1
|
James SD, Elgar CE, Chen D, Lewis MI, Ash ETL, Conway DS, Tuckley BJ, Phillips LE, Kolozsvári N, Tian X, Gill MR. Cyrene™ as a green alternative to N, N'-dimethylformamide (DMF) in the synthesis of MLCT-emissive ruthenium(II) polypyridyl complexes for biological applications. Dalton Trans 2024. [PMID: 39494695 DOI: 10.1039/d4dt02676d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Ruthenium(II) polypyridyl complexes (RPCs) that emit from triplet metal-to-ligand charge transfer (MLCT) states find a wide variety of uses ranging from luminophores to potential anti-cancer or anti-bacterial therapeutics. Herein we describe a greener, microwave-assisted synthetic pathway for the preparation of homoleptic [Ru(N^N)3]2+ and bis-heteroleptic [Ru(N^N)2(N'^N')]2+ type complexes. This employs the bio-renewable solvent Cyrene™, dihydrolevoglucosenone, as a green alternative to N,N'-dimethylformamide (DMF) in the synthesis of Ru(N^N)2Cl2 intermediate complexes, obtaining comparable yields for N^N = 2,2'-bipyridine, 1,10-phenanthroline and methylated derivatives. Employing these intermediates, a range of RPCs were prepared and we verify that the ubiquitous luminophore [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) can be prepared by this two-step green pathway where it is virtually indistinguishable from a commercial reference. Furthermore, the novel complexes [Ru(bpy)2(10,11-dmdppz)]2+ (10,11-dmdppz = 10,11-dimethyl-dipyridophenazine) and [Ru(5,5'-dmbpy)2(10,11-dmdppz)]2+ (5,5'-dmbpy = 5,5'-dimethyl-bpy) intercalate duplex DNA with high affinity (DNA binding constants, Kb = 5.7 × 107 and 1.0 × 107 M-1, respectively) and function as plasma membrane and nuclear DNA dyes for confocal and STED microscopies courtesy of their long-lived MLCT luminescence.
Collapse
Affiliation(s)
- Steffan D James
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Christopher E Elgar
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Dandan Chen
- State Key Laboratory of Biotherapy, Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, Sichuan Province, China.
| | - Matthew I Lewis
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Elias T L Ash
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Dominic S Conway
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Benjamin J Tuckley
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Leigh E Phillips
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Natália Kolozsvári
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Xiaohe Tian
- State Key Laboratory of Biotherapy, Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, Sichuan Province, China.
| | - Martin R Gill
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| |
Collapse
|
2
|
Varney AM, Smitten KL, Southam HM, Fairbanks SD, Robertson CC, Thomas JA, McLean S. In Vitro and In Vivo Studies on a Mononuclear Ruthenium Complex Reveals It is a Highly Effective, Fast-Acting, Broad-Spectrum Antimicrobial in Physiologically Relevant Conditions. ACS Infect Dis 2024; 10:3346-3357. [PMID: 39106475 PMCID: PMC11406528 DOI: 10.1021/acsinfecdis.4c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
The crystal structure of a previously reported antimicrobial RuII complex that targets bacterial DNA is presented. Studies utilizing clinical isolates of Gram-negative bacteria that cause catheter-associated urinary tract infection, (CA)UTI, in media that model urine and plasma reveal that good antimicrobial activity is maintained in all conditions tested. Experiments with a series of Staphylococcus aureus clinical isolates show that, unlike the majority of previously reported RuII-based antimicrobial leads, the compound retains its potent activity even in MRSA strains. Furthermore, experiments using bacteria in early exponential growth and at different pHs reveal that the compound also retains its activity across a range of conditions that are relevant to those encountered in clinical settings. Combinatorial studies involving cotreatment with conventional antibiotics or a previously reported analogous dinuclear RuII complex showed no antagonistic effects. In fact, although all combinations show distinct additive antibacterial activity, in one case, this effect approaches synergy. It was found that the Galleria Mellonella model organism infected with a multidrug resistant strain of the ESKAPE pathogen Acinetobacter baumannii could be successfully treated and totally cleared within 48 h after a single dose of the lead complex with no detectable deleterious effect to the host.
Collapse
Affiliation(s)
- Adam M Varney
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K
- Medical Technologies Innovation Facility (MTIF), Clifton Lane, Nottingham NG11 8NS, U.K
| | - Kirsty L Smitten
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
- School of Bioscience, The University of Sheffield, Western Bank, Sheffield S10 2TN, U.K
| | - Hannah M Southam
- School of Bioscience, The University of Sheffield, Western Bank, Sheffield S10 2TN, U.K
| | - Simon D Fairbanks
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| | - Craig C Robertson
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| | - Jim A Thomas
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| | - Samantha McLean
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K
| |
Collapse
|
3
|
Salam A, Kaushik K, Mukherjee B, Anjum F, Sapkal GT, Sharma S, Garg R, Nandi CK. A zinc metal complex as an NIR emissive probe for real-time dynamics and in vivo embryogenic evolution of lysosomes using super-resolution microscopy. Chem Sci 2024:d4sc04638b. [PMID: 39246364 PMCID: PMC11376271 DOI: 10.1039/d4sc04638b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/25/2024] [Indexed: 09/10/2024] Open
Abstract
Zinc (Zn) based fluorescent metal complexes have gained increasing attention due to their non-toxicity and high brightness with marked fluorescence quantum yield (QY). However, they have rarely been employed in super-resolution microscopy (SRM) to study live cells and in vivo dynamics of lysosomes. Here, we present an NIR emissive highly photostable Zn-complex as a multifaceted fluorescent probe for the long-term dynamical distribution of lysosomes in various cancerous and non-cancerous cells in live condition and in vivo embryogenic evolution in Caenorhabditis elegans (C. elegans). Apart from the normal fission, fusion, and kiss & run, the motility and the exact location of lysosomes at each point were mapped precisely. A notable difference in the lysosomal motility in the peripheral region between cancerous and non-cancerous cells was distinctly observed. This is attributed to the difference in viscosity of the cytoplasmic environment. On the other hand, along with the super-resolved structure of the smallest size lysosome (∼77 nm) in live C. elegans, the complete in vivo embryogenic evolution of lysosomes and lysosome-related organelles (LROs) was captured. We were able to capture the images of lysosomes and LROs at different stages of C. elegans, starting from a single cell and extending to a fully matured adult animal.
Collapse
Affiliation(s)
- Abdul Salam
- School of Chemical Sciences, Indian Institute of Technology Mandi HP-175075 India
| | - Kush Kaushik
- School of Chemical Sciences, Indian Institute of Technology Mandi HP-175075 India
| | - Bodhidipra Mukherjee
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi HP-175075 India
| | - Farhan Anjum
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi HP-175075 India
| | - Goraksha T Sapkal
- School of Chemical Sciences, Indian Institute of Technology Mandi HP-175075 India
| | - Shagun Sharma
- School of Chemical Sciences, Indian Institute of Technology Mandi HP-175075 India
| | - Richa Garg
- School of Chemical Sciences, Indian Institute of Technology Mandi HP-175075 India
| | - Chayan Kanti Nandi
- School of Chemical Sciences, Indian Institute of Technology Mandi HP-175075 India
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi HP-175075 India
| |
Collapse
|
4
|
Varney AM, Mannix-Fisher E, Thomas JC, McLean S. Evaluation of phenotypic and genotypic methods for the identification and characterization of bacterial isolates recovered from catheter-associated urinary tract infections. J Appl Microbiol 2024; 135:lxae155. [PMID: 38925648 DOI: 10.1093/jambio/lxae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
AIMS Urinary tract infections are the most common hospital-acquired infection, 80% of which are associated with catheterization. Diagnostic methods may influence the reported identities of these pathogens, and phenotypic testing under laboratory conditions may not reflect infection phenotypes. This study aimed to evaluate the efficacy of diagnostic methods and whether medium composition alters phenotypes by characterizing catheter-associated urinary tract infection isolates from a UK hospital. METHODS AND RESULTS We compared five bacterial identification methods, including biochemical testing, matrix-assisted laser desorption/ionization biotyping, and genome sequencing, finding differences in genus- or species-level identifications. Antibiotic susceptibility comparisons between phenotypic assays and genomic predictions showed high agreement only in multidrug-resistant strains. To determine whether growth rate and biofilm formation were affected by medium composition, strains were grown in both planktonic and biofilm states. Low planktonic growth and significant biofilm formation were observed in artificial urine compared to rich laboratory media, underscoring the importance of assay design. CONCLUSIONS This study highlights the risks of relying on a single diagnostic method for species identification, advocating for whole-genome sequencing for accuracy. It emphasizes the continued importance of phenotypic methods in understanding antibiotic resistance in clinical settings and the need for characterization conditions that mirror those encountered by pathogens in the body.
Collapse
Affiliation(s)
- Adam M Varney
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
- Medical Technologies Innovation Facility (MTIF), Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Eden Mannix-Fisher
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| | - Jonathan C Thomas
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| | - Samantha McLean
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| |
Collapse
|
5
|
Fang H, Wang M, Wei P, Liu Q, Su Y, Liu H, Chen Y, Su Z, He W. Molecular probes for super-resolution imaging of drug dynamics. Adv Drug Deliv Rev 2024; 210:115330. [PMID: 38735627 DOI: 10.1016/j.addr.2024.115330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Super-resolution molecular probes (SRMPs) are essential tools for visualizing drug dynamics within cells, transcending the resolution limits of conventional microscopy. In this review, we provide an overview of the principles and design strategies of SRMPs, emphasizing their role in accurately tracking drug molecules. By illuminating the intricate processes of drug distribution, diffusion, uptake, and metabolism at a subcellular and molecular level, SRMPs offer crucial insights into therapeutic interventions. Additionally, we explore the practical applications of super-resolution imaging in disease treatment, highlighting the significance of SRMPs in advancing our understanding of drug action. Finally, we discuss future perspectives, envisioning potential advancements and innovations in this field. Overall, this review serves to inform and practitioners about the utility of SRMPs in driving innovation and progress in pharmacology, providing valuable insights for drug development and optimization.
Collapse
Affiliation(s)
- Hongbao Fang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Mengmeng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; College of Life Science and Chemistry, Jiangsu Key Laboratory of Biological Functional Molecules, Jiangsu Second Normal University, Nanjing, Jiangsu 210013, China
| | - Pengfan Wei
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qian Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yan Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hongke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China; Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, PR China.
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Noakes F, Smitten KL, Maple LEC, Bernardino de la Serna J, Robertson CC, Pritchard D, Fairbanks SD, Weinstein JA, Smythe CGW, Thomas JA. Phenazine Cations as Anticancer Theranostics †. J Am Chem Soc 2024; 146:12836-12849. [PMID: 38683943 PMCID: PMC11082890 DOI: 10.1021/jacs.4c03491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
The biological properties of two water-soluble organic cations based on polypyridyl structures commonly used as ligands for photoactive transition metal complexes designed to interact with biomolecules are investigated. A cytotoxicity screen employing a small panel of cell lines reveals that both cations show cytotoxicity toward cancer cells but show reduced cytotoxicity to noncancerous HEK293 cells with the more extended system being notably more active. Although it is not a singlet oxygen sensitizer, the more active cation also displayed enhanced potency on irradiation with visible light, making it active at nanomolar concentrations. Using the intrinsic luminescence of the cations, their cellular uptake was investigated in more detail, revealing that the active compound is more readily internalized than its less lipophilic analogue. Colocalization studies with established cell probes reveal that the active cation predominantly localizes within lysosomes and that irradiation leads to the disruption of mitochondrial structure and function. Stimulated emission depletion (STED) nanoscopy and transmission electron microscopy (TEM) imaging reveal that treatment results in distinct lysosomal swelling and extensive cellular vacuolization. Further imaging-based studies confirm that treatment with the active cation induces lysosomal membrane permeabilization, which triggers lysosome-dependent cell-death due to both necrosis and caspase-dependent apoptosis. A preliminary toxicity screen in the Galleria melonella animal model was carried out on both cations and revealed no detectable toxicity up to concentrations of 80 mg/kg. Taken together, these studies indicate that this class of synthetically easy-to-access photoactive compounds offers potential as novel therapeutic leads.
Collapse
Affiliation(s)
- Felicity
F. Noakes
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, U.K.
- Department
of Biomedical Science, The University of
Sheffield, Western Bank, Sheffield S10 2TN, U.K.
| | - Kirsty L. Smitten
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, U.K.
- Department
of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, U.K.
| | - Laura E. C. Maple
- Department
of Biomedical Science, The University of
Sheffield, Western Bank, Sheffield S10 2TN, U.K.
| | - Jorge Bernardino de la Serna
- National
Heart and Lung Institute, Imperial College
London, London SW7 2AZ, U.K.
