1
|
Zhang H, Pang B, Di A, Chang J, Héraly F, Sikdar A, Pang K, Guo X, Li J, Yuan J, Zhang M. Harnessing Holey MXene/Graphene Oxide Heterostructure to Maximize Ion Channels in Lamellar Film for High-Performance Capacitive Deionization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403518. [PMID: 39016114 DOI: 10.1002/smll.202403518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Indexed: 07/18/2024]
Abstract
2D Ti3C2Tx MXene-based film electrodes with metallic conductivity and high pseudo-capacitance are of considerable interest in cutting-edge research of capacitive deionization (CDI). Further advancement in practical use is however impeded by their intrinsic limitations, e.g., tortuous ion diffusion pathway of layered stacking, vulnerable chemical stability, and swelling-prone nature of hydrophilic MXene nanosheet in aqueous environment. Herein, a nanoporous 2D/2D heterostructure strategy is established to leverage both merits of holey MXene (HMX) and holey graphene oxide (HGO) nanosheets, which optimize ion transport shortcuts, alleviate common restacking issues, and improve film's mechanical and chemical stability. In this design, the nanosized in-plane holes in both handpicked building blocks build up ion diffusion shortcuts in the composite laminates to accelerate the transport and storage of ions. As a direct outcome, the HMX/rHGO films exhibit remarkable desalination capacity of 57.91 mg g-1 and long-term stability in 500 mg L-1 NaCl solution at 1.2 V. Moreover, molecular dynamics simulations and ex situ wide angle X-ray scattering jointly demonstrate that the conductive 2D/2D networks and ultra-short ion diffusion channels play critical roles in the ion intercalation/deintercalation process of HMX/rHGO films. The study paves an alternative design concept of freestanding CDI electrodes with superior ion transport efficiency.
Collapse
Affiliation(s)
- Hao Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden
| | - Bo Pang
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden
| | - Andi Di
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden
| | - Jian Chang
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden
| | - Frédéric Héraly
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden
| | - Anirban Sikdar
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden
| | - Kanglei Pang
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden
| | - Xin Guo
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden
| | - Miao Zhang
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden
| |
Collapse
|
2
|
Yuan Z, Liang Z, Yang L, Zhou D, He Z, Yang J, Wang C, Jiang L, Guo W. Light-Driven Ionic and Molecular Transport through Atomically Thin Single Nanopores in MoS 2/WS 2 Heterobilayers. ACS NANO 2024; 18:24581-24590. [PMID: 39137115 DOI: 10.1021/acsnano.4c09555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Nanofluidic ionic and molecular transport through atomically thin nanopore membranes attracts broad research interest from both scientific and industrial communities for environmental, healthcare, and energy-related technologies. To mimic the biological ion pumping functions, recently, light-induced and quantum effect-facilitated charge separation in heterogeneous 2D-material assemblies is proposed as the fourth type of driving force to achieve active and noninvasive transport of ionic species through synthetic membrane materials. However, to date, engineering versatile van der Waals heterostructures into 2D nanopore membranes remains largely unexplored. Herein, we fabricate single nanopores in heterobilayer transition metal dichalcogenide membranes with helium ion beam irradiation and demonstrate the light-driven ionic transport and molecular translocation phenomena through the atomically thin nanopores. Experimental and simulation results further elucidate the driving mechanism as the photoinduced near-pore electric potential difference due to type II band alignment of the semiconducting WS2 and MoS2 monolayers. The strength of the photoinduced localized electric field near the pore region can be approximately 1.5 times stronger than that of its counterpart under the conventional voltage-driven mode. Consequently, the light-driven mode offers better spatial resolution for single-molecule detection. Light-driven ionic and molecular transport through nanopores in van der Waals heterojunction membranes anticipates transformative working principles for next-generation biomolecular sequencing and gives rise to fascinating opportunities for light-to-chemical energy harvesting nanosystems.
Collapse
Affiliation(s)
- Zhishan Yuan
- School of Electromechanical Engineering, Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Zhuohua Liang
- School of Electromechanical Engineering, Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Liusi Yang
- Center for Quantum Physics and Intelligent Sciences, Department of Physics, Capital Normal University, Beijing 100048, P. R. China
| | - Daming Zhou
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
| | - Zihua He
- School of Electromechanical Engineering, Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Junyu Yang
- School of Electromechanical Engineering, Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Chengyong Wang
- School of Electromechanical Engineering, Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Lei Jiang
- Research Institute for Frontier Science, Beihang University, Beijing 100191, P. R. China
| | - Wei Guo
- Center for Quantum Physics and Intelligent Sciences, Department of Physics, Capital Normal University, Beijing 100048, P. R. China
- Research Institute for Frontier Science, Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
3
|
Zhao R, Zhou J, Bu T, Li H, Jiao Y. Reverse Electrodialysis with Continuous Random Variation in Nanochannel Shape: Salinity Gradient-Driven Power Generation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1302. [PMID: 39120407 PMCID: PMC11314336 DOI: 10.3390/nano14151302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
The shape of nanochannels plays a crucial role in the ion selectivity and overall performance of reverse electrodialysis (RED) systems. However, current research on two-dimensional nanochannel shapes is largely limited to a few fixed asymmetric forms. This study explores the impact of randomly shaped nanochannels using dimensionless methods, controlling their randomness by varying their length and shape amplitude. The research systematically compares how alterations in the nanochannel length and shape amplitude influence various system performance parameters. Our findings indicate that increasing the nanochannel length can significantly enhance the system performance. While drastic changes in the nanochannel shape amplitude positively affect the system performance, the most significant improvements arise from the interplay between the nanochannel length and shape amplitude. This compounding effect creates a local optimum, resulting in peak system performance. Within the range of dimensionless lengths from 0 to 30, the system reaches its optimal performance at a dimensionless length of approximately 25. Additionally, we explored two other influencing factors: the nanochannel surface charge density and the concentration gradient of the solution across the nanochannel. Optimal performance is observed when the nanochannel has a high surface charge density and a low concentration gradient, particularly with random shapes. This study advances the theoretical understanding of RED systems in two-dimensional nanochannels, guiding research towards practical operational conditions.
