1
|
Kempler PA, Coridan RH, Luo L. Gas Evolution in Water Electrolysis. Chem Rev 2024; 124:10964-11007. [PMID: 39259040 DOI: 10.1021/acs.chemrev.4c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Gas bubbles generated by the hydrogen evolution reaction and oxygen evolution reaction during water electrolysis influence the energy conversion efficiency of hydrogen production. Here, we survey what is known about the interaction of gas bubbles and electrode surfaces and the influence of gas evolution on practicable devices used for water electrolysis. We outline the physical processes occurring during the life cycle of a bubble, summarize techniques used to characterize gas evolution phenomena in situ and in practical device environments, and discuss ways that electrodes can be tailored to facilitate gas removal at high current densities. Lastly, we review efforts to model the behavior of individual gas bubbles and multiphase flows produced at gas-evolving electrodes. We conclude our review with a short summary of outstanding questions that could be answered by future efforts to characterize gas evolution in electrochemical device environments or by improved simulations of multiphase flows.
Collapse
Affiliation(s)
- Paul A Kempler
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
- Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Robert H Coridan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Long Luo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
2
|
Wang J, Guo Z, Fu F. Locomotion behavior of air bubbles on solid surfaces. Adv Colloid Interface Sci 2024; 332:103266. [PMID: 39153417 DOI: 10.1016/j.cis.2024.103266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/20/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
Air bubbles are a common occurrence in both natural and industrial settings and are a significant topic in the fields of physics, chemistry, engineering, and medicine. The physical phenomena of the contact between bubbles and submerged solid surfaces, as well as the locomotion behavior of bubbles, are worth exploring. Bubbles are generated in an unbounded liquid environment and rise due to unbalanced external forces. Bubbles of different diameters follow different ascending paths, after which they approach, touch, collide, bounce, and finally adsorb to the solid surface, forming a stable three-phase contact line (TPCL). The bubbles are in an unstable state due to the unbalanced external forces on the solid surface and the effects generated by the two-phase contact surface, resulting in different locomotion behaviors on the solid surface. Studying the formation, transport, aggregation, and rupture behaviors of bubbles on solid surfaces can enable the controllable operation of bubbles. This, in turn, can effectively reduce the loss of mechanical apparatus in agro-industrial production activities and improve corresponding production efficiency. Recent research has shown that the degree of bubble wetting on a solid surface is a crucial factor in the locomotion behavior of bubbles on that surface. This has led to significant progress in the study of bubble wetting, which has in turn greatly advanced our understanding of bubble behavior. Based on this, exploring the manipulation process of the directional motion of bubbles is a promising research direction. The locomotion behavior of bubbles on solid surfaces can be controlled by changing external conditions, leading to the integration of bubble behavior in various scientific and technological fields. Studying the dynamics of bubbles in liquids with infinite boundaries is worthwhile. Additionally, the manipulation process and mode of these bubbles is a popular research direction.
Collapse
Affiliation(s)
- Jing Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, PR China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, PR China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Feiyan Fu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
3
|
Yu A, Guo Z. Biomimetic Transparent Slippery Surface for the Locomotion of Photocontrol Droplets and Bubbles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405878. [PMID: 39328084 DOI: 10.1002/smll.202405878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/20/2024] [Indexed: 09/28/2024]
Abstract
Directed transportation and collection of liquids and bubbles play a vital role in the survival of ecosystems. Among them, the optical response control is widely used in the fields of microfluidic chips and chemical synthesis because of its high remote operation and fast response speed. However, due to poor light transmission, the development direction of traditional near-infrared (NIR) absorbing materials in the field of visualization is limited, and there are few reports of manufacturing an operating platform that can realize the directional movement of droplets/bubbles on a single platform. Here, a transparent photo-responsive PBFS platform is prepared for droplet and bubble manipulation by coating the etched glass substrate with Prussian blue (PB) nanocubes. When near-infrared (NIR) irradiation on the PBFS platform, PB nanocubes trigger heat production by photothermal means, due to the action of Marangoni force, the surface tension on the left and right sides of the droplets and bubbles is not uniform, forming a surface tension gradient, thereby driving the movement of the droplets and bubbles. The control platform has good application potential in the field of microchemical reaction and biomedical engineering and brings new solutions to the field of transparent photothermal materials.
Collapse
Affiliation(s)
- Anhui Yu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, P. R. China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
4
|
Yong J, Li X, Hu Y, Wang Y, Peng Y, Chen Z, Zhang Y, Zhu S, Wang C, Wu D. Portable Triboelectric Electrostatic Tweezer for External Manipulation of Droplets within a Closed Femtosecond Laser-Treated Superhydrophobic System. NANO LETTERS 2024; 24:7116-7124. [PMID: 38832663 DOI: 10.1021/acs.nanolett.4c01953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Controllable droplet manipulation has diverse applications; however, limited methods exist for externally manipulating droplets in confined spaces. Herein, we propose a portable triboelectric electrostatic tweezer (TET) by integrating electrostatic forces with a superhydrophobic surface that can even manipulate droplets in an enclosed space. Electrostatic induction causes the droplet to be subjected to an electrostatic force in an electrostatic field so that the droplet can be moved freely with the TET on a superhydrophobic platform. Characterized by its high precision, flexibility, and robust binding strength, TET can manipulate droplets under various conditions and achieve a wide range of representative fluid applications such as droplet microreactors, precise self-cleaning, cargo transportation, the targeted delivery of chemicals, liquid sorting, soft droplet robotics, and cell labeling. Specifically, TET demonstrated the ability to manipulate internal droplets from the outside of a closed system, such as performing cell labeling experiments within a sealed Petri dish without opening the culture system.
Collapse
Affiliation(s)
- Jiale Yong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Xinlei Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Youdi Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Yiming Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Yubin Peng
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Zhenrui Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Yachao Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Suwan Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Chaowei Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| |
Collapse
|
5
|
He S, Li Z, Yu A, Guo Z. Underwater Bubble Manipulation on Surfaces with Patterned Regions with Infused Lubricants. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14275-14287. [PMID: 38447139 DOI: 10.1021/acsami.3c17693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The flexible manipulation of underwater gas bubbles on solid substrates has attracted considerable research interest from scientists in the fields of water electrolysis, bubble microreactions, drug delivery, and heat transfer. Inspired by the oxygen-binding mechanisms of aquatic organisms, scientists have designed a series of interfacial materials for use in collecting gases, detecting and grading bubbles, and conducting microbubble reactions. Aerophilic surfaces are commonly used in underwater bubble manipulation platforms due to their excellent gas-trapping properties. However, during bubble transport, some of the bubbles are retained in the rough structure of the aerophilic surface and cause gas loss, which in the long run reduces the gas transport function. In addition, the aerophilic surface is prone to failure in high-humidity and high-pressure underwater environments. The lubricant-infused surface features an oil layer that remains stable on a rough substrate and is immiscible with water. Additionally, the bubbles are transported over the oil layer without causing losses other than those dissolved in water. These attributes make it more favorable than the aerophilic surface. Inspired by the unique properties of Nepenthes and cactus spines, we developed a patterned slippery surface [patterned lubricant-infused surface (PLIS)] through laser etching and ammonia etching that facilitates the coexistence of superaerophobic and aerophilic surfaces. The PLIS executes bubble capture utilizing a difference in wettability measuring 78°, transports bubbles through Laplace force and buoyancy, and regulates bubble release by restricting the contact area on the PLIS. The PLIS can be prepared rapidly and affordably in just about an hour, and its potential for large-scale production is high. Following tests for shear, acid and alkali resistance, and corrosion resistance, the PLIS exhibited impressive weathering resistance and appears to have potential for application in some extreme environments.
