1
|
Shen Y, Hou P. Self-Powered Infrared-Detectable BP/Ta 2NiS 5 Heterojunction and Its Application in Energy-Efficient Optoelectronic Synapses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405709. [PMID: 39460407 DOI: 10.1002/smll.202405709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/15/2024] [Indexed: 10/28/2024]
Abstract
The development of energy-efficient and high-performance optoelectronic devices is crucial for the advancement of modern optoelectronic and microelectronic systems. Although the self-powered devices and optoelectronic synapses based on 2D heterojunction show great application prospects, the high energy consumption and infrared band detection of self-powered optoelectronic synapses are still an urgent problem to be solved. In this report, a BP/Ta2NiS5 heterojunction is constructed to achieve infrared detection by leveraging differences in Fermi energy levels. This heterojunction exhibits a high specific detectivity of 6.57 × 1010, 2.6 × 1010, and 1.12 × 1010 Jones and responsivity of 20, 10.6, and 5.9 mA W-1 for 1064, 1550, and 2200 nm infrared light at 0 bias voltage, respectively. In addition, under the 2200 nm light, by applying an ultra-low bias voltage of 800 µV, the heterojunction exhibits ultra-low power and energy consumption of 28.8 pW and 0.64 pJ, successfully simulates a variety of synaptic behaviors under infrared light, and demonstrates its image perception and image memory capabilities. These findings position the BP/Ta2NiS5 heterojunction as an ideal candidate for a multifunctional optoelectronic device crucial for advanced photodetection, neuromorphic computing, and artificial intelligence.
Collapse
Affiliation(s)
- Ya Shen
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Pengfei Hou
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| |
Collapse
|
2
|
Wang Y, Guo R, Zou C, Zhang Z, Liu K, Jiang J, Liu T, Cheng Z. Broadband and low-reflection mid-infrared grating coupler for a perfectly vertical fiber-chip interface. OPTICS LETTERS 2024; 49:5511-5514. [PMID: 39352994 DOI: 10.1364/ol.532893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024]
Abstract
Short-wavelength mid-infrared (SWMIR) silicon photonics has gained significant attention due to its applications in sensing, spectroscopy, and communications. A perfectly vertical grating coupler is a valuable packaging technique that is convenient for chip-to-chip optical interconnects and has low risks of mechanical failure during testing. However, SWMIR grating couplers have fewer periods to tailor the diffracted light, hindering the improvement of bandwidths and backreflections. Herein, we demonstrate a perfectly vertical subwavelength grating coupler by using a modified inverse design approach. The device exhibits a coupling efficiency of -5.9 dB with a 1-dB bandwidth of ∼122 nm and a low backreflection of -19.2 dB at 2200 nm wavelengths. Besides, the device also exhibits exceptional spatial fiber misalignment tolerance. The study underscores the effectiveness of the inverse design strategy in subwavelength grating couplers, charting a path to advance the mid-infrared silicon photonic packaging.
Collapse
|
3
|
Corletto A, Myagmarsereejid P, Wang S, Yan W, Balendhran S, Liu H, Zhong YL, Crozier KB, Batmunkh M, Bullock J. Scalable Fabrication of Black Phosphorous Films for Infrared Photodetector Arrays. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403182. [PMID: 39033543 DOI: 10.1002/advs.202403182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/19/2024] [Indexed: 07/23/2024]
Abstract
Bulk black phosphorous (bP) exhibits excellent infrared (IR) optoelectronic properties, but most reported bP IR photodetectors are fabricated from single exfoliated flakes with lateral sizes of < 100 µm. Here, scalable thin films of bP suitable for IR photodetector arrays are realized through a tailored solution-deposition method. The properties of the bP film and their protective capping layers are optimized to fabricate bP IR photoconductors exhibiting specific detectivities up to 4.0 × 108 cm Hz1/2 W-1 with fast 30/60 µs rise/fall times under λ = 2.2 µm illumination. The scalability of the bP thin film fabrication is demonstrated by fabricating a linear array of 25 bP photodetectors and obtaining 25 × 25 pixel IR images at ≈203 ppi with good spatial fidelity. This research demonstrates a commercially viable method of fabricating scalable bP thin films for optoelectronic devices including room temperature-operable IR photodetector arrays.
Collapse
Affiliation(s)
- Alexander Corletto
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, Melbourne, Victoria, 3010, Australia
| | - Purevlkham Myagmarsereejid
- Queensland Micro- and Nanotechnology Centre, School of Environment and Science, Griffith University, Nathan Campus, Brisbane, Queensland, 4111, Australia
| | - Shifan Wang
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, Melbourne, Victoria, 3010, Australia
| | - Wei Yan
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, Melbourne, Victoria, 3010, Australia
| | - Sivacarendran Balendhran
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, Melbourne, Victoria, 3010, Australia
| | - Huan Liu
- School of Physics, The University of Melbourne, Parkville, Melbourne, Victoria, 3010, Australia
| | - Yu Lin Zhong
- Queensland Micro- and Nanotechnology Centre, School of Environment and Science, Griffith University, Nathan Campus, Brisbane, Queensland, 4111, Australia
| | - Kenneth B Crozier
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, Melbourne, Victoria, 3010, Australia
- School of Physics, The University of Melbourne, Parkville, Melbourne, Victoria, 3010, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems, The University of Melbourne, Parkville, Melbourne, Victoria, 3010, Australia
| | - Munkhbayar Batmunkh
- Queensland Micro- and Nanotechnology Centre, School of Environment and Science, Griffith University, Nathan Campus, Brisbane, Queensland, 4111, Australia
| | - James Bullock
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
4
|
Negm N, Zayouna S, Parhizkar S, Lin PS, Huang PH, Suckow S, Schroeder S, De Luca E, Briano FO, Quellmalz A, Duesberg GS, Niklaus F, Gylfason KB, Lemme MC. Graphene Thermal Infrared Emitters Integrated into Silicon Photonic Waveguides. ACS PHOTONICS 2024; 11:2961-2969. [PMID: 39184180 PMCID: PMC11342416 DOI: 10.1021/acsphotonics.3c01892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 08/27/2024]
Abstract
Cost-efficient and easily integrable broadband mid-infrared (mid-IR) sources would significantly enhance the application space of photonic integrated circuits (PICs). Thermal incandescent sources are superior to other common mid-IR emitters based on semiconductor materials in terms of PIC compatibility, manufacturing costs, and bandwidth. Ideal thermal emitters would radiate directly into the desired modes of the PIC waveguides via near-field coupling and would be stable at very high temperatures. Graphene is a semimetallic two-dimensional material with comparable emissivity to thin metallic thermal emitters. It allows maximum coupling into waveguides by placing it directly into their evanescent fields. Here, we demonstrate graphene mid-IR emitters integrated with photonic waveguides that couple directly into the fundamental mode of silicon waveguides designed to work in the so-called "fingerprint region" relevant for gas sensing. High broadband emission intensity is observed at the waveguide-integrated graphene emitter. The emission at the output grating couplers confirms successful coupling into the waveguide mode. Thermal simulations predict emitter temperatures up to 1000 °C, where the blackbody radiation covers the mid-IR region. A coupling efficiency η, defined as the light emitted into the waveguide divided by the total emission, of up to 68% is estimated, superior to data published for other waveguide-integrated emitters.
Collapse
Affiliation(s)
- Nour Negm
- Advanced
Microelectronic Center Aachen, AMO GmbH, Otto-Blumenthal-Str. 25, 52074 Aachen, Germany
- Chair
of Electronic Devices (ELD), RWTH Aachen
University, Otto-Blumenthal-Str.
25, 52074 Aachen, Germany
| | - Sarah Zayouna
- Senseair
AB, Stationsgatan 12, 824 08 Delsbo, Sweden
- Department
of Applied Physics, KTH Royal Institute
of Technology, Stationsgatan
12, 114 19 Stockholm, Sweden
| | - Shayan Parhizkar
- Advanced
Microelectronic Center Aachen, AMO GmbH, Otto-Blumenthal-Str. 25, 52074 Aachen, Germany
- Chair
of Electronic Devices (ELD), RWTH Aachen
University, Otto-Blumenthal-Str.
25, 52074 Aachen, Germany
| | - Pen-Sheng Lin
- Division
of Micro- and Nanosystems, School of Electrical Engineering and Computer
Science, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Po-Han Huang
- Division
of Micro- and Nanosystems, School of Electrical Engineering and Computer
Science, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Stephan Suckow
- Advanced
Microelectronic Center Aachen, AMO GmbH, Otto-Blumenthal-Str. 25, 52074 Aachen, Germany
| | | | | | | | - Arne Quellmalz
- Division
of Micro- and Nanosystems, School of Electrical Engineering and Computer
Science, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Georg S. Duesberg
- Institute
of Physics, Faculty of Electrical Engineering and Information Technology
(EIT 4) & SENS Research Centre, University
of the Bundeswehr Munich, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
| | - Frank Niklaus
- Division
of Micro- and Nanosystems, School of Electrical Engineering and Computer
Science, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Kristinn B. Gylfason
- Division
of Micro- and Nanosystems, School of Electrical Engineering and Computer
Science, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Max C. Lemme
- Advanced
Microelectronic Center Aachen, AMO GmbH, Otto-Blumenthal-Str. 25, 52074 Aachen, Germany
- Chair
of Electronic Devices (ELD), RWTH Aachen
University, Otto-Blumenthal-Str.
25, 52074 Aachen, Germany
| |
Collapse
|
5
|
Qu J, Cheng H, Lan H, Zheng B, Luo Z, Yang X, Yi X, Wu G, Chen S, Pan A. Space-Confined Growth of Ultrathin P-Type GeTe Nanosheets for Broadband Photodetectors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309391. [PMID: 38456381 DOI: 10.1002/smll.202309391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/18/2024] [Indexed: 03/09/2024]
Abstract
As p-type phase-change degenerate semiconductors, crystalline and amorphous germanium telluride (GeTe) exhibit metallic and semiconducting properties, respectively. However, the massive structural defects and strong interface scattering in amorphous GeTe films significantly reduce their performance. In this work, two-dimensional (2D) p-type GeTe nanosheets are synthesized via a specially designed space-confined chemical vapor deposition (CVD) method, with the thickness of the GeTe nanosheets reduced to 1.9 nm. The space-confined CVD method improves the crystallinity of ultrathin GeTe by lowering the partial pressure of the reactant gas, resulting in GeTe nanosheets with excellent p-type semiconductor properties, such as a satisfactory on/off ratio of 105. Temperature-dependent electrical measurements demonstrate that variable-range hopping and optical-phonon-assisted hopping mechanisms dominate transport behavior at low and high temperatures, respectively. GeTe devices exhibit significantly high responsivity (6589 and 2.2 A W-1 at 633 and 980 nm, respectively) and detectivity (1.67 × 1011 and 1.3 × 108 Jones at 633 and 980 nm, respectively), making them feasible for broadband photodetectors in the visible to near-infrared range. Furthermore, the fabricated GeTe/WS2 diode exhibits a rectification ratio of 103 at zero gate voltage. These satisfactory p-type semiconductor properties demonstrate that ultrathin GeTe exhibits enormous potential for applications in optoelectronic interconnection circuits.
Collapse
Affiliation(s)
- Junyu Qu
- Hunan Institute of Optoelectronic Integration, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Haodong Cheng
- Hunan Institute of Optoelectronic Integration, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Huiping Lan
- Hunan Institute of Optoelectronic Integration, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Biyuan Zheng
- Hunan Institute of Optoelectronic Integration, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Ziyu Luo
- Hunan Institute of Optoelectronic Integration, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Xin Yang
- Hunan Institute of Optoelectronic Integration, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Xiao Yi
- Hunan Institute of Optoelectronic Integration, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Guangcheng Wu
- Hunan Institute of Optoelectronic Integration, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Shula Chen
- Hunan Institute of Optoelectronic Integration, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Anlian Pan
- Hunan Institute of Optoelectronic Integration, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- School of Physics and Electronics, Hunan Normal University, Changsha, Hunan, 410081, P. R. China
| |
Collapse
|
6
|
Li M, Guan W, Liu C, Xing F, Zheng Y, Di Y, Cao G, Wei S, Wang Y, Yang G, Yu L, Gan Z. Room-Temperature High-Performance Photodetector and Phototransistor Based on PdSe 2/ZnIn 2S 4 Alloy Heterojunctions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309499. [PMID: 38624172 DOI: 10.1002/smll.202309499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/12/2024] [Indexed: 04/17/2024]
Abstract
Various semiconductor devices have been developed based on 2D heterojunction materials owing to their distinctive optoelectronic properties. However, to achieve efficient charge transfer at their interface remains a major challenge. Herein, an alloy heterojunction concept is proposed. The sulfur vacancies in ZnIn2S4 are filled with selenium atoms of PdSe2. This chemically bonded heterojunction can significantly enhance the separation of photocarriers, providing notable advantages in the field of photoelectric conversion. As a demonstration, a two-terminal photodetector based on the PdSe2/ZnIn2S4 heterojunction materials is fabricated. The photodetector exhibits stable operation in ambient conditions, showcasing superior performance in terms of large photocurrent, high responsivity (48.8 mA W-1) and detectivity (1.98 × 1011 Jones). To further validate the excellent optoelectronic performance of the heterojunction, a tri-terminal phototransistor is also fabricated. Benefiting from gate voltage modulation, the photocurrent is amplified to milliampere level, and the responsivity is increased to 229.14 mA W-1. These findings collectively demonstrate the significant potential of the chemically bonded PdSe2/ZnIn2S4 alloy heterojunction for future optoelectronic applications.