Collapse
Affiliation(s)
- Runchen Zhao
- School of Civil Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jinhui Zhou
- School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Tianqi Bu
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hao Li
- School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Yanmei Jiao
- School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
4
|
Kang Y, Wang Y, Zhang H, Wang Z, Zhang X, Wang H. Functionalized 2D membranes for separations at the 1-nm scale. Chem Soc Rev 2024; 53:7939-7959. [PMID: 38984392 DOI: 10.1039/d4cs00272e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The ongoing evolution of two-dimensional (2D) material-based membranes has prompted the realization of mass separations at the 1-nm scale due to their well-defined selective nano- and subnanochannels. Strategic membrane functionalization is further found to be key to augmenting channel accuracy and efficiency in distinguishing ions, gases and molecules within this range and is thus trending as a research focus in energy-, resource-, environment- and pharmaceutical-related applications. In this review, we present the fundamentals underpinning functionalized 2D membranes in various separations, elucidating the critical "method-interaction-property" relationship. Starting with an introduction to various functionalization strategies, we focus our discussion on functionalization-induced channel-species interactions and reveal how they shape the transport- and operation-related features of the membrane in different scenarios. We also highlight the limitations and challenges of current functionalized 2D membranes and outline the necessary breakthroughs needed to apply them as reliable and high-performance separation units across industries in the future.
Collapse
Affiliation(s)
- Yuan Kang
- Department of Chemical and Biological Engineering, Monash University, 3800, Australia.
| | - Yuqi Wang
- School of Materials Science and Engineering, Zhejiang University, 310058, China
| | - Hao Zhang
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St. Lucia, 4072, Australia.
| | - Zhouyou Wang
- Department of Chemical and Biological Engineering, Monash University, 3800, Australia.
| | - Xiwang Zhang
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St. Lucia, 4072, Australia.
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, 3800, Australia.
| |
Collapse
|
5
|
Zhou M, Zhang P, Zhang M, Jin X, Zhang Y, Liu B, Quan D, Jia M, Zhang Z, Zhang Z, Kong XY, Jiang L. Bioinspired Light-Driven Proton Pump: Engineering Band Alignment of WS 2 with PEDOT:PSS and PDINN. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308277. [PMID: 38044301 DOI: 10.1002/smll.202308277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/14/2023] [Indexed: 12/05/2023]
Abstract
Bioinspired two-dimensional (2D) nanofluidic systems for photo-induced ion transport have attracted great attention, as they open a new pathway to enabling light-to-ionic energy conversion. However, there is still a great challenge in achieving a satisfactory performance. It is noticed that organic solar cells (OSCs, light-harvesting device based on photovoltaic effect) commonly require hole/electron transport layer materials (TLMs), PEDOT:PSS (PE) and PDINN (PD), respectively, to promote the energy conversion. Inspired by such a strategy, an artificial proton pump by coupling a nanofluidic system with TLMs is proposed, in which the PE- and PD-functionalized tungsten disulfide (WS2) multilayers construct a heterogeneous membrane, realizing an excellent output power of ≈1.13 nW. The proton transport is fine-regulated due to the TLMs-engineered band structure of WS2. Clearly, the incorporating TLMs of OSCs into 2D nanofluidic systems offers a feasible and promising approach for band edge engineering and promoting the light-to-ionic energy conversion.