Collapse
Affiliation(s)
- Shiping He
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Zijie Li
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Anhui Yu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
6
|
Wang J, Liang C, Ma X, Liu P, Pan W, Zhu H, Guo Z, Sui Y, Liu H, Liu L, Yang C. Dynamically Adaptive Bubbling for Upgrading Oxygen Evolution Reaction Using Lamellar Fern-Like Alloy Aerogel Self-Standing Electrodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307925. [PMID: 37742133 DOI: 10.1002/adma.202307925] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Adopting renewable electricity to produce "green" hydrogen has been a critical challenge because at a high current density the mass transfer capability of most catalytic electrodes deteriorates significantly. Herein, a unique lamellar fern-like alloy aerogel (LFA) electrode, showing a unique dynamically adaptive bubbling capability and can effectively avoid stress concentration caused by bubble aggregation is reported. The LFA electrode is intrinsically highly catalytic-active and shows a highly porous, resilient, hierarchically ordered, and well-percolated conductive network. It not only shows superior gas evacuation capability but also exhibits significantly improved stability at high current densities, showing the record lowest oxygen evolution reaction (OER) overpotential of 244 mV at 1000 mA cm-2 and stably over 6000 h. With the merits of mechanical robustness, excellent electron transport, and efficient bubble evacuation, LFA can be self-standing catalytic electrode and gas diffusion layers in anion-exchange-membrane water electrolysis (AEMWE), which can achieve 3000 mA cm-2 at a low voltage of 1.88 V and can sustain stable electrolysis at 2000 mA cm-2 for over 1300 h. This strategy can be extended to various gas evolution reactions as a general design rule for multiphase catalysis applications.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Caiwu Liang
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Department of Materials, Imperial College London, 80 Wood Lane, London, W120BZ, UK
| | - Xuyang Ma
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Peng Liu
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Weisheng Pan
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Haojie Zhu
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhenbin Guo
- Institute of Semiconductor Manufacturing Research, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Yiming Sui
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Hongjie Liu
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Le Liu
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Cheng Yang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
7
|
Zhan H, Yuan Z, Li Y, Zhang L, Liang H, Zhao Y, Wang Z, Zhao L, Feng S, Liu Y. Versatile bubble maneuvering on photopyroelectric slippery surfaces. Nat Commun 2023; 14:6158. [PMID: 37789018 PMCID: PMC10547833 DOI: 10.1038/s41467-023-41918-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023] Open
Abstract
Contactless bubble manipulation with a high spatiotemporal resolution brings a qualitative leap forward in a variety of applications. Despite considerable advances, light-induced bubble maneuvering remains challenging in terms of robust transportation, splitting and detachment. Here, a photopyroelectric slippery surface (PESS) with a sandwich structure is constructed to achieve the versatile bubble manipulation. Due to the generated dielectric wetting and nonuniform electric field under the irradiation of near infrared (NIR) light, a bubble is subject to both the Laplace force and dielectrophoresis force, enabling a high-efficiency bubble steering. We demonstrate that the splitting, merging and detachment of underwater bubbles can be achieved with high flexibility and precision, high velocity and agile direction maneuverability. We further extend the capability of bubble control to microrobots for cargo transportation, micropart assembly and transmission of gear structures. We envision this robust bubble manipulation strategy on the PESS would provide a valuable platform for various bubble-involved processes, ranging from microfluidic devices to soft robotics.
Collapse
Affiliation(s)
- Haiyang Zhan
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Zichao Yuan
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yu Li
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Liang Zhang
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Hui Liang
- Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Yuhui Zhao
- Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Zhiguo Wang
- Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Lei Zhao
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Shile Feng
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yahua Liu
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, P. R. China.
| |
Collapse
|
8
|
Ma C, Zhang D, Liu L, Liu C, Zhang L, Luo YQ, Yao X, Ju J. Construction of the Stable Lubricant Film on One-Dimensional Cone-Structured Surfaces for Directional Liquid Transport. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39017-39024. [PMID: 37526528 DOI: 10.1021/acsami.3c09103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Directional liquid transport along one-dimensional structures finds vast applications in fog harvest, liquid separation, sensing, chemical synthesis, and numerous other scenarios. Dynamically, the liquid transport speed is boosted by the driving force and retarded by the hysteresis from the liquid/substrate interface. A capillary force-relied lubricant film or a covalently attached polymer brush on the surface could increase liquid mobility temporarily by reducing the interfacial hysteresis. However, the easy depletion of the lubricant film and the stringent restriction of the substrate severely hamper droplet's directional transport in a long run. Herein, we report a feasible and durable hysteresis reduction design with the polymer-brush stabilized lubricating surface (PBSLS). The PBSLS is achieved through incorporating liquid-like polydimethylsiloxane brushes (b-PDMS) and the liquid PDMS oligomer (o-PDMS). The covalent attached b-PDMS "locks" the lubricant oil o-PDMS to the cone surface via strong intermolecular van der Waals force in between. The PBSLS on the cone surface can be sustained under constant shearing force from liquid transport for at least 6 h. A cone with such PBSLS shows increased ability of droplet transport and enhanced fog collection performance in the long run. This design supplies an effective way toward regulating macro-level interfacial performance through surface design on the molecular level.
Collapse
Affiliation(s)
- Chenxi Ma
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, Henan Province, PR China
| | - Dajie Zhang
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, Henan Province, PR China
| | - Lan Liu
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, Henan Province, PR China
| | - Cuiping Liu
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, Henan Province, PR China
| | - Lingling Zhang
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, Henan Province, PR China
| | - Yu-Qiong Luo
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, Henan Province, PR China
| | - Xi Yao
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, Henan Province, PR China
| | - Jie Ju
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, Henan Province, PR China
| |
Collapse
|
9
|
He Z, Mu L, Wang N, Su J, Wang Z, Luo M, Zhang C, Li G, Lan X. Design, fabrication, and applications of bioinspired slippery surfaces. Adv Colloid Interface Sci 2023; 318:102948. [PMID: 37331090 DOI: 10.1016/j.cis.2023.102948] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
Bioinspired slippery surfaces (BSSs) have attracted considerable attention owing to their antifouling, drag reduction, and self-cleaning properties. Accordingly, various technical terms have been proposed for describing BSSs based on specific surface characteristics. However, the terminology can often be confusing, with similar-sounding terms having different meanings. Additionally, some terms fail to fully or accurately describe BSS characteristics, such as the surface wettability of lubricants (hydrophilic or hydrophobic), surface wettability anisotropy (anisotropic or isotropic), and substrate morphology (porous or smooth). Therefore, a timely and thorough review is required to clarify and distinguish the various terms used in BSS literature. This review initially categorizes BSSs into four types: slippery solid surfaces (SSSs), slippery liquid-infused surfaces (SLISs), slippery liquid-like surfaces (SLLSs), and slippery liquid-solid surfaces (SLSSs). Because SLISs have been the primary research focus in this field, we thoroughly review their design and fabrication principles, which can also be applied to the other three types of BSS. Furthermore, we discuss the existing BSS fabrication methods, smart BSS systems, antifouling applications, limitations of BSS, and future research directions. By providing comprehensive and accurate definitions of various BSS types, this review aims to assist researchers in conveying their results more clearly and gaining a better understanding of the literature.
Collapse
Affiliation(s)
- Zhoukun He
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu 610106, China
| | - Linpeng Mu
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu 610106, China; School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Na Wang
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu 610106, China; School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Jie Su
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu 610106, China; School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Zhuo Wang
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu 610106, China; School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Mingdong Luo
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; Institute of Stomatology, Southwest Medical University, Luzhou 646000, China
| | - Chunle Zhang
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Guangwen Li
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; Institute of Stomatology, Southwest Medical University, Luzhou 646000, China.
