impact applications. Therefore, in this study, a new material for light-driven microswimmers in the form of CoO is introduced. Janus CoO-TiO2 microswimmers powered with low-intensity, UV-free visible light inside water without using any toxic fuels like H2O2 is proposed. The microswimmers show propulsion under full spectrum of visible light with 17 times lower intensity than the mean solar intensity. They propel by breaking down water into oxygen and oxide radicals, which enables their potential applications for photocatalysis and drug delivery. The microswimmers are multiwavelength responsive, from the ultraviolet to the infrared region. The direction of swimming changes with the change in the illumination from the visible to UV light. In addition to being responsive, they are wavelength steerable and exhibit inherent magnetic properties enabling magnetic steering control of the CoO-TiO2 microswimmers. Thus, these microswimmers, which are propelled under low-intensity visible light, have direction-changing capability using light of different wavelengths, and have steering control capability by external magnetic fields, could be used in future potential applications, such as active and local cargo delivery, active photocatalysis, and hydrogen evolution.
Collapse
Affiliation(s)
- Varun Sridhar
- Physical
Intelligence Department, Max Planck Institute
for Intelligent Systems, 70569 Stuttgart, Germany
| | - Byung-Wook Park
- Department
of Chemical Engineering, Youngstown State
University, Youngstown, Ohio 44555, United States
| | - Surong Guo
- Stuttgart
Center for Electron Microscopy, Max Planck
Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Peter A. van Aken
- Stuttgart
Center for Electron Microscopy, Max Planck
Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Metin Sitti
- Physical
Intelligence Department, Max Planck Institute
for Intelligent Systems, 70569 Stuttgart, Germany
| |
Collapse
|
23
|
Zhou C, Suematsu NJ, Peng Y, Wang Q, Chen X, Gao Y, Wang W. Coordinating an Ensemble of Chemical Micromotors via Spontaneous Synchronization. ACS NANO 2020; 14:5360-5370. [PMID: 32271537 DOI: 10.1021/acsnano.9b08421] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Spatiotemporal coordination of a nanorobot ensemble is critical for their operation in complex environments, such as tissue removal or drug delivery. Current strategies of achieving this task, however, rely heavily on sophisticated, external manipulation. We here present an alternative, biomimetic strategy by which oscillating Ag Janus micromotors spontaneously synchronize their dynamics as chemically coupled oscillators. By quantitatively tracking the kinetics at both an individual and cluster level, we find that synchronization emerges as the oscillating entities are increasingly coupled as they approach each other. In addition, the synchronized beating of a cluster of these oscillating colloids was found to be dominated by substrate electroosmosis, revealed with the help of an acoustic trapping technique. This quantitative, systematic study of synchronizing micromotors could facilitate the design of biomimetic nanorobots that spontaneously communicate and organize at micro- and nanoscales. It also serves as a model system for nonlinear active matter.
Collapse
Affiliation(s)
- Chao Zhou
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Nobuhiko Jessis Suematsu
- School of Interdisciplinary Mathematical Sciences, Graduate School of Advanced Mathematical Sciences, and Meiji Institute for Advanced Study of Mathematical Sciences (MIMS), Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo 164-8525, Japan
| | - Yixin Peng
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Qizhang Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xi Chen
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yongxiang Gao
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China
| | - Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
24
|
Wang W, Lv X, Moran JL, Duan S, Zhou C. A practical guide to active colloids: choosing synthetic model systems for soft matter physics research. SOFT MATTER 2020; 16:3846-3868. [PMID: 32285071 DOI: 10.1039/d0sm00222d] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Synthetic active colloids that harvest energy stored in the environment and swim autonomously are a popular model system for active matter. This emerging field of research sits at the intersection of materials chemistry, soft matter physics, and engineering, and thus cross-talk among researchers from different backgrounds becomes critical yet difficult. To facilitate this interdisciplinary communication, and to help soft matter physicists with choosing the best model system for their research, we here present a tutorial review article that describes, in appropriate detail, six experimental systems of active colloids commonly found in the physics literature. For each type, we introduce their background, material synthesis and operating mechanisms and notable studies from the soft matter community, and comment on their respective advantages and limitations. In addition, the main features of each type of active colloid are summarized into two useful tables. As materials chemists and engineers, we intend for this article to serve as a practical guide, so those who are not familiar with the experimental aspects of active colloids can make more informed decisions and maximize their creativity.