Collapse
Affiliation(s)
- Min Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peikun Zhang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Ming Zhang
- State Key Laboratory of Organic/Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoyan Jin
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuhui Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Biying Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Di Quan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Meijuan Jia
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhiguo Zhang
- State Key Laboratory of Organic/Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhuhua Zhang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Science and Technology Center for Quantum Biology, National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, Zhejiang, 310051, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Science and Technology Center for Quantum Biology, National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, Zhejiang, 310051, P. R. China
| |
Collapse
|
6
|
Lei D, Zhang Z, Jiang L. Bioinspired 2D nanofluidic membranes for energy applications. Chem Soc Rev 2024; 53:2300-2325. [PMID: 38284167 DOI: 10.1039/d3cs00382e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Bioinspired two-dimensional (2D) nanofluidic membranes have been explored for the creation of high-performance ion transport systems that can mimic the delicate transport functions of living organisms. Advanced energy devices made from these membranes show excellent energy storage and conversion capabilities. Further research and development in this area are essential to unlock the full potential of energy devices and facilitate the development of high-performance equipment toward real-world applications and a sustainable future. However, there has been minimal review and summarization of 2D nanofluidic membranes in recent years. Thus, it is necessary to carry out an extensive review to provide a survey library for researchers in related fields. In this review, the classification and the raw materials that are used to construct 2D nanofluidic membranes are first presented. Second, the top-down and bottom-up methods for constructing 2D membranes are introduced. Next, the applications of bioinspired 2D membranes in osmotic energy, hydraulic energy, mechanical energy, photoelectric conversion, lithium batteries, and flow batteries are discussed in detail. Finally, the opportunities and challenges that 2D nanofluidic membranes are likely to face in the future are envisioned. This review aims to provide a broad knowledge base for constructing high-performance bioinspired 2D nanofluidic membranes for advanced energy applications.
Collapse
Affiliation(s)
- Dandan Lei
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, 215123, Suzhou, Jiangsu, China
| | - Zhen Zhang
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, 215123, Suzhou, Jiangsu, China
| | - Lei Jiang
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, 215123, Suzhou, Jiangsu, China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| |
Collapse
|
7
|
Kim S, Choi H, Kim B, Lim G, Kim T, Lee M, Ra H, Yeom J, Kim M, Kim E, Hwang J, Lee JS, Shim W. Extreme Ion-Transport Inorganic 2D Membranes for Nanofluidic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206354. [PMID: 36112951 DOI: 10.1002/adma.202206354] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Inorganic 2D materials offer a new approach to controlling mass diffusion at the nanoscale. Controlling ion transport in nanofluidics is key to energy conversion, energy storage, water purification, and numerous other applications wherein persistent challenges for efficient separation must be addressed. The recent development of 2D membranes in the emerging field of energy harvesting, water desalination, and proton/Li-ion production in the context of green energy and environmental technology is herein discussed. The fundamental mechanisms, 2D membrane fabrication, and challenges toward practical applications are highlighted. Finally, the fundamental issues of thermodynamics and kinetics are outlined along with potential membrane designs that must be resolved to bridge the gap between lab-scale experiments and production levels.
Collapse
Affiliation(s)
- Sungsoon Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hong Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Republic of Korea
| | - Bokyeong Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Republic of Korea
| | - Geonwoo Lim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Republic of Korea
| | - Taehoon Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Republic of Korea
| | - Minwoo Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hansol Ra
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jihun Yeom
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Republic of Korea
| | - Minjun Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eohjin Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jiyoung Hwang
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- IT Materials Division, Advanced Materials Company, LG Chem R&D Campus, Daejeon, 34122, Republic of Korea
| | - Joo Sung Lee
- Separator Division, Advanced Materials Company, LG Chem R&D Campus, Daejeon, 34122, Republic of Korea
| | - Wooyoung Shim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Republic of Korea
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
| |
Collapse
|
8
|
Zhang L, Pan S, Liu Y, Yu L, Huang T, Xia J, Liu X, Gao J, Sui K, Jiang L. Janus carbon nitride membrane for robust and enhanced nanofluidic power generation from wastewater. WATER RESEARCH 2023; 242:120285. [PMID: 37413750 DOI: 10.1016/j.watres.2023.120285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
Nanofluidic membranes have shown great promise in harvesting osmotic power. Yet, previous studies extensively focused on osmotic energy released by the mixing of seawater and river water, while there exist many other osmotic energy sources, such as the mixing of wastewater with other water. However, harvesting the osmotic power of wastewater is highly challenging because it requires the membranes to have environmental remediation capabilities to avoid pollution and biofouling, which has not been satisfied by previous nanofluidic materials. In this work, we demonstrate that a Janus carbon nitride membrane can be used for simultaneous power generation and water purification. The Janus structure of the membrane generates asymmetric band structure and therefore a built-in electric field, facilitating electron-hole separation. As a result, the membrane shows strong photocatalytic capability, which efficiently degrades organic pollutants and kills microorganisms. In particular, the built-in electric field also facilitates ionic transport, significantly promoting the osmotic power density up to 30 W/m2 under simulated sunlight illumination. The power generation performance can be robustly kept with or without the presence of pollutants. This study will shed light on the development of multi-functional power generation materials for the comprehensive utilization of industrial wastewater as well as domestic sewage.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P R China; Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Shangfa Pan
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Yang Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Lei Yu
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P R China; Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Tao Huang
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P R China; Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Jiaxiang Xia
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P R China; Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Xueli Liu
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P R China.
| | - Jun Gao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China.
| | - Kunyan Sui
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P R China.