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; Institute of Stomatology, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
10
|
Pan LC, Hsieh SY, Chen WC, Lin FT, Lu CH, Cheng YL, Chien HW, Yang H. Self-Assembly of Shark Scale-Patterned Tunable Superhydrophobic/Antifouling Structures with Visual Color Response. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37436935 DOI: 10.1021/acsami.3c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The stacked riblet-like shark scales, also known as dermal denticles, allow them to control the boundary layer flow over the skin and to reduce interactions with any biomaterial attached, which guide the design of antifouling coatings. Interestingly, shark scales are with a wide variation in geometry both across species and body locations, thereby displaying diversified antifouling capabilities. Inspired by the multifarious denticles, a stretchable shark scale-patterned silica hollow sphere colloidal crystal/polyperfluoroether acrylate-polyurethane acrylate composite film is engineered through a scalable self-assembly approach. Upon stretching, the patterned photonic crystals feature different short-term antibacterial and long-term anti-biofilm performances with a distinguished color response under varied elongation ratios. To gain a better understanding, the dependence of elongation ratio on antiwetting behaviors, antifouling performances, and structural color changes has also been investigated in this research.
Collapse
Affiliation(s)
- Liang-Cheng Pan
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 402202, Taiwan
| | - Shang-Yu Hsieh
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 402202, Taiwan
| | - Wei-Cheng Chen
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 82444, Taiwan
| | - Fang-Tzu Lin
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 402202, Taiwan
| | - Chieh-Hsuan Lu
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 402202, Taiwan
| | - Ya-Lien Cheng
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 402202, Taiwan
| | - Hsiu-Wen Chien
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 82444, Taiwan
| | - Hongta Yang
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 402202, Taiwan
| |
Collapse
|
11
|
Guo S, Liu X, Guo C, Ning Y, Yang K, Yu C, Liu K, Jiang L. Bioinspired Underwater Superoleophilic Two-Dimensional Surface with Asymmetric Oleophobic Barriers for Unidirectional and Long-Distance Oil Transport. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22684-22691. [PMID: 37099287 DOI: 10.1021/acsami.3c01454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Unidirectional and long-distance liquid transport is critically important to a range of practical applications, e.g., water harvesting, microfluidics, and chemical reactions. Great efforts have been made on liquid manipulation; most of which, however, are limited in the air environment. It is still a great challenge to achieve unidirectional and long-distance oil transport in an aqueous environment. Herein, we have successfully fabricated an underwater superoleophilic two-dimensional surface (USTS) with asymmetric oleophobic barriers to arbitrarily manipulate oil in aqueous medium. The behavior of oil on USTS was carefully investigated, of which the unidirectional spreading capability was originated from the anisotropic spreading resistance resulted from the asymmetric oleophobic barriers. Accordingly, an underwater oil/water separation device has been developed, which can achieve continuous and efficient oil/water separation and further prevent the secondary pollution caused by oil volatilization.
Collapse
Affiliation(s)
- Shihao Guo
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 102206, P. R. China
| | - Xixi Liu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 102206, P. R. China
| | - Changqing Guo
- China National Chemical Engineering Sixth Construction Co., Ltd, Xiang Yang 441100, P. R. China
| | - Yuzhen Ning
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 102206, P. R. China
| | - Kaiyi Yang
- School of Transportation Science and Engineering, Beihang University, Beijing 102206, P. R. China
| | - Cunming Yu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 102206, P. R. China
| | - Kesong Liu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 102206, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 102206, P. R. China
| |
Collapse
|
12
|
Du Y, Li P, Wen Y, Guan Z. Super-Aerophilic Biomimetic Cactus for Underwater Dispersed Microbubble Capture, Self-Transport, Coalescence, and Energy Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207256. [PMID: 36720011 DOI: 10.1002/smll.202207256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/12/2023] [Indexed: 05/04/2023]
Abstract
Human ocean activities are inseparable from the supply of energy. The energy contained in the gas-phase components dispersed in seawater is a potential universal energy source for eupelagic or deep-sea equipment. However, the low energy density of bubbles dispersed in water introduces severe challenges to the potential energy harvesting of gas-phase components. Here, a super-aerophilic biomimetic cactus is developed for underwater dispersive microbubble capture and energy harvesting. The bubbles captured by the super-aerophilic biomimetic cactus spines, driven by the surface tension and liquid pressure, undergo automatic transport, coalescence, accumulation, and concentrated release. The formerly unavailable low-density dispersive surface free energy of the bubbles is converted into high-density concentrated gas buoyancy potential energy, thereby providing an energy source for underwater in situ electricity generation. Experiments show a continuous process of microbubble capture by the biomimetic cactus and demonstrate a 22.76-times increase in output power and a 3.56-times enhancement in electrical energy production compared with a conventional bubble energy harvesting device. The output energy density is 3.64 times that of the existing bubble energy generator. This work provides a novel approach for dispersive gas-phase potential energy harvesting in seawater, opening up promising prospects for wide-area in situ energy supply in underwater environments.
Collapse
Affiliation(s)
- Yu Du
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ping Li
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yumei Wen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhibin Guan
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
13
|
Yong J, Peng Y, Wang X, Li J, Hu Y, Chu J, Wu D. Self-Driving Underwater "Aerofluidics". ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2301175. [PMID: 37114841 PMCID: PMC10375095 DOI: 10.1002/advs.202301175] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Here, the concept of "aerofluidics," in which a system uses microchannels to transport and manipulate trace gases at the microscopic scale to build a highly versatile integrated system based on gas-gas or gas-liquid microinteractions is proposed. A kind of underwater aerofluidic architecture is designed using superhydrophobic surface microgrooves written by a femtosecond laser. In the aqueous medium, a hollow microchannel is formed between the superhydrophobic microgrooves and the water environment, which allows gas to flow freely underwater for aerofluidic devices. Driven by Laplace pressure, gas can be self-transported along various complex patterned paths, curved surfaces, and even across different aerofluidic devices, with an ultralong transportation distance of more than 1 m. The width of the superhydrophobic microchannels of the designed aerofluidic devices is only ≈42.1 µm, enabling the aerofluidic system to achieve accurate gas transportation and control. With the advantages of flexible self-driving gas transportation and ultralong transportation distance, the underwater aerofluidic devices can realize a series of gas control functions, such as gas merging, gas aggregation, gas splitting, gas arrays, gas-gas microreactions, and gas-liquid microreactions. It is believed that underwater aerofluidic technology can have significant applications in gas-involved microanalysis, microdetection, biomedical engineering, sensors, and environmental protection.
Collapse
Affiliation(s)
- Jiale Yong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Yubin Peng
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Xiuwen Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, P. R. China
| |
Collapse
|
14
|
Functional liquid-infused PDMS sponge-based catheter with antithrombosis, antibacteria, and anti-inflammatory properties. Colloids Surf B Biointerfaces 2023; 224:113208. [PMID: 36801524 DOI: 10.1016/j.colsurfb.2023.113208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
A functional liquid-infused catheter surface strategy has recently attracted increasing attention for blood transport with the remarkable antibiofouling performance. Nevertheless, constructing porous structure inside a catheter with effective functional liquid-locking ability remains extremely challenging. Herein, the central cylinder mold and sodium chloride particle templates technique was used to create a PDMS sponge-based catheter that stores a stable functional liquid. Our multifunctional liquid-infused PDMS sponge-based catheter can not only exhibit bacterial resistant, less macrophages infiltration, a slighter inflammation response, but also capability to prevent platelet adhesion and activation, and impressively reduce thrombosis in vivo even at high shear. Therefore, these desirable properties will endow the prospective practical applications and serve as a watershed moment in the development of biomedical devices.