- Central
Laser
Facility, Rutherford Appleton Laboratory, Research Complex at Harwell, Science and Technology Facilities Council, Harwell-Oxford, Didcot OX11 0QX, U.K.
| | - Craig C. Robertson
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, U.K.
| | - Dylan Pritchard
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, U.K.
| | - Simon D. Fairbanks
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, U.K.
| | - Julia A. Weinstein
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, U.K.
| | - Carl G. W. Smythe
- Department
of Biomedical Science, The University of
Sheffield, Western Bank, Sheffield S10 2TN, U.K.
| | - Jim A. Thomas
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, U.K.
| |
Collapse
|
7
|
Deng W, Zhang CY, Dou LX, Huang LT, Wang JT, Liao XW, Wang LP, Yu RJ, Xiong YS. Polypyridyl ruthenium complexes with benzothiazole moiety as membrane disruptors and anti-resistance agents for Staphylococcus aureus. J Inorg Biochem 2024; 254:112517. [PMID: 38460482 DOI: 10.1016/j.jinorgbio.2024.112517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Developing new antimicrobials to combat drug-resistant bacterial infections is necessary due to the increasing problem of bacterial resistance. In this study, four metallic ruthenium complexes modified with benzothiazoles were designed, synthesized and subjected to bio-evaluated. Among them, Ru-2 displayed remarkable inhibitory activity against Staphylococcus aureus (S. aureus) with a minimum inhibitory concentration (MIC) of 1.56 μg/mL. Additionally, it showcased low hemolytic toxicity (HC50 > 200 μg/mL) and the ability to effectively eradicate S. aureus without fostering drug resistance. Further investigation into the antibacterial mechanism suggested that Ru-2 may target the phospholipid component of S. aureus, leading to the disruption of the bacterial cell membrane and subsequent leakage of cell contents (nucleic acid, protein, and ONPG), ultimately resulting in the death of the bacterial cell. In vivo studies, both the G. mellonella larvae and the mouse skin infection models were conducted, indicated that Ru-2 could potentially serve as a viable candidate for the treatment of S. aureus infection. It exhibited no toxic or side effects on normal tissues. The results suggest that benzothiazole-modified ruthenium complexes may have potential as membrane-active antimicrobials against drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Wei Deng
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Chun-Yan Zhang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Li-Xin Dou
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Li-Ting Huang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Jin-Tiao Wang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Xiang-Wen Liao
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Li-Ping Wang
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Ru-Jian Yu
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yan-Shi Xiong
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
8
|
Bright SA, Erby M, Poynton FE, Monteyne D, Pérez-Morga D, Gunnlaugsson T, Williams DC, Elmes RBP. Tracking the cellular uptake and phototoxicity of Ru(ii)-polypyridyl-1,8-naphthalimide Tröger's base conjugates. RSC Chem Biol 2024; 5:344-359. [PMID: 38576718 PMCID: PMC10989513 DOI: 10.1039/d3cb00206c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/07/2024] [Indexed: 04/06/2024] Open
Abstract
Ruthenium(ii) complexes are attracting significant research attention as a promising class of photosensitizers (PSs) in photodynamic therapy (PDT). Having previously reported the synthesis of two novel Ru(ii)-polypyridyl-1,8-naphthalimide Tröger's base compounds 1 and 2 with interesting photophysical properties, where the emission from either the Ru(ii) polypyridyl centres or the naphthalimide moieties could be used to monitor binding to nucleic acids, we sought to use these compounds to investigate further and in more detail their biological profiling, which included unravelling their mechanism of cellular uptake, cellular trafficking and cellular responses to photoexcitation. Here we demonstrate that these compounds undergo rapid time dependent uptake in HeLa cells that involved energy dependent, caveolae and lipid raft-dependent mediated endocytosis, as demonstrated by confocal imaging, and transmission and scanning electron microscopy. Following endocytosis, both compounds were shown to localise to mostly lysosomal and Golgi apparatus compartments with some accumulation in mitochondria but no localisation was found to the nucleus. Upon photoactivation, the compounds increased ROS production and induced ROS-dependent apoptotic cell death. The photo-activated compounds subsequently induced DNA damage and altered tubulin, but not actin structures, which was likely to be an indirect effect of ROS production and induced apoptosis. Furthermore, by changing the concentration of the compounds or the laser used to illuminate the cells, the mechanism of cell death could be changed from apoptosis to necrosis. This is the first detailed biological study of Ru(ii)-polypyridyl Tröger's bases and clearly suggests caveolae-dependent endocytosis is responsible for cell uptake - this may also explain the lack of nuclear uptake for these compounds and similar results observed for other Ru(ii)-polypyridyl complexes. These conjugates are potential candidates for further development as PDT agents and may also be useful in mechanistic studies on cell uptake and trafficking.
Collapse
Affiliation(s)
- Sandra A Bright
- School of Biochemistry and Immunology, Biomedical Sciences Institute, Trinity College Dublin 2 Ireland +353 1 8962596
- School of Chemistry, Centre for Synthesis and Chemical Biology, Biomedical Sciences Institute, Trinity College Dublin Dublin 2 Ireland +353 1 8963459
| | - MariaLuisa Erby
- School of Biochemistry and Immunology, Biomedical Sciences Institute, Trinity College Dublin 2 Ireland +353 1 8962596
| | - Fergus E Poynton
- School of Chemistry, Centre for Synthesis and Chemical Biology, Biomedical Sciences Institute, Trinity College Dublin Dublin 2 Ireland +353 1 8963459
| | - Daniel Monteyne
- Laboratoire de Parasitologie Moléculaire, IBMM-DBM Université Libre de Bruxelles Gosselies Belgium
| | - David Pérez-Morga
- Laboratoire de Parasitologie Moléculaire, IBMM-DBM Université Libre de Bruxelles Gosselies Belgium
- Center for Microscopy and Molecular Imaging CMMI Université Libre de Bruxelles Gosselies Belgium
| | - Thorfinnur Gunnlaugsson
- School of Chemistry, Centre for Synthesis and Chemical Biology, Biomedical Sciences Institute, Trinity College Dublin Dublin 2 Ireland +353 1 8963459
- Synthesis and Solid State Pharmaceutical Centre (SSPC), University of Limerick Ireland
| | - D Clive Williams
- School of Biochemistry and Immunology, Biomedical Sciences Institute, Trinity College Dublin 2 Ireland +353 1 8962596
| | - Robert B P Elmes
- Synthesis and Solid State Pharmaceutical Centre (SSPC), University of Limerick Ireland
- Department of Chemistry, Maynooth University, National University of Ireland Maynooth Co. Kildare Ireland +353 1708 4615
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University Maynooth Co. Kildare Ireland
| |
Collapse
|
9
|
Prieto Otoya TD, McQuaid KT, Hennessy J, Menounou G, Gibney A, Paterson NG, Cardin DJ, Kellett A, Cardin CJ. Probing a Major DNA Weakness: Resolving the Groove and Sequence Selectivity of the Diimine Complex Λ-[Ru(phen) 2 phi] 2. Angew Chem Int Ed Engl 2024; 63:e202318863. [PMID: 38271265 DOI: 10.1002/anie.202318863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
The grooves of DNA provide recognition sites for many nucleic acid binding proteins and anticancer drugs such as the covalently binding cisplatin. Here we report a crystal structure showing, for the first time, groove selectivity by an intercalating ruthenium complex. The complex Λ-[Ru(phen)2 phi]2+ , where phi=9,10-phenanthrenediimine, is bound to the DNA decamer duplex d(CCGGTACCGG)2 . The structure shows that the metal complex is symmetrically bound in the major groove at the central TA/TA step, and asymmetrically bound in the minor groove at the adjacent GG/CC steps. A third type of binding links the strands, in which each terminal cytosine base stacks with one phen ligand. The overall binding stoichiometry is four Ru complexes per duplex. Complementary biophysical measurements confirm the binding preference for the Λ-enantiomer and show a high affinity for TA/TA steps and, more generally, TA-rich sequences. A striking enantiospecific elevation of melting temperatures is found for oligonucleotides which include the TATA box sequence.
Collapse
Affiliation(s)
| | - Kane T McQuaid
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| | - Joseph Hennessy
- SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, 9, Ireland Email
| | - Georgia Menounou
- SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, 9, Ireland Email
| | - Alex Gibney
- SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, 9, Ireland Email
| | - Neil G Paterson
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - David J Cardin
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| | - Andrew Kellett
- SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, 9, Ireland Email
| | - Christine J Cardin
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| |
Collapse
|
10
|
Scaccaglia M, Birbaumer MP, Pinelli S, Pelosi G, Frei A. Discovery of antibacterial manganese(i) tricarbonyl complexes through combinatorial chemistry. Chem Sci 2024; 15:3907-3919. [PMID: 38487233 PMCID: PMC10935722 DOI: 10.1039/d3sc05326a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/23/2024] [Indexed: 03/17/2024] Open
Abstract
The continuous rise of antimicrobial resistance is a serious threat to human health and already causing hundreds of thousands of deaths each year. While natural products and synthetic organic small molecules have provided the majority of our current antibiotic arsenal, they are falling short in providing new drugs with novel modes of action able to treat multidrug resistant bacteria. Metal complexes have recently shown promising results as antimicrobial agents, but the number of studied compounds is still vanishingly small, making it difficult to identify promising compound classes or elucidate structure-activity relationships. To accelerate the pace of discovery we have applied a combinatorial chemistry approach to the synthesis of metalloantibiotics. Utilizing robust Schiff-base chemistry and combining 7 picolinaldehydes with 10 aniline derivatives, and 6 axial ligands, either imidazole/pyridine-based or solvent, we have prepared a library of 420 novel manganese tricarbonyl complexes. All compounds were evaluated for their antibacterial properties and 10 lead compounds were identified, re-synthesised and fully characterised. All 10 compounds showed high and broad activity against Gram-positive bacteria. The best manganese complex displayed low toxicity against human cells with a therapeutic index of >100. In initial mode of action studies, we show that it targets the bacterial membrane without inducing pore formation or depolarisation. Instead, it releases its carbon monoxide ligands around the membrane and inhibits the bacterial respiratory chain. This work demonstrates that large numbers of metal complexes can be accessed through combinatorial synthesis and evaluated for their antibacterial potential, allowing for the rapid identification of promising metalloantibiotic lead compounds.
Collapse
Affiliation(s)
- Mirco Scaccaglia
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma 43124 Parma Italy
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Michael P Birbaumer
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Silvana Pinelli
- Department of Medicine and Surgery, University of Parma Via Gramsci 14 43126 Parma Italy
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma 43124 Parma Italy
| | - Angelo Frei
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
11
|
Orsi M, Shing Loh B, Weng C, Ang WH, Frei A. Using Machine Learning to Predict the Antibacterial Activity of Ruthenium Complexes. Angew Chem Int Ed Engl 2024; 63:e202317901. [PMID: 38088924 DOI: 10.1002/anie.202317901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Indexed: 01/26/2024]
Abstract
Rising antimicrobial resistance (AMR) and lack of innovation in the antibiotic pipeline necessitate novel approaches to discovering new drugs. Metal complexes have proven to be promising antimicrobial compounds, but the number of studied compounds is still low compared to the millions of organic molecules investigated so far. Lately, machine learning (ML) has emerged as a valuable tool for guiding the design of small organic molecules, potentially even in low-data scenarios. For the first time, we extend the application of ML to the discovery of metal-based medicines. Utilising 288 modularly synthesized ruthenium arene Schiff-base complexes and their antibacterial properties, a series of ML models were trained. The models perform well and are used to predict the activity of 54 new compounds. These displayed a 5.7x higher hit-rate (53.7 %) against methicillin-resistant Staphylococcus aureus (MRSA) compared to the original library (9.4 %), demonstrating that ML can be applied to improve the success-rates in the search of new metalloantibiotics. This work paves the way for more ambitious applications of ML in the field of metal-based drug discovery.
Collapse
Affiliation(s)
- Markus Orsi
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Boon Shing Loh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Cheng Weng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- NUS Graduate School - Integrated Science and Engineering Programme (ISEP), National University of Singapore, 21 Lower Kent Ridge Rd, Singapore, 119077, Singapore
| | - Angelo Frei
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
12
|
Bugnon Q, Melendez C, Desiatkina O, Fayolles de Chaptes L, Holzer I, Păunescu E, Hilty M, Furrer J. In vitro antibacterial activity of dinuclear thiolato-bridged ruthenium(II)-arene compounds. Microbiol Spectr 2023; 11:e0095423. [PMID: 37815336 PMCID: PMC10714934 DOI: 10.1128/spectrum.00954-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/28/2023] [Indexed: 10/11/2023] Open
Abstract
IMPORTANCE The in vitro assessment of diruthenium(II)-arene compounds against Escherichia coli, Streptococcus pneumoniae, and Staphylococcus aureus showed a significant antibacterial activity of some compounds against S. pneumoniae, with minimum inhibitory concentration (MIC) values ranging from 1.3 to 2.6 µM, and a medium activity against E. coli, with MIC of 25 µM. The nature of the substituents anchored on the bridging thiols and the compounds molecular weight appear to significantly influence the antibacterial activity. Fluorescence microscopy showed that these ruthenium compounds enter the bacteria and do not accumulate in the cell wall of gram-positive bacteria. These diruthenium(II)-arene compounds exhibit promising activity against S. aureus and S. pneumoniae and deserve to be considered for further studies, especially the compounds bearing larger benzo-fused lactam substituents.