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
9
|
Yuan G, Jiang Y, Wang X, Ma J, Ma H, Wang X, Yagmurcukardes M, Hu S. Ion and Molecule Sieving through Highly Stable Graphene-Based Laminar Membranes. J Phys Chem Lett 2023; 14:1702-1707. [PMID: 36815312 DOI: 10.1021/acs.jpclett.2c03579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Biological ion channels use both their sizes and residual groups to reject large ions and molecules and allow highly selective permeation of small species with similar sizes. To realize these properties in artificial membranes, the main challenge is the precise control of both the channel size and the interior at the nanoscale. Here we report the permeation of ions and molecules through interlayer channels in graphene-based laminar membranes. The amino groups decorated on channel walls are found to form hydrogen bond networks with intercalated water molecules, thus providing a highly stable laminate structure and a controlled channel size. Solutes with hydration diameters of >10 Å are precisely sieved out. Small species permeate through with selectivities of up to a few thousand, governed by their distinct electrical interactions with channels depending on the atomistic distance from the charged species to the channel walls. Our work offers important insights into manipulating channel structures for enhanced separation performance at the nanoscale.
Collapse
Affiliation(s)
- Gang Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yu Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xiao Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jiaojiao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | | | - Sheng Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, P. R. China
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
10
|
Wang J, Zhou H, Li S, Wang L. Selective Ion Transport in Two-Dimensional Lamellar Nanochannel Membranes. Angew Chem Int Ed Engl 2023; 62:e202218321. [PMID: 36718075 DOI: 10.1002/anie.202218321] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Precise and ultrafast ion sieving is highly desirable for many applications in environment-, energy-, and resource-related fields. The development of a permselective lamellar membrane constructed from parallel stacked two-dimensional (2D) nanosheets opened a new avenue for the development of next-generation separation technology because of the unprecedented diversity of the designable interior nanochannels. In this Review, we first discuss the construction of homo- and heterolaminar nanoarchitectures from the starting materials to the emerging preparation strategies. We then explore the property-performance relationships, with a particular emphasis on the effects of physical structural features, chemical properties, and external environment stimuli on ion transport behavior under nanoconfinement. We also present existing and potential applications of 2D membranes in desalination, ion recovery, and energy conversion. Finally, we discuss the challenges and outline research directions in this promising field.
Collapse
Affiliation(s)
- Jin Wang
- Key Laboratory of Membrane Separation of Shaanxi Province,Research Institute of Membrane Separation Technology of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710000, China
| | - Huijiao Zhou
- Key Laboratory of Membrane Separation of Shaanxi Province,Research Institute of Membrane Separation Technology of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710000, China
| | - Shangzhen Li
- Key Laboratory of Membrane Separation of Shaanxi Province,Research Institute of Membrane Separation Technology of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710000, China
| | - Lei Wang
- Key Laboratory of Membrane Separation of Shaanxi Province,Research Institute of Membrane Separation Technology of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710000, China
| |
Collapse
|
11
|
Jin X, Zhang P, Zhang Y, Zhou M, Liu B, Quan D, Jia M, Zhang Z, Guo W, Kong XY, Jiang L. Light-driven proton transmembrane transport enabled by bio-semiconductor 2D membrane: A general peptide-induced WS 2 band shifting strategy. Biosens Bioelectron 2022; 218:114741. [PMID: 36209531 DOI: 10.1016/j.bios.2022.114741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/02/2022]
Abstract
Light-driven proton directional transport is important in living beings as it could subtly realize the light energy conversion for living uses. In the past years, 2D materials-based nanochannels have shown great potential in active ion transport due to controllable properties, including surface charge distribution, wettability, functionalization, electric structure, and external stimuli responsibility, etc. However, to fuse the inorganic materials into bio-membranes still faces several challenges. Here, we proposed peptide-modified WS2 nanosheets via cysteine linkers to realize tunable band structure and, hence, enable light-driven proton transmembrane transport. The modification was achieved through the thiol chemistry of the -SH groups in the cysteine linker and the S vacancy on the WS2 nanosheets. By tuning the amino residues sequences (lysine-rich peptides, denoted as KFC; and aspartate-rich peptides, denoted as DFC), the ζ-potential, surface charge, and band energy of WS2 nanosheets could be rationally regulated. Janus membranes formed by assembling the peptide-modified WS2 nanosheets could realize the proton transmembrane transport under visible light irradiation, driven by a built-in potential due to a type II band alignment between the KFC-WS2 and DFC-WS2. As a result, the proton would be driven across the formed nanochannels. These results demonstrate a general strategy to build bio-semiconductor materials and provide a new way for embedding inorganic materials into biological systems toward the development of bioelectronic devices.