Collapse
Affiliation(s)
- Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| | - Xianglong Lv
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| | - Jeffrey L Moran
- Department of Mechanical Engineering, George Mason University, Fairfax, USA
| | - Shifang Duan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| | - Chao Zhou
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| |
Collapse
|
25
|
Lemineur JF, Noël JM, Courty A, Ausserré D, Combellas C, Kanoufi F. In Situ Optical Monitoring of the Electrochemical Conversion of Dielectric Nanoparticles: From Multistep Charge Injection to Nanoparticle Motion. J Am Chem Soc 2020; 142:7937-7946. [PMID: 32223242 DOI: 10.1021/jacs.0c02071] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
By shortening solid-state diffusion times, the nanoscale size reduction of dielectric materials-such as ionic crystals-has fueled synthetic efforts toward their use as nanoparticles, NPs, in electrochemical storage and conversion cells. Meanwhile, there is a lack of strategies able to image the dynamics of such conversion, operando and at the single NP level. It is achieved here by optical microscopy for a model dielectric ionic nanocrystal, a silver halide NP. Rather than the classical core-shrinking mechanism often used to rationalize the complete electrochemical conversion and charge storage in NPs, an alternative mechanism is proposed here. Owing to its poor conductivity, the NP conversion proceeds to completion through the formation of multiple inclusions. The superlocalization of NP during such heterogeneous multiple-step conversion suggests the local release of ions, which propels the NP toward reacting sites enabling its full conversion.
Collapse
Affiliation(s)
- Jean-François Lemineur
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75013 Paris, France.,Sorbonne Université, MONARIS, CNRS-UMR 8233, 4 Place Jussieu, 75005 Paris, France
| | - Jean-Marc Noël
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75013 Paris, France
| | - Alexa Courty
- Sorbonne Université, MONARIS, CNRS-UMR 8233, 4 Place Jussieu, 75005 Paris, France
| | - Dominique Ausserré
- Université du Maine, Institut des Matériaux et Molécules du Mans, CNRS-UMR 6283, Avenue O. Messiaen, 72000 Le Mans, France
| | - Catherine Combellas
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75013 Paris, France
| | - Frédéric Kanoufi
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75013 Paris, France
| |
Collapse
|
26
|
Chen X, Zhou C, Peng Y, Wang Q, Wang W. Temporal Light Modulation of Photochemically Active, Oscillating Micromotors: Dark Pulses, Mode Switching, and Controlled Clustering. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11843-11851. [PMID: 32092253 DOI: 10.1021/acsami.9b22342] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photochemically powered micromotors are prototype microrobots, and spatiotemporal control is pivotal for a wide range of potential applications. Although their spatial navigation has been extensively studied, temporal control of photoactive micromotors remains much less explored. Using Ag-based oscillating micromotors as a model system, a strategy is presented for the controlled modulation of their individual and collective dynamics via periodically switching illumination on and off. In particular, such temporal light modulation drives individual oscillating micromotors into a total of six regimes of distinct dynamics, as the light-toggling frequencies vary from 0 to 103 Hz. On an ensemble level, toggling light at 5 Hz gives rise to controlled, reversible clustering of oscillating micromotors and self-assembly of tracer microspheres into colloidal crystals. A qualitative mechanism based on Ag-catalyzed decomposition of H2O2 is given to account for some, but not all, of the above observations. This study might potentially inspire more sophisticated temporal control of micromotors and the development of smart, biomimetic materials that respond to environmental stimuli that not only change in space but also in time.
Collapse
Affiliation(s)
- Xi Chen
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Chao Zhou
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Yixin Peng
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Qizhang Wang
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Wei Wang
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| |
Collapse
|
27
|
Wang H, Pumera M. Coordinated behaviors of artificial micro/nanomachines: from mutual interactions to interactions with the environment. Chem Soc Rev 2020; 49:3211-3230. [DOI: 10.1039/c9cs00877b] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The interactions leading to coordinated behaviors of artificial micro/nanomachines are reviewed.
Collapse
Affiliation(s)
- Hong Wang
- School of Chemical Engineering & Technology
- China University of Mining and Technology
- Xuzhou
- P. R. China
| | - Martin Pumera
- Center for Advanced Functional Nanorobots
- Department of Inorganic Chemistry
- University of Chemistry and Technology Prague
- CZ-166 28 Prague
- Czech Republic
| |
Collapse
|
28
|
Zhou C, Wang Q, Lv X, Wang W. Non-oscillatory micromotors “learn” to oscillate on-the-fly from oscillating Ag micromotors. Chem Commun (Camb) 2020; 56:6499-6502. [DOI: 10.1039/d0cc02266g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oscillating Ag-containing micromotors release silver ions that diffuse and deposit on the surface of Au–Rh microrods, which then learn to oscillate individually or collectively as a wave.