Collapse
Affiliation(s)
- Quentin Bugnon
- Department of Medicine, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Department of Chemistry, Biochemistry and Pharmaceuticals Sciences, University of Bern, Bern, Switzerland
| | - Camilo Melendez
- Department of Chemistry, Biochemistry and Pharmaceuticals Sciences, University of Bern, Bern, Switzerland
| | - Oksana Desiatkina
- Department of Chemistry, Biochemistry and Pharmaceuticals Sciences, University of Bern, Bern, Switzerland
| | - Louis Fayolles de Chaptes
- Department of Chemistry, Biochemistry and Pharmaceuticals Sciences, University of Bern, Bern, Switzerland
| | - Isabelle Holzer
- Department of Chemistry, Biochemistry and Pharmaceuticals Sciences, University of Bern, Bern, Switzerland
| | - Emilia Păunescu
- Department of Chemistry, Biochemistry and Pharmaceuticals Sciences, University of Bern, Bern, Switzerland
| | - Markus Hilty
- Department of Medicine, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Julien Furrer
- Department of Chemistry, Biochemistry and Pharmaceuticals Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
van Niekerk A, Joseph MC, Kavanagh A, Dinh H, Swarts AJ, Mapolie SF, Zuegg J, Cain AK, Elliott AG, Blaskovich MAT, Frei A. The Antimicrobial Properties of Pd II - and Ru II -pyta Complexes. Chembiochem 2023; 24:e202300247. [PMID: 37593808 PMCID: PMC10947176 DOI: 10.1002/cbic.202300247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023]
Abstract
Infections associated with antimicrobial resistance (AMR) are poised to become the leading cause of death in the next few decades, a scenario that can be ascribed to two phenomena: antibiotic over-prescription and a lack of antibiotic drug development. The crowd-sourced initiative Community for Open Antimicrobial Drug Discovery (CO-ADD) has been testing research compounds contributed by researchers around the world to find new antimicrobials to combat AMR, and during this campaign has found that metallodrugs might be a promising, yet untapped source. To this end, we submitted 18 PdII - and RuII -pyridyl-1,2,3-triazolyl complexes that were developed as catalysts to assess their antimicrobial properties. It was found that the Pd complexes, especially Pd1, possessed potent antifungal activity with MICs between 0.06 and 0.125 μg mL-1 against Candida glabrata. The in-vitro studies were extended to in-vivo studies in Galleria mellonella larvae, where it was established that the compounds were nontoxic. Here, we effectively demonstrate the potential of PdII -pyta complexes as antifungal agents.
Collapse
Affiliation(s)
- Annick van Niekerk
- Department of Chemistry and Polymer ScienceUniversity of StellenboschStellenbosch, Private bag X1, Matieland7602South Africa
| | - M. Cassiem Joseph
- Molecular Science Institute, School of ChemistryUniversity of the WitwatersrandJohannesburg, PO Wits2050South Africa
| | - Angela Kavanagh
- Centre for Superbug Solutions Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQueensland4072Australia
| | - Hue Dinh
- School of Natural Sciences ARC Centre of Excellence in Synthetic BiologyMacquarie UniversitySydneyNSW2109Australia
| | - Andrew J. Swarts
- Molecular Science Institute, School of ChemistryUniversity of the WitwatersrandJohannesburg, PO Wits2050South Africa
| | - Selwyn F. Mapolie
- Department of Chemistry and Polymer ScienceUniversity of StellenboschStellenbosch, Private bag X1, Matieland7602South Africa
| | - Johannes Zuegg
- Centre for Superbug Solutions Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQueensland4072Australia
| | - Amy K. Cain
- School of Natural Sciences ARC Centre of Excellence in Synthetic BiologyMacquarie UniversitySydneyNSW2109Australia
| | - Alysha G. Elliott
- Centre for Superbug Solutions Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQueensland4072Australia
| | - Mark A. T. Blaskovich
- Centre for Superbug Solutions Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQueensland4072Australia
| | - Angelo Frei
- Dept. of Chemistry, Biochemistry & Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| |
Collapse
|
14
|
Lv S, Wang C, Xue K, Wang J, Xiao M, Sun Z, Han L, Shi L, Zhu C. Activated alkyne-enabled turn-on click bioconjugation with cascade signal amplification for ultrafast and high-throughput antibiotic screening. Proc Natl Acad Sci U S A 2023; 120:e2302367120. [PMID: 37364107 PMCID: PMC10318996 DOI: 10.1073/pnas.2302367120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Antimicrobial susceptibility testing plays a pivotal role in the discovery of new antibiotics. However, the development of simple, sensitive, and rapid assessment approaches remains challenging. Herein, we report an activated alkyne-based cascade signal amplification strategy for ultrafast and high-throughput antibiotic screening. First of all, a novel water-soluble aggregation-induced emission (AIE) luminogen is synthesized, which contains an activated alkyne group to enable fluorescence turn-on and metal-free click bioconjugation under physiological conditions. Taking advantage of the in-house established method for bacterial lysis, a number of clickable biological substances (i.e., bacterial solutes and debris) are released from the bacterial bodies, which remarkably increases the quantity of analytes. By means of the activated alkyne-mediated turn-on click bioconjugation, the system fluorescence signal is significantly amplified due to the increased labeling sites as well as the AIE effect. Such a cascade signal amplification strategy efficiently improves the detection sensitivity and thus enables ultrafast antimicrobial susceptibility assessment. By integration with a microplate reader, this approach is further applied to high-throughput antibiotic screening.
Collapse
Affiliation(s)
- Shuyi Lv
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Chao Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Ke Xue
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Jiaxin Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Minghui Xiao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Zhencheng Sun
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong266109, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| |
Collapse
|
15
|
Shan X, Xie H, Zhou T, Wu M, Yang J. Dual DNA recycling amplifications coupled with Au NPs@ZIF-MOF accelerator for enhanced electrochemical ratiometric sensing of pathogenic bacteria. Talanta 2023; 263:124751. [PMID: 37267887 DOI: 10.1016/j.talanta.2023.124751] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023]
Abstract
Sensitive and accurate quantification of pathogenic bacteria is vastly significant to the related food safety. Herein, a sensitive ratiometric electrochemical biosensor was developed for the detection of Staphylococcus aureus (S. aureus) based on dual DNA recycling amplifications and Au NPs@ZIF-MOF accelerator. Gold nanoparticles-loaded Zeolitic imidazolate metal-organic framework (Au NPs@ZIF-MOF) as electrode substrate possessed a large specific surface area for nucleic acid adsorption, and as an accelerator promoted the transfer of electrons. The strong recognition of aptamer to target S. aureus could initiate the padlock probe-based exponential rolling circle amplification (P-ERCA, as the first DNA recycling amplification), generating large numbers of trigger DNA strands. The released trigger DNA further activated the catalytic hairpin assembly (CHA, as the second DNA recycling amplification) on electrode surface. Consequently, P-ERCA and CHA continuously brought about one target to many signal transduction, leading to an exponential amplification. To achieve the accuracy of detection, the signal ratio of methylene blue (MB) and ferrocene (Fc) (IMB/IFc) was applied for intrinsic self-calibrating. Taking advantages of dual DNA recycling amplifications and Au NPs@ZIF-MOF, the proposed sensing system displayed high sensitivity for S. aureus quantification with a linear range of 5-108 CFU/mL, and the limit of detection was 1 CFU/mL. Moreover, this system represented excellent reproducibility, selectivity, and practicability for S. aureus analysis in foods.
Collapse
Affiliation(s)
- Xia Shan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, China; Xinglin College, Nantong University, Nantong 226019, China
| | - Haojie Xie
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Tianci Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Meisheng Wu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China.
| | - Jie Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
16
|
Frei A, Verderosa AD, Elliott AG, Zuegg J, Blaskovich MAT. Metals to combat antimicrobial resistance. Nat Rev Chem 2023; 7:202-224. [PMID: 37117903 PMCID: PMC9907218 DOI: 10.1038/s41570-023-00463-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 02/10/2023]
Abstract
Bacteria, similar to most organisms, have a love-hate relationship with metals: a specific metal may be essential for survival yet toxic in certain forms and concentrations. Metal ions have a long history of antimicrobial activity and have received increasing attention in recent years owing to the rise of antimicrobial resistance. The search for antibacterial agents now encompasses metal ions, nanoparticles and metal complexes with antimicrobial activity ('metalloantibiotics'). Although yet to be advanced to the clinic, metalloantibiotics are a vast and underexplored group of compounds that could lead to a much-needed new class of antibiotics. This Review summarizes recent developments in this growing field, focusing on advances in the development of metalloantibiotics, in particular, those for which the mechanism of action has been investigated. We also provide an overview of alternative uses of metal complexes to combat bacterial infections, including antimicrobial photodynamic therapy and radionuclide diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Angelo Frei
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Anthony D Verderosa
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alysha G Elliott
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Johannes Zuegg
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Mark A T Blaskovich
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
17
|
Smitten K, Southam HM, Fairbanks S, Graf A, Chauvet A, Thomas JA. Clearing an ESKAPE Pathogen in a Model Organism; A Polypyridyl Ruthenium(II) Complex Theranostic that Treats a Resistant Acinetobacter baumannii Infection in Galleria mellonella. Chemistry 2023; 29:e202203555. [PMID: 36420820 PMCID: PMC10946903 DOI: 10.1002/chem.202203555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
In previous studies we have described the therapeutic action of luminescent dinuclear ruthenium(II) complexes based on the tetrapyridylphenazine, tpphz, bridging ligand on pathogenic strains of Escherichia coli and Enterococcus faecalis. Herein, the antimicrobial activity of the complex against pernicious Gram-negative ESKAPE pathogenic strains of Acinetobacter baumannii (AB12, AB16, AB184 and AB210) and Pseudomonas aeruginosa (PA2017, PA_ 007_ IMP and PA_ 004_ CRCN) are reported. Estimated minimum inhibitory concentrations and minimum bactericidal concentrations for the complexes revealed the complex shows potent activity against all A. baumannii strains, in both glucose defined minimal media and standard nutrient rich Mueller-Hinton-II. Although the activity was lower in P. aureginosa, a moderately high potency was observed and retained in carbapenem-resistant strains. Optical microscopy showed that the compound is rapidly internalized by A. baumannii. As previous reports had revealed the complex exhibited no toxicity in Galleria Mellonella up to concentrations of 80 mg/kg, the ability to clear pathogenic infection within this model was explored. The pathogenic concentrations to the larvae for each bacterium were determined to be≥105 for AB184 and≥103 CFU/mL for PA2017. It was found a single dose of the compound totally cleared a pathogenic A. baumannii infection from all treated G. mellonella within 96 h. Uniquely, in these conditions thanks to the imaging properties of the complex the clearance of the bacteria within the hemolymph of G. mellonella could be directly visualized through both optical and transmission electron microscopy.
Collapse
Affiliation(s)
- Kirsty Smitten
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| | | | - Simon Fairbanks
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| | - Arthur Graf
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| | - Adrien Chauvet
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| | - Jim A Thomas
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| |
Collapse
|
18
|
Frei A, Elliott AG, Kan A, Dinh H, Bräse S, Bruce AE, Bruce MR, Chen F, Humaidy D, Jung N, King AP, Lye PG, Maliszewska HK, Mansour AM, Matiadis D, Muñoz MP, Pai TY, Pokhrel S, Sadler PJ, Sagnou M, Taylor M, Wilson JJ, Woods D, Zuegg J, Meyer W, Cain AK, Cooper MA, Blaskovich MAT. Metal Complexes as Antifungals? From a Crowd-Sourced Compound Library to the First In Vivo Experiments. JACS AU 2022; 2:2277-2294. [PMID: 36311838 PMCID: PMC9597602 DOI: 10.1021/jacsau.2c00308] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/01/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
There are currently fewer than 10 antifungal drugs in clinical development, but new fungal strains that are resistant to most current antifungals are spreading rapidly across the world. To prevent a second resistance crisis, new classes of antifungal drugs are urgently needed. Metal complexes have proven to be promising candidates for novel antibiotics, but so far, few compounds have been explored for their potential application as antifungal agents. In this work, we report the evaluation of 1039 metal-containing compounds that were screened by the Community for Open Antimicrobial Drug Discovery (CO-ADD). We show that 20.9% of all metal compounds tested have antimicrobial activity against two representative Candida and Cryptococcus strains compared with only 1.1% of the >300,000 purely organic molecules tested through CO-ADD. We identified 90 metal compounds (8.7%) that show antifungal activity while not displaying any cytotoxicity against mammalian cell lines or hemolytic properties at similar concentrations. The structures of 21 metal complexes that display high antifungal activity (MIC ≤1.25 μM) are discussed and evaluated further against a broad panel of yeasts. Most of these have not been previously tested for antifungal activity. Eleven of these metal complexes were tested for toxicity in the Galleria mellonella moth larva model, revealing that only one compound showed signs of toxicity at the highest injected concentration. Lastly, we demonstrated that the organo-Pt(II) cyclooctadiene complex Pt1 significantly reduces fungal load in an in vivo G. mellonella infection model. These findings showcase that the structural and chemical diversity of metal-based compounds can be an invaluable tool in the development of new drugs against infectious diseases.