Collapse
Affiliation(s)
- Mingchao Li
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing, 210023, China
| | - Wei Guan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Cihui Liu
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing, 210023, China
| | - Fangjian Xing
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing, 210023, China
| | - Yubin Zheng
- Dalian University of Technology Corporation of Changshu Research Institution, Suzhou, 215500, P. R. China
| | - Yunsong Di
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing, 210023, China
| | - Guiyuan Cao
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shibiao Wei
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ying Wang
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Guofeng Yang
- School of Science, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Liyan Yu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zhixing Gan
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing, 210023, China
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Dalian University of Technology Corporation of Changshu Research Institution, Suzhou, 215500, P. R. China
| |
Collapse
|
7
|
Liu X, Zhang Z, Zhou J, Liu W, Zhou G, Lee C. Artificial Intelligence-Enhanced Waveguide "Photonic Nose"- Augmented Sensing Platform for VOC Gases in Mid-Infrared. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400035. [PMID: 38576121 DOI: 10.1002/smll.202400035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/17/2024] [Indexed: 04/06/2024]
Abstract
On-chip nanophotonic waveguide sensor is a promising solution for miniaturization and label-free detection of gas mixtures utilizing the absorption fingerprints in the mid-infrared (MIR) region. However, the quantitative detection and analysis of organic gas mixtures is still challenging and less reported due to the overlapping of the absorption spectrum. Here,an Artificial-Intelligence (AI) assisted waveguide "Photonic nose" is presented as an augmented sensing platform for gas mixture analysis in MIR. With the subwavelength grating cladding supported waveguide design and the help of machine learning algorithms, the MIR absorption spectrum of the binary organic gas mixture is distinguished from arbitrary mixing ratio and decomposed to the single-component spectra for concentration prediction. As a result, the classification of 93.57% for 19 mixing ratios is realized. In addition, the gas mixture spectrum decomposition and concentration prediction show an average root-mean-square error of 2.44 vol%. The work proves the potential for broader sensing and analytical capabilities of the MIR waveguide platform for multiple organic gas components toward MIR on-chip spectroscopy.
Collapse
Affiliation(s)
- Xinmiao Liu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Zixuan Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
| | - Jingkai Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
| | - Weixin Liu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
| | - Guangya Zhou
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou, Jiangsu, 215123, China
- NUS Graduate School's Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, 117583, Singapore
| |
Collapse
|
8
|
Pham PV, Mai TH, Do HB, Vasundhara M, Nguyen VH, Nguyen T, Bui HV, Dao VD, Gupta RK, Ponnusamy VK, Park JH. Layer-by-layer thinning of two-dimensional materials. Chem Soc Rev 2024; 53:5190-5226. [PMID: 38586901 DOI: 10.1039/d3cs00817g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Etching technology - one of the representative modern semiconductor device makers - serves as a broad descriptor for the process of removing material from the surfaces of various materials, whether partially or entirely. Meanwhile, thinning technology represents a novel and highly specialized approach within the realm of etching technology. It indicates the importance of achieving an exceptionally sophisticated and precise removal of material, layer-by-layer, at the nanoscale. Notably, thinning technology has gained substantial momentum, particularly in top-down strategies aimed at pushing the frontiers of nano-worlds. This rapid development in thinning technology has generated substantial interest among researchers from diverse backgrounds, including those in the fields of chemistry, physics, and engineering. Precisely and expertly controlling the layer numbers of 2D materials through the thinning procedure has been considered as a crucial step. This is because the thinning processes lead to variations in the electrical and optical characteristics. In this comprehensive review, the strategies for top-down thinning of representative 2D materials (e.g., graphene, black phosphorus, MoS2, h-BN, WS2, MoSe2, and WSe2) based on conventional plasma-assisted thinning, integrated cyclic plasma-assisted thinning, laser-assisted thinning, metal-assisted splitting, and layer-resolved splitting are covered in detail, along with their mechanisms and benefits. Additionally, this review further explores the latest advancements in terms of the potential advantages of semiconductor devices achieved by top-down 2D material thinning procedures.
Collapse
Affiliation(s)
- Phuong V Pham
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - The-Hung Mai
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Huy-Binh Do
- Faculty of Applied Science, Ho Chi Minh City University of Technology and Education, Thu Duc 700000, Vietnam
| | - M Vasundhara
- Polymers and Functional Materials Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - Van-Huy Nguyen
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India
| | - Trieu Nguyen
- Shared Research Facilities, West Virginia University, Morgantown, WV 26506, USA
| | - Hao Van Bui
- Faculty of Materials Science and Engineering and Faculty of Electrical and Electronic Engineering, Phenikaa University, Hanoi 12116, Vietnam
| | - Van-Duong Dao
- Faculty of Biotechnology, Chemistry, and Environmental Engineering, Phenikaa University, Hanoi 100000, Vietnam
| | - Ram K Gupta
- Department of Chemistry, Kansas Polymer Research Center, Pittsburg State University, Pittsburg, KS-66762, USA
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Jin-Hong Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon 16419, South Korea.
| |
Collapse
|
9
|
Wang X, Zeng G, Shen L, Chen W, Du F, Chen YC, Ding ST, Shi CY, Zhang DW, Chen L, Lu HL. Two-dimensional molybdenum ditelluride waveguide-integrated near-infrared photodetector. NANOTECHNOLOGY 2024; 35:225201. [PMID: 38387089 DOI: 10.1088/1361-6528/ad2c56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/21/2024] [Indexed: 02/24/2024]
Abstract
Low-cost, small-sized, and easy integrated high-performance photodetectors for photonics are still the bottleneck of photonic integrated circuits applications and have attracted increasing attention. The tunable narrow bandgap of two-dimensional (2D) layered molybdenum ditelluride (MoTe2) from ∼0.83 to ∼1.1 eV makes it one of the ideal candidates for near-infrared (NIR) photodetectors. Herein, we demonstrate an excellent waveguide-integrated NIR photodetector by transferring mechanically exfoliated 2D MoTe2onto a silicon nitride (Si3N4) waveguide. The photoconductive photodetector exhibits excellent responsivity (R), detectivity (D*), and external quantum efficiency at 1550 nm and 50 mV, which are 41.9 A W-1, 16.2 × 1010Jones, and 3360%, respectively. These optoelectronic performances are 10.2 times higher than those of the free-space device, revealing that the photoresponse of photodetectors can be enhanced due to the presence of waveguide. Moreover, the photodetector also exhibits competitive performances over a broad wavelength range from 800 to 1000 nm with a highRof 15.4 A W-1and a largeD* of 59.6 × 109Jones. Overall, these results provide an alternative and prospective strategy for high-performance on-chip broadband NIR photodetectors.
Collapse
Affiliation(s)
- Xinxue Wang
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, 200433 Shanghai, People's Republic of China
| | - Guang Zeng
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, 200433 Shanghai, People's Republic of China
| | - Lei Shen
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, 200433 Shanghai, People's Republic of China
| | - Wei Chen
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, 430074, Wuhan, People's Republic of China
| | - Fanyu Du
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, 430074, Wuhan, People's Republic of China
| | - Yu-Chang Chen
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, 200433 Shanghai, People's Republic of China
| | - Si-Tong Ding
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, 200433 Shanghai, People's Republic of China
| | - Cai-Yu Shi
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, 200433 Shanghai, People's Republic of China
| | - David Wei Zhang
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, 200433 Shanghai, People's Republic of China
| | - Liao Chen
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, 430074, Wuhan, People's Republic of China
| | - Hong-Liang Lu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, 200433 Shanghai, People's Republic of China
- Jiashan Fudan Institute, Jiaxing, Zhejiang Province 314100, People's Republic of China
| |
Collapse
|
10
|
Ngo DA, Nguyen NM, Tran CK, Van Tran TT, Thi Tran NH, Thao Bui TT, Duy LT, Dang VQ. A study on a broadband photodetector based on hybrid 2D copper oxide/reduced graphene oxide. NANOSCALE ADVANCES 2024; 6:1460-1466. [PMID: 38419870 PMCID: PMC10898423 DOI: 10.1039/d3na00796k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
These days, photodetectors are a crucial part of optoelectronic devices, ranging from environmental monitoring to international communication systems. Therefore, fabricating these devices at a low cost but obtaining high sensitivity in a wide range of wavelengths is of great interest. This report introduces a simple solution-processed hybrid 2D structure of CuO and rGO for broadband photodetector applications. Particularly, 2D CuO acts as the active material, absorbing light to generate electron-hole pairs, while 2D rGO plays the role of a transport layer, driving charge carriers between two electrodes. Our device exhibits remarkable sensitivity to a wide wavelength range from 395 nm to 945 nm (vis-NIR region). Interestingly, our devices' responsivity and photoconductive gain were calculated (under 395 nm wavelength excitation) to be up to 8 mA W-1 and 28 fold, respectively, which are comparable values with previous publications. Our hybrid 2D structure between rGO and CuO enables a potential approach for developing low-cost but high-performance optoelectronic devices, especially photodetectors, in the future.
Collapse
Affiliation(s)
- Duc Anh Ngo
- Faculty of Materials Science and Technology, University of Science 227 Nguyen Van Cu Street District 5 Ho Chi Minh City 700000 Vietnam
- Vietnam National University (VNU-HCM) Ho Chi Minh City 700000 Vietnam
| | - Nhat Minh Nguyen
- Faculty of Materials Science and Technology, University of Science 227 Nguyen Van Cu Street District 5 Ho Chi Minh City 700000 Vietnam
- Vietnam National University (VNU-HCM) Ho Chi Minh City 700000 Vietnam
| | - Cong Khanh Tran
- Faculty of Materials Science and Technology, University of Science 227 Nguyen Van Cu Street District 5 Ho Chi Minh City 700000 Vietnam
- Vietnam National University (VNU-HCM) Ho Chi Minh City 700000 Vietnam
| | - Thi Thanh Van Tran
- Faculty of Materials Science and Technology, University of Science 227 Nguyen Van Cu Street District 5 Ho Chi Minh City 700000 Vietnam
- Vietnam National University (VNU-HCM) Ho Chi Minh City 700000 Vietnam
| | - Nhu Hoa Thi Tran
- Faculty of Materials Science and Technology, University of Science 227 Nguyen Van Cu Street District 5 Ho Chi Minh City 700000 Vietnam
- Center for Innovative Materials and Architectures (INOMAR) Ho Chi Minh City 700000 Vietnam
- Vietnam National University (VNU-HCM) Ho Chi Minh City 700000 Vietnam
| | - Thi Thu Thao Bui
- Faculty of Materials Science and Technology, University of Science 227 Nguyen Van Cu Street District 5 Ho Chi Minh City 700000 Vietnam
- Vietnam National University (VNU-HCM) Ho Chi Minh City 700000 Vietnam
| | - Le Thai Duy
- Faculty of Materials Science and Technology, University of Science 227 Nguyen Van Cu Street District 5 Ho Chi Minh City 700000 Vietnam
- Vietnam National University (VNU-HCM) Ho Chi Minh City 700000 Vietnam
| | - Vinh Quang Dang
- Faculty of Materials Science and Technology, University of Science 227 Nguyen Van Cu Street District 5 Ho Chi Minh City 700000 Vietnam
- Center for Innovative Materials and Architectures (INOMAR) Ho Chi Minh City 700000 Vietnam
- Vietnam National University (VNU-HCM) Ho Chi Minh City 700000 Vietnam
| |
Collapse
|
11
|
Wang XX, Zeng G, Yu QJ, Shen L, Shi CY, Lu HL. Photodetectors integrating waveguides and semiconductor materials. NANOSCALE 2024. [PMID: 38410877 DOI: 10.1039/d4nr00305e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Photodetectors integrating substrates and semiconductor materials are increasingly attractive for applications in optical communication, optical sensing, optical computing, and military owing to the unique optoelectronic properties of semiconductor materials. However, it is still a challenge to realize high-performance photodetectors by only integrating substrates and semiconductor materials because of the limitation of incident light in contact with sensitive materials. In recent years, waveguides such as silicon (Si) and silicon nitride (Si3N4) have attracted extensive attention owing to their unique optical properties. Waveguides can be easily hetero-integrated with semiconductor materials, thus providing a promising approach for realizing high-performance photodetectors. Herein, we review recent advances in photodetectors integrating waveguides in two parts. The first involves the waveguide types and semiconductor materials commonly used to fabricate photodetectors, including Si, Si3N4, gallium nitride, organic waveguides, graphene, and MoTe2. The second involves the photodetectors of different wavelengths that integrate waveguides, ranging from ultraviolet to infrared. These hybrid photodetectors integrating waveguides and semiconductor materials provide an alternative way to realize multifunctional and high-performance photonic integrated chips and circuits.