Collapse
Affiliation(s)
- Chao Zhou
- School of Materials Science and Engineering
- Harbin Institute of Technology (Shenzhen)
- Shenzhen
- China
| | - Qizhang Wang
- School of Materials Science and Engineering
- Harbin Institute of Technology (Shenzhen)
- Shenzhen
- China
| | - Xianglong Lv
- School of Materials Science and Engineering
- Harbin Institute of Technology (Shenzhen)
- Shenzhen
- China
| | - Wei Wang
- School of Materials Science and Engineering
- Harbin Institute of Technology (Shenzhen)
- Shenzhen
- China
| |
Collapse
|
29
|
Förster GD, Benoit M, Lam J. Alloy, Janus and core-shell nanoparticles: numerical modeling of their nucleation and growth in physical synthesis. Phys Chem Chem Phys 2019; 21:22774-22781. [PMID: 31595276 DOI: 10.1039/c9cp04231h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
While alloy, core-shell and Janus binary nanoclusters are found in more and more technological applications, their formation mechanisms are still poorly understood, especially during synthesis methods involving physical approaches. In this work, we employ a very simple model of such complex systems using Lennard-Jones interactions and inert gas quenching. After demonstrating the ability of the model to well reproduce the formation of alloy, core-shell or Janus nanoparticles, we studied their temporal evolution from the gas via droplets to nanocrystalline particles. In particular, we showed that the growth mechanisms exhibit qualitative differences between these three chemical orderings. Then, we determined how the quenching rate can be used to finely tune structural characteristics of the final nanoparticles, including size, shape and crystallinity.
Collapse
Affiliation(s)
- Georg Daniel Förster
- Laboratoire d'Étude des Microstructures, ONERA-CNRS, UMR104, Université Paris-Saclay, BP 72, 92322 Châtillon Cedex, France
| | | | | |
Collapse
|
30
|
Suematsu NJ, Saikusa K, Nagata T, Izumi S. Interfacial Dynamics in the Spontaneous Motion of an Aqueous Droplet. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11601-11607. [PMID: 31397577 DOI: 10.1021/acs.langmuir.9b01866] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-propelled droplets can spontaneously move using chemical energy. In several reports of self-propelled droplets, interfacial chemical reactions occur at the oil/aqueous interface to induce the Marangoni flow. While the dynamics of interfacial tension is essential to the droplet motion, there are few reports that quantitatively discuss the moving mechanism based on interfacial tension measurements. In this study, we focused on the self-propelled motion of an aqueous droplet in the oil phase, where the surfactant monoolein reacts with bromine at the interface, and estimated the physicochemical parameters related to the droplet motion based on the time series of interfacial tension. These results may reveal the general mechanism for the self-propelled motion of aqueous/oil droplets driven by the interfacial chemical reaction.
Collapse
Affiliation(s)
| | - Kazumi Saikusa
- Graduate School of Science , Hiroshima University , 1-3-1 Kagamiyama , Higashihiroshima , Hiroshima 739-8526 , Japan
| | | | - Shunsuke Izumi
- Graduate School of Science , Hiroshima University , 1-3-1 Kagamiyama , Higashihiroshima , Hiroshima 739-8526 , Japan
| |
Collapse
|
31
|
Zhang L, Xiao Z, Chen X, Chen J, Wang W. Confined 1D Propulsion of Metallodielectric Janus Micromotors on Microelectrodes under Alternating Current Electric Fields. ACS NANO 2019; 13:8842-8853. [PMID: 31265246 DOI: 10.1021/acsnano.9b02100] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
There is mounting interest in synthetic microswimmers ("micromotors") as microrobots as well as a model system for the study of active matters, and spatial navigation is critical for their success. Current navigational technologies mostly rely on magnetic steering or guiding with physical boundaries, yet limitations with these strategies are plenty. Inspired by an earlier work with magnetic domains on a garnet film as predefined tracks, we present an interdigitated microelectrodes (IDE) system where, upon the application of AC electric fields, metallodielectric (e.g., SiO2-Ti) Janus particles are hydrodynamically confined and electrokinetically propelled in one dimension along the electrode center lines with tunable speeds. In addition, comoving micromotors moved in single files, while those moving in opposite directions primarily reoriented and moved past each other. At high particle densities, turbulence-like aggregates formed as many-body interactions became complicated. Furthermore, a micromotor made U-turns when approaching an electrode closure, while it gradually slowed down at the electrode opening and was collected in large piles. Labyrinth patterns made of serpentine chains of Janus particles emerged by modifying the electrode configuration. Most of these observations can be qualitatively understood by a combination of electroosmotic flows pointing inward to the electrodes, and asymmetric electrical polarization of the Janus particles under an AC electric field. Emerging from these observations is a strategy that not only powers and confines micromotors on prefabricated tracks in a contactless, on-demand manner, but is also capable of concentrating active particles at predefined locations. These features could prove useful for designing tunable tracks that steer synthetic microrobots, as well as to enable the study of single file diffusion, active turbulence, and other collective behaviors of active matters.
Collapse
Affiliation(s)
- Liangliang Zhang
- School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen , Guangdong 518055 , China
| | - Zuyao Xiao
- School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen , Guangdong 518055 , China
| | - Xi Chen
- School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen , Guangdong 518055 , China
| | - Jingyuan Chen
- School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen , Guangdong 518055 , China
| | - Wei Wang
- School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen , Guangdong 518055 , China
- IBS Center for Soft and Living Matter , Institute of Basic Science , Ulsan 44919 , Republic of Korea
| |
Collapse
|