Collapse
Affiliation(s)
- Angelo Frei
- Centre
for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland4072, Australia
- Department
of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012Bern, Switzerland
| | - Alysha G. Elliott
- Centre
for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland4072, Australia
| | - Alex Kan
- Molecular
Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology,
Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical
School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research
and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW2145, Australia
| | - Hue Dinh
- School
of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW2109, Australia
| | - Stefan Bräse
- Institute
of Organic Chemistry, Karlsruhe Institute
of Technology, Fritz-Haber-Weg 6, 76131Karlsruhe, Germany
- Institute
of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, 76344Eggenstein-Leopoldshafen, Germany
| | - Alice E. Bruce
- Department
of Chemistry, University of Maine, Orono, Maine04469, United States
| | - Mitchell R. Bruce
- Department
of Chemistry, University of Maine, Orono, Maine04469, United States
| | - Feng Chen
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CoventryCV4 7AL, U.K.
| | - Dhirgam Humaidy
- Department
of Chemistry, University of Maine, Orono, Maine04469, United States
| | - Nicole Jung
- Karlsruhe
Nano Micro Facility (KNMF), Karlsruhe Institute
of Technology, Hermann-von-Helmholtz-Platz 1, 76344Eggenstein-Leopoldshafen, Germany
- Institute
of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, 76344Eggenstein-Leopoldshafen, Germany
| | - A. Paden King
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York14853, United States
| | - Peter G. Lye
- School
of Science and Technology, University of
New England, Armidale, NSW2351, Australia
| | - Hanna K. Maliszewska
- School
of Chemistry, University of East Anglia, Norwich Research Park, NorwichNR4 7TJ, U.K.
| | - Ahmed M. Mansour
- Chemistry
Department, Faculty of Science, Cairo University, Giza12613, Egypt
| | - Dimitris Matiadis
- Institute
of Biosciences & Applications, National
Centre for Scientific Research “Demokritos”, 15310Athens, Greece
| | - María Paz Muñoz
- School
of Chemistry, University of East Anglia, Norwich Research Park, NorwichNR4 7TJ, U.K.
| | - Tsung-Yu Pai
- Molecular
Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology,
Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical
School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research
and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW2145, Australia
| | - Shyam Pokhrel
- Department
of Chemistry, University of Maine, Orono, Maine04469, United States
| | - Peter J. Sadler
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CoventryCV4 7AL, U.K.
| | - Marina Sagnou
- Institute
of Biosciences & Applications, National
Centre for Scientific Research “Demokritos”, 15310Athens, Greece
| | - Michelle Taylor
- School
of Science and Technology, University of
New England, Armidale, NSW2351, Australia
| | - Justin J. Wilson
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York14853, United States
| | - Dean Woods
- School
of Science and Technology, University of
New England, Armidale, NSW2351, Australia
| | - Johannes Zuegg
- Centre
for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland4072, Australia
| | - Wieland Meyer
- Molecular
Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology,
Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical
School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research
and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW2145, Australia
| | - Amy K. Cain
- School
of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW2109, Australia
| | - Matthew A. Cooper
- Centre
for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland4072, Australia
| | - Mark A. T. Blaskovich
- Centre
for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland4072, Australia
| |
Collapse
|
19
|
Cooper SM, Siakalli C, White AJP, Frei A, Miller PW, Long NJ. Synthesis and anti-microbial activity of a new series of bis(diphosphine) rhenium(V) dioxo complexes. Dalton Trans 2022; 51:12791-12795. [PMID: 35920379 DOI: 10.1039/d2dt02157a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rhenium-based metallodrugs have recently been highlighted as promising candidates for new antibiotics to combat multi-drug resistant (MDR) pathogens. A new class of rhenium(V) dioxo complexes were prepared from readily accessible diphosphine ligands, and have been shown to possess potent activity against Staphylococcus aureus (S. aureus) and Candida albicans (C. albicans) alongside low human cell toxicity.
Collapse
Affiliation(s)
- Saul M Cooper
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, White City Campus, London, W12 0BZ, UK.
| | - Christina Siakalli
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, White City Campus, London, W12 0BZ, UK.
| | - Andrew J P White
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, White City Campus, London, W12 0BZ, UK.
| | - Angelo Frei
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, White City Campus, London, W12 0BZ, UK.
| | - Philip W Miller
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, White City Campus, London, W12 0BZ, UK.
| | - Nicholas J Long
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, White City Campus, London, W12 0BZ, UK.
| |
Collapse
|
20
|
Gill MR, Jarman PJ, Hearnden V, Fairbanks SD, Bassetto M, Maib H, Palmer J, Ayscough KR, Thomas JA, Smythe C. A Ruthenium(II) Polypyridyl Complex Disrupts Actin Cytoskeleton Assembly and Blocks Cytokinesis. Angew Chem Int Ed Engl 2022; 61:e202117449. [PMID: 35416386 PMCID: PMC9323417 DOI: 10.1002/anie.202117449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 11/05/2022]
Abstract
The dinuclear RuII complex [(Ru(phen)2)2(tpphz)]4+ (phen=1,10‐phenanthroline, tpphz=tetrapyridophenazine) “RuRuPhen” blocks the transformation of G‐actin monomers to F‐actin filaments with no disassembly of pre‐formed F‐actin. Molecular docking studies indicate multiple RuRuPhen molecules bind to the surface of G‐actin but not the binding pockets of established actin polymerisation inhibitors. In cells, addition of RuRuPhen causes rapid disruption to actin stress fibre organisation, compromising actomyosin contractility and cell motility; due to this effect RuRuPhen interferes with late‐stage cytokinesis. Immunofluorescent microscopy reveals that RuRuPhen causes cytokinetic abscission failure by interfering with endosomal sorting complexes required for transport (ESCRT) complex recruitment.
Collapse
Affiliation(s)
- Martin R. Gill
- Department of Chemistry Faculty of Science and Engineering Swansea University UK
| | - Paul J. Jarman
- Department of Biomedical Science University of Sheffield UK
| | - Vanessa Hearnden
- Department of Materials Science and Engineering University of Sheffield UK
| | | | - Marcella Bassetto
- Department of Chemistry Faculty of Science and Engineering Swansea University UK
| | - Hannes Maib
- Department of Biomedical Science University of Sheffield UK
| | - John Palmer
- Department of Biomedical Science University of Sheffield UK
| | | | | | - Carl Smythe
- Department of Biomedical Science University of Sheffield UK
| |
Collapse
|
21
|
Gill MR, Jarman PJ, Hearnden V, Fairbanks SD, Bassetto M, Maib H, Palmer J, Ayscough KR, Thomas JA, Smythe C. A Ruthenium(II) Polypyridyl Complex Disrupts Actin Cytoskeleton Assembly and Blocks Cytokinesis. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202117449. [PMID: 38505667 PMCID: PMC10947085 DOI: 10.1002/ange.202117449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 11/10/2022]
Abstract
The dinuclear RuII complex [(Ru(phen)2)2(tpphz)]4+ (phen=1,10-phenanthroline, tpphz=tetrapyridophenazine) "RuRuPhen" blocks the transformation of G-actin monomers to F-actin filaments with no disassembly of pre-formed F-actin. Molecular docking studies indicate multiple RuRuPhen molecules bind to the surface of G-actin but not the binding pockets of established actin polymerisation inhibitors. In cells, addition of RuRuPhen causes rapid disruption to actin stress fibre organisation, compromising actomyosin contractility and cell motility; due to this effect RuRuPhen interferes with late-stage cytokinesis. Immunofluorescent microscopy reveals that RuRuPhen causes cytokinetic abscission failure by interfering with endosomal sorting complexes required for transport (ESCRT) complex recruitment.
Collapse
Affiliation(s)
- Martin R. Gill
- Department of ChemistryFaculty of Science and EngineeringSwansea UniversityUK
| | - Paul J. Jarman
- Department of Biomedical ScienceUniversity of SheffieldUK
| | - Vanessa Hearnden
- Department of Materials Science and EngineeringUniversity of SheffieldUK
| | | | - Marcella Bassetto
- Department of ChemistryFaculty of Science and EngineeringSwansea UniversityUK
| | - Hannes Maib
- Department of Biomedical ScienceUniversity of SheffieldUK
| | - John Palmer
- Department of Biomedical ScienceUniversity of SheffieldUK
| | | | | | - Carl Smythe
- Department of Biomedical ScienceUniversity of SheffieldUK
| |
Collapse
|
22
|
Dröge F, Noakes FF, Archer SA, Sreedharan S, Raza A, Robertson CC, MacNeil S, Haycock JW, Carson H, Meijer AJHM, Smythe CGW, Bernardino de la Serna J, Dietzek-Ivanšić B, Thomas JA. A Dinuclear Osmium(II) Complex Near-Infrared Nanoscopy Probe for Nuclear DNA. J Am Chem Soc 2021; 143:20442-20453. [PMID: 34808044 DOI: 10.1021/jacs.1c10325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With the aim of developing photostable near-infrared cell imaging probes, a convenient route to the synthesis of heteroleptic OsII complexes containing the Os(TAP)2 fragment is reported. This method was used to synthesize the dinuclear OsII complex, [{Os(TAP)2}2tpphz]4+ (where tpphz = tetrapyrido[3,2-a:2',3'-c:3″,2''-h:2‴,3'''-j]phenazine and TAP = 1,4,5,8- tetraazaphenanthrene). Using a combination of resonance Raman and time-resolved absorption spectroscopy, as well as computational studies, the excited state dynamics of the new complex were dissected. These studies revealed that, although the complex has several close lying excited states, its near-infrared, NIR, emission (λmax = 780 nm) is due to a low-lying Os → TAP based 3MCLT state. Cell-based studies revealed that unlike its RuII analogue, the new complex is neither cytotoxic nor photocytotoxic. However, as it is highly photostable as well as live-cell permeant and displays NIR luminescence within the biological optical window, its properties make it an ideal probe for optical microscopy, demonstrated by its use as a super-resolution NIR STED probe for nuclear DNA.
Collapse
Affiliation(s)
- Fabian Dröge
- Institute of Physical Chemistry, Helmholtzweg 4, 07743 Jena, Germany; Institute of Photonic Technology Jena e.V., Albert-Einstein-Straße 9, 07749 Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | - Jorge Bernardino de la Serna
- Central Laser Facility, Rutherford Appleton Laboratory, Research Complex at Harwell, Science and Technology Facilities Council, Harwell-Oxford, Didcot OX11 0QX, United Kingdom; National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Benjamin Dietzek-Ivanšić
- Institute of Physical Chemistry, Helmholtzweg 4, 07743 Jena, Germany; Institute of Photonic Technology Jena e.V., Albert-Einstein-Straße 9, 07749 Jena, Germany
| | | |
Collapse
|
23
|
Ho P, Lee S, Kam C, Zhu J, Shan G, Hong Y, Wong W, Chen S. Fluorescence Imaging and Photodynamic Inactivation of Bacteria Based on Cationic Cyclometalated Iridium(III) Complexes with Aggregation-Induced Emission Properties. Adv Healthc Mater 2021; 10:e2100706. [PMID: 34296536 PMCID: PMC11468684 DOI: 10.1002/adhm.202100706] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/17/2021] [Indexed: 12/27/2022]
Abstract
Antibacterial photodynamic therapy (PDT) is one of the emerging methods for curbing multidrug-resistant bacterial infections. Effective fluorescent photosensitizers with dual functions of bacteria imaging and PDT applications are highly desirable. In this study, three cationic and heteroleptic cyclometalated Ir(III) complexes with the formula of [Ir(CˆN)2 (NˆN)][PF6 ] are prepared and characterized. These Ir(III) complexes named Ir(ppy)2 bP, Ir(1-pq)2 bP, and Ir(2-pq)2 bP are comprised of three CˆN ligands (i.e., 2-phenylpyridine (ppy), 1-phenylisoquinoline (1-pq), and 2-phenylquinoline (2-pq)) and one NˆN bidentate co-ligand (bP). The photophysical characterizations demonstrate that these Ir(III) complexes are red-emitting, aggregation-induced emission active luminogens. The substitution of phenylpyridine with phenylquinoline isomers in the molecules greatly enhances their UV and visible-light absorbance as well as the photoinduced reactive oxygen species (ROS) generation ability. All three Ir(III) complexes can stain both Gram-positive and Gram-negative bacteria efficiently. Interestingly, even though Ir(1-pq)2 bP and Ir(2-pq)2 bP are constitutional isomers with very similar structures and similar ROS generation ability in buffer, the former eradicates bacteria much more effectively than the other through white light-irradiated photodynamic inactivation. This work will provide valuable information on the rational design of Ir(III) complexes for fluorescence imaging and efficient photodynamic inactivation of bacteria.