Collapse
Affiliation(s)
- Xiaoyan Jin
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peikun Zhang
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, Institute for Frontier Science of Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yuhui Zhang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Min Zhou
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Biying Liu
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Di Quan
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meijuan Jia
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhuhua Zhang
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, Institute for Frontier Science of Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Wei Guo
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Wang J, Zheng S, Liu S, Li S, Wang D, He M, Wang L, Wang X. Ion transport behavior in a vertically-oriented asymmetric Ti3C2Tx nanochannel membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
13
|
Wang L, Chen Y. Bioinspired Dual-Driven Binary Heterogeneous Nanofluidic Ionic Diodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12450-12456. [PMID: 36197723 DOI: 10.1021/acs.langmuir.2c01570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recently, bioinspired 2D material-based nanofluidic systems with unique properties and advantages have been receiving considerable research interest and getting rapid development. However, it remains a huge challenge to integrate adaptive responsiveness to external stimuli and asymmetric ion transport characteristics into the 2D nanofluidic systems. Herein, we report a dual-driven switchable asymmetric ionic transport phenomenon through a graphene oxide-based heterogeneous 2D nanofluidic membrane. Taking advantage of the formation of a charge heterojunction induced by the variation of pH or UV irradiation, a maximum ionic current rectification (ICR) ratio of ca. 56 for pH or 140 for light was achieved. Such smart nanofluidic devices with pH and light dual-responsiveness and asymmetric ion transport behaviors provide a universal strategy for potential applications in chemical sensing, water treatment, and energy conversion and establish a promising platform for exploring advanced quantum ionics biodevices with ultrafast signal transmission, nanochannel-structured bioreactors with high efficiency, etc.
Collapse
Affiliation(s)
- Lili Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, P. R. China
| |
Collapse
|
14
|
Ding L, Zheng M, Xiao D, Zhao Z, Xue J, Zhang S, Caro J, Wang H. Bioinspired Ti
3
C
2
T
x
MXene‐Based Ionic Diode Membrane for High‐Efficient Osmotic Energy Conversion. Angew Chem Int Ed Engl 2022; 61:e202206152. [DOI: 10.1002/anie.202206152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Li Ding
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Mengting Zheng
- Centre for Catalysis and Clean Energy School of Environment and Science Gold Coast Campus Griffith University Gold Coast 4222 Australia
| | - Dan Xiao
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Zihao Zhao
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Jian Xue
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Shanqing Zhang
- Centre for Catalysis and Clean Energy School of Environment and Science Gold Coast Campus Griffith University Gold Coast 4222 Australia
| | - Jürgen Caro
- Institute of Physical Chemistry and Electrochemistry Leibniz University Hannover Callinstraße 3A 30167 Hannover Germany
| | - Haihui Wang
- Beijing Key Laboratory for Membrane Materials and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|
15
|
Abstract
Iontronics focuses on the interactions between electrons and ions, playing essential roles in most processes across physics, chemistry and life science. Osmotic power source as an example of iontronics, could transform ion gradient into electrical energy, however, it generates low power, sensitive to humidity and can’t operate under freezing point. Herein, based on 2D nanofluidic graphene oxide material, we demonstrate an ultrathin (∼10 µm) osmotic power source with voltage of 1.5 V, volumetric specific energy density of 6 mWh cm−3 and power density of 28 mW cm−3, achieving the highest values so far. Coupled with triboelectric nanogenerator, it could form a self-charged conformable triboiontronic device. Furthermore, the 3D aerogel scales up areal power density up to 1.3 mW cm−2 purely from ion gradient based on nanoconfined enhancement from graphene oxide that can operate under −40 °C and overcome humidity limitations, enabling to power the future implantable electronics in human-machine interface. Osmotic power source based on 2D nanofluidic graphene oxide could overcome humidity and temperature limitations due to high areal power density purely from ion gradient. Here, authors couple it with triboelectric nanogenerator, and demonstrate a self-chargeable conformable tribo-iontronic device.
Collapse
|
16
|
Sun Z, Ahmad M, Wang S. Ion transport property, structural features, and applications of cellulose-based nanofluidic platforms — A review. Carbohydr Polym 2022; 289:119406. [DOI: 10.1016/j.carbpol.2022.119406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/02/2022]
|
17
|
Ding L, Zheng M, Xiao D, Zhao Z, Xue J, Zhang S, Caro J, Wang H. Bioinspired Ti3C2Tx MXene‐Based Ionic Diode Membrane for High‐Efficient Osmotic Energy Conversion. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Li Ding
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Mengting Zheng
- Griffith University Centre for Catalysis and Clean Energy, School of Environment and Science AUSTRALIA
| | - Dan Xiao
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Zihao Zhao
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Jian Xue
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Shanqing Zhang
- Griffith University Centre for Catalysis and Clean Energy, School of Environment and Science AUSTRALIA
| | - Jürgen Caro
- Leibniz University Hannover Institute Physical Chemistry and Electrochemistry Callinstr. 3A 30167 Hannover GERMANY
| | - Haihui Wang
- Tsinghua University Department of Chemical Engineering CHINA
| |
Collapse
|
18
|
|
19
|
Liu C, Liu H, Ma P, Liu Y, Cai R, Yin R, Zhang B, Wei S, Miao H, Cao L. The Optimization of the Transition Zone of the Planar Heterogeneous Interface for High-Performance Seawater Desalination. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3561. [PMID: 35629589 PMCID: PMC9143191 DOI: 10.3390/ma15103561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 02/01/2023]
Abstract
Reverse osmosis has become the most prevalent approach to seawater desalination. It is still limited by the permeability-selectivity trade-off of the membranes and the energy consumption in the operation process. Recently, an efficient ionic sieving with high performance was realized by utilizing the bi-unipolar transport behaviour and strong ion depletion of heterogeneous structures in 2D materials. A perfect salt rejection rate of 97.0% and a near-maximum water flux of 1529 L m-2 h-1 bar-1 were obtained. However, the energy consumption of the heterogeneous desalination setup is a very important factor, and it remains largely unexplored. Here, the geometric-dimension-dependent ion transport in planar heterogeneous structures is reported. The two competitive ion migration behaviours during the desalination process, ion-depletion-dominated and electric-field-dominated ion transport, are identified for the first time. More importantly, these two ion-transport behaviours can be regulated. The excellent performance of combined high rejection rate, high water flux and low energy consumption can be obtained under the synergy of voltage, pressure and geometric dimension. With the appropriate optimization, the energy consumption can be reduced by 2 orders of magnitude, which is 50% of the industrial energy consumption. These findings provide beneficial insight for the application and optimized design of low-energy-consumption and portable water desalination devices.