Collapse
Affiliation(s)
- Xin-Xue Wang
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China.
| | - Guang Zeng
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China.
| | - Qiu-Jun Yu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China.
| | - Lei Shen
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China.
| | - Cai-Yu Shi
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China.
| | - Hong-Liang Lu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China.
- Jiashan Fudan Institute, Jiaxing, Zhejiang Province 314100, China
| |
Collapse
|
12
|
Lien MR, Wang N, Guadagnini S, Wu J, Soibel A, Gunapala SD, Wang H, Povinelli ML. Black Phosphorus Molybdenum Disulfide Midwave Infrared Photodiodes with Broadband Absorption-Increasing Metasurfaces. NANO LETTERS 2023; 23:9980-9987. [PMID: 37883580 PMCID: PMC10636840 DOI: 10.1021/acs.nanolett.3c03076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 10/28/2023]
Abstract
Black phosphorus (BP) has been established as a promising material for room temperature midwave infrared (MWIR) photodetectors. However, many of its attractive optoelectronic properties are often observable only at smaller film thicknesses, which inhibits photodetector absorption and performance. In this work, we show that metasurface gratings increase the absorption of BP-MoS2 heterojunction photodiodes over a broad range of wavelengths in the MWIR. We designed, fabricated, and characterized metasurface gratings that increase absorption at selected wavelengths or broad spectral ranges. We evaluated the broadband metasurfaces by measuring the room temperature responsivity and specific detectivity of BP-MoS2 photodiodes at multiple MWIR wavelengths. Our results show that broadband metasurface gratings are a scalable approach for boosting the performance of BP photodiodes over large spectral ranges.
Collapse
Affiliation(s)
- Max R. Lien
- Ming
Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Nan Wang
- Mork
Family Department of Chemical Engineering & Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Silvia Guadagnini
- Department
of Physics & Astronomy, University of
Southern California, Los Angeles, California 90089, United States
| | - Jiangbin Wu
- Ming
Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Alexander Soibel
- Jet
Propulsion Laboratory, California Institute
of Technology, 4800 Oak
Grove Dr., Pasadena, California 91030, United States
| | - Sarath D. Gunapala
- Jet
Propulsion Laboratory, California Institute
of Technology, 4800 Oak
Grove Dr., Pasadena, California 91030, United States
| | - Han Wang
- Ming
Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
- Mork
Family Department of Chemical Engineering & Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Michelle L. Povinelli
- Ming
Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
- Department
of Physics & Astronomy, University of
Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
13
|
Tang L, Zou J. p-Type Two-Dimensional Semiconductors: From Materials Preparation to Electronic Applications. NANO-MICRO LETTERS 2023; 15:230. [PMID: 37848621 PMCID: PMC10582003 DOI: 10.1007/s40820-023-01211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/04/2023] [Indexed: 10/19/2023]
Abstract
Two-dimensional (2D) materials are regarded as promising candidates in many applications, including electronics and optoelectronics, because of their superior properties, including atomic-level thickness, tunable bandgaps, large specific surface area, and high carrier mobility. In order to bring 2D materials from the laboratory to industrialized applications, materials preparation is the first prerequisite. Compared to the n-type analogs, the family of p-type 2D semiconductors is relatively small, which limits the broad integration of 2D semiconductors in practical applications such as complementary logic circuits. So far, many efforts have been made in the preparation of p-type 2D semiconductors. In this review, we overview recent progresses achieved in the preparation of p-type 2D semiconductors and highlight some promising methods to realize their controllable preparation by following both the top-down and bottom-up strategies. Then, we summarize some significant application of p-type 2D semiconductors in electronic and optoelectronic devices and their superiorities. In end, we conclude the challenges existed in this field and propose the potential opportunities in aspects from the discovery of novel p-type 2D semiconductors, their controlled mass preparation, compatible engineering with silicon production line, high-κ dielectric materials, to integration and applications of p-type 2D semiconductors and their heterostructures in electronic and optoelectronic devices. Overall, we believe that this review will guide the design of preparation systems to fulfill the controllable growth of p-type 2D semiconductors with high quality and thus lay the foundations for their potential application in electronics and optoelectronics.
Collapse
Affiliation(s)
- Lei Tang
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, People's Republic of China.
| | - Jingyun Zou
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, People's Republic of China.
| |
Collapse
|
14
|
Rogalski A, Kopytko M, Hu W, Martyniuk P. Infrared HOT Photodetectors: Status and Outlook. SENSORS (BASEL, SWITZERLAND) 2023; 23:7564. [PMID: 37688032 PMCID: PMC10490682 DOI: 10.3390/s23177564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
At the current stage of long-wavelength infrared (LWIR) detector technology development, the only commercially available detectors that operate at room temperature are thermal detectors. However, the efficiency of thermal detectors is modest: they exhibit a slow response time and are not very useful for multispectral detection. On the other hand, in order to reach better performance (higher detectivity, better response speed, and multispectral response), infrared (IR) photon detectors are used, requiring cryogenic cooling. This is a major obstacle to the wider use of IR technology. For this reason, significant efforts have been taken to increase the operating temperature, such as size, weight and power consumption (SWaP) reductions, resulting in lower IR system costs. Currently, efforts are aimed at developing photon-based infrared detectors, with performance being limited by background radiation noise. These requirements are formalized in the Law 19 standard for P-i-N HgCdTe photodiodes. In addition to typical semiconductor materials such as HgCdTe and type-II AIIIBV superlattices, new generations of materials (two-dimensional (2D) materials and colloidal quantum dots (CQDs)) distinguished by the physical properties required for infrared detection are being considered for future high-operating-temperature (HOT) IR devices. Based on the dark current density, responsivity and detectivity considerations, an attempt is made to determine the development of a next-gen IR photodetector in the near future.
Collapse
Affiliation(s)
- Antoni Rogalski
- Institute of Applied Physics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland; (A.R.); (M.K.)
| | - Małgorzata Kopytko
- Institute of Applied Physics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland; (A.R.); (M.K.)
| | - Weida Hu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai 200083, China;
| | - Piotr Martyniuk
- Institute of Applied Physics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland; (A.R.); (M.K.)
| |
Collapse
|
15
|
Zhang M, Yang L, Wu X, Wang J. Black Phosphorus for Photonic Integrated Circuits. RESEARCH (WASHINGTON, D.C.) 2023; 6:0206. [PMID: 37593339 PMCID: PMC10430873 DOI: 10.34133/research.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Black phosphorus gives several advantages and complementarities over other two-dimensional materials. It has drawn extensive interest owing to its relatively high carrier mobility, wide tunable bandgap, and in-plane anisotropy in recent years. This manuscript briefly reviews the structure and physical properties of black phosphorus and targets on black phosphorus for photonic integrated circuits. Some of the applications are discussed including photodetection, optical modulation, light emission, and polarization conversion. Corresponding recent progresses, associated challenges, and future potentials are covered.
Collapse
Affiliation(s)
| | | | | | - Junjia Wang
- National Research Center for Optical Sensors/communications Integrated Networks, School of Electronic Science and Engineering,
Southeast University, 2 Sipailou, Nanjing 210096, China
| |
Collapse
|
16
|
Hu Y, Yang F, Chen J, Lu S, Zeng Q, Han H, Ma Y, Zhao Z, Chai G, Xiang B, Ruan S. High-responsivity and high-speed black phosphorus photodetectors integrated with proton exchanged thin-film lithium niobate waveguides. OPTICS EXPRESS 2023; 31:27962-27972. [PMID: 37710861 DOI: 10.1364/oe.497756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/29/2023] [Indexed: 09/16/2023]
Abstract
We present a high-performance broadband (450-1550 nm) black phosphorus photodetector based on a thin-film lithium niobate waveguide. The waveguides are fabricated by the proton exchange method with flat surfaces, which reduces the stress and deformation of two-dimensional materials. At a wavelength of 1550 nm, the photodetector simultaneously achieves a high responsivity and wide bandwidth, with a responsivity as high as 147 A/W (at an optical power of 17 nW), a 3-dB bandwidth of 0.86 GHz, and a detectivity of 3.04 × 1013 Jones. Our photodetector exhibits one of the highest responsivity values among 2D material-integrated waveguide photodetectors.
Collapse
|
17
|
Wang S, Ashokan A, Balendhran S, Yan W, Johnson BC, Peruzzo A, Crozier KB, Mulvaney P, Bullock J. Room Temperature Bias-Selectable, Dual-Band Infrared Detectors Based on Lead Sulfide Colloidal Quantum Dots and Black Phosphorus. ACS NANO 2023. [PMID: 37318109 DOI: 10.1021/acsnano.3c02617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A single photodetector capable of switching its peak spectral photoresponse between two wavelength bands is highly useful, particularly for the infrared (IR) bands in applications such as remote sensing, object identification, and chemical sensing. Technologies exist for achieving dual-band IR detection with bulk III-V and II-VI materials, but the high cost and complexity as well as the necessity for active cooling associated with some of these technologies preclude their widespread adoption. In this study, we leverage the advantages of low-dimensional materials to demonstrate a bias-selectable dual-band IR detector that operates at room temperature by using lead sulfide colloidal quantum dots and black phosphorus nanosheets. By switching between zero and forward bias, these detectors switch peak photosensitive ranges between the mid- and short-wave IR bands with room temperature detectivities of 5 × 109 and 1.6 × 1011 cm Hz1/2 W-1, respectively. To the best of our knowledge, these are the highest reported room temperature values for low-dimensional material dual-band IR detectors to date. Unlike conventional bias-selectable detectors, which utilize a set of back-to-back photodiodes, we demonstrate that under zero/forward bias conditions the device's operation mode instead changes between a photodiode and a phototransistor, allowing additional functionalities that the conventional structure cannot provide.
Collapse
Affiliation(s)
- Shifan Wang
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Arun Ashokan
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Sivacarendran Balendhran
- School of Physics, University of Melbourne, Melbourne, Victoria 3010, Australia
- ARC Centre of Excellence for Transformative Meta-Optical System (TMOS), The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Wei Yan
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Brett C Johnson
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Alberto Peruzzo
- Quantum Photonics Laboratory and Centre for Quantum Computation and Communication Technology, RMIT University, Melbourne, Victoria 3000, Australia
| | - Kenneth B Crozier
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Victoria 3010, Australia
- School of Physics, University of Melbourne, Melbourne, Victoria 3010, Australia
- ARC Centre of Excellence for Transformative Meta-Optical System (TMOS), The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - James Bullock
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
18
|
Lyu J, Yin Y, Kong D, Zhao C, Zhang X, Li A, Yi W, Wu Y, Wang X, Liu R. On-Chip Ultralow-Threshold Tunable CdSSe Nanobelt Lasers Excited by the Emission of Linked ZnO Nanowire. J Phys Chem Lett 2023; 14:3861-3868. [PMID: 37067291 DOI: 10.1021/acs.jpclett.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The integration of optical waveguide and on-chip nanolasers source has been one of the trends in photonic devices. For on-chip nanolasers, the integration of nanowires and high antidamage ability are imperative. Herein, we realized the on-chip ultralow-threshold and wavelength-tunable lasing from alloyed CdSSe nanobelt chip that is excited by the emission from linked ZnO nanowires. ZnO nanowire arrays are integrated into CdSSe nanobelt chips by the dry transfer method. A one-dimensional (1D) ZnO nanowire forms high-quality optical resonators and serves as an indirect pumping light to stimulate CdSSe nanobelt chips, and then wavelength-tunable lasing is generated with the ultralow threshold of 3.88 μW. The lasing mechanism is quite different than direct excitation by nanosecond laser pulse and indirect pumping by ZnO emission. The ZnO-CdSSe blocks provide a new solution to realize nanowire lasing from linked nanowires rather than direct laser pumping and thus avoid the light direct damage under general nanosecond laser excitation.