Collapse
|
15
|
Du Y, Li P, Wen Y, Guan Z. Passive Automatic Switch Relying on Laplace Pressure for Efficient Underwater Low-Gas-Flux Bubble Energy Harvesting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3481-3493. [PMID: 36880226 DOI: 10.1021/acs.langmuir.2c03517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The buoyancy potential energy contained in bubbles released by subsea geological and biological activities represents a possible in situ energy source for underwater sensing and detection equipment. However, the low gas flux of the bubble seepages that exist widely on the seabed introduces severe challenges. Herein, a passive automatic switch relying on Laplace pressure is proposed for efficient energy harvesting from low-gas-flux bubbles. This switch has no moving mechanical parts; it uses the Laplace-pressure difference across a curved gas-liquid interface in a biconical channel as an invisible "microvalve". If there is mechanical equilibrium between the Laplace-pressure difference and the liquid-pressure difference, the microvalve will remain closed and prevent the release of bubbles as they continue to accumulate. After the accumulated gas reaches a threshold value, the microvalve will open automatically, and the gas will be released rapidly, relying on the positive feedback of interface mechanics. Using this device, the gas buoyancy potential energy entering the energy harvesting system per unit time can be increased by a factor of more than 30. Compared with a traditional bubble energy harvesting system without a switch, this system achieves a 19.55-fold increase in output power and a 5.16-fold enhancement in electrical energy production. The potential energy of ultralow flow rate bubbles (as low as 3.97 mL/min) is effectively collected. This work provides a new design philosophy for passive automatic-switching control of gas-liquid two-phase fluids, presenting an effective approach for harvesting of buoyancy potential energy from low-gas-flux bubble seepages. This opens a promising avenue for in situ energy supply for subsea scientific observation networks.
Collapse
Affiliation(s)
- Yu Du
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ping Li
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yumei Wen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zhibin Guan
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
16
|
Lin F, Wo K, Fan X, Wang W, Zou J. Directional Transport of Underwater Bubbles on Solid Substrates: Principles and Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10325-10340. [PMID: 36802468 DOI: 10.1021/acsami.2c21466] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The manipulation of underwater bubbles on substrates has received extensive research interest from both the scientific community and industry, including the chemical industry, machinery, biology, medicine, and other fields. Recent advances in "smart" substrates have enabled the bubbles to be transported on demand. Herein, the progress in the directional transport of underwater bubbles on various types of substrates is summarized, including planes, wires, and cones. The transport mechanism can be classified as buoyancy-driven, Laplace-pressure-difference-driven, and external-force-driven according to the driven force of the bubble. Moreover, the wide applications of directional bubble transport are reported, ranging from gas collection, microbubble reaction, bubble detection and classification, bubble switch, and bubble microrobots. Lastly, the advantages and challenges of various directional bubble transportation methods are discussed, and the current challenges and future prospects in this field are also discussed. This Review outlines the fundamental mechanisms of underwater bubble transportation on solid substrates and helps to understand the methods of optimizing bubble transportation performances.
Collapse
Affiliation(s)
- Fangye Lin
- Ningbo Research Institute, Zhejiang University, Ningbo 315048, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
- MedicalSystem Biotechnology Co., Ltd., Ningbo 315104, China
| | - Keyu Wo
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Xujun Fan
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Wei Wang
- Zhejiang University City College, Hangzhou 310015, China
| | - Jun Zou
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
17
|
Nanobubble-governed membrane with nanofluidic channels for efficient molecule/ion sieving. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
18
|
Guo L, Sheng Q, Kumar S, Liu Z, Tang G. Lubricant-induced tunability of self-driving nanodroplets on conical grooves. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Shen S, Xiao X, Yin J, Xiao X, Chen J. Self-Powered Smart Gloves Based on Triboelectric Nanogenerators. SMALL METHODS 2022; 6:e2200830. [PMID: 36068171 DOI: 10.1002/smtd.202200830] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/14/2022] [Indexed: 06/15/2023]
Abstract
The hands are used in all facets of daily life, from simple tasks such as grasping and holding to complex tasks such as communication and using technology. Finding a way to not only monitor hand movements and gestures but also to integrate that data with technology is thus a worthwhile task. Gesture recognition is particularly important for those who rely on sign language to communicate, but the limitations of current vision-based and sensor-based methods, including lack of portability, bulkiness, low sensitivity, highly expensive, and need for external power sources, among many others, make them impractical for daily use. To resolve these issues, smart gloves can be created using a triboelectric nanogenerator (TENG), a self-powered technology that functions based on the triboelectric effect and electrostatic induction and is also cheap to manufacture, small in size, lightweight, and highly flexible in terms of materials and design. In this review, an overview of the existing self-powered smart gloves will be provided based on TENGs, both for gesture recognition and human-machine interface, concluding with a discussion on the future outlook of these devices.
Collapse
Affiliation(s)
- Sophia Shen
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Junyi Yin
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
20
|
Dai X, Guo Z, Liu W. Ultraviolet-Driven Janus Foams with Wetting Gradients: Unidirectional Penetration Control for Underwater Bubbles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42734-42743. [PMID: 36070967 DOI: 10.1021/acsami.2c12766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the behavior of underwater bubbles and enabling their effective manipulation is important for bubble capture, collection, and transport. Here, to discuss the underwater permeation behavior of bubbles and critical influencing parameters in this process, the copper foams with tunable wettability were fabricated by utilizing the light-stimulated wettability response of TiO2. The Janus copper foams had different wettability gradients from superhydrophobic/hydrophobic to superhydrophobic/hydrophilic after UV irradiation at different times, and the bubbles on the surfaces showed distinctly diverse penetration behaviors. In particular, the constructed superhydrophobic/hydrophilic surfaces showed more difficult to achieve bubble penetration than the fully superhydrophobic, superhydrophobic/hydrophobic surface. It was found that the wetting states of the foams exposed to different irradiation times underwater plays a crucial role in the bubble penetration behavior. In other words, the difficulty of bubble penetration depends on the difficulty of bubble transition from gas-liquid contact to gas-solid contact. This facile and low-cost fabrication approach for Janus foams provided a valuable approach to understand the penetration behaviors of underwater bubbles, which is significant for expanding potential applications in bubble capture, bubble transport, and control of unstable gas reactions in underwater conditions.
Collapse
Affiliation(s)
- Xin Dai
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
21
|
Cheng Z, He Y, Wang Z, Jiao X, Song Y, Meng J. Controllable droplet sliding on smart shape memory slippery surface. Chem Asian J 2022; 17:e202200481. [PMID: 35768903 DOI: 10.1002/asia.202200481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/29/2022] [Indexed: 11/07/2022]
Abstract
Recently, slippery surfaces with controllable droplet sliding have aroused much attention in both fundamental research and realistic application. However, for almost all existing surfaces, constant stimuli such as thermal, light, magnetic fields, etc., are indispensable. Herein, by constructing pit structures on shape memory polymer and further infusing oil with low surface tension, we report a shape memory slippery surface that can overcome the above imperfection. Based on the shape memory performance, the surface can memorize diverse pit size as the surface is stretched or recovered. With the variation of pit structure, the sliding performances for both water and organic liquid droplets can be reversibly adjusted between the rolling and pinning states. This work, based on the shape memory effect, reports smart droplet sliding control through regulating surface microstructure, which not only provides a strategy for droplet sliding control, but also offers some fresh ideas for designing novel intelligent slippery surface.
Collapse
Affiliation(s)
- Zhongjun Cheng
- Harbin Institute of Technology, Natural Science Research Center, Academy of Fundamental and Interdisciplinary Sciences, Xidazhi street 92th, 150001, Harbin, CHINA
| | - Yaoxu He
- Harbin Institute of Technology, School of chemical engineering and chemistry, CHINA
| | - Zhe Wang
- Harbin Institute of Technology, School of chemical engineering and chemistry, CHINA
| | - Xiaoyu Jiao
- Shanghai Institute of Space Power-Sources, State Key Laboratory of Space Power-sources Technology, CHINA
| | - Yinbin Song
- Harbin Institute of Technology, School of chemical engineering and chemistry, CHINA
| | - Junhui Meng
- Beijing Institute of Technology, School of Aerospace Engineering, CHINA
| |
Collapse
|
22
|
Zhang C, Xiao X, Zhang Y, Liu Z, Xiao X, Nashalian A, Wang X, Cao M, He X, Chen J, Jiang L, Yu C. Bioinspired Anisotropic Slippery Cilia for Stiffness-Controllable Bubble Transport. ACS NANO 2022; 16:9348-9358. [PMID: 35576460 DOI: 10.1021/acsnano.2c02093] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bubbles play a crucial role in multidisciplinary industrial applications, e.g., heat transfer and mass transfer. However, existing methods to manipulate bubbles still face many challenges, such as buoyancy inhibition, hydrostatic pressure, gas dissolving, easy deformability, and so on. To circumvent these constraints, here we develop a bioinspired anisotropic slippery cilia surface to achieve an elegant bubble transport by tuning its elastic modulus, which results from the different contacts of bubbles with cilia, i.e., soft cilia will be easily bent by the bubble motion, while hard cilia will pierce into the bubble, consequently leading to the asymmetric three-phase contact line and resistance force. Moreover, a real-time and arbitrarily directional bubble manipulation is also demonstrated by applying an external magnetic field, enabling the scalable operation of bubbles in a remote manner. Our work exhibits a strategy of regulating bubble behavior smartly, which will update a wide range of gas-related sciences or technologies including gas evolution reactions, heat transfer, microfluidics, and so on.