Collapse
Affiliation(s)
- Chang Liu
- College of Energy, Xiamen University, Xiamen 361005, China; (C.L.); (H.L.); (P.M.); (Y.L.); (R.C.); (R.Y.); (B.Z.); (S.W.)
| | - Hui Liu
- College of Energy, Xiamen University, Xiamen 361005, China; (C.L.); (H.L.); (P.M.); (Y.L.); (R.C.); (R.Y.); (B.Z.); (S.W.)
| | - Pengfei Ma
- College of Energy, Xiamen University, Xiamen 361005, China; (C.L.); (H.L.); (P.M.); (Y.L.); (R.C.); (R.Y.); (B.Z.); (S.W.)
| | - Yan Liu
- College of Energy, Xiamen University, Xiamen 361005, China; (C.L.); (H.L.); (P.M.); (Y.L.); (R.C.); (R.Y.); (B.Z.); (S.W.)
| | - Ruochong Cai
- College of Energy, Xiamen University, Xiamen 361005, China; (C.L.); (H.L.); (P.M.); (Y.L.); (R.C.); (R.Y.); (B.Z.); (S.W.)
| | - Ran Yin
- College of Energy, Xiamen University, Xiamen 361005, China; (C.L.); (H.L.); (P.M.); (Y.L.); (R.C.); (R.Y.); (B.Z.); (S.W.)
| | - Biao Zhang
- College of Energy, Xiamen University, Xiamen 361005, China; (C.L.); (H.L.); (P.M.); (Y.L.); (R.C.); (R.Y.); (B.Z.); (S.W.)
| | - Shiqi Wei
- College of Energy, Xiamen University, Xiamen 361005, China; (C.L.); (H.L.); (P.M.); (Y.L.); (R.C.); (R.Y.); (B.Z.); (S.W.)
| | - Huifang Miao
- College of Energy, Xiamen University, Xiamen 361005, China; (C.L.); (H.L.); (P.M.); (Y.L.); (R.C.); (R.Y.); (B.Z.); (S.W.)
- Fujian Provincial Nuclear Energy Engineering Technology Research Center, Xiamen 361005, China
| | - Liuxuan Cao
- College of Energy, Xiamen University, Xiamen 361005, China; (C.L.); (H.L.); (P.M.); (Y.L.); (R.C.); (R.Y.); (B.Z.); (S.W.)
- Fujian Provincial Nuclear Energy Engineering Technology Research Center, Xiamen 361005, China
| |
Collapse
|
20
|
Ma H, Jin X, Du YZ, Dong LY, Hu X, Li WC, Wang D, Joshi R, Hao GP, Lu AH. Asymmetric heterojunctions between size different 2D flakes intensify the ionic diode behaviour. Chem Commun (Camb) 2022; 58:5626-5629. [PMID: 35438094 DOI: 10.1039/d2cc01488b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report on the facile formation of asymmetric heterojunctions between laterally size different 2D flakes, which leads to a prominent gradient in charge distribution at the nanocontact interface and triggers ionic diode-like transport behaviour with a rectification ratio of 110.