Collapse
Affiliation(s)
- Jing Lyu
- Beijing Key Lab of Nano-photonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314000, P. R. China
| | - Yunsong Yin
- Beijing Key Lab of Nano-photonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Denan Kong
- Beijing Key Lab of Nano-photonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chunyu Zhao
- Beijing Key Lab of Nano-photonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xinyu Zhang
- Beijing Key Lab of Nano-photonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - An Li
- Beijing Key Lab of Nano-photonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Wen Yi
- Beijing Key Lab of Nano-photonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yumei Wu
- Beijing Key Lab of Nano-photonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314000, P. R. China
| | - Xianshuang Wang
- Beijing Key Lab of Nano-photonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Ruibin Liu
- Beijing Key Lab of Nano-photonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314000, P. R. China
| |
Collapse
|
19
|
Zhao H, Yang L, Wu W, Cai X, Yang F, Xiu H, Wang Y, Zhang Q, Xin X, Zhang F, Peng LM, Wang S. Silicon Waveguide-Integrated Carbon Nanotube Photodetector with Low Dark Current and 48 GHz Bandwidth. ACS NANO 2023; 17:7466-7474. [PMID: 37017276 DOI: 10.1021/acsnano.2c12178] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Low-dimensional materials with excellent optoelectronic properties and complementary metal-oxide-semiconductor (CMOS) process compatibility have the potential to construct high-performance photodetectors used in a cost-efficient monolithic or hybrid integrated optical communication system. Carbon nanotubes (CNTs) have attracted a lot of attention due to special geometric structure and broad band response, high optical absorption coefficient, ps-level intrinsic light response, high carrier mobility and wafer-scaled production process. Here, we demonstrated a high-performance waveguide-integrated CNT photodetector with asymmetric palladium (Pd) and hafnium (Hf) contact electrodes. The ideal photodetector structure was realized via comparing with simulation and experimental results, where the optimized device achieved a high 3 dB bandwidth ∼48 GHz at 0 V, as well as a responsivity ∼73.62 mA/W and dark current ∼0.157 μA at -2 V bias voltage. This waveguide-integrated CNT photodetector with low dark current and high bandwidth is helpful for next-generation optical communication and high-speed optical interconnects.
Collapse
Affiliation(s)
- Hongyan Zhao
- State Key Laboratory of Information Photonics and Optical Communications and School of Electronic Engineering, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China
- Beijing Key Laboratory of Space-Ground Interconnection and Convergence, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics and Research Center for Carbon-based Electronics, Peking University, Beijing 100871, China
| | - Leijing Yang
- State Key Laboratory of Information Photonics and Optical Communications and School of Electronic Engineering, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China
- Beijing Key Laboratory of Space-Ground Interconnection and Convergence, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China
| | - Weifeng Wu
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics and Research Center for Carbon-based Electronics, Peking University, Beijing 100871, China
| | - Xiang Cai
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics and Research Center for Carbon-based Electronics, Peking University, Beijing 100871, China
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, Peking University, Beijing 100871, China
| | - Fan Yang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, Peking University, Beijing 100871, China
| | - Haojin Xiu
- State Key Laboratory of Information Photonics and Optical Communications and School of Electronic Engineering, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China
- Beijing Key Laboratory of Space-Ground Interconnection and Convergence, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China
| | - Yongjun Wang
- State Key Laboratory of Information Photonics and Optical Communications and School of Electronic Engineering, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China
- Beijing Key Laboratory of Space-Ground Interconnection and Convergence, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China
| | - Qi Zhang
- State Key Laboratory of Information Photonics and Optical Communications and School of Electronic Engineering, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China
- Beijing Key Laboratory of Space-Ground Interconnection and Convergence, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China
| | - Xiangjun Xin
- State Key Laboratory of Information Photonics and Optical Communications and School of Electronic Engineering, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China
- Beijing Key Laboratory of Space-Ground Interconnection and Convergence, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China
| | - Fan Zhang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, Peking University, Beijing 100871, China
| | - Lian-Mao Peng
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics and Research Center for Carbon-based Electronics, Peking University, Beijing 100871, China
| | - Sheng Wang
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics and Research Center for Carbon-based Electronics, Peking University, Beijing 100871, China
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
Elbanna A, Jiang H, Fu Q, Zhu JF, Liu Y, Zhao M, Liu D, Lai S, Chua XW, Pan J, Shen ZX, Wu L, Liu Z, Qiu CW, Teng J. 2D Material Infrared Photonics and Plasmonics. ACS NANO 2023; 17:4134-4179. [PMID: 36821785 DOI: 10.1021/acsnano.2c10705] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Two-dimensional (2D) materials including graphene, transition metal dichalcogenides, black phosphorus, MXenes, and semimetals have attracted extensive and widespread interest over the past years for their many intriguing properties and phenomena, underlying physics, and great potential for applications. The vast library of 2D materials and their heterostructures provides a diverse range of electrical, photonic, mechanical, and chemical properties with boundless opportunities for photonics and plasmonic devices. The infrared (IR) regime, with wavelengths across 0.78 μm to 1000 μm, has particular technological significance in industrial, military, commercial, and medical settings while facing challenges especially in the limit of materials. Here, we present a comprehensive review of the varied approaches taken to leverage the properties of the 2D materials for IR applications in photodetection and sensing, light emission and modulation, surface plasmon and phonon polaritons, non-linear optics, and Smith-Purcell radiation, among others. The strategies examined include the growth and processing of 2D materials, the use of various 2D materials like semiconductors, semimetals, Weyl-semimetals and 2D heterostructures or mixed-dimensional hybrid structures, and the engineering of light-matter interactions through nanophotonics, metasurfaces, and 2D polaritons. Finally, we give an outlook on the challenges in realizing high-performance and ambient-stable devices and the prospects for future research and large-scale commercial applications.
Collapse
Affiliation(s)
- Ahmed Elbanna
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 637371, Singapore
| | - Hao Jiang
- Department of Electrical and Electronic Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Qundong Fu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, Singapore 637553, Singapore
| | - Juan-Feng Zhu
- Science, Mathematics and Technology (SMT), Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Yuanda Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Meng Zhao
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Dongjue Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Samuel Lai
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Xian Wei Chua
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Jisheng Pan
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Ze Xiang Shen
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 637371, Singapore
- Interdisciplinary Graduate Program, Energy Research Institute@NTU, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- The Photonics Institute and Center for Disruptive Photonic Technologies, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 Singapore
| | - Lin Wu
- Science, Mathematics and Technology (SMT), Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
- Institute of High Performance Computing, Agency for Science Technology and Research (A*STAR), 1 Fusionopolis Way, Singapore 138632, Singapore
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, Singapore 637553, Singapore
| | - Cheng-Wei Qiu
- Department of Electrical and Electronic Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Jinghua Teng
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| |
Collapse
|
21
|
Gherabli R, Indukuri SRKC, Zektzer R, Frydendahl C, Levy U. MoSe 2/WS 2 heterojunction photodiode integrated with a silicon nitride waveguide for near infrared light detection with high responsivity. LIGHT, SCIENCE & APPLICATIONS 2023; 12:60. [PMID: 36869032 PMCID: PMC9984525 DOI: 10.1038/s41377-023-01088-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
We demonstrate experimentally the realization and the characterization of a chip-scale integrated photodetector for the near-infrared spectral regime based on the integration of a MoSe2/WS2 heterojunction on top of a silicon nitride waveguide. This configuration achieves high responsivity of ~1 A W-1 at the wavelength of 780 nm (indicating an internal gain mechanism) while suppressing the dark current to the level of ~50 pA, much lower as compared to a reference sample of just MoSe2 without WS2. We have measured the power spectral density of the dark current to be as low as ~1 × 10-12 A Hz-0.5, from which we extract the noise equivalent power (NEP) to be ~1 × 10-12 W Hz-0.5. To demonstrate the usefulness of the device, we use it for the characterization of the transfer function of a microring resonator that is integrated on the same chip as the photodetector. The ability to integrate local photodetectors on a chip and to operate such devices with high performance at the near-infrared regime is expected to play a critical role in future integrated devices in the field of optical communications, quantum photonics, biochemical sensing, and more.
Collapse
Affiliation(s)
- Rivka Gherabli
- Department of Applied Physics, The Faculty of Science, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - S R K C Indukuri
- Department of Applied Physics, The Faculty of Science, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Roy Zektzer
- Department of Applied Physics, The Faculty of Science, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Christian Frydendahl
- Department of Applied Physics, The Faculty of Science, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Uriel Levy
- Department of Applied Physics, The Faculty of Science, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
22
|
Xue X, Ling C, Ji H, Wang J, Wang C, Lu H, Liu W. Self-Powered and Broadband Bismuth Oxyselenide/p-Silicon Heterojunction Photodetectors with Low Dark Current and Fast Response. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5411-5419. [PMID: 36655912 DOI: 10.1021/acsami.2c15947] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Inorganic nanomaterials such as graphene, black phosphorus, and transition metal dichalcogenides have attracted great interest in developing optoelectronic devices due to their efficient conversion between light and electric signals. However, the zero band gap nature, the unstable chemical properties, and the low electron mobility constrained their wide applications. Bismuth oxyselenide (Bi2O2Se) is gradually showing great research significance in the optoelectronic field. Here, we develop a bismuth oxyselenide/p-silicon (Bi2O2Se/p-Si) heterojunction and design a self-powered and broadband Bi2O2Se/p-Si heterojunction photodetector with an ultrafast response (2.6 μs) and low dark current (10-10 A without gate voltage regulation). It possesses a remarkable detectivity of 4.43 × 1012 cm Hz1/2 W-1 and a self-powered photoresponse characteristic at 365-1550 nm (ultraviolet-near-infrared). Meanwhile, the Bi2O2Se/p-Si heterojunction photodetector also shows high stability and repeatability. It is expected that the proposed Bi2O2Se/p-Si heterojunction photodetector will expand the applications of Bi2O2Se in practical integrated circuits in the field of material science, energy development, optical imaging, biomedicine, and other applications.