Collapse
Affiliation(s)
- Chunhui Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Beijing 100190, China
- Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, Nankai University, Tianjin 300071, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Xiao
- Department of Bioengineering and Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yuheng Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Zixiao Liu
- Department of Bioengineering and Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiao Xiao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Ardo Nashalian
- Department of Bioengineering and Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xinsheng Wang
- Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, Nankai University, Tianjin 300071, China
| | - Moyuan Cao
- Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ximin He
- Department of Bioengineering and Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jun Chen
- Department of Bioengineering and Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Lei Jiang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Beijing 100190, China
| | - Cunming Yu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| |
Collapse
|
23
|
Rather AM, Xu Y, Chang Y, Dupont RL, Borbora A, Kara UI, Fang JC, Mamtani R, Zhang M, Yao Y, Adera S, Bao X, Manna U, Wang X. Stimuli-Responsive Liquid-Crystal-Infused Porous Surfaces for Manipulation of Underwater Gas Bubble Transport and Adhesion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110085. [PMID: 35089623 DOI: 10.1002/adma.202110085] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Biomimetic artificial surfaces that enable the manipulation of gas bubble mobility have been explored in a wide range of applications in nanomaterial synthesis, surface defouling, biomedical diagnostics, and therapeutics. Although many superhydrophobic surfaces and isotropic-lubricant-infused porous surfaces have been developed to manipulate gas bubbles, the simultaneous control over the adhesion and transport of gas bubbles underwater remains a challenge. Thermotropic liquid crystals (LCs), a class of structured fluids, provide an opportunity to tune the behavior of gas bubbles through LC mesophase transitions using a variety of external stimuli. Using this central idea, the design and synthesis of LC-infused porous surfaces (LCIPS) is reported and the effects of the LC mesophase on the transport and adhesion of gas bubbles on LCIPS immersed in water elucidated. LCIPS are demonstrated to be a promising class of surfaces with an unprecedented level of responsiveness and functionality, which enables the design of cyanobacteria-inspired object movement, smart catalysts, and bubble gating devices to sense and sort volatile organic compounds and control oxygen levels in biomimetic cell cultures.
Collapse
Affiliation(s)
- Adil Majeed Rather
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Yang Xu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Yun Chang
- Davidson School of Chemical Engineering, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Robert Lewis Dupont
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Angana Borbora
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Ufuoma Israel Kara
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Jen-Chun Fang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Rajdeep Mamtani
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Meng Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Yuxing Yao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Solomon Adera
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Uttam Manna
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
- Centre for Nanotechnology, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Xiaoguang Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Sustainability Institute, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
24
|
Chen C, Yao H, Jiao Y, Jia C, Wu S. Magnetic-Actuated Robot Enables High-Performance Underwater Bubble Maneuvering on Laser-Textured Biomimetic Slippery Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2174-2184. [PMID: 35119871 DOI: 10.1021/acs.langmuir.1c03436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Controllable underwater gas bubble (UGB) transport on a surface is realized by geography-/stimuli-induced wettability gradient force (Fwet-grad). Unfortunately, the high-speed maneuvering of UGBs along free routes on planar surfaces remains challenging. Herein, a regime of magnetism-actuated robot (MAR) mounting on biomimetic laser-ablated lubricant-impregnated slippery surfaces (LA-LISS) is reported. Leveraging on LA-LISS, MAR-entrained UGBs can move along arbitrary directions through the loading of a tracing magnetic trigger. The underlying hydrodynamics is that MAR-entrained UGBs would be actuated slipping upon a giant magnetic-induced towing force (FM//). Once the magnetism stimuli is discharged, FM// vanishes immediately to immobilize the UGBs on LA-LISS. Thanks to the MAR's robust bubble affinity, a typical UGB (20 μL) on the optimized LA-LISS can be accelerated at 500 mm/s2 and gain an ultrafast velocity of over 205 mm/s that far exceeds previously reported figures. Moreover, fundamental physics renders MAR antibuoyancy, steering locomotive UGBs on the inclined LA-LISS. Significantly, an MAR propelling UGBs to configure desirable patterns, realize on-demand coalescence, remedy the cutoff switch, as well as facilitate a programmable light-control-light optical shutter is successfully deployed. Compared with previous smart surfaces, the current multifunctional regime is more competent for harnessing UGBs featuring an unparalleled transport velocity independent of the feeble Fwet-grad.
Collapse
Affiliation(s)
- Chao Chen
- Department of Materials Physics and New Energy Device, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hao Yao
- Department of Materials Physics and New Energy Device, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yunlong Jiao
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
| | - Chong Jia
- Department of Materials Physics and New Energy Device, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Sizhu Wu
- School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
25
|
Han Z, Xiao X, Qu H, Hu M, Au C, Nashalian A, Xiao X, Wang Y, Yang L, Jia F, Wang T, Ye Z, Servati P, Huang L, Zhu Z, Tang J, Chen J. Ultrafast and Selective Nanofiltration Enabled by Graphene Oxide Membranes with Unzipped Carbon Nanotube Networks. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1850-1860. [PMID: 34859667 DOI: 10.1021/acsami.1c17201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Carbon nanomaterials have proven their wide applicability in molecular separation and water purification techniques. Here, an unzipped carbon nanotubes (CNT) embedded graphene oxide (GO) membrane (uCNTm) is reported. The multiwalled CNTs were longitudinally cut into multilayer graphene oxide nanoribbons by a modified Hummer method. To investigate the varying effects of different bandwidths of unzipped CNTs on their properties, four uCNTms were prepared by a vacuum-assisted filtration process. Unzipped-CNTs with different bandwidths were made by unzipping multiwalled CNTs with outer diameters of 0-10, 10-20, 20-30, and 30-50 nm and named uCNTm-1, uCNTm-2, uCNTm-3, and uCNTm-4, respectively. The uCNTms exhibited good stability in different pH solutions, and the water permeability of the composite membranes showed an increasing trend with the increase of the inserted uCNTm's bandwidth up to 107 L·m-2·h-1·bar-1, which was more than 10 times greater than that of pure GO membranes. The composite membranes showed decent dye screening performance with the rejection rate of methylene blue and rhodamine B both greater than 99%.