Collapse
Affiliation(s)
- He Ma
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Xiaoheng Jin
- School of Material Science and Engineering, University of New South Wales, Gate 2 High St Kensington, NSW 2052, Australia
| | - Yun-Zhe Du
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Ling-Yu Dong
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Xu Hu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Wen-Cui Li
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Dongqi Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Rakesh Joshi
- School of Material Science and Engineering, University of New South Wales, Gate 2 High St Kensington, NSW 2052, Australia
| | - Guang-Ping Hao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | - An-Hui Lu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| |
Collapse
|
21
|
Hao J, Wang W, Zhao J, Che H, Chen L, Sui X. Construction and application of bioinspired nanochannels based on two-dimensional materials. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
22
|
Two-dimensional lamellar MXene/three-dimensional network bacterial nanocellulose nanofiber composite Janus membranes as nanofluidic osmotic power generators. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140162] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Kan X, Wu C, Wen L, Jiang L. Biomimetic Nanochannels: From Fabrication Principles to Theoretical Insights. SMALL METHODS 2022; 6:e2101255. [PMID: 35218163 DOI: 10.1002/smtd.202101255] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Biological nanochannels which can regulate ionic transport across cell membranes intelligently play a significant role in physiological functions. Inspired by these nanochannels, numerous artificial nanochannels have been developed during recent years. The exploration of smart solid-state nanochannels can lay a solid foundation, not only for fundamental studies of biological systems but also practical applications in various fields. The basic fabrication principles, functional materials, and diverse applications based on artificial nanochannels are summarized in this review. In addition, theoretical insights into transport mechanisms and structure-function relationships are discussed. Meanwhile, it is believed that improvements will be made via computer-guided strategy in designing more efficient devices with upgrading accuracy. Finally, some remaining challenges and perspectives for developments in both novel conceptions and technology of this inspiring research field are stated.
Collapse
Affiliation(s)
- Xiaonan Kan
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Chenyu Wu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Liping Wen
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
24
|
Lu J, Jiang Y, Yu P, Jiang W, Mao L. Light-Controlled Ionic/Molecular Transport through Solid-State Nanopores and Nanochannels. Chem Asian J 2022; 17:e202200158. [PMID: 35324076 DOI: 10.1002/asia.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/24/2022] [Indexed: 11/10/2022]
Abstract
Biological nanochannels perfectly operate in organisms and exquisitely control mass transmembrane transport for complex life process. Inspired by biological nanochannels, plenty of intelligent artificial solid-state nanopores and nanochannels are constructed based on various materials and methods with the development of nanotechnology. Specially, the light-controlled nanopores/nanochannels have attracted much attention due to the unique advantages in terms of that ion and molecular transport can be regulated remotely, spatially and temporally. According to the structure and function of biological ion channels, light-controlled solid-state nanopores/nanochannels can be divided into light-regulated ion channels with ion gating and ion rectification functions, and light-driven ion pumps with active ion transport property. In this review, we present a systematic overview of light-controlled ion channels and ion pumps according to the photo-responsive components in the system. Then, the related applications of solid-state nanopores/nanochannels for molecular sensing, water purification and energy conversion are discussed. Finally, a brief conclusion and short outlook are offered for future development of the nanopore/nanochannel field.
Collapse
Affiliation(s)
- Jiahao Lu
- Shandong University, School of Chemistry and Chemical Engineering, CHINA
| | - Yanan Jiang
- Beijing Normal University, College of Chemistry, CHINA
| | - Ping Yu
- Chinese Academy of Sciences, Institute of Chemistry, CHINA
| | - Wei Jiang
- Shandong University, School of Chemistry and Chemical Engineering, CHINA
| | - Lanqun Mao
- Beijing Normal University, College of Chemistry, No.19, Xinjiekouwai St, Haidian District, 100875, Beijing, CHINA
| |
Collapse
|
25
|
Zhang T, Bai H, Zhao Y, Ren B, Wen T, Chen L, Song S, Komarneni S. Precise Cation Recognition in Two-Dimensional Nanofluidic Channels of Clay Membranes Imparted from Intrinsic Selectivity of Clays. ACS NANO 2022; 16:4930-4939. [PMID: 35171573 DOI: 10.1021/acsnano.2c00866] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Various kinds of clays occur naturally and are accompanied by particular cations in their interlayer domains. Here we report the reassembled membranes with nanofluidic channel arrays by using the natural clays montmorillonite, mica, and vermiculite, which were imparted with the natural selectivity for realizing precise recognition and directional regulation of the naturally occurring interlayer cations. A typical surface-governed ionic transport behavior was observed in the clay nanofluidic channels. Through asymmetric structural modification, cationic current rectification was realized in montmorillonite channels that performed as a nanofluidic diode. Interestingly, in the mica nanofluidic channel, the K+ that was naturally occurring in the interlayer domain of mica showed a reciprocating motion and resulted in a periodically fluctuating current. Electrodialysis demonstrated that such a fluctuating current reflects a directional selectivity for K+, achieving at least a 6000 times permeation rate difference with Li+ ions. The specific selectivity for Li+/Mg2+ on vermiculite reached up to 856 times with similar cations by the current technique. As-obtained clay membranes possess application prospects in energy conversion, brine resource development, etc. Such a strategy can achieve the designed selectivity through systematic screening of the building blocks, thus imparting them with the inherent characteristics of natural clays, which provides an alternative solution to the present manufacture of selective membranes.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Haoyu Bai