Collapse
Affiliation(s)
- Po‐Yu Ho
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong KongP. R. China
| | - Sin‐Ying Lee
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong KongP. R. China
| | - Chuen Kam
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong KongP. R. China
| | - Junfei Zhu
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong KongP. R. China
| | - Guo‐Gang Shan
- Institute of Functional Materials Chemistry and National & Local United Engineering Lab for Power BatteryFaculty of ChemistryNortheast Normal UniversityChangchun130024P. R. China
| | - Yuning Hong
- Department of Chemistry and PhysicsLa Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoria3086Australia
| | - Wai‐Yeung Wong
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung HomHong KongP. R. China
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong KongP. R. China
| |
Collapse
|
24
|
Frei A, Ramu S, Lowe GJ, Dinh H, Semenec L, Elliott AG, Zuegg J, Deckers A, Jung N, Bräse S, Cain AK, Blaskovich MAT. Platinum Cyclooctadiene Complexes with Activity against Gram-positive Bacteria. ChemMedChem 2021; 16:3165-3171. [PMID: 34018686 PMCID: PMC8596843 DOI: 10.1002/cmdc.202100157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 11/17/2022]
Abstract
Antimicrobial resistance is a looming health crisis, and it is becoming increasingly clear that organic chemistry alone is not sufficient to continue to provide the world with novel and effective antibiotics. Recently there has been an increased number of reports describing promising antimicrobial properties of metal-containing compounds. Platinum complexes are well known in the field of inorganic medicinal chemistry for their tremendous success as anticancer agents. Here we report on the promising antibacterial properties of platinum cyclooctadiene (COD) complexes. Amongst the 15 compounds studied, the simplest compounds Pt(COD)X2 (X=Cl, I, Pt1 and Pt2) showed excellent activity against a panel of Gram-positive bacteria including vancomycin and methicillin resistant Staphylococcus aureus. Additionally, the lead compounds show no toxicity against mammalian cells or haemolytic properties at the highest tested concentrations, indicating that the observed activity is specific against bacteria. Finally, these compounds showed no toxicity against Galleria mellonella at the highest measured concentrations. However, preliminary efficacy studies in the same animal model found no decrease in bacterial load upon treatment with Pt1 and Pt2. Serum exchange studies suggest that these compounds exhibit high serum binding which reduces their bioavailability in vivo, mandating alternative administration routes such as e. g. topical application.
Collapse
Affiliation(s)
- Angelo Frei
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD 4072Australia
| | - Soumya Ramu
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD 4072Australia
| | - Gabrielle J. Lowe
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD 4072Australia
| | - Hue Dinh
- ARC Centre of Excellence in Synthetic BiologyDepartment of Molecular SciencesMacquarie UniversitySydneyNSWAustralia
| | - Lucie Semenec
- ARC Centre of Excellence in Synthetic BiologyDepartment of Molecular SciencesMacquarie UniversitySydneyNSWAustralia
| | - Alysha G. Elliott
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD 4072Australia
| | - Johannes Zuegg
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD 4072Australia
| | - Anke Deckers
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Nicole Jung
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Stefan Bräse
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Amy K. Cain
- ARC Centre of Excellence in Synthetic BiologyDepartment of Molecular SciencesMacquarie UniversitySydneyNSWAustralia
| | - Mark A. T. Blaskovich
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD 4072Australia
| |
Collapse
|
25
|
Baptista FA, Krizsan D, Stitch M, Sazanovich IV, Clark IP, Towrie M, Long C, Martinez-Fernandez L, Improta R, Kane-Maguire NAP, Kelly JM, Quinn SJ. Adenine Radical Cation Formation by a Ligand-Centered Excited State of an Intercalated Chromium Polypyridyl Complex Leads to Enhanced DNA Photo-oxidation. J Am Chem Soc 2021; 143:14766-14779. [PMID: 34464120 PMCID: PMC8447253 DOI: 10.1021/jacs.1c06658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Assessment of the
DNA photo-oxidation and synthetic photocatalytic
activity of chromium polypyridyl complexes is dominated by consideration
of their long-lived metal-centered excited states. Here we report
the participation of the excited states of [Cr(TMP)2dppz]3+ (1) (TMP = 3,4,7,8-tetramethyl-1,10-phenanthroline;
dppz = dipyrido[3,2-a:2′,3′-c]phenazine) in DNA photoreactions. The interactions of
enantiomers of 1 with natural DNA or with oligodeoxynucleotides
with varying AT content (0–100%) have been studied by steady
state UV/visible absorption and luminescence spectroscopic methods,
and the emission of 1 is found to be quenched in all
systems. The time-resolved infrared (TRIR) and visible absorption
spectra (TA) of 1 following excitation in the region
between 350 to 400 nm reveal the presence of relatively long-lived
dppz-centered states which eventually yield the emissive metal-centered
state. The dppz-localized states are fully quenched when bound by
GC base pairs and partially so in the presence of an AT base-pair
system to generate purine radical cations. The sensitized formation
of the adenine radical cation species (A•+T) is identified by assigning the TRIR spectra with help of
DFT calculations. In natural DNA and oligodeoxynucleotides containing
a mixture of AT and GC of base pairs, the observed time-resolved spectra
are consistent with eventual photo-oxidation occurring predominantly
at guanine through hole migration between base pairs. The combined
targeting of purines leads to enhanced photo-oxidation of guanine.
These results show that DNA photo-oxidation by the intercalated 1, which locates the dppz in contact with the target purines,
is dominated by the LC centered excited state. This work has implications
for future phototherapeutics and photocatalysis.
Collapse
Affiliation(s)
| | - Dorottya Krizsan
- School of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Mark Stitch
- School of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Igor V Sazanovich
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, U.K
| | - Ian P Clark
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, U.K
| | - Michael Towrie
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, U.K
| | - Conor Long
- The School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Lara Martinez-Fernandez
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry(IADCHEM) Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Roberto Improta
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini, 80136 Naples, Italy
| | - Noel A P Kane-Maguire
- Department of Chemistry, Furman University, 3300 Poinsett Highway, Greenville, South Carolina 29613-1120, United States
| | - John M Kelly
- School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Susan J Quinn
- School of Chemistry, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
26
|
Newton MD, Fairbanks SD, Thomas JA, Rueda DS. A Minimal Load‐and‐Lock Ru
II
Luminescent DNA Probe. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Matthew D. Newton
- Department of Infectious Disease Faculty of Medicine Imperial College London London W12 0NN UK
- Single Molecule Imaging Group, MRC- London Institute of Medical Sciences London W12 0NN UK
| | - Simon D. Fairbanks
- Department of Chemistry University of Sheffield Sheffield S3 7HF UK
- Department of Molecular Biology and Biotechnology University of Sheffield Western Bank Sheffield S10 2TN UK
| | - Jim A. Thomas
- Department of Chemistry University of Sheffield Sheffield S3 7HF UK
| | - David S. Rueda
- Department of Infectious Disease Faculty of Medicine Imperial College London London W12 0NN UK
- Single Molecule Imaging Group, MRC- London Institute of Medical Sciences London W12 0NN UK
| |
Collapse
|
27
|
Newton MD, Fairbanks SD, Thomas JA, Rueda DS. A Minimal Load-and-Lock Ru II Luminescent DNA Probe. Angew Chem Int Ed Engl 2021; 60:20952-20959. [PMID: 34378843 PMCID: PMC8518596 DOI: 10.1002/anie.202108077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Indexed: 12/26/2022]
Abstract
Threading intercalators bind DNA with high affinities. Here, we describe single-molecule studies on a cell-permeant luminescent dinuclear ruthenium(II) complex that has been previously shown to thread only into short, unstable duplex structures. Using optical tweezers and confocal microscopy, we show that this complex threads and locks into force-extended duplex DNA in a two-step mechanism. Detailed kinetic studies reveal that an individual stereoisomer of the complex exhibits the highest binding affinity reported for such a mono-intercalator. This stereoisomer better preserves the biophysical properties of DNA than the widely used SYTOX Orange. Interestingly, threading into torsionally constrained DNA decreases dramatically, but is rescued on negatively supercoiled DNA. Given the "light-switch" properties of this complex on binding DNA, it can be readily used as a long-lived luminescent label for duplex or negatively supercoiled DNA through a unique "load-and-lock" protocol.
Collapse
Affiliation(s)
- Matthew D. Newton
- Department of Infectious DiseaseFaculty of MedicineImperial College LondonLondonW12 0NNUK
- Single Molecule Imaging Group, MRC-London Institute of Medical SciencesLondonW12 0NNUK
| | - Simon D. Fairbanks
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Jim A. Thomas
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| | - David S. Rueda
- Department of Infectious DiseaseFaculty of MedicineImperial College LondonLondonW12 0NNUK
- Single Molecule Imaging Group, MRC-London Institute of Medical SciencesLondonW12 0NNUK
| |
Collapse
|
28
|
Munteanu AC, Uivarosi V. Ruthenium Complexes in the Fight against Pathogenic Microorganisms. An Extensive Review. Pharmaceutics 2021; 13:874. [PMID: 34199283 PMCID: PMC8232020 DOI: 10.3390/pharmaceutics13060874] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
The widespread use of antibiotics has resulted in the emergence of drug-resistant populations of microorganisms. Clearly, one can see the need to develop new, more effective, antimicrobial agents that go beyond the explored 'chemical space'. In this regard, their unique modes of action (e.g., reactive oxygen species (ROS) generation, redox activation, ligand exchange, depletion of substrates involved in vital cellular processes) render metal complexes as promising drug candidates. Several Ru (II/III) complexes have been included in, or are currently undergoing, clinical trials as anticancer agents. Based on the in-depth knowledge of their chemical properties and biological behavior, the interest in developing new ruthenium compounds as antibiotic, antifungal, antiparasitic, or antiviral drugs has risen. This review will discuss the advantages and disadvantages of Ru (II/III) frameworks as antimicrobial agents. Some aspects regarding the relationship between their chemical structure and mechanism of action, cellular localization, and/or metabolism of the ruthenium complexes in bacterial and eukaryotic cells are discussed as well. Regarding the antiviral activity, in light of current events related to the Covid-19 pandemic, the Ru (II/III) compounds used against SARS-CoV-2 (e.g., BOLD-100) are also reviewed herein.
Collapse
Affiliation(s)
- Alexandra-Cristina Munteanu
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Valentina Uivarosi
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| |
Collapse
|
29
|
Allison M, Caramés-Méndez P, Pask CM, Phillips RM, Lord RM, McGowan PC. Bis(bipyridine)ruthenium(II) Ferrocenyl β-Diketonate Complexes: Exhibiting Nanomolar Potency against Human Cancer Cell Lines. Chemistry 2021; 27:3737-3744. [PMID: 33073884 DOI: 10.1002/chem.202004024] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/09/2020] [Indexed: 12/23/2022]
Abstract
The synthesis and characterization of new bis(bipyridine)ruthenium(II) ferrocenyl β-diketonate complexes, [(bpy)2 Ru(Fc-acac)][PF6 ] (bpy=2,2'-bipyridine; Fc-acac=functionalized ferrocenyl β-diketonate ligand) are reported. Alongside clinical platinum drugs, these bimetallic ruthenium-iron complexes have been screened for their cytotoxicity against MIA PaCa-2 (human pancreatic carcinoma), HCT116 p53+/+ (human colon carcinoma, p53-wild type) and ARPE-19 (human retinal pigment epithelial) cell lines. With the exception of one complex, the library exhibit nanomolar potency against cancerous cell lines, and their relative potencies are up to 40x, 400x and 72x more cytotoxic than cisplatin, carboplatin and oxaliplatin, respectively. Under hypoxic conditions, the complexes remain cytotoxic (sub-micromolar range), highlighting their potential in targeting hypoxic tumor regions. The Comet assay was used to determine their ability to damage DNA, and results show dose dependent damage which correlates well with the cytotoxicity results. Their potential to treat bacterial and fungal strains has been determined, and highlight complexes have selective growth inhibition of up to 87-100 % against Staphylococcus aureus and Candida albicans.
Collapse
Affiliation(s)
- Matthew Allison
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Pablo Caramés-Méndez
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
- Department of Pharmacy, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Christopher M Pask
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Roger M Phillips
- Department of Pharmacy, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Rianne M Lord
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
- School of Chemistry and Biosciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Patrick C McGowan
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
30
|
Varney AM, Smitten KL, Thomas JA, McLean S. Transcriptomic Analysis of the Activity and Mechanism of Action of a Ruthenium(II)-Based Antimicrobial That Induces Minimal Evolution of Pathogen Resistance. ACS Pharmacol Transl Sci 2021; 4:168-178. [PMID: 33615170 PMCID: PMC7887750 DOI: 10.1021/acsptsci.0c00159] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Indexed: 01/30/2023]
Abstract
Increasing concern over rising levels of antibiotic resistance among pathogenic bacteria has prompted significant research into developing efficacious alternatives to antibiotic treatment. Previously, we have reported on the therapeutic activity of a dinuclear ruthenium(II) complex against pathogenic, multi-drug-resistant bacterial pathogens. Herein, we report that the solubility properties of this lead are comparable to those exhibited by orally available therapeutics that in comparison to clinically relevant antibiotics it induces very slow evolution of resistance in the uropathogenic, therapeutically resistant, E. coli strain EC958, and this resistance was lost when exposure to the compound was temporarily removed. With the aim of further investigating the mechanism of action of this compound, the regulation of nine target genes relating to the membrane, DNA damage, and other stress responses provoked by exposure to the compound was also studied. This analysis confirmed that the compound causes a significant transcriptional downregulation of genes involved in membrane transport and the tricarboxylic acid cycle. By contrast, expression of the chaperone protein-coding gene, spy, was significantly increased suggesting a requirement for repair of damaged proteins in the region of the outer membrane. The complex was also found to display activity comparable to that in E. coli in a range of other therapeutically relevant Gram-negative pathogens.