Collapse
Affiliation(s)
- Zhenyang Han
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Huaijiao Qu
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Menglei Hu
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Christian Au
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ardo Nashalian
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yanxin Wang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Liu Yang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Fengchun Jia
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Tianmei Wang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhi Ye
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Peyman Servati
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Linjun Huang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhijun Zhu
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
26
|
Lv F, Zhao F, Cheng D, Dong Z, Jia H, Xiao X, Orejon D. Bioinspired functional SLIPSs and wettability gradient surfaces and their synergistic cooperation and opportunities for enhanced condensate and fluid transport. Adv Colloid Interface Sci 2022; 299:102564. [PMID: 34861513 DOI: 10.1016/j.cis.2021.102564] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 01/16/2023]
Abstract
Bioinspired smart functional surfaces have received increasing attention in recent years owed to their tunable wettability and enhanced droplet transport suggesting them as excellent candidates for industrial and nanotechnology-related applications. More specifically, bioinspired slippery lubricant infused porous surfaces (SLIPSs) have been proposed for their low adhesion enabling continuous dropwise condensation (DWC) even of low-surface tension fluids. In addition, functional surfaces with chemical and/or structural wettability gradients have also been exploited empowering spontaneous droplet transport in a controlled manner. Current research has focused on the better understanding of the mechanisms and intimate interactions taking place between liquid droplets and functional surfaces or on the forces imposed by differences in surface wettability and/or by Laplace pressure owed to chemical or structural gradients. Nonetheless, less attention has been paid to the synergistic cooperation of efficiently driving droplet transport via chemical and/or structural patterns/gradients on a low surface energy/adhesion background imposed by SLIPSs, with the consequent promising potential for microfluidics and condensation heat transfer applications amongst others. This review provides a detailed and timely overview and summary on recent advances and developments on bioinspired SLIPSs and on wettability gradient surfaces with focus on their synergistic cooperation for condensation and fluid transport related applications. Firstly, the fundamental theory and mechanisms governing complex droplet transport on homogeneous, on wettability gradient surfaces and on inclined SLIPSs are introduced. Secondly, recent advances on the fabrication and characterization of SLIPSs and functional surfaces are presented. Then, the condensation performance on such functional surfaces comprising chemical or structural wettability gradients is reviewed and their applications on condensation heat transfer are summarized. Last a summary outlook highlighting the opportunities and challenges on the synergistic cooperation of SLIPSs and wettability gradient surfaces for heat transfer as well as future perspective in modern applications are presented.
Collapse
|
27
|
Su Y, Li Z, Zhu S, Fan X, Chen C, Bian Y, Wang D, Li C, Zhang C, Xu L, Wang Y, Hu Y, Li J, Wu D. Biomimetic Mechanoswitchable Interfaces for High-Performance Spatial Gas Bubble Maneuvering. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43769-43776. [PMID: 34476944 DOI: 10.1021/acsami.1c13527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The on-demand manipulation of gas bubbles in aqueous ambient environments is fundamental to many fields such as microfluidics and biochemical microanalysis. However, most bubble manipulation strategies are limited to restricted locomotion on the confined surfaces without spatial convenience of transport. Herein, we report a kind of biomimetic bubble manipulator with mechanoswitchable interfaces (MSIs), featuring the advantages of parallel bubble control and spatial maneuvering flexibility. By the synergic action between Janus aluminum membrane and superaerophilic microfiber array, the gas-MSI interfacial adhesion can be reversibly switched to achieve capturing/releasing underwater bubbles. Moreover, the adhesion force of MSI can be readily tuned by diverse experimental parameters including surface roughness, fiber number, diameter, and spacing of the neighboring microfibers, which are further systematically investigated. Relying on this mobile platform, we demonstrate a series of powerful applications including bubble parallel control, bubble array regrouping, arbitrary bubble transport and even manipulating underwater solids through bubbles, which are otherwise challenging for conventional approaches. We envision that this versatile platform will bring new insights into potential applications, such as cross-species sample control and handheld gas microsyringe.
Collapse
Affiliation(s)
- Yahui Su
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Electronics and Information Engineering, Anhui University, Hefei 230039, China
| | - Zhicheng Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Electronics and Information Engineering, Anhui University, Hefei 230039, China
| | - Suwan Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Xinran Fan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Electronics and Information Engineering, Anhui University, Hefei 230039, China
| | - Chao Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yucheng Bian
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Dawei Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Chuanzong Li
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Cong Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Liqun Xu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yue Wang
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
28
|
Zhang Z, Xiao X, Zhou Y, Huang L, Wang Y, Rong Q, Han Z, Qu H, Zhu Z, Xu S, Tang J, Chen J. Bioinspired Graphene Oxide Membranes with pH-Responsive Nanochannels for High-Performance Nanofiltration. ACS NANO 2021; 15:13178-13187. [PMID: 34210144 DOI: 10.1021/acsnano.1c02719] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Tunable gating graphene oxide (GO) membranes with high water permeance and precise molecular separation remain highly desired in smart nanofiltration devices. Herein, bioinspired by the filtration function of the renal glomerulus, we report a smart and high-performance graphene oxide membrane constructed via introducing positively charged polyethylenimine-grafted GO (GO-PEI) to negatively charged GO nanosheets. It was found that the additional GO-PEI component changed the surface charge, improved the hydrophilicity, and enlarged the nanochannels. The glomerulus-inspired graphene oxide membrane (G-GOM) shows a water permeance up to 88.57 L m-2 h-1 bar-1, corresponding to a 4 times enhancement compared with that of a conventional GO membrane due to the enlarged confined nanochannels. Meanwhile, owing to the electrostatic interaction, it can selectively remove positively charged methylene blue at pH 12 and negatively charged methyl orange at pH 2, with a removal rate of over 96%. The high and cyclic water permeance and highly selective organic removal performance can be attributed to the synergic effect of controlled nanochannel size and tunable electrostatic interaction in responding to the environmental pH. This strategy provides insight into designing pH-responsive gating membranes with tunable selectivity, representing a great advancement in smart nanofiltration with a wide range of applications.
Collapse
Affiliation(s)
- Zhijie Zhang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yihao Zhou
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Linjun Huang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanxin Wang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Qinglin Rong
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhenyang Han
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Huaijiao Qu
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhijun Zhu
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Shumao Xu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
29
|
Xiao X, Li S, Zhu X, Xiao X, Zhang C, Jiang F, Yu C, Jiang L. Bioinspired Two-Dimensional Structure with Asymmetric Wettability Barriers for Unidirectional and Long-Distance Gas Bubble Delivery Underwater. NANO LETTERS 2021; 21:2117-2123. [PMID: 33599507 DOI: 10.1021/acs.nanolett.0c04814] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gas bubble manipulations in liquid have long been a concern because of their vital roles in various gas-related fields. To deal with the weakness in long-distance gas transportation of previous works, we took inspiration from the ridgelike structure on Nepenthes pitcher's peristome and successfully prepared a two-dimensional superaerophilic surface decorated with asymmetric aerophobic barriers capable of unidirectional and long-distance gas bubble delivery. For the first time, this process was investigated by in situ bubble-releasing experiments recorded by a high-speed camera and finite element modeling, which demonstrates a kinetic process regulated by the anisotropic motion resistance arising from the patterns. Furthermore, the Nepenthes alata-inspired two-dimensional surface (NATS) was integrated into a water electrolysis system for H2 directional transportation and efficient collection. As a result, the NATS design was proved to be a potential solution for facile manipulation of gas bubbles and provides a simple, adaptive, and reliable strategy for long-range gas transport underwater.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Shukun Li
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Xiandong Zhu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Xiao Xiao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Chunhui Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengmin Jiang
- Beijing Institute of Technology, Beijing 100080, China
| | - Cunming Yu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| |
Collapse
|
30
|
Wu Z, Yin K, Wu J, Zhu Z, Duan JA, He J. Recent advances in femtosecond laser-structured Janus membranes with asymmetric surface wettability. NANOSCALE 2021; 13:2209-2226. [PMID: 33480955 DOI: 10.1039/d0nr06639g] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Janus wettability membranes have received much attention because of their asymmetric surface wettability. On the basis of this distinctiveness from traditional symmetrical membranes, relevant scholars have been inspired to pursue many innovations utilizing such membranes. Femtosecond laser microfabrication shows many advantages, such as precision, short time, and environmental friendliness, over traditional fabrication methods. Now this has been applied in structuring Janus membranes by researchers. This review covers recent advances in femtosecond laser-structured Janus membranes with asymmetric surface wettability. The background in femtosecond laser-structured Janus membranes is first discussed, focusing on the Janus wettability membrane and femtosecond laser microfabrication. Then the applications of Janus membranes are introduced, which are divided into unidirectional fluid transport, oil-water separation, fog harvesting, and seawater desalination. Finally, based on femtosecond laser-structured Janus membranes, some existing problems are pointed out and future perspectives proposed.