Collapse
Affiliation(s)
- Xin Xue
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, China
| | - Cuicui Ling
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, China
| | - Hongguang Ji
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, China
| | - Jingyao Wang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, China
| | - Chuanke Wang
- Laser Fusion Research Center, Chinese Academy of Engineering Physics, Mianyang 621900, People's Republic of China
| | - Haipeng Lu
- National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wenpeng Liu
- Harvard Medical School, Harvard University, Boston, Massachusetts 02115, United States
- Division of Engineering in Medicine and Renal Division, Department of Medicine, Brigham Women's Hospital, Boston, Massachusetts 02115, United States
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
23
|
Zhou H, Xu L, Ren Z, Zhu J, Lee C. Machine learning-augmented surface-enhanced spectroscopy toward next-generation molecular diagnostics. NANOSCALE ADVANCES 2023; 5:538-570. [PMID: 36756499 PMCID: PMC9890940 DOI: 10.1039/d2na00608a] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/06/2022] [Indexed: 06/17/2023]
Abstract
The world today is witnessing the significant role and huge demand for molecular detection and screening in healthcare and medical diagnosis, especially during the outbreak of COVID-19. Surface-enhanced spectroscopy techniques, including Surface-Enhanced Raman Scattering (SERS) and Infrared Absorption (SEIRA), provide lattice and molecular vibrational fingerprint information which is directly linked to the molecular constituents, chemical bonds, and configuration. These properties make them an unambiguous, nondestructive, and label-free toolkit for molecular diagnostics and screening. However, new issues in molecular diagnostics, such as increasing molecular species, faster spread of viruses, and higher requirements for detection accuracy and sensitivity, have brought great challenges to detection technology. Advancements in artificial intelligence and machine learning (ML) techniques show promising potential in empowering SERS and SEIRA with rapid analysis and automatic data processing to jointly tackle the challenge. This review introduces the combination of ML and SERS/SEIRA by investigating how ML algorithms can be beneficial to SERS/SEIRA, discussing the general process of combining ML and SEIRA/SERS, highlighting the molecular diagnostics and screening applications based on ML-combined SEIRA/SERS, and providing perspectives on the future development of ML-integrated SEIRA/SERS. In general, this review offers comprehensive knowledge about the recent advances and the future outlook regarding ML-integrated SEIRA/SERS for molecular diagnostics and screening.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Electrical and Computer Engineering, National University of Singapore Singapore 117583
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore Singapore 117608
| | - Liangge Xu
- Department of Electrical and Computer Engineering, National University of Singapore Singapore 117583
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore Singapore 117608
- National Key Laboratory of Special Environment Composite Technology, Harbin Institute of Technology Harbin 150001 China
| | - Zhihao Ren
- Department of Electrical and Computer Engineering, National University of Singapore Singapore 117583
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore Singapore 117608
| | - Jiaqi Zhu
- National Key Laboratory of Special Environment Composite Technology, Harbin Institute of Technology Harbin 150001 China
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore Singapore 117583
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore Singapore 117608
- NUS Suzhou Research Institute (NUSRI) Suzhou 215123 China
| |
Collapse
|
24
|
Zhou J, Zhang Z, Dong B, Ren Z, Liu W, Lee C. Midinfrared Spectroscopic Analysis of Aqueous Mixtures Using Artificial-Intelligence-Enhanced Metamaterial Waveguide Sensing Platform. ACS NANO 2023; 17:711-724. [PMID: 36576121 DOI: 10.1021/acsnano.2c10163] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As miniaturized solutions, mid-infrared (MIR) waveguide sensors are promising for label-free compositional detection of mixtures leveraging plentiful absorption fingerprints. However, the quantitative analysis of liquid mixtures is still challenging using MIR waveguide sensors, as the absorption spectrum overlaps for multiple organic components accompanied by strong water absorption background. Here, we present an artificial-intelligence-enhanced metamaterial waveguide sensing platform (AIMWSP) for aqueous mixture analysis in the MIR. With the sensitivity-improved metamaterial waveguide and assistance of machine learning, the MIR absorption spectra of a ternary mixture in water can be successfully distinguished and decomposed to single-component spectra for predicting concentration. A classification accuracy of 98.88% for 64 mixing ratios and 92.86% for four concentrations below the limit of detection (972 ppm, based on 3σ) with steps of 300 ppm are realized. Besides, the mixture concentration prediction with root-mean-squared error varying from 0.107 vol % to 1.436 vol % is also achieved. Our work indicates the potential of further extending this sensing platform to MIR spectrometer-on-chip aiming for the data analytics of multiple organic components in aqueous environments.
Collapse
Affiliation(s)
- Jingkai Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore117583
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, Singapore117608
| | - Zixuan Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore117583
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, Singapore117608
| | - Bowei Dong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore117583
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, Singapore117608
| | - Zhihao Ren
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore117583
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, Singapore117608
| | - Weixin Liu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore117583
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, Singapore117608
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore117583
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, Singapore117608
- NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore119077
| |
Collapse
|
25
|
Lien MR, Wang N, Wu J, Soibel A, Gunapala SD, Wang H, Povinelli ML. Resonant Grating-Enhanced Black Phosphorus Mid-Wave Infrared Photodetector. NANO LETTERS 2022; 22:8704-8710. [PMID: 36287194 DOI: 10.1021/acs.nanolett.2c03469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Black phosphorus (BP) has emerged as a promising materials system for mid-wave infrared photodetection because of its moderate bandgap, high carrier mobility, substrate compatibility, and bandgap tunability. However, its uniquely tunable bandgap can only be taken advantage of with thin layer thicknesses, which ultimately limits the optical absorption of a BP photodetector. This work demonstrates an absorption-boosting resonant metal-insulator-metal (MIM) metasurface grating integrated with a thin-film BP photodetector. We designed and fabricated different MIM gratings and characterized their spectral properties. Then, we show that an MIM structure increased room temperature responsivity from 12 to 77 mA W-1 at 3.37 μm when integrated with a thin-film BP photodetector. Our results show that MIM structures simultaneously increase mid-wave infrared absorption and responsivity in a thin-film BP photodetector.
Collapse
Affiliation(s)
- Max R Lien
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Nan Wang
- Mork Family Department of Chemical Engineering & Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Jiangbin Wu
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Alexander Soibel
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91030, United States
| | - Sarath D Gunapala
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91030, United States
| | - Han Wang
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
- Mork Family Department of Chemical Engineering & Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Michelle L Povinelli
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
26
|
Wang F, Liu Z, Zhang T, Long M, Wang X, Xie R, Ge H, Wang H, Hou J, Gu Y, Hu X, Song Z, Wang S, Dong Q, Liao K, Tu Y, Han T, Li F, Zhang Z, Hou X, Wang S, Li L, Zhang X, Zhao D, Shan C, Shan L, Hu W. Fully Depleted Self-Aligned Heterosandwiched Van Der Waals Photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203283. [PMID: 35972840 DOI: 10.1002/adma.202203283] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Room-temperature-operating highly sensitive mid-wavelength infrared (MWIR) photodetectors are utilized in a large number of important applications, including night vision, communications, and optical radar. Many previous studies have demonstrated uncooled MWIR photodetectors using 2D narrow-bandgap semiconductors. To date, most of these works have utilized atomically thin flakes, simple van der Waals (vdW) heterostructures, or atomically thin p-n junctions as absorbers, which have difficulty in meeting the requirements for state-of-the-art MWIR photodetectors with a blackbody response. Here, a fully depleted self-aligned MoS2 -BP-MoS2 vdW heterostructure sandwiched between two electrodes is reported. This new type of photodetector exhibits competitive performance, including a high blackbody peak photoresponsivity up to 0.77 A W-1 and low noise-equivalent power of 2.0 × 10-14 W Hz-1/2 , in the MWIR region. A peak specific detectivity of 8.61 × 1010 cm Hz1/2 W-1 under blackbody radiation is achieved at room temperature in the MWIR region. Importantly, the effective detection range of the device is twice that of state-of-the-art MWIR photodetectors. Furthermore, the device presents an ultrafast response of ≈4 µs both in the visible and short-wavelength infrared bands. These results provide an ideal platform for realizing broadband and highly sensitive room-temperature MWIR photodetectors.
Collapse
Affiliation(s)
- Fang Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Zhiyi Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China
| | - Tao Zhang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Mingsheng Long
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China
| | - Xiuxiu Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China
| | - Runzhang Xie
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Haonan Ge
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Hao Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Jie Hou
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China
| | - Yue Gu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Xin Hu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China
| | - Ze Song
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China
| | - Suofu Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China
| | - Qingsong Dong
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China
| | - Kecai Liao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China
| | - Yubing Tu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China
| | - Tao Han
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China
| | - Feng Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China
| | - Zongyuan Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China
| | - Xingyuan Hou
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China
| | - Shaoliang Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China
| | - Liang Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China
| | - Xueao Zhang
- College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Dongxu Zhao
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Dongnanhu Road, Changchun, 130021, China
| | - Chongxin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Lei Shan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China
| | - Weida Hu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| |
Collapse
|
27
|
Liu W, Ma Y, Liu X, Zhou J, Xu C, Dong B, Lee C. Larger-Than-Unity External Optical Field Confinement Enabled by Metamaterial-Assisted Comb Waveguide for Ultrasensitive Long-Wave Infrared Gas Spectroscopy. NANO LETTERS 2022; 22:6112-6120. [PMID: 35759415 DOI: 10.1021/acs.nanolett.2c01198] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanophotonic waveguides that implement long optical pathlengths on chips are promising to enable chip-scale gas sensors. Nevertheless, current absorption-based waveguide sensors suffer from weak interactions with analytes, limiting their adoptions in most demanding applications such as exhaled breath analysis and trace-gas monitoring. Here, we propose an all-dielectric metamaterial-assisted comb (ADMAC) waveguide to greatly boost the sensing capability. By leveraging large longitudinal electric field discontinuity at periodic high-index-contrast interfaces in the subwavelength grating metamaterial and its unique features in refractive index engineering, the ADMAC waveguide features strong field delocalization into the air, pushing the external optical field confinement factor up to 113% with low propagation loss. Our sensor operates in the important but underdeveloped long-wave infrared spectral region, where absorption fingerprints of plentiful chemical bonds are located. Acetone absorption spectroscopy is demonstrated using our sensor around 7.33 μm, showing a detection limit of 2.5 ppm with a waveguide length of only 10 mm.
Collapse
Affiliation(s)
- Weixin Liu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Yiming Ma
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Xinmiao Liu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Jingkai Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Cheng Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Bowei Dong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| |
Collapse
|
28
|
Abstract
The past one and a half decades have witnessed the tremendous progress of two-dimensional (2D) crystals, including graphene, transition-metal dichalcogenides, black phosphorus, MXenes, hexagonal boron nitride, etc., in a variety of fields. The key to their success is their unique structural, electrical, mechanical and optical properties. Herein, this paper gives a comprehensive summary on the recent advances in 2D materials for optoelectronic approaches with the emphasis on the morphology and structure, optical properties, synthesis methods, as well as detailed optoelectronic applications. Additionally, the challenges and perspectives in the current development of 2D materials are also summarized and indicated. Therefore, this review can provide a reference for further explorations and innovations of 2D material-based optoelectronics devices.
Collapse
|
29
|
Chen Y, Tan C, Wang Z, Miao J, Ge X, Zhao T, Liao K, Ge H, Wang Y, Wang F, Zhou Y, Wang P, Zhou X, Shan C, Peng H, Hu W. Momentum-matching and band-alignment van der Waals heterostructures for high-efficiency infrared photodetection. SCIENCE ADVANCES 2022; 8:eabq1781. [PMID: 35905192 DOI: 10.1126/sciadv.abq1781] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) infrared photodetectors always suffer from low quantum efficiency (QE) because of the limited atomically thin absorption. Here, we reported 2D black phosphorus (BP)/Bi2O2Se van der Waals (vdW) photodetectors with momentum-matching and band-alignment heterostructures to achieve high QE. The QE was largely improved by optimizing the generation, suppressing the recombination, and improving the collection of photocarriers. Note that momentum-matching BP/Bi2O2Se heterostructures in k-space lead to the highly efficient generation and transition of photocarriers. The recombination process can be largely suppressed by lattice mismatching-immune vdW interfaces. Furthermore, type II BP/Bi2O2Se vdW heterostructures could also assist fast transport and collection of photocarriers. By constructing momentum-matching and band-alignment heterostructures, a record-high QE of 84% at 1.3 micrometers and 76.5% at 2 micrometers have been achieved in BP/Bi2O2Se vdW photodetectors.
Collapse
Affiliation(s)
- Yunfeng Chen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Congwei Tan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhen Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Jinshui Miao
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Ge
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiange Zhao
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Kecai Liao
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haonan Ge
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Yang Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Fang Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Yi Zhou
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Peng Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Xiaohao Zhou
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Chongxin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Hailin Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Weida Hu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Waveguide-integrated mid-infrared photodetection using graphene on a scalable chalcogenide glass platform. Nat Commun 2022; 13:3915. [PMID: 35798746 PMCID: PMC9262905 DOI: 10.1038/s41467-022-31607-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/16/2022] [Indexed: 11/14/2022] Open
Abstract
The development of compact and fieldable mid-infrared (mid-IR) spectroscopy devices represents a critical challenge for distributed sensing with applications from gas leak detection to environmental monitoring. Recent work has focused on mid-IR photonic integrated circuit (PIC) sensing platforms and waveguide-integrated mid-IR light sources and detectors based on semiconductors such as PbTe, black phosphorus and tellurene. However, material bandgaps and reliance on SiO2 substrates limit operation to wavelengths λ ≲ 4 μm. Here we overcome these challenges with a chalcogenide glass-on-CaF2 PIC architecture incorporating split-gate photothermoelectric graphene photodetectors. Our design extends operation to λ = 5.2 μm with a Johnson noise-limited noise-equivalent power of 1.1 nW/Hz1/2, no fall-off in photoresponse up to f = 1 MHz, and a predicted 3-dB bandwidth of f3dB > 1 GHz. This mid-IR PIC platform readily extends to longer wavelengths and opens the door to applications from distributed gas sensing and portable dual comb spectroscopy to weather-resilient free space optical communications. Mid-infrared photonic integrated circuits (PICs) are important for sensing and optical communications, but their operational wavelengths are usually limited below 4 μm. Here, the authors report the realization of photothermoelectric graphene photodetectors incorporated in a chalcogenide glass-on-CaF2 PIC operating at 5.2 μm, showing promising results for gas sensing applications.