Collapse
Affiliation(s)
- Adam M. Varney
- School
of Science and Technology, Nottingham Trent
University, Nottingham NG11 8NS, United Kingdom
| | - Kirsty L. Smitten
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, United
Kingdom
| | - Jim A. Thomas
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, United
Kingdom
| | - Samantha McLean
- School
of Science and Technology, Nottingham Trent
University, Nottingham NG11 8NS, United Kingdom
| |
Collapse
|
31
|
Hesketh-Best PJ, Mouritzen MV, Shandley-Edwards K, Billington RA, Upton M. Galleria mellonella larvae exhibit a weight-dependent lethal median dose when infected with methicillin-resistant Staphylococcus aureus. Pathog Dis 2021; 79:6121426. [PMID: 33503238 DOI: 10.1093/femspd/ftab003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Galleria mellonella is a recognised model to study antimicrobial efficacy; however, standardisation across the scientific field and investigations of methodological components are needed. Here, we investigate the impact of weight on mortality following infection with Methicillin-resistant Staphylococcus aureus (MRSA). Larvae were separated into six weight groups (180-300 mg at 20 mg intervals) and infected with a range of doses of MRSA to determine the 50% lethal dose (LD50), and the 'lipid weight' of larvae post-infection was quantified. A model of LD50 values correlated with weight was developed. The LD50 values, as estimated by our model, were further tested in vivo to prove our model. We establish a weight-dependent LD50 in larvae against MRSA and demonstrate that G. mellonella is a stable model within 180-260 mg. We present multiple linear models correlating weight with: LD50, lipid weight, and larval length. We demonstrate that the lipid weight is reduced as a result of MRSA infection, identifying a potentially new measure in which to understand the immune response. Finally, we demonstrate that larval length can be a reasonable proxy for weight. Refining the methodologies in which to handle and design experiments involving G. mellonella, we can improve the reliability of this powerful model.
Collapse
Affiliation(s)
- Poppy J Hesketh-Best
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Michelle V Mouritzen
- School of Biomedical Sciences, University of Plymouth, Derriford Research Facility, Plymouth Science Park, Plymouth, PL6 8BT, UK
| | - Kayleigh Shandley-Edwards
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Richard A Billington
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Mathew Upton
- School of Biomedical Sciences, University of Plymouth, Derriford Research Facility, Plymouth Science Park, Plymouth, PL6 8BT, UK
| |
Collapse
|
32
|
Song H, Postings M, Scott P, Rogers NJ. Metallohelices emulate the properties of short cationic α-helical peptides. Chem Sci 2021; 12:1620-1631. [PMID: 34163922 PMCID: PMC8179244 DOI: 10.1039/d0sc06412b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022] Open
Abstract
Naturally occurring peptides in many living systems perform antimicrobial and anticancer host defence roles, but their potential for clinical application is limited by low metabolic stability and relatively high costs of goods. Self-assembled helical metal complexes provide an attractive synthetic platform for non-peptidic architectures that can emulate some of the properties of short cationic α-helical peptides, with tuneable charge, shape, size and amphipathicity. Correspondingly there is a growing body of evidence demonstrating that these supramolecular architectures exhibit bioactivity that emulates that of the natural systems. We review that evidence in the context of synthetic advances in the area, driven by the potential for biomedical applications. We note some design considerations for new biologically-relevant metallohelices, and give our outlook on the future of these compounds as therapeutic peptidomimetics.
Collapse
|
33
|
Roy A, Srivastava SK, Shrivastava SL, Mandal AK. Hierarchical Assembly of Nanodimensional Silver-Silver Oxide Physical Gels Controlling Nosocomial Infections. ACS OMEGA 2020; 5:32617-32631. [PMID: 33376899 PMCID: PMC7758962 DOI: 10.1021/acsomega.0c04957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/27/2020] [Indexed: 05/15/2023]
Abstract
Microbial infections originating from medical care facilities are raising serious concerns across the globe. Therefore, nanotechnology-derived nanostructures have been investigated and explored due to their promising characteristics. In view of this, silver-based antimicrobial hydrogels as an alternative to antibiotic-based creams could play a crucial role in combating such infections. Toward this goal, we report a simple method for the synthesis and assembly of silver nanoparticles in a biopolymer physical gel derived from Abroma augusta plant in imparting antimicrobial properties against nosocomial pathogens. Synthesized silver nanoparticles (diameter, 30 ± 10 nm) were uniformly distributed inside the hydrogel. Such synthesized hydrogel assembly of silver nanoparticles dispersed in the biopolymer matrix exhibited hemocompatibility and antimicrobial and antibiofilm characteristics against nosocomial pathogens. The developed hydrogel as a surface coating offers reduced hardness and modulus value, thereby minimizing the brittleness tendency of the gel in the dried state. Hence, we believe that the hierarchical assembly of our hydrogel owing to its functional activity, host toxicity, and stability could possibly be used as an antimicrobial ointment for bacterial infection control.
Collapse
Affiliation(s)
- Anupam Roy
- Laboratory
of Food Chemistry and Technology, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi 835215, Jharkhand, India
- Agricultural
and Food Engineering Department, Indian
Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Suneel Kumar Srivastava
- Inorganic
Nanomaterials and Polymer Nanocomposite Laboratory, Department of
Chemistry, Indian Institute of Technology
Kharagpur, Kharagpur 721302, India
| | - Shanker Lal Shrivastava
- Agricultural
and Food Engineering Department, Indian
Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amit Kumar Mandal
- Chemical
Biology Laboratory, Department of Sericulture, Raiganj University, Raiganj 733134, West Bengal, India
| |
Collapse
|
34
|
Martin-Fernandez ML. A brief history of the octopus imaging facility to celebrate its 10th anniversary. J Microsc 2020; 281:3-15. [PMID: 33111321 DOI: 10.1111/jmi.12974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 11/27/2022]
Abstract
Octopus (Optics Clustered to OutPut Unique Solutions) celebrated in June 2020 its 10th birthday. Based at Harwell, near Oxford, Octopus is an open access, peer reviewed, national imaging facility that offers successful U.K. applicants supported access to single molecule imaging, confocal microscopy, several flavours of superresolution imaging, light sheet microscopy, optical trapping and cryoscanning electron microscopy. Managed by a multidisciplinary team, Octopus has so far assisted >100 groups of U.K. and international researchers. Cross-fertilisation across fields proved to be a strong propeller of success underpinned by combining access to top-end instrumentation with a strong programme of imaging hardware and software developments. How Octopus was born, and highlights of the multidisciplinary output produced during its 10-year journey are reviewed below, with the aim of celebrating a myriad of collaborations with the U.K. scientific community, and reflecting on their scientific and societal impact.
Collapse
Affiliation(s)
- M L Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford, U.K
| |
Collapse
|
35
|
Soliman N, Sol V, Ouk TS, Thomas CM, Gasser G. Encapsulation of a Ru(II) Polypyridyl Complex into Polylactide Nanoparticles for Antimicrobial Photodynamic Therapy. Pharmaceutics 2020; 12:E961. [PMID: 33066200 PMCID: PMC7602071 DOI: 10.3390/pharmaceutics12100961] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) also known as photodynamic inactivation (PDI) is a promising strategy to eradicate pathogenic microorganisms such as Gram-positive and Gram-negative bacteria. This therapy relies on the use of a molecule called photosensitizer capable of generating, from molecular oxygen, reactive oxygen species including singlet oxygen under light irradiation to induce bacteria inactivation. Ru(II) polypyridyl complexes can be considered as potential photosensitizers for aPDT/PDI. However, to allow efficient treatment, they must be able to penetrate bacteria. This can be promoted by using nanoparticles. In this work, ruthenium-polylactide (RuPLA) nanoconjugates with different tacticities and molecular weights were prepared from a Ru(II) polypyridyl complex, RuOH. Narrowly-dispersed nanoparticles with high ruthenium loadings (up to 53%) and an intensity-average diameter < 300 nm were obtained by nanoprecipitation, as characterized by dynamic light scattering (DLS). Their phototoxicity effect was evaluated on four bacterial strains (Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosa) and compared to the parent compound RuOH. RuOH and the nanoparticles were found to be non-active towards Gram-negative bacterial strains. However, depending on the tacticity and molecular weight of the RuPLA nanoconjugates, differences in photobactericidal activity on Gram-positive bacterial strains have been evidenced whereas RuOH remained non active.
Collapse
Affiliation(s)
- Nancy Soliman
- Institut de Recherche de Chimie Paris, CNRS, Chimie ParisTech, PSL University, 75005 Paris, France;
- Laboratory for Inorganic Chemical Biology, Institute of Chemistry for Life and Health Sciences, CNRS, Chimie ParisTech, PSL University, 75005 Paris, France
| | - Vincent Sol
- Laboratoire PEIRENE, Limoges University, EA 7500, 123 Avenue Albert Thomas, 87060 Limoges, France;
| | - Tan-Sothea Ouk
- Laboratoire PEIRENE, Limoges University, EA 7500, 123 Avenue Albert Thomas, 87060 Limoges, France;
| | - Christophe M. Thomas
- Institut de Recherche de Chimie Paris, CNRS, Chimie ParisTech, PSL University, 75005 Paris, France;
| | - Gilles Gasser
- Laboratory for Inorganic Chemical Biology, Institute of Chemistry for Life and Health Sciences, CNRS, Chimie ParisTech, PSL University, 75005 Paris, France
| |
Collapse
|
36
|
Gupta A, Prasad P, Gupta S, Sasmal PK. Simultaneous Ultrasensitive Detection and Elimination of Drug-Resistant Bacteria by Cyclometalated Iridium(III) Complexes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35967-35976. [PMID: 32662979 DOI: 10.1021/acsami.0c11161] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antimicrobial resistance has become a major threat to public health due to the rampant and empirical use of antibiotics. Rapid diagnosis of bacteria with the desired sensitivity and selectivity still, however, remains an open challenge. We report a special class of water-soluble metal-based aggregation-induced emission luminogens (AIEgens), namely, cyclometalated iridium(III) polypyridine complexes of the type [Ir(PQ)2(N^N)]Cl (1-3), where PQ = 2-phenylquinoline and N^N = 2,2'-bipyridine derivatives, that demonstrate dual capability for detection and elimination of drug-resistant bacteria in aqueous solutions. These AIEgens exhibit selective and rapid sensing of endotoxins, such as lipopolysaccharides (LPS) and lipoteichoic acid (LTA) released by the bacteria, with a detection limit in the lower nanomolar range. Targeting these naturally amplified biomarkers (approximately 1 million copies per cell) by iridium(III) complexes induces strong AIE in the presence of different Gram-negative and Gram-positive bacteria including carbapenem-resistant A. baumannii (CRAB) and methicillin-resistant S. aureus (MRSA) at concentrations as low as 1.2 CFU/mL within 5 min in spiked water samples. Detection of bacteria by the complexes is also visible to the naked eye at higher (108 CFU/mL) cell concentrations. More notably, complexes 1 and 2 show potent antibacterial activity against drug-resistant bacteria with low minimum inhibitory concentrations (MICs) ≤ 5 μg/mL (1-4 μM) via ROS generation and cell membrane disintegrity. To the best of our knowledge, this work is the "first-in-class" example of a metal-based theranostic system that integrates selective, sensitive, rapid, naked-eye, wash-free, and real-time detection of bacteria using broad-spectrum antibiotics into a single platform. This dual capability of AIEgens makes them ideal scaffolds for monitoring bacterial contamination in aqueous samples and pharmaceutical applications.
Collapse
Affiliation(s)
- Ajay Gupta
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Puja Prasad
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shalini Gupta
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Pijus K Sasmal
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
37
|
Smitten KL, Scattergood PA, Kiker C, Thomas JA, Elliott PIP. Triazole-based osmium(ii) complexes displaying red/near-IR luminescence: antimicrobial activity and super-resolution imaging. Chem Sci 2020; 11:8928-8935. [PMID: 34123147 PMCID: PMC8163367 DOI: 10.1039/d0sc03563g] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
Cellular uptake, luminescence imaging and antimicrobial activity against clinically relevant methicillin-resistant S. aureus (MRSA) bacteria are reported. The osmium(ii) complexes [Os(N^N)3]2+ (N^N = 1-benzyl-4-(pyrid-2-yl)-1,2,3-triazole (1 2+); 1-benzyl-4-(pyrimidin-2-yl)-1,2,3-triazole (2 2+); 1-benzyl-4-(pyrazin-2-yl)-1,2,3-triazole (3 2+)) were prepared and isolated as the chloride salts of their meridional and facial isomers. The complexes display prominent spin-forbidden ground state to triplet metal-to-ligand charge transfer (3MLCT) state absorption bands enabling excitation as low as 600 nm for fac/mer-3 2+ and observation of emission in aqueous solution in the deep-red/near-IR regions of the spectrum. Cellular uptake studies within MRSA cells show antimicrobial activity for 1 2+ and 2 2+ with greater toxicity for the meridional isomers in each case and mer-1 2+ showing the greatest potency (32 μg mL-1 in defined minimal media). Super-resolution imaging experiments demonstrate binding of mer- and fac-1 2+ to bacterial DNA with high Pearson's colocalisation coefficients (up to 0.95 using DAPI). Phototoxicity studies showed the complexes exhibited a higher antimicrobial activity upon irradiation with light.