Collapse
Affiliation(s)
- Zhipeng Wu
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China.
| | - Kai Yin
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China. and The State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Junrui Wu
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China.
| | - Zhuo Zhu
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China.
| | - Ji-An Duan
- The State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Jun He
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China.
| |
Collapse
|
31
|
An S, Ranaweera R, Luo L. Harnessing bubble behaviors for developing new analytical strategies. Analyst 2021; 145:7782-7795. [PMID: 33107897 DOI: 10.1039/d0an01497d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gas bubbles are easily accessible and offer many unique characteristic properties of a gas/liquid two-phase system for developing new analytical methods. In this minireview, we discuss the newly developed analytical strategies that harness the behaviors of bubbles. Recent advancements include the utilization of the gas/liquid interfacial activity of bubbles for detection and preconcentration of surface-active compounds; the employment of the gas phase properties of bubbles for acoustic imaging and detection, microfluidic analysis, electrochemical sensing, and emission spectroscopy; and the application of the mass transport behaviors at the gas/liquid interface in gas sensing, biosensing, and nanofluidics. These studies have demonstrated the versatility of gas bubbles as a platform for developing new analytical strategies.
Collapse
Affiliation(s)
- Shizhong An
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | | | | |
Collapse
|
32
|
Fu Y, Qin H, Guo Z. Anti-greasy and conductive superamphiphobic coating applied to the carbon brushes/conductive rings of hydro-generators. RSC Adv 2021; 11:12381-12391. [PMID: 35423747 PMCID: PMC8696991 DOI: 10.1039/d1ra01656c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 11/21/2022] Open
Abstract
A simple and low-cost method is used to prepare a superamphiphobic coating with excellent anti-greasy and conductivity properties that can be used on the surface of carbon brushes and collector rings.
Collapse
Affiliation(s)
- Yang Fu
- Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance
- China Three Gorges University
- Yichang 443002
- People's Republic of China
- State Key Laboratory of Solid Lubrication
| | - Hongling Qin
- Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance
- China Three Gorges University
- Yichang 443002
- People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials
- Hubei University
- Wuhan 430062
- People's Republic of China
- State Key Laboratory of Solid Lubrication
| |
Collapse
|
33
|
Liu X, Yang F, Guo J, Fu J, Guo Z. New insights into unusual droplets: from mediating the wettability to manipulating the locomotion modes. Chem Commun (Camb) 2020; 56:14757-14788. [PMID: 33125006 DOI: 10.1039/d0cc05801g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ability to manipulate droplets can be utilized to develop various smart sensors or actuators, endowing them with fascinating applications for drug delivery, detection of target analytes, environmental monitoring, intelligent control, and so on. However, the stimuli-responsive superhydrophobic/superhydrophilic materials for normal water droplets cannot satisfy the requirements from some certain circumstances, i.e., liquid lenses and biosensors (detection of various additives in water/blood droplets). Stimuli-responsive wetting/dewetting behaviors of exceptional droplets are open issues and are attracting much attention from across the world. In this perspective article, the unconventional droplets are divided into three categories: ionic or surfactant additives in water droplets, oil droplets, and bubble droplets. We first introduce several classical wettability models of droplets and some methods to achieve wettability transition. The unusual droplet motion is also introduced in detail. There are four main types of locomotion modes, which are vertical rebound motion, lateral motion, self-propulsion motion, and anisotropic wettability controlled sliding behavior. The driving mechanism for the droplet motion is briefly introduced as well. Some approaches to achieve this manipulation goal, such as light irradiation, electronic, magnetic, acid-base, thermal, and mechanical ways will be taken into consideration. Finally, the current researches on unconventional droplets extending to polymer droplets and liquid metal droplets on the surface of special wettability materials are summarized and the prospect of unconventional droplet research directions in the field of on-demand transport application will be proposed.
Collapse
Affiliation(s)
- Xianchen Liu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China.
| | - Fuchao Yang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China.
| | - Jie Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China.
| | - Jing Fu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China. and School of Chemistry and Environment Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China. and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
34
|
Zhu S, Bian Y, Wu T, Chen C, Jiao Y, Jiang Z, Huang Z, Li E, Li J, Chu J, Hu Y, Wu D, Jiang L. High Performance Bubble Manipulation on Ferrofluid-Infused Laser-Ablated Microstructured Surfaces. NANO LETTERS 2020; 20:5513-5521. [PMID: 32539420 DOI: 10.1021/acs.nanolett.0c02091] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Manipulation of gas bubbles in an aqueous ambient environment is fundamental to both academic research and industrial settings. Present bubble manipulation strategies mainly rely on buoyancy or Laplace gradient forces arising from the sophisticated terrain of substrates. However, these strategies suffer from limited manipulation flexibility such as slow horizontal motion and unidirectional transport. In this paper, a high performance manipulation strategy for gas bubbles is proposed by utilizing ferrofluid-infused laser-ablated microstructured surfaces (FLAMS). A typical gas bubble (<2 μL) can be accelerated at >150 mm/s2 and reach an ultrafast velocity over 25 mm/s on horizontal FLAMS. In addition, diverse powerful manipulation capabilities are demonstrated including antibuoyancy motion, "freestyle writing", bubble programmable coalescence, three-dimensional (3-D) controllable motion and high towing capacity of steering macroscopic object (>500 own mass) on the air-water interface. This strategy shows terrain compatibility, programmable design, and fast response, which will find potential applications in water treatment, electrochemistry, and so on.
Collapse
Affiliation(s)
- Suwan Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yucheng Bian
- School of Microelectronics, University of Science and Technology of China, Hefei 230026, China
| | - Tao Wu
- Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
| | - Chao Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yunlong Jiao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Zhiwu Jiang
- Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
| | - Zhouchen Huang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Erqiang Li
- Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
35
|
Zhu S, Li J, Cai S, Bian Y, Chen C, Xu B, Su Y, Hu Y, Wu D, Chu J. Unidirectional Transport and Effective Collection of Underwater CO 2 Bubbles Utilizing Ultrafast-Laser-Ablated Janus Foam. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18110-18115. [PMID: 32208611 DOI: 10.1021/acsami.0c00464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Manipulating gas bubbles in aqueous ambient is of great importance for applications in water treatment, gas collection, and matter transport. Here, a kind of Janus foam is designed and fabricated by one-step ultrafast laser ablation of one side of the copper film, which is treated to be superhydrophobic. Janus foam exhibits not only the capability of unidirectional transport of underwater bubbles but also gas collection with favorable efficiency up to ∼15 mL cm-2 min-1. The underlying physical mechanism is attributed to the cooperation of the buoyancy, adhesion, and wetting gradient forces imposed on the bubbles. As a paradigm, the underwater chemical reaction between the unidirectional CO2 gas flow and the alkaline phenolphthalein solution is demonstrated via Janus foam. This facile and low-cost fabrication approach for Janus foam will find broad potential applications in effective bubble transport, carbon capture, and controllable chemical reactions under aqueous conditions.