Collapse
|
31
|
Cao R, Fan S, Yin P, Ma C, Zeng Y, Wang H, Khan K, Wageh S, Al-Ghamd AA, Tareen AK, Al-Sehemi AG, Shi Z, Xiao J, Zhang H. Mid-Infrared Optoelectronic Devices Based on Two-Dimensional Materials beyond Graphene: Status and Trends. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2260. [PMID: 35808105 PMCID: PMC9268368 DOI: 10.3390/nano12132260] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023]
Abstract
Since atomically thin two-dimensional (2D) graphene was successfully synthesized in 2004, it has garnered considerable interest due to its advanced properties. However, the weak optical absorption and zero bandgap strictly limit its further development in optoelectronic applications. In this regard, other 2D materials, including black phosphorus (BP), transition metal dichalcogenides (TMDCs), 2D Te nanoflakes, and so forth, possess advantage properties, such as tunable bandgap, high carrier mobility, ultra-broadband optical absorption, and response, enable 2D materials to hold great potential for next-generation optoelectronic devices, in particular, mid-infrared (MIR) band, which has attracted much attention due to its intensive applications, such as target acquisition, remote sensing, optical communication, and night vision. Motivated by this, this article will focus on the recent progress of semiconducting 2D materials in MIR optoelectronic devices that present a suitable category of 2D materials for light emission devices, modulators, and photodetectors in the MIR band. The challenges encountered and prospects are summarized at the end. We believe that milestone investigations of 2D materials beyond graphene-based MIR optoelectronic devices will emerge soon, and their positive contribution to the nano device commercialization is highly expected.
Collapse
Affiliation(s)
- Rui Cao
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (R.C.); (S.F.); (Y.Z.); (H.W.); (K.K.); (H.Z.)
| | - Sidi Fan
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (R.C.); (S.F.); (Y.Z.); (H.W.); (K.K.); (H.Z.)
| | - Peng Yin
- College of Photoelectrical Engineering, Changchun University of Science and Technology, Changchun 130022, China;
| | - Chunyang Ma
- Research Center of Circuits and Systems, Peng Cheng Laboratory (PCL), Shenzhen 518055, China;
| | - Yonghong Zeng
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (R.C.); (S.F.); (Y.Z.); (H.W.); (K.K.); (H.Z.)
| | - Huide Wang
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (R.C.); (S.F.); (Y.Z.); (H.W.); (K.K.); (H.Z.)
| | - Karim Khan
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (R.C.); (S.F.); (Y.Z.); (H.W.); (K.K.); (H.Z.)
| | - Swelm Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.W.); (A.A.A.-G.)
| | - Ahmed A. Al-Ghamd
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.W.); (A.A.A.-G.)
| | - Ayesha Khan Tareen
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China;
| | - Abdullah G. Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia;
| | - Zhe Shi
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou 221018, China
| | - Jing Xiao
- College of Physics and Electronic Engineering, Taishan University, Tai’an 271000, China
| | - Han Zhang
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (R.C.); (S.F.); (Y.Z.); (H.W.); (K.K.); (H.Z.)
| |
Collapse
|
32
|
Nidhi, Das S, Nautiyal T. Impact of the Channel Thickness on the Photoresponse of Black Arsenic Mid-Infrared Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27444-27455. [PMID: 35658392 DOI: 10.1021/acsami.2c05704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recently explored black arsenic is a layered two-dimensional low-symmetry semiconducting material that, owing to its inherent narrow bandgap (∼0.31 eV) in its bulk form, is attractive for mid-infrared optoelectronics. Several studies have been conducted on its structural, charge-transport, and thermal properties for implementation in nanoelectronics. Herein, the thickness-dependent optoelectronic performance of black arsenic devices for mid-infrared wavelengths (2.0-4.0 μm) is investigated. The device was fabricated over an hBN/SiO2/Si substrate using mechanical exfoliation of black arsenic. It is observed that the optoelectronic properties of the devices vary significantly with the thickness of the black arsenic channel of the devices. A peak photoresponsivity of 244 A/W was achieved at 3.00 μm for a 60 nm-thick black arsenic channel. However, the maximum detectivity of 6.14 × 109 Jones was found for a lower thickness (∼25 nm) of black arsenic, along with an excellent (i.e., the least) noise-equivalent power of ∼89 fW/Hz1/2. Our findings reveal that the optoelectronic properties of black arsenic are excellent and can be tuned through thickness control. The promising results suggest the considerable potential of black arsenic in future opto- and nanoelectronic devices.
Collapse
Affiliation(s)
- Nidhi
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Samaresh Das
- Center for Applied Research in Electronics, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Tashi Nautiyal
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
33
|
Chen PL, Chen Y, Chang TY, Li WQ, Li JX, Lee S, Fang Z, Li M, Majumdar A, Liu CH. Waveguide-Integrated van der Waals Heterostructure Mid-Infrared Photodetector with High Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24856-24863. [PMID: 35476925 DOI: 10.1021/acsami.2c01094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Extending the operation wavelength of silicon photonics to the mid-infrared (mid-IR) band will significantly benefit critical application areas, including health care, astronomy, and chemical sensing. However, a major hurdle for mid-IR silicon photonics has been the lack of high-speed, high-responsivity, and low noise-equivalent power (NEP) photodetectors. Here, we demonstrate a van der Waals (vdW) heterostructure mid-IR photodetector integrated on a silicon-on-insulator (SOI) waveguide. The detector is composed of vertically stacked black phosphorus (BP)/molybdenum ditelluride (MoTe2). We measured high responsivity (up to 0.85 A/W) over a 3-4 μm spectral range, indicating that waveguide-confined light could strongly interact with vdW heterostructures on top. In addition, the waveguide-integrated detector could be modulated at high speed (>10 MHz) and its switching performance shows excellent stability. These results, together with the noise analysis, indicate that the NEP of the detector is as low as 8.2 pW/Hz1/2. This reported critical missing piece in the silicon photonic toolbox will enable the wide-spread adoption of mid-IR integrated photonic circuits.
Collapse
Affiliation(s)
- Po-Liang Chen
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yueyang Chen
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Tian-Yun Chang
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wei-Qing Li
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jia-Xin Li
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Seokhyeong Lee
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Zhuoran Fang
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Mo Li
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Arka Majumdar
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Chang-Hua Liu
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
34
|
Parhizkar S, Prechtl M, Giesecke AL, Suckow S, Wahl S, Lukas S, Hartwig O, Negm N, Quellmalz A, Gylfason K, Schall D, Wuttig M, Duesberg GS, Lemme MC. Two-Dimensional Platinum Diselenide Waveguide-Integrated Infrared Photodetectors. ACS PHOTONICS 2022; 9:859-867. [PMID: 35308407 PMCID: PMC8931762 DOI: 10.1021/acsphotonics.1c01517] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Indexed: 05/11/2023]
Abstract
Low-cost, easily integrable photodetectors (PDs) for silicon (Si) photonics are still a bottleneck for photonic-integrated circuits (PICs), especially for wavelengths above 1.8 μm. Multilayered platinum diselenide (PtSe2) is a semi-metallic two-dimensional (2D) material that can be synthesized below 450 °C. We integrate PtSe2-based PDs directly by conformal growth on Si waveguides. The PDs operate at 1550 nm wavelength with a maximum responsivity of 11 mA/W and response times below 8.4 μs. Fourier-transform IR spectroscopy in the wavelength range from 1.25 to 28 μm indicates the suitability of PtSe2 for PDs far into the IR wavelength range. Our PtSe2 PDs integrated by direct growth outperform PtSe2 PDs manufactured by standard 2D layer transfer. The combination of IR responsivity, chemical stability, selective and conformal growth at low temperatures, and the potential for high carrier mobility makes PtSe2 an attractive 2D material for optoelectronics and PICs.
Collapse
Affiliation(s)
- Shayan Parhizkar
- Chair
of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Str. 2, 52074 Aachen, Germany
- AMO
GmbH, Advanced Microelectronic Center Aachen, Otto-Blumenthal-Str. 25, 52074 Aachen, Germany
| | - Maximilian Prechtl
- Institute
of Physics, Faculty of Electrical Engineering and Information Technology
(EIT 2) and Center for Integrated Sensor Systems, University of the Bundeswehr Munich, 85577 Neubiberg, Germany
| | - Anna Lena Giesecke
- AMO
GmbH, Advanced Microelectronic Center Aachen, Otto-Blumenthal-Str. 25, 52074 Aachen, Germany
| | - Stephan Suckow
- AMO
GmbH, Advanced Microelectronic Center Aachen, Otto-Blumenthal-Str. 25, 52074 Aachen, Germany
| | - Sophia Wahl
- Institute
of Physics IA, RWTH Aachen University, Otto-Blumenthal-Straße, 52074 Aachen, Germany
| | - Sebastian Lukas
- Chair
of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Str. 2, 52074 Aachen, Germany
| | - Oliver Hartwig
- Institute
of Physics, Faculty of Electrical Engineering and Information Technology
(EIT 2) and Center for Integrated Sensor Systems, University of the Bundeswehr Munich, 85577 Neubiberg, Germany
| | - Nour Negm
- Chair
of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Str. 2, 52074 Aachen, Germany
- AMO
GmbH, Advanced Microelectronic Center Aachen, Otto-Blumenthal-Str. 25, 52074 Aachen, Germany
| | - Arne Quellmalz
- Division
of Micro and Nanosystems, School of Electrical Engineering and Computer
Science, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Kristinn Gylfason
- Division
of Micro and Nanosystems, School of Electrical Engineering and Computer
Science, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Daniel Schall
- AMO
GmbH, Advanced Microelectronic Center Aachen, Otto-Blumenthal-Str. 25, 52074 Aachen, Germany
- Black Semiconductor
GmbH, Schloss-Rahe-Straße
15, 52072 Aachen, Germany
| | - Matthias Wuttig
- Institute
of Physics IA, RWTH Aachen University, Otto-Blumenthal-Straße, 52074 Aachen, Germany
| | - Georg S. Duesberg
- Institute
of Physics, Faculty of Electrical Engineering and Information Technology
(EIT 2) and Center for Integrated Sensor Systems, University of the Bundeswehr Munich, 85577 Neubiberg, Germany
| | - Max C. Lemme
- Chair
of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Str. 2, 52074 Aachen, Germany
- AMO
GmbH, Advanced Microelectronic Center Aachen, Otto-Blumenthal-Str. 25, 52074 Aachen, Germany
| |
Collapse
|
35
|
Rogalski A. Detectivities of WS 2/HfS 2 heterojunctions. NATURE NANOTECHNOLOGY 2022; 17:217-219. [PMID: 35273361 DOI: 10.1038/s41565-022-01076-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/22/2021] [Indexed: 05/02/2023]
Affiliation(s)
- A Rogalski
- Institute of Applied Physics, Military University of Technology, Warsaw, Poland.
| |
Collapse
|
36
|
Jia L, Wu J, Zhang Y, Qu Y, Jia B, Chen Z, Moss DJ. Fabrication Technologies for the On-Chip Integration of 2D Materials. SMALL METHODS 2022; 6:e2101435. [PMID: 34994111 DOI: 10.1002/smtd.202101435] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/12/2021] [Indexed: 06/14/2023]
Abstract
With compact footprint, low energy consumption, high scalability, and mass producibility, chip-scale integrated devices are an indispensable part of modern technological change and development. Recent advances in 2D layered materials with their unique structures and distinctive properties have motivated their on-chip integration, yielding a variety of functional devices with superior performance and new features. To realize integrated devices incorporating 2D materials, it requires a diverse range of device fabrication techniques, which are of fundamental importance to achieve good performance and high reproducibility. This paper reviews the state-of-art fabrication techniques for the on-chip integration of 2D materials. First, an overview of the material properties and on-chip applications of 2D materials is provided. Second, different approaches used for integrating 2D materials on chips are comprehensively reviewed, which are categorized into material synthesis, on-chip transfer, film patterning, and property tuning/modification. Third, the methods for integrating 2D van der Waals heterostructures are also discussed and summarized. Finally, the current challenges and future perspectives are highlighted.