Collapse
Affiliation(s)
- Kirsty L Smitten
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Paul A Scattergood
- Department of Chemistry & Centre for Functional Materials, University of Huddersfield Queensgate Huddersfield HD1 3DH UK
| | - Charlotte Kiker
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Jim A Thomas
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Paul I P Elliott
- Department of Chemistry & Centre for Functional Materials, University of Huddersfield Queensgate Huddersfield HD1 3DH UK
| |
Collapse
|
38
|
Smitten KL, Thick EJ, Southam HM, Bernardino de la Serna J, Foster SJ, Thomas JA. Mononuclear ruthenium(ii) theranostic complexes that function as broad-spectrum antimicrobials in therapeutically resistant pathogens through interaction with DNA. Chem Sci 2020; 11:8828-8838. [PMID: 34123136 PMCID: PMC8163430 DOI: 10.1039/d0sc03410j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/28/2020] [Indexed: 01/20/2023] Open
Abstract
Six luminescent, mononuclear ruthenium(ii) complexes based on the tetrapyridophenazine (tpphz) and dipyridophenazine (dppz) ligands are reported. The therapeutic activities of the complexes against Gram-negative bacteria (E. coli, A. baumannii, P. aeruginosa) and Gram-positive bacteria (E. faecalis and S. aureus) including pathogenic multi- and pan-drug resistant strains were assessed. Estimated minimum inhibitory and bactericidal concentrations show the activity of the lead compound is comparable to ampicillin and oxacillin in therapeutically sensitive strains and this activity was retained in resistant strains. Unlike related dinuclear analogues the lead compound does not damage bacterial membranes but is still rapidly taken up by both Gram-positive and Gram-negative bacteria in a glucose independent manner. Direct imaging of the complexes through super-resolution nanoscopy and transmission electron microscopy reveals that once internalized the complexes' intracellular target for both Gram-negative and Gram-positive strains is bacterial DNA. Model toxicity screens showed the compound is non-toxic to Galleria mellonella even at exposure concentrations that are orders of magnitude higher than the bacterial MIC.
Collapse
Affiliation(s)
- Kirsty L Smitten
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
- Department of Molecular Biology and Biotechnology, The University of Sheffield Western Bank Sheffield UK
| | - Eleanor J Thick
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Hannah M Southam
- Department of Molecular Biology and Biotechnology, The University of Sheffield Western Bank Sheffield UK
| | - Jorge Bernardino de la Serna
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, South Kensington Campus London SW7 2AZ UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Central Laser Facility, United Kingdom Research and Innovation OX11 0FA UK
| | - Simon J Foster
- Department of Molecular Biology and Biotechnology, The University of Sheffield Western Bank Sheffield UK
| | - Jim A Thomas
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| |
Collapse
|
39
|
Sovari SN, Vojnovic S, Bogojevic SS, Crochet A, Pavic A, Nikodinovic-Runic J, Zobi F. Design, synthesis and in vivo evaluation of 3-arylcoumarin derivatives of rhenium(I) tricarbonyl complexes as potent antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA). Eur J Med Chem 2020; 205:112533. [PMID: 32739550 DOI: 10.1016/j.ejmech.2020.112533] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/26/2022]
Abstract
We have prepared a series of ten 3-arylcoumarin molecules, their respective fac-[Re(CO)3(bpy)L]+ and fac-[Re(CO)3(L⁀L)Br] complexes and tested all compounds for their antimicrobial efficacy. Whereas the 3-arylcoumarin ligands are virtually inactive against the human-associated pathogens with minimum inhibitory concentrations (MICs) > 150 μM, when coordinated to the fac-[Re(CO)3]+ core, most of the resulting complexes showed remarkable antibacterial potency. Several rhenium complexes exhibit activity in nanomolar concentrations against Gram-positive pathogens such as Staphylococcus aureus strains, including methicillin-resistant S. aureus (MRSA) and Enterococcus faecium. The molecules do not affect bacterial cell membrane potential, but some of the most potent complexes strongly interact with DNA, indicating it as a possible target for their mode of action. In vivo studies in the zebrafish model showed that the complexes with anti-staphylococcal/MRSA activity were non-toxic to the organism even at much higher doses of the corresponding MICs. In the zebrafish-MRSA infection model, the complexes increased the survival rate of infected fish up to 100% and markedly reduced bacterial burden. Moreover, all rescued fish developed normally following the treatments with the metallic compounds.
Collapse
Affiliation(s)
- Sara Nasiri Sovari
- Department of Chemistry, University of Fribourg, Chemin Du Musée 10, 1700, Fribourg, Switzerland
| | - Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Sanja Skaro Bogojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Aurelien Crochet
- Department of Chemistry, University of Fribourg, Chemin Du Musée 10, 1700, Fribourg, Switzerland
| | - Aleksandar Pavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia.
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Fabio Zobi
- Department of Chemistry, University of Fribourg, Chemin Du Musée 10, 1700, Fribourg, Switzerland.
| |
Collapse
|
40
|
Ghosh R, Malhotra M, Sathe RR, Jayakannan M. Biodegradable Polymer Theranostic Fluorescent Nanoprobe for Direct Visualization and Quantitative Determination of Antimicrobial Activity. Biomacromolecules 2020; 21:2896-2912. [PMID: 32539360 DOI: 10.1021/acs.biomac.0c00653] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report a biodegradable fluorescent theranostic nanoprobe design strategy for simultaneous visualization and quantitative determination of antibacterial activity for the treatment of bacterial infections. Cationic-charged polycaprolactone (PCL) was tailor-made through ring-opening polymerization methodology, and it was self-assembled into well-defined tiny 5.0 ± 0.1 nm aqueous nanoparticles (NPs) having a zeta potential of +45 mV. Excellent bactericidal activity at 10.0 ng/mL concentration was accomplished in Gram-negative bacterium Escherichia coli (E. coli) while maintaining their nonhemolytic nature in mice red blood cells (RBC) and their nontoxic trend in wild-type mouse embryonic fibroblast cells with a selectivity index of >104. Electron microscopic studies are evident of the E. coli membrane disruption mechanism by the cationic NP with respect to their high selectivity for antibacterial activity. Anionic biomarker 8-hydroxy-pyrene-1,3,6-trisulfonic acid (HPTS) was loaded in the cationic PCL NP via electrostatic interaction to yield a new fluorescent theranostic nanoprobe to accomplish both therapeutics and diagnostics together in a single nanosystem. The theranostic NP was readily degradable by a bacteria-secreted lipase enzyme as well as by lysosomal esterase enzymes at the intracellular compartments in <12 h and support their suitability for biomedical application. In the absence of bactericidal activity, the theranostic nanoprobe functions exclusively as a biomarker to exhibit strong green-fluorescent signals in live E. coli. Once it became active, the theranostic probe induces membrane disruption on E. coli, which enabled the costaining of nuclei by red fluorescent propidium iodide. As a result, live and dead bacteria could be visualized via green and orange signals (merging of red+green), respectively, during the course of the antibacterial activity by the theranostic probe. This has enabled the development of a new image-based fluorescence assay to directly visualize and quantitatively estimate the real-time antibacterial activity. Time-dependent bactericidal activity was coupled with selective photoexcitation in a confocal microscope to demonstrate the proof-of-concept of the working principle of a theranostic probe in E. coli. This new theranostic nanoprobe creates a new platform for the simultaneous probing and treating of bacterial infections in a single nanodesign, which is very useful for a long-term impact in healthcare applications.
Collapse
|
41
|
Güntzel P, Nagel C, Weigelt J, Betts JW, Pattrick CA, Southam HM, La Ragione RM, Poole RK, Schatzschneider U. Biological activity of manganese(i) tricarbonyl complexes on multidrug-resistant Gram-negative bacteria: From functional studies to in vivo activity in Galleria mellonella. Metallomics 2020; 11:2033-2042. [PMID: 31577310 DOI: 10.1039/c9mt00224c] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new manganese(i) tricarbonyl complexes [Mn(bpqa-κ3N)(CO)3]Br, [Mn(bqpa-κ3N)(CO)3]Br, and [Mn(CO)3(tqa-κ3N)]Br as well as the previously described compound [Mn(CO)3(tpa-κ3N)]Br with bpqa = bis(2-pyridinylmethyl)(2-quinolinylmethyl)amine, bqpa = bis(2-quinolinylmethyl)(2-pyridinylmethyl)amine, tqa = tris(2-quinolinylmethyl)amine, and tpa = tris(2-pyridinylmethyl)amine were examined for their antibacterial activities on 14 different multidrug-resistant clinical isolates of Acinetobacter baumannii and Pseudomonas aeruginosa, in recognition of the current antimicrobial resistance (AMR) concerns with these pathogens. Minimal inhibitory concentrations (MIC) of the most potent tqa compound were in the mid-micromolar range and generally lower than that of the free ligand. Activity against both bacterial species increased with the number of quinolinylmethyl groups and lipophilicity in the order of tpa < bpqa < bqpa ≈ tqa, consistent with measured increases in release of ATP, a uniquely cytoplasmic biomolecule and induced permeability to exogenous fluorescent intercalating compounds. [Mn(CO)3(tqa-κ3N)]Br was also evaluated in the Galleria mellonella model of infection, and displayed a lack of host toxicity combined with effective bacterial clearance.
Collapse
Affiliation(s)
- Paul Güntzel
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Breijyeh Z, Jubeh B, Karaman R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules 2020; 25:E1340. [PMID: 32187986 PMCID: PMC7144564 DOI: 10.3390/molecules25061340] [Citation(s) in RCA: 547] [Impact Index Per Article: 136.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial resistance represents an enormous global health crisis and one of the most serious threats humans face today. Some bacterial strains have acquired resistance to nearly all antibiotics. Therefore, new antibacterial agents are crucially needed to overcome resistant bacteria. In 2017, the World Health Organization (WHO) has published a list of antibiotic-resistant priority pathogens, pathogens which present a great threat to humans and to which new antibiotics are urgently needed the list is categorized according to the urgency of need for new antibiotics as critical, high, and medium priority, in order to guide and promote research and development of new antibiotics. The majority of the WHO list is Gram-negative bacterial pathogens. Due to their distinctive structure, Gram-negative bacteria are more resistant than Gram-positive bacteria, and cause significant morbidity and mortality worldwide. Several strategies have been reported to fight and control resistant Gram-negative bacteria, like the development of antimicrobial auxiliary agents, structural modification of existing antibiotics, and research into and the study of chemical structures with new mechanisms of action and novel targets that resistant bacteria are sensitive to. Research efforts have been made to meet the urgent need for new treatments; some have succeeded to yield activity against resistant Gram-negative bacteria by deactivating the mechanism of resistance, like the action of the β-lactamase Inhibitor antibiotic adjuvants. Another promising trend was by referring to nature to develop naturally derived agents with antibacterial activity on novel targets, agents such as bacteriophages, DCAP(2-((3-(3,6-dichloro-9H-carbazol-9-yl)-2-hydroxypropyl)amino)-2(hydroxymethyl)propane1,3-diol, Odilorhabdins (ODLs), peptidic benzimidazoles, quorum sensing (QS) inhibitors, and metal-based antibacterial agents.
Collapse
Affiliation(s)
| | | | - Rafik Karaman
- Department of Bioorganic & Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine; (Z.B.); (B.J.)
| |
Collapse
|
43
|
Frei A, Zuegg J, Elliott AG, Baker M, Braese S, Brown C, Chen F, G Dowson C, Dujardin G, Jung N, King AP, Mansour AM, Massi M, Moat J, Mohamed HA, Renfrew AK, Rutledge PJ, Sadler PJ, Todd MH, Willans CE, Wilson JJ, Cooper MA, Blaskovich MAT. Metal complexes as a promising source for new antibiotics. Chem Sci 2020; 11:2627-2639. [PMID: 32206266 PMCID: PMC7069370 DOI: 10.1039/c9sc06460e] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
There is a dire need for new antimicrobial compounds to combat the growing threat of widespread antibiotic resistance. With a currently very scarce drug pipeline, consisting mostly of derivatives of known antibiotics, new classes of antibiotics are urgently required. Metal complexes are currently in clinical development for the treatment of cancer, malaria and neurodegenerative diseases. However, only little attention has been paid to their application as potential antimicrobial compounds. We report the evaluation of 906 metal-containing compounds that have been screened by the Community for Open Antimicrobial Drug Discovery (CO-ADD) for antimicrobial activity. Metal-bearing compounds display a significantly higher hit-rate (9.9%) when compared to the purely organic molecules (0.87%) in the CO-ADD database. Out of 906 compounds, 88 show activity against at least one of the tested strains, including fungi, while not displaying any cytotoxicity against mammalian cell lines or haemolytic properties. Herein, we highlight the structures of the 30 compounds with activity against Gram-positive and/or Gram-negative bacteria containing Mn, Co, Zn, Ru, Ag, Eu, Ir and Pt, with activities down to the nanomolar range against methicillin resistant S. aureus (MRSA). 23 of these complexes have not been reported for their antimicrobial properties before. This work reveals the vast diversity that metal-containing compounds can bring to antimicrobial research. It is important to raise awareness of these types of compounds for the design of truly novel antibiotics with potential for combatting antimicrobial resistance.