Collapse
Affiliation(s)
- Suwan Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Shengwen Cai
- School of Electrical Engineering and Automation, School of Electronics and Information Engineering, Key Laboratory of Computational Intelligence and Signal Processing, Ministry of Education, Anhui University, Hefei 230039, China
| | - Yucheng Bian
- School of Microelectronics, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Chao Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Bing Xu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yahui Su
- School of Electrical Engineering and Automation, School of Electronics and Information Engineering, Key Laboratory of Computational Intelligence and Signal Processing, Ministry of Education, Anhui University, Hefei 230039, China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
36
|
Zhang X, Dong Y, He Z, Gong H, Xu X, Zhao M, Qin H. Efficient Gas Transportation Using Bioinspired Superhydrophobic Yarn as the Gas-Siphon Underwater. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18174-18181. [PMID: 32202403 DOI: 10.1021/acsami.0c03366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inspired by the gas-trapped mechanism underwater of Argyroneta aquatica, we prepared a superhydrophobic yarn with a fiber network structure via a facile and environmentally friendly method. Attributed to the low surface energy, the superhydrophobic fiber network structure on the yarn is able to trap and transport bubbles directionally underwater. The functional yarn has good superhydrophobic and superaerophilic properties underwater to realize the directional transport of bubbles underwater without being pumped. We designed demonstration experiments on the antibuoyancy directional bubble transportation, which indicated the feasibility in the applications of gas-related fields. Significantly, on further testing, where the superhydrophobic yarn is put into a U-shaped pipe, we obtain a gas-siphon underwater with a high flux. The superhydrophobic fiber structure yarn can trap the gas underwater to enable the self-starting behavior while no manual intervention is used. The gas-siphon can convey gas over the edge of a vessel and deliver it at a higher level without energy input, which is driven by the differential pressure. The relationship between the differential pressure and the volume flux of transport bubbles is investigated. The experimental results show that the prepared superhydrophobic yarn has the advantages of good stability, easy preparation, and low cost in bubble continuous transportation underwater, which provides a novel strategy for the development and application of new technologies such as directional transportation, separation, exhaustion, and collection of gases in water.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, China Three Gorges University, Yichang 443002, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yang Dong
- Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, China Three Gorges University, Yichang 443002, China
| | - Zhao He
- Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, China Three Gorges University, Yichang 443002, China
| | - Hanyuan Gong
- Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, China Three Gorges University, Yichang 443002, China
| | - Xiang Xu
- Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, China Three Gorges University, Yichang 443002, China
| | - Meiyun Zhao
- Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, China Three Gorges University, Yichang 443002, China
| | - Hongling Qin
- Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, China Three Gorges University, Yichang 443002, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
37
|
Li C, Jiao Y, Lv X, Wu S, Chen C, Zhang Y, Li J, Hu Y, Wu D, Chu J. In Situ Reversible Tuning from Pinned to Roll-Down Superhydrophobic States on a Thermal-Responsive Shape Memory Polymer by a Silver Nanowire Film. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13464-13472. [PMID: 32100537 DOI: 10.1021/acsami.9b20223] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Shape memory polymer (SMP) surfaces with tunable wettability have attracted extensive attention due to their widespread applications. However, there have been rare reports on in situ tuning wettability with SMP materials. In this paper, we reported a kind of distinct superhydrophobic SMP microconed surface on the silver nanowire (AgNW) film to achieve in situ reversible transition between pinned and roll-down states. The mechanism is taking advantage of the in situ heating functionality of the silver nanowire film by voltage, which provides the transition energy for SMP to achieve the fixation and recovery of temporary shape. It is noteworthy that the reversible transition could be repeated many times (>100 cycles), and we quantitatively investigate the shape memory ability of microcones with varied height and space under different applied voltages. These results show that the tilted microcones could recover its original upright state under a small voltage (4-11 V) in a short time, and the shortest recovery time is about 0.5 min under an applied voltage of ∼10 V. Finally, we utilize SMP microcone arrays with tunable wettability to realize lossless droplet transportation, and the tilted microconed surface also achieves liquid unidirectional transport due to its anisotropic water adhesion force. The robust microconed SMP surface with reversible morphology transitions will have far-ranging applications including droplet manipulation, reprogrammable fog harvesting, and so on.
Collapse
Affiliation(s)
- Chuanzong Li
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yunlong Jiao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Xiaodong Lv
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Sizhu Wu
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chao Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yiyuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
38
|
Bunje H, Glotzer S, Li Y, Samori P, Weil T, Shmakov SN, Weiss PS. Announcing the 2020 ACS Nano Award Lecture Laureates. ACS NANO 2020; 14:1213-1215. [PMID: 32098015 DOI: 10.1021/acsnano.0c01221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
|
39
|
Wu J, Yin K, Li M, Wu Z, Xiao S, Wang H, Duan JA, He J. Under-oil self-driven and directional transport of water on a femtosecond laser-processed superhydrophilic geometry-gradient structure. NANOSCALE 2020; 12:4077-4084. [PMID: 32022050 DOI: 10.1039/c9nr09902f] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Self-driven and continuous directional transport of water droplets in an oil environment has great potential applications in microfluidics, oil-water separation, etc. Nevertheless, most current studies exploit water behaviors occurring in air, and the directional regulation of water in a viscous oil medium remains a challenge. In this work, a superhydrophilic geometry-gradient stainless steel platform with nanoparticle-covered nanoripple structures is proposed using femtosecond laser direct writing technology. The as-prepared platform spontaneously and directionally transported water droplets in the oil environment from the minor side to the large side of the trapezoidal platform surface, but not in the opposite direction. The transport velocity of water droplets as a function of trapezoid angle and tilt angle of the as-prepared platform was investigated in detail. In addition, a pumpless under-oil water transport platform was successfully prepared on other substrates including Ti and Ni sheets, polyimide film, and C cloth, and exhibited transport capabilities when the platform was flexed and combined into various shapes. This work offers insight into the simple fabrication of a flexible and substrate-independent pumpless under-oil directional transport device for water.
Collapse
Affiliation(s)
- Junrui Wu
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China.
| | - Kai Yin
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China. and The State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Ming Li
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics of CAS, Xi'an, Shaanxi 710119, China
| | - Zhipeng Wu
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China.
| | - Si Xiao
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China.
| | - Hua Wang
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China.
| | - Ji-An Duan
- The State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Jun He
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China.
| |
Collapse
|
40
|
Yang X, Huang Y, Zhao Y, Zhang X, Wang J, Sann EE, Mon KH, Lou X, Xia F. Bioinspired Slippery Lubricant-Infused Surfaces With External Stimuli Responsive Wettability: A Mini Review. Front Chem 2019; 7:826. [PMID: 31850315 PMCID: PMC6895960 DOI: 10.3389/fchem.2019.00826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 11/13/2019] [Indexed: 01/17/2023] Open
Abstract
Responsive slippery lubricant-infused surfaces (SLIS) have attracted substantial attention because of the high demand of fundamental research and practical applications, such as controllable liquid-repellency, intelligent, and easy-to-implement wettability switching. In this review, advanced development of responsive slippery surfaces is briefly summarized upon various external stimuli, including stress, electrical field, magnetic field, and temperature. In addition, remaining challenge and prospect are also discussed.
Collapse
Affiliation(s)
- Xian Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Yu Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, China.,Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing, China
| | - Yan Zhao
- Department of Materials Science, Institute of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Xiaoyu Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Jinhua Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Ei Ei Sann
- Department of Industrial Chemistry, Dagon University, Yangon, Myanmar
| | - Khin Hla Mon
- Department of Industrial Chemistry, Dagon University, Yangon, Myanmar
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, China
| |
Collapse
|
41
|
Li J, Guo Z. Patterned Slippery Surface for Bubble Directional Transportation and Collection Fabricated via a Facile Method. RESEARCH 2019; 2019:9139535. [PMID: 31922143 PMCID: PMC6946277 DOI: 10.34133/2019/9139535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022]
Abstract
Directional manipulation of underwater bubbles on a solid surface has attracted much attention due to its large-scale applications such as electrocatalytic gas evolution reactions, wastewater remediation, and solar energy harvesting. In this work, the patterned slippery surface (PSS) is fabricated via a facile method where the patterned pathways are fabricated by means of etching the pristine copper sheet. These patterned surfaces consisted of pristine copper and modified oxide copper which exhibit different wettability for bubble and water. The superhydrophobic and aerophilic surface can efficiently capture bubbles, and the infused oil layer is beneficial for reducing the resistance during transportation. Furthermore, the bubble can move upward, downward, and horizontally. Hence, it is easy to realize the bubble's transportation and collection on the functional surfaces.
Collapse
Affiliation(s)
- Jian Li
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, China.,State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, China.,State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|