Collapse
Affiliation(s)
- Linnan Jia
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Jiayang Wu
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Yuning Zhang
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Yang Qu
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Baohua Jia
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Zhigang Chen
- MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin, 300457, China
- Department of Physics and Astronomy, San Francisco State University, San Francisco, CA, 94132, USA
| | - David J Moss
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
37
|
|
38
|
Du M, Cui X, Yoon HH, Das S, Uddin MDG, Du L, Li D, Sun Z. Switchable Photoresponse Mechanisms Implemented in Single van der Waals Semiconductor/Metal Heterostructure. ACS NANO 2022; 16:568-576. [PMID: 34985864 PMCID: PMC8793132 DOI: 10.1021/acsnano.1c07661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/30/2021] [Indexed: 05/19/2023]
Abstract
van der Waals (vdW) heterostructures based on two-dimensional (2D) semiconducting materials have been extensively studied for functional applications, and most of the reported devices work with sole mechanism. The emerging metallic 2D materials provide us new options for building functional vdW heterostructures via rational band engineering design. Here, we investigate the vdW semiconductor/metal heterostructure built with 2D semiconducting InSe and metallic 1T-phase NbTe2, whose electron affinity χInSe and work function ΦNbTe2 almost exactly align. Electrical characterization verifies exceptional diode-like rectification ratio of >103 for the InSe/NbTe2 heterostructure device. Further photocurrent mappings reveal the switchable photoresponse mechanisms of this heterostructure or, in other words, the alternative roles that metallic NbTe2 plays. Specifically, this heterostructure device works in a photovoltaic manner under reverse bias, whereas it turns to phototransistor with InSe channel and NbTe2 electrode under high forward bias. The switchable photoresponse mechanisms originate from the band alignment at the interface, where the band bending could be readily adjusted by the bias voltage. In addition, a conceptual optoelectronic logic gate is proposed based on the exclusive working mechanisms. Finally, the photodetection performance of this heterostructure is represented by an ultrahigh responsivity of ∼84 A/W to 532 nm laser. Our results demonstrate the valuable application of 2D metals in functional devices, as well as the potential of implementing photovoltaic device and phototransistor with single vdW heterostructure.
Collapse
Affiliation(s)
- Mingde Du
- Department
of Electronics and Nanoengineering, Aalto
University, Espoo FI-02150, Finland
| | - Xiaoqi Cui
- Department
of Electronics and Nanoengineering, Aalto
University, Espoo FI-02150, Finland
| | - Hoon Hahn Yoon
- Department
of Electronics and Nanoengineering, Aalto
University, Espoo FI-02150, Finland
| | - Susobhan Das
- Department
of Electronics and Nanoengineering, Aalto
University, Espoo FI-02150, Finland
| | - MD Gius Uddin
- Department
of Electronics and Nanoengineering, Aalto
University, Espoo FI-02150, Finland
| | - Luojun Du
- Department
of Electronics and Nanoengineering, Aalto
University, Espoo FI-02150, Finland
| | - Diao Li
- Department
of Electronics and Nanoengineering, Aalto
University, Espoo FI-02150, Finland
| | - Zhipei Sun
- Department
of Electronics and Nanoengineering, Aalto
University, Espoo FI-02150, Finland
- QTF
Centre of Excellence, Department of Applied Physics, Aalto University, Espoo FI-00076, Finland
| |
Collapse
|
39
|
Sett S, Parappurath A, Gill NK, Chauhan N, Ghosh A. Engineering sensitivity and spectral range of photodetection in van der Waals materials and hybrids. NANO EXPRESS 2022. [DOI: 10.1088/2632-959x/ac46b9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
Exploration of van der Waals heterostructures in the field of optoelectronics has produced photodetectors with very high bandwidth as well as ultra-high sensitivity. Appropriate engineering of these heterostructures allows us to exploit multiple light-to-electricity conversion mechanisms, ranging from photovoltaic, photoconductive to photogating processes. These mechanisms manifest in different sensitivity and speed of photoresponse. In addition, integrating graphene-based hybrid structures with photonic platforms provides a high gain-bandwidth product, with bandwidths ≫1 GHz. In this review, we discuss the progression in the field of photodetection in 2D hybrids. We emphasize the physical mechanisms at play in diverse architectures and discuss the origin of enhanced photoresponse in hybrids. Recent developments in 2D photodetectors based on room temperature detection, photon-counting ability, integration with Si and other pressing issues, that need to be addressed for these materials to be integrated with industrial standards have been discussed.
Collapse
|
40
|
Yao J, Yang G. 2D Layered Material Alloys: Synthesis and Application in Electronic and Optoelectronic Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103036. [PMID: 34719873 PMCID: PMC8728821 DOI: 10.1002/advs.202103036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/01/2021] [Indexed: 05/12/2023]
Abstract
2D layered materials (2DLMs) have come under the limelight of scientific and engineering research and broke new ground across a broad range of disciplines in the past decade. Nevertheless, the members of stoichiometric 2DLMs are relatively limited. This renders them incompetent to fulfill the multitudinous scenarios across the breadth of electronic and optoelectronic applications since the characteristics exhibited by a specific material are relatively monotonous and limited. Inspiringly, alloying of 2DLMs can markedly broaden the 2D family through composition modulation and it has ushered a whole new research domain: 2DLM alloy nano-electronics and nano-optoelectronics. This review begins with a comprehensive survey on synthetic technologies for the production of 2DLM alloys, which include chemical vapor transport, chemical vapor deposition, pulsed-laser deposition, and molecular beam epitaxy, spanning their development, as well as, advantages and disadvantages. Then, the up-to-date advances of 2DLM alloys in electronic devices are summarized. Subsequently, the up-to-date advances of 2DLM alloys in optoelectronic devices are summarized. In the end, the ongoing challenges of this emerging field are highlighted and the future opportunities are envisioned, which aim to navigate the coming exploration and fully exert the pivotal role of 2DLMs toward the next generation of electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| |
Collapse
|
41
|
Dong Z, Yu W, Zhang L, Mu H, Xie L, Li J, Zhang Y, Huang L, He X, Wang L, Lin S, Zhang K. Highly Efficient, Ultrabroad PdSe 2 Phototransistors from Visible to Terahertz Driven by Mutiphysical Mechanism. ACS NANO 2021; 15:20403-20413. [PMID: 34780146 DOI: 10.1021/acsnano.1c08756] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The noble transition metal dichalcogenide palladium diselenide (PdSe2) is an ideal candidate material for broad-spectrum photodetection owing to the large bandgap tunability, high mobility, low thermal conductivity, and large Seebeck coefficient. In this study, self-powered ultrabroadband PdSe2 photodetectors from the visible-infrared to terahertz (THz) region driven by a mutiphysical mechanism are reported. In the visible-infrared region, the photogenerated electron-hole pairs in the PdSe2 body are quickly separated by the built-in electric field at the metal-semiconductor interface and achieve a photoresponsivity of 28 A·W-1 at 405 nm and 0.4 A·W-1 at 1850 nm. In the THz region, PdSe2 photodetectors display a room-temperature responsivity of 20 mA·W-1 at 0.10 THz and 5 mA·W-1 at 0.24 THz based on efficient production of hot carriers in an antenna-assisted structure. Owing to the fast response speed of ∼7.5 μs and low noise equivalent power of ∼900 pW·Hz-1/2, high-resolution transmission THz imaging is demonstrated under an ambient environment at room temperature. Our research validates the great potential of PdSe2 for broadband photodetection and provides a possibility for future optoelectronic applications.
Collapse
Affiliation(s)
- Zhuo Dong
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
| | - Wenzhi Yu
- Songshan Lake Materials Laboratory, Dongguan 523000, China
| | - Libo Zhang
- State Key Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- Department of Optoelectronic Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haoran Mu
- Songshan Lake Materials Laboratory, Dongguan 523000, China
| | - Liu Xie
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
- Yangtze Memory Technologies Co., Ltd., Wuhan 430074, China
| | - Jie Li
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
| | - Yan Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
| | - Luyi Huang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
| | - Xiaoyue He
- Songshan Lake Materials Laboratory, Dongguan 523000, China
| | - Lin Wang
- State Key Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Shenghuang Lin
- Songshan Lake Materials Laboratory, Dongguan 523000, China
| | - Kai Zhang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
42
|
Alberti S, Datta A, Jágerská J. Integrated Nanophotonic Waveguide-Based Devices for IR and Raman Gas Spectroscopy. SENSORS (BASEL, SWITZERLAND) 2021; 21:7224. [PMID: 34770531 PMCID: PMC8587819 DOI: 10.3390/s21217224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022]
Abstract
On-chip devices for absorption spectroscopy and Raman spectroscopy have been developing rapidly in the last few years, triggered by the growing availability of compact and affordable tunable lasers, detectors, and on-chip spectrometers. Material processing that is compatible with mass production has been proven to be capable of long low-loss waveguides of sophisticated designs, which are indispensable for high-light-analyte interactions. Sensitivity and selectivity have been further improved by the development of sorbent cladding. In this review, we discuss the latest advances and challenges in the field of waveguide-enhanced Raman spectroscopy (WERS) and waveguide infrared absorption spectroscopy (WIRAS). The development of integrated light sources and detectors toward miniaturization will be presented, together with the recent advances on waveguides and cladding to improve sensitivity. The latest reports on gas-sensing applications and main configurations for WERS and WIRAS will be described, and the most relevant figures of merit and limitations of different sensor realizations summarized.
Collapse
Affiliation(s)
- Sebastián Alberti
- Department of Physics and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway; (A.D.); (J.J.)
| | | | | |
Collapse
|
43
|
Wu J, Wei M, Mu J, Ma H, Zhong C, Ye Y, Sun C, Tang B, Wang L, Li J, Xu X, Liu B, Li L, Lin H. High-Performance Waveguide-Integrated Bi 2O 2Se Photodetector for Si Photonic Integrated Circuits. ACS NANO 2021; 15:15982-15991. [PMID: 34652907 DOI: 10.1021/acsnano.1c04359] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Due to the excellent electrical and optical properties and their integration capability without lattice matching requirements, low-dimensional materials have received increasing attention in silicon photonic circuits. Bi2O2Se with high carrier mobility, narrow bandgap, and good air stability is very promising for high-performance near-infrared photodetectors. Here, the chemical vapor deposition method is applied to grow Bi2O2Se onto mica, and our developed polycarbonate/polydimethylsiloxane-assisted transfer method enables the clean and intact transfer of Bi2O2Se on top of a silicon waveguide. We demonstrated the Bi2O2Se/Si waveguide integrated photodetector with a small dark current of 72.9 nA, high responsivity of 3.5 A·W-1, fast rise/decay times of 22/78 ns, and low noise-equivalent power of 15.1 pW·Hz-0.5 at an applied voltage of 2 V in the O-band for transverse electric modes. Additionally, a microring resonator is designed for enhancing light-matter interaction, resulting in a wavelength-sensitive photodetector with reduced dark current (15.3 nA at 2 V) and more than a 3-fold enhancement in responsivity at the resonance wavelength, which is suitable for spectrally resolved applications. These results promote the integration of Bi2O2Se with a silicon photonic platform and are expected to accelerate the future use of integrated photodetectors in spectroscopy, sensing, and communication applications.
Collapse
Affiliation(s)
- Jianghong Wu
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Maoliang Wei
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jianglong Mu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Hui Ma
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chuyu Zhong
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuting Ye
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Chunlei Sun
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Bo Tang
- Institute of Microelectronics, Chinese Academic Society, Beijing 100029, China
| | - Lichun Wang
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| | - Junying Li
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaomin Xu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Lan Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Hongtao Lin
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
44
|
Rufangura P, Khodasevych I, Agrawal A, Bosi M, Folland TG, Caldwell JD, Iacopi F. Enhanced Absorption with Graphene-Coated Silicon Carbide Nanowires for Mid-Infrared Nanophotonics. NANOMATERIALS 2021; 11:nano11092339. [PMID: 34578654 PMCID: PMC8465231 DOI: 10.3390/nano11092339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 01/21/2023]
Abstract
The mid-infrared (MIR) is an exciting spectral range that also hosts useful molecular vibrational fingerprints. There is a growing interest in nanophotonics operating in this spectral range, and recent advances in plasmonic research are aimed at enhancing MIR infrared nanophotonics. In particular, the design of hybrid plasmonic metasurfaces has emerged as a promising route to realize novel MIR applications. Here we demonstrate a hybrid nanostructure combining graphene and silicon carbide to extend the spectral phonon response of silicon carbide and enable absorption and field enhancement of the MIR photon via the excitation and hybridization of surface plasmon polaritons and surface phonon polaritons. We combine experimental methods and finite element simulations to demonstrate enhanced absorption of MIR photons and the broadening of the spectral resonance of graphene-coated silicon carbide nanowires. We also indicate subwavelength confinement of the MIR photons within a thin oxide layer a few nanometers thick, sandwiched between the graphene and silicon carbide. This intermediate shell layer is characteristically obtained using our graphitization approach and acts as a coupling medium between the core and outer shell of the nanowires.