Collapse
Affiliation(s)
- Angelo Frei
- Centre for Superbug Solutions , Institute for Molecular Bioscience , The University of Queensland , St. Lucia , Queensland 4072 , Australia . ;
| | - Johannes Zuegg
- Centre for Superbug Solutions , Institute for Molecular Bioscience , The University of Queensland , St. Lucia , Queensland 4072 , Australia . ;
| | - Alysha G Elliott
- Centre for Superbug Solutions , Institute for Molecular Bioscience , The University of Queensland , St. Lucia , Queensland 4072 , Australia . ;
| | - Murray Baker
- School of Molecular Sciences , The University of Western Australia , Stirling Highway , 6009 Perth , Australia
| | - Stefan Braese
- Institute of Organic Chemistry , Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS) , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , D-76344 Eggenstein-Leopoldshafen , Germany
| | - Christopher Brown
- School of Medical Sciences (Discipline of Pharmacology) , University of Sydney , Australia
| | - Feng Chen
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK
| | - Christopher G Dowson
- Antimicrobial Screening Facility , School of Life Sciences , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK
| | - Gilles Dujardin
- Institute of Molecules and Matter of Le Mans (IMMM) , UMR 6283 CNRS , Le Mans Université , France
| | - Nicole Jung
- Institute of Organic Chemistry , Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS) , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , D-76344 Eggenstein-Leopoldshafen , Germany
| | - A Paden King
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , NY 14853 , USA
| | - Ahmed M Mansour
- Chemistry Department , Faculty of Science , Cairo University , Egypt
| | - Massimiliano Massi
- School of Molecular and Life Sciences - Curtin Institute for Functional Materials and Interfaces , Curtin University , Kent Street , 6102 Bentley WA , Australia
| | - John Moat
- Antimicrobial Screening Facility , School of Life Sciences , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK
| | - Heba A Mohamed
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Anna K Renfrew
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Peter J Rutledge
- School of Medical Sciences (Discipline of Pharmacology) , University of Sydney , Australia
| | - Peter J Sadler
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK
| | - Matthew H Todd
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
- School of Pharmacy , University College London , London , WC1N 1AX , UK
| | - Charlotte E Willans
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , NY 14853 , USA
| | - Matthew A Cooper
- Centre for Superbug Solutions , Institute for Molecular Bioscience , The University of Queensland , St. Lucia , Queensland 4072 , Australia . ;
| | - Mark A T Blaskovich
- Centre for Superbug Solutions , Institute for Molecular Bioscience , The University of Queensland , St. Lucia , Queensland 4072 , Australia . ;
| |
Collapse
|
44
|
Frei A, Amado M, Cooper MA, Blaskovich MAT. Light-Activated Rhenium Complexes with Dual Mode of Action against Bacteria. Chemistry 2020; 26:2852-2858. [PMID: 31788867 PMCID: PMC7687258 DOI: 10.1002/chem.201904689] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/12/2019] [Indexed: 12/20/2022]
Abstract
New antibiotics and innovative approaches to kill drug-resistant bacteria are urgently needed. Metal complexes offer access to alternative modes of action but have only sparingly been investigated in antibacterial drug discovery. We have developed a light-activated rhenium complex with activity against drug-resistant S. aureus and E. coli. The activity profile against mutant strains combined with assessments of cellular uptake and synergy suggest two distinct modes of action.
Collapse
Affiliation(s)
- Angelo Frei
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQueensland4072Australia
| | - Maite Amado
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQueensland4072Australia
| | - Matthew A. Cooper
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQueensland4072Australia
| | - Mark A. T. Blaskovich
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQueensland4072Australia
| |
Collapse
|
45
|
Frei A. Metal Complexes, an Untapped Source of Antibiotic Potential? Antibiotics (Basel) 2020; 9:E90. [PMID: 32085590 PMCID: PMC7168053 DOI: 10.3390/antibiotics9020090] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 01/08/2023] Open
Abstract
With the widespread rise of antimicrobial resistance, most traditional sources for new drug compounds have been explored intensively for new classes of antibiotics. Meanwhile, metal complexes have long had only a niche presence in the medicinal chemistry landscape, despite some compounds, such as the anticancer drug cisplatin, having had a profound impact and still being used extensively in cancer treatments today. Indeed, metal complexes have been largely ignored for antibiotic development. This is surprising as metal compounds have access to unique modes of action and exist in a wider range of three-dimensional geometries than purely organic compounds. These properties make them interesting starting points for the development of new drugs. In this perspective article, , the encouraging work that has been done on antimicrobial metal complexes, mainly over the last decade, is highlighted. Promising metal complexes, their activity profiles, and possible modes of action are discussed and issues that remain to be addressed are emphasized.
Collapse
Affiliation(s)
- Angelo Frei
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| |
Collapse
|
46
|
Lloyd D, Millet CO, Williams CF, Hayes AJ, Pope SJA, Pope I, Borri P, Langbein W, Olsen LF, Isaacs MD, Lunding A. Functional imaging of a model unicell: Spironucleus vortens as an anaerobic but aerotolerant flagellated protist. Adv Microb Physiol 2020; 76:41-79. [PMID: 32408947 DOI: 10.1016/bs.ampbs.2020.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Advances in optical microscopy are continually narrowing the chasm in our appreciation of biological organization between the molecular and cellular levels, but many practical problems are still limiting. Observation is always limited by the rapid dynamics of ultrastructural modifications of intracellular components, and often by cell motility: imaging of the unicellular protist parasite of ornamental fish, Spironucleus vortens, has proved challenging. Autofluorescence of nicotinamide nucleotides and flavins in the 400-580 nm region of the visible spectrum, is the most useful indicator of cellular redox state and hence vitality. Fluorophores emitting in the red or near-infrared (i.e., phosphors) are less damaging and more penetrative than many routinely employed fluors. Mountants containing free radical scavengers minimize fluorophore photobleaching. Two-photon excitation provides a small focal spot, increased penetration, minimizes photon scattering and enables extended observations. Use of quantum dots clarifies the competition between endosomal uptake and exosomal extrusion. Rapid motility (161 μm/s) of the organism makes high resolution of ultrastructure difficult even at high scan speeds. Use of voltage-sensitive dyes determining transmembrane potentials of plasma membrane and hydrogenosomes (modified mitochondria) is also hindered by intracellular motion and controlled anesthesia perturbs membrane organization. Specificity of luminophore binding is always questionable; e.g. cationic lipophilic species widely used to measure membrane potentials also enter membrane-bounded neutral lipid droplet-filled organelles. This appears to be the case in S. vortens, where Coherent Anti-Stokes Raman Scattering (CARS) micro-spectroscopy unequivocally images the latter and simultaneous provides spectral identification at 2840 cm-1. Secondary Harmonic Generation highlights the highly ordered structure of the flagella.
Collapse
Affiliation(s)
- David Lloyd
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom; School of Engineering, Cardiff, Wales, United Kingdom
| | - Coralie O Millet
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | | | - Anthony J Hayes
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Simon J A Pope
- School of Chemistry, Main Building, Cardiff University, Cardiff, Wales, United Kingdom
| | - Iestyn Pope
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Paola Borri
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Wolfgang Langbein
- School of Physics and Astronomy, Cardiff University, Cardiff, Wales, United Kingdom
| | - Lars Folke Olsen
- Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Marc D Isaacs
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Anita Lunding
- Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
47
|
Smitten KL, Fairbanks SD, Robertson CC, Bernardino de la Serna J, Foster SJ, Thomas JA. Ruthenium based antimicrobial theranostics - using nanoscopy to identify therapeutic targets and resistance mechanisms in Staphylococcus aureus. Chem Sci 2020; 11:70-79. [PMID: 32110358 PMCID: PMC7012045 DOI: 10.1039/c9sc04710g] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
In previous studies we reported that specific dinuclear RuII complexes are particularly active against pathogenic Gram-negative bacteria and, unusually for this class of compounds, appeared to display lowered activity against Gram-positive bacteria. With the aim of identifying resistance mechanisms specific to Gram-positive bacteria, the uptake and antimicrobial activity of the lead complex against Staphylococcus aureus SH1000 and other isolates, including MRSA was investigated. This revealed differential, strain specific, sensitivity to the complex. Exploiting the inherent luminescent properties of the RuII complex, super-resolution STED nanoscopy was used to image its initial interaction with S. aureus and confirm its cellular internalization. Membrane damage assays and transmission electron microscopy confirm that the complex disrupts the bacterial membrane structure before internalization, which ultimately results in a small amount of DNA damage. A known resistance mechanism against cationic antimicrobials in Gram-positive bacteria involves increased expression of the mprF gene as this results in an accumulation of positively charged lysyl-phosphatidylglycerol on the outer leaflet of the cytoplasmic membrane that electrostatically repel cationic species. Consistent with this model, it was found that an mprF deficient strain was particularly susceptible to treatment with the lead complex. More detailed co-staining studies also revealed that the complex was more active in S. aureus strains missing, or with altered, wall teichoic acids.
Collapse
Affiliation(s)
- Kirsty L Smitten
- Department of Chemistry , University of Sheffield , Sheffield S10 2TN , UK . ;
- The Florey Institute and Department of Molecular Biology and Biotechnology , University of Sheffield , S10 2TN , UK
| | - Simon D Fairbanks
- Department of Chemistry , University of Sheffield , Sheffield S10 2TN , UK . ;
| | - Craig C Robertson
- Department of Chemistry , University of Sheffield , Sheffield S10 2TN , UK . ;
| | - Jorge Bernardino de la Serna
- National Heart and Lung Institute , Faculty of Medicine , Imperial College London , South Kensington Campus , London SW7 2AZ , UK
- Research Complex at Harwell , Rutherford Appleton Laboratory , Central Laser Facility , United Kingdom Research and Innovation , OX11 0FA , UK
| | - Simon J Foster
- The Florey Institute and Department of Molecular Biology and Biotechnology , University of Sheffield , S10 2TN , UK
| | - Jim A Thomas
- Department of Chemistry , University of Sheffield , Sheffield S10 2TN , UK . ;
| |
Collapse
|
48
|
Saeed HK, Sreedharan S, Thomas JA. Photoactive metal complexes that bind DNA and other biomolecules as cell probes, therapeutics, and theranostics. Chem Commun (Camb) 2020; 56:1464-1480. [DOI: 10.1039/c9cc09312e] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Using selected transition metal centres and linking ligand “building blocks” a modular approach to the development of cellular imaging agents and therapeutics is discussed and illustrated with examples from research by the Thomas group.
Collapse
Affiliation(s)
- Hiwa K Saeed
- Department of Chemistry
- Brooklyn College
- The City University of New York
- Brooklyn
- USA
| | - Sreejesh Sreedharan
- CRUK/MRC Oxford Institute for Radiation Oncology University of Oxford
- Oxford
- UK
| | - Jim A Thomas
- Department of Chemistry
- University of Sheffield
- Sheffield S10 2TN
- UK
| |
Collapse
|
49
|
Sun B, Sundaraneedi MK, Southam HM, Poole RK, Musgrave IF, Keene FR, Collins JG. Synthesis and biological properties of tetranuclear ruthenium complexes containing the bis[4(4′-methyl-2,2′-bipyridyl)]-1,7-heptane ligand. Dalton Trans 2019; 48:14505-14515. [DOI: 10.1039/c9dt03221e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The non-linear polypyridylruthenium(ii) complex (Rubb7-TNL) exhibited good antimicrobial activity, but surprisingly was also highly active against cancer cells. The results suggestRubb7-TNLmay have potential as a new anticancer agent.
Collapse
Affiliation(s)
- Biyun Sun
- School of Science
- University of New South Wales Canberra
- Australian Defence Force Academy
- Canberra
- Australia
| | - Madhu K. Sundaraneedi
- School of Science
- University of New South Wales Canberra
- Australian Defence Force Academy
- Canberra
- Australia
| | - Hannah M. Southam
- Department of Molecular Biology and Biotechnology
- The University of Sheffield
- Sheffield
- UK
| | - Robert K. Poole
- Department of Molecular Biology and Biotechnology
- The University of Sheffield
- Sheffield
- UK
| | - Ian F. Musgrave
- Discipline of Pharmacology
- Adelaide Medical School
- University of Adelaide
- Adelaide
- Australia
| | - F. Richard Keene
- School of Physical Sciences
- University of Adelaide
- Adelaide
- Australia
- Australian Institute of Tropical Health & Medicine/Centre for Molecular Therapeutics
| | - J. Grant Collins
- School of Science
- University of New South Wales Canberra
- Australian Defence Force Academy
- Canberra
- Australia
| |
Collapse
|