Collapse
Affiliation(s)
- Patrick Rufangura
- School of Electrical and Data Engineering, Faculty of Engineering and IT, University of Technology Sydney, Broadway, NSW 2007, Australia; (P.R.); (I.K.); (A.A.)
- Australian Research Council Centre of Excellence on Transformative Meta-Optical Systems, School of Electrical and Data Engineering, Faculty of Engineering and IT, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Iryna Khodasevych
- School of Electrical and Data Engineering, Faculty of Engineering and IT, University of Technology Sydney, Broadway, NSW 2007, Australia; (P.R.); (I.K.); (A.A.)
- Australian Research Council Centre of Excellence on Transformative Meta-Optical Systems, School of Electrical and Data Engineering, Faculty of Engineering and IT, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Arti Agrawal
- School of Electrical and Data Engineering, Faculty of Engineering and IT, University of Technology Sydney, Broadway, NSW 2007, Australia; (P.R.); (I.K.); (A.A.)
- Australian Research Council Centre of Excellence on Transformative Meta-Optical Systems, School of Electrical and Data Engineering, Faculty of Engineering and IT, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Matteo Bosi
- IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy;
| | - Thomas G. Folland
- Department of Physics and Astronomy, The University of Iowa, Iowa City, IA 52242, USA;
| | - Joshua D. Caldwell
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37212, USA;
| | - Francesca Iacopi
- School of Electrical and Data Engineering, Faculty of Engineering and IT, University of Technology Sydney, Broadway, NSW 2007, Australia; (P.R.); (I.K.); (A.A.)
- Australian Research Council Centre of Excellence on Transformative Meta-Optical Systems, School of Electrical and Data Engineering, Faculty of Engineering and IT, University of Technology Sydney, Broadway, NSW 2007, Australia
- Correspondence:
| |
Collapse
|
45
|
Nanophotonic biosensors harnessing van der Waals materials. Nat Commun 2021; 12:3824. [PMID: 34158483 PMCID: PMC8219843 DOI: 10.1038/s41467-021-23564-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
Low-dimensional van der Waals (vdW) materials can harness tightly confined polaritonic waves to deliver unique advantages for nanophotonic biosensing. The reduced dimensionality of vdW materials, as in the case of two-dimensional graphene, can greatly enhance plasmonic field confinement, boosting sensitivity and efficiency compared to conventional nanophotonic devices that rely on surface plasmon resonance in metallic films. Furthermore, the reduction of dielectric screening in vdW materials enables electrostatic tunability of different polariton modes, including plasmons, excitons, and phonons. One-dimensional vdW materials, particularly single-walled carbon nanotubes, possess unique form factors with confined excitons to enable single-molecule detection as well as in vivo biosensing. We discuss basic sensing principles based on vdW materials, followed by technological challenges such as surface chemistry, integration, and toxicity. Finally, we highlight progress in harnessing vdW materials to demonstrate new sensing functionalities that are difficult to perform with conventional metal/dielectric sensors. This review presents an overview of scenarios where van der Waals (vdW) materials provide unique advantages for nanophotonic biosensing applications. The authors discuss basic sensing principles based on vdW materials, advantages of the reduced dimensionality as well as technological challenges.
Collapse
|
46
|
Ma Y, Chang Y, Dong B, Wei J, Liu W, Lee C. Heterogeneously Integrated Graphene/Silicon/Halide Waveguide Photodetectors toward Chip-Scale Zero-Bias Long-Wave Infrared Spectroscopic Sensing. ACS NANO 2021; 15:10084-10094. [PMID: 34060811 DOI: 10.1021/acsnano.1c01859] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mid-infrared absorption spectroscopy plays an important role in molecule identification and quantification for widespread applications. Integrated photonics provides opportunities to perform spectroscopic sensing on-chip for the minimization of device size, cost, and power consumption. The integration of waveguides and photodetectors is an indispensable step toward the realization of these on-chip sensing systems. It is desired to extend the operating wavelengths of these on-chip sensing systems to the long-wave infrared (LWIR) range to utilize more molecular absorption fingerprints. However, the development of LWIR waveguide-integrated photodetectors faces challenges from both waveguide platforms due to the bottom cladding material absorption and photodetection technologies due to the low LWIR photon energy. Here, we demonstrate LWIR waveguide-integrated photodetectors through heterogeneous integration of graphene photodetectors and Si waveguides on CaF2 substrates. A high-yield transfer printing method is developed for flexibly integrating the waveguide and substrate materials to solve the bottom cladding material absorption issue. The fabricated Si-on-CaF2 waveguides show low losses in the broad LWIR wavelength range of 6.3-7.1 μm. The graphene photodetector achieves a broadband responsivity of ∼8 mA/W in these low-photon-energy LWIR wavelengths under zero-bias operation with the help of waveguide integration and plasmonic enhancement. We further integrate the graphene photodetector with a Si-on-CaF2 folded waveguide and demonstrate on-chip absorption sensing using toluene as an example. These results reveal the potential of our technology for the realization of chip-scale, low-cost, and low-power-consumption LWIR spectroscopic sensing systems.
Collapse
Affiliation(s)
- Yiming Ma
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608
- NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Yuhua Chang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608
| | - Bowei Dong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608
| | - Jingxuan Wei
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608
| | - Weixin Liu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608
- NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
- NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077
| |
Collapse
|
47
|
Liu C, Guo J, Yu L, Li J, Zhang M, Li H, Shi Y, Dai D. Silicon/2D-material photodetectors: from near-infrared to mid-infrared. LIGHT, SCIENCE & APPLICATIONS 2021; 10:123. [PMID: 34108443 PMCID: PMC8190178 DOI: 10.1038/s41377-021-00551-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/21/2021] [Accepted: 05/06/2021] [Indexed: 05/06/2023]
Abstract
Two-dimensional materials (2DMs) have been used widely in constructing photodetectors (PDs) because of their advantages in flexible integration and ultrabroad operation wavelength range. Specifically, 2DM PDs on silicon have attracted much attention because silicon microelectronics and silicon photonics have been developed successfully for many applications. 2DM PDs meet the imperious demand of silicon photonics on low-cost, high-performance, and broadband photodetection. In this work, a review is given for the recent progresses of Si/2DM PDs working in the wavelength band from near-infrared to mid-infrared, which are attractive for many applications. The operation mechanisms and the device configurations are summarized in the first part. The waveguide-integrated PDs and the surface-illuminated PDs are then reviewed in details, respectively. The discussion and outlook for 2DM PDs on silicon are finally given.
Collapse
Affiliation(s)
- Chaoyue Liu
- State Key Laboratory for Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory for Sensing Technologies, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Jingshu Guo
- State Key Laboratory for Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory for Sensing Technologies, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Laiwen Yu
- State Key Laboratory for Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory for Sensing Technologies, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Jiang Li
- State Key Laboratory for Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory for Sensing Technologies, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Ming Zhang
- State Key Laboratory for Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory for Sensing Technologies, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| | - Huan Li
- State Key Laboratory for Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory for Sensing Technologies, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Yaocheng Shi
- State Key Laboratory for Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory for Sensing Technologies, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| | - Daoxin Dai
- State Key Laboratory for Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory for Sensing Technologies, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China.
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China.
| |
Collapse
|
48
|
Cheng Z, Cao R, Wei K, Yao Y, Liu X, Kang J, Dong J, Shi Z, Zhang H, Zhang X. 2D Materials Enabled Next-Generation Integrated Optoelectronics: from Fabrication to Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2003834. [PMID: 34105275 PMCID: PMC8188205 DOI: 10.1002/advs.202003834] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/04/2021] [Indexed: 05/06/2023]
Abstract
2D materials, such as graphene, black phosphorous and transition metal dichalcogenides, have gained persistent attention in the past few years thanks to their unique properties for optoelectronics. More importantly, introducing 2D materials into silicon photonic devices will greatly promote the performance of optoelectronic devices, including improvement of response speed, reduction of energy consumption, and simplification of fabrication process. Moreover, 2D materials meet the requirements of complementary metal-oxide-semiconductor compatible silicon photonic manufacturing. A comprehensive overview and evaluation of state-of-the-art 2D photonic integrated devices for telecommunication applications is provided, including light sources, optical modulators, and photodetectors. Optimized by unique structures such as photonic crystal waveguide, slot waveguide, and microring resonator, these 2D material-based photonic devices can be further improved in light-matter interactions, providing a powerful design for silicon photonic integrated circuits.
Collapse
Affiliation(s)
- Zhao Cheng
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Rui Cao
- Institute of Microscale OptoelectronicsCollaborative Innovation Centre for Optoelectronic Science & TechnologyKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)Shenzhen UniversityShenzhen518060P. R. China
| | - Kangkang Wei
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Yuhan Yao
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Xinyu Liu
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Jianlong Kang
- Institute of Microscale OptoelectronicsCollaborative Innovation Centre for Optoelectronic Science & TechnologyKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)Shenzhen UniversityShenzhen518060P. R. China
| | - Jianji Dong
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Zhe Shi
- Institute of Microscale OptoelectronicsCollaborative Innovation Centre for Optoelectronic Science & TechnologyKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)Shenzhen UniversityShenzhen518060P. R. China
| | - Han Zhang
- Institute of Microscale OptoelectronicsCollaborative Innovation Centre for Optoelectronic Science & TechnologyKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)Shenzhen UniversityShenzhen518060P. R. China
| | - Xinliang Zhang
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| |
Collapse
|
49
|
Wei T, Wang X, Yang Q, He Z, Yu P, Xie Z, Chen H, Li S, Wu S. Mid-Infrared Photodetection of Type-II Dirac Semimetal 1T-PtTe 2 Grown by Molecular Beam Epitaxy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22757-22764. [PMID: 33973469 DOI: 10.1021/acsami.1c04598] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mid-infrared (MIR) photodetection is of significance in civil and military applications because it shows superiority in absorbing the vibration of various molecules and covering atmospheric transmission windows. Recently, the PtTe2, a typical type-II Dirac semimetal, has come under the spotlight due to its unique photodetection sensibility in the MIR region and robust stability in the atmosphere. Here, the high-quality and large-scale 1T-PtTe2 thin films with air stability were grown by molecular beam epitaxy. Broadband photoresponse of the photodetectors of PtTe2 from 420 nm to 10.7 μm shows high responsivity and detectivity of 0.2 mA W-1 and 2.6 × 107 Jones at 10.7 μm and 1.6 mA W-1 and 2.2 × 108 Jones at 4.7 μm under the atmosphere, respectively. Moreover, the photodetectors exhibit high sensitivity in visible and near-infrared regions (8.2 mA W-1 at 650 nm and 15.6 mA W-1 at 960 nm). The power- and polarization-dependent photoresponse measurements reveal the linear relationship of power photoresponse and obvious anisotropic photoresponse (the ratio of anisotropy ellipse is 8.3 at 10.7 μm), respectively. These results suggest that the PtTe2 could be expected to be an advanced photodetection material for polarization angle-sensitive detection, infrared imaging, and photodetection from the visible to MIR range.
Collapse
Affiliation(s)
- Tianyao Wei
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, P. R. China
| | - Ximiao Wang
- School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou, Guangdong 510275, P. R. China
| | - Qi Yang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, P. R. China
| | - Zhihao He
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, P. R. China
| | - Peng Yu
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, P. R. China
| | - Zhuang Xie
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, P. R. China
| | - Huanjun Chen
- School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou, Guangdong 510275, P. R. China
| | - Shuwei Li
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, Guangdong 510275, P. R. China
| | - Shuxiang Wu
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, P. R. China
| |
Collapse
|
50
|
Liu X, Gaihre B, George MN, Li Y, Tilton M, Yaszemski MJ, Lu L. 2D phosphorene nanosheets, quantum dots, nanoribbons: synthesis and biomedical applications. Biomater Sci 2021; 9:2768-2803. [PMID: 33620047 PMCID: PMC9009269 DOI: 10.1039/d0bm01972k] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phosphorene, also known as black phosphorus (BP), is a two-dimensional (2D) material that has gained significant attention in several areas of current research. Its unique properties such as outstanding surface activity, an adjustable bandgap width, favorable on/off current ratios, infrared-light responsiveness, good biocompatibility, and fast biodegradation differentiate this material from other two-dimensional materials. The application of BP in the biomedical field has been rapidly emerging over the past few years. This article aimed to provide a comprehensive review of the recent progress on the unique properties and extensive medical applications for BP in bone, nerve, skin, kidney, cancer, and biosensing related treatment. The details of applications of BP in these fields were summarized and discussed.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew N George
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Yong Li
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Maryam Tilton
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael J Yaszemski
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|