- School of Resources and Environmental Engineering and Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei 430070, China
- Department of Materials, Imperial College London, London, SW7 2AZ, U.K
| | - Yunliang Zhao
- School of Resources and Environmental Engineering and Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei 430070, China
| | - Bo Ren
- School of Resources and Environmental Engineering and Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei 430070, China
| | - Tong Wen
- School of Resources and Environmental Engineering and Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei 430070, China
| | - Licai Chen
- School of Resources and Environmental Engineering and Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei 430070, China
| | - Shaoxian Song
- School of Resources and Environmental Engineering and Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei 430070, China
| | - Sridhar Komarneni
- Department of Ecosystem Science and Management and Materials Research Institute, 204 Energy and the Environment Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
26
|
Zhou S, Xie L, Yan M, Zeng H, Zhang X, Zeng J, Liang Q, Liu T, Chen P, Jiang L, Kong B. Super-assembly of freestanding graphene oxide-aramid fiber membrane with T-mode subnanochannels for sensitive ion transport. Analyst 2022; 147:652-660. [PMID: 35060575 DOI: 10.1039/d1an02232f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomimetic nacre-like membranes composed of two-dimensional lamellar sheets and one-dimensional nanofibers exhibit high mechanical strength and excellent stability. Thus, they show substantial application in the field of membrane science and water purification. However, the limited techniques for the assembly of two-dimensional lamellar membranes and one-dimensional nanofibers hamper their development and application. Herein, we developed a nacre-like and freestanding graphene oxide/aramid fiber membrane with abundant T-mode subnanochannels by introducing aramid fibers into graphene oxide interlamination via the super-assembly interaction between graphene oxide and aramid fibers. Benefiting from the presence of stable and adjustable sub-nanometer-size ion transport channels, the graphene oxide/aramid fiber composite membrane exhibited excellent mono/divalent ion selectivity of 3.51 (K+/Mg2+), which is superior to that of the pure graphene oxide membrane. The experimental results suggest that the mono/divalent ion selectivity is ascribed to the subnanochannels in the graphene oxide/aramid fiber composite membrane, electrostatic repulsion interaction and strong interaction between the divalent metal ion and carboxyl groups. Moreover, the composite membrane exhibited remarkable charge selectivity with a K+/Cl- ratio of up to ∼158, indicating that this graphene oxide/aramid fiber composite membrane has great potential for application in energy conversion. This study provides an avenue to prepare freestanding and nacre-like composite membranes with abundant T-mode ion transport channels for ion recognition and energy conversion, which also shows great application prospects in the field of membrane science and water purification.
Collapse
Affiliation(s)
- Shan Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Lei Xie
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Miao Yan
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Hui Zeng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Xin Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Jie Zeng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Qirui Liang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Tianyi Liu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Pu Chen
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Biao Kong
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| |
Collapse
|
27
|
Ma P, Zheng J, Zhao D, Zhang W, Lu G, Lin L, Zhao Z, Huang Z, Cao L. The Selective Transport of Ions in Charged Nanopore with Combined Multi-Physics Fields. MATERIALS 2021; 14:ma14227012. [PMID: 34832413 PMCID: PMC8622219 DOI: 10.3390/ma14227012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 01/03/2023]
Abstract
The selective transport of ions in nanopores attracts broad interest due to their potential applications in chemical separation, ion filtration, seawater desalination, and energy conversion. The ion selectivity based on the ion dehydration and steric hindrance is still limited by the very similar diameter between different hydrated ions. The selectivity can only separate specific ion species, lacking a general separation effect. Herein, we report the highly ionic selective transport in charged nanopore through the combination of hydraulic pressure and electric field. Based on the coupled Poisson–Nernst–Planck (PNP) and Navier–Stokes (NS) equations, the calculation results suggest that the coupling of hydraulic pressure and electric field can significantly enhance the ion selectivity compared to the results under the single driven force of hydraulic pressure or electric field. Different from the material-property-based ion selective transport, this method endows the general separation effect between different kinds of ions. Through the appropriate combination of hydraulic pressure and electric field, an extremely high selectivity ratio can be achieved. Further in-depth analysis reveals the influence of nanopore diameter, surface charge density and ionic strength on the selectivity ratio. These findings provide a potential route for high-performance ionic selective transport and separation in nanofluidic systems.
Collapse
Affiliation(s)
- Pengfei Ma
- College of Energy, Xiamen University, Xiamen 361005, China; (P.M.); (J.Z.); (D.Z.); (W.Z.); (G.L.); (L.L.)
| | - Jianxiang Zheng
- College of Energy, Xiamen University, Xiamen 361005, China; (P.M.); (J.Z.); (D.Z.); (W.Z.); (G.L.); (L.L.)
- Fujian Research Center for Nuclear Engineering, Xiamen 361005, China
| | - Danting Zhao
- College of Energy, Xiamen University, Xiamen 361005, China; (P.M.); (J.Z.); (D.Z.); (W.Z.); (G.L.); (L.L.)
| | - Wenjie Zhang
- College of Energy, Xiamen University, Xiamen 361005, China; (P.M.); (J.Z.); (D.Z.); (W.Z.); (G.L.); (L.L.)
| | - Gonghao Lu
- College of Energy, Xiamen University, Xiamen 361005, China; (P.M.); (J.Z.); (D.Z.); (W.Z.); (G.L.); (L.L.)
| | - Lingxin Lin
- College of Energy, Xiamen University, Xiamen 361005, China; (P.M.); (J.Z.); (D.Z.); (W.Z.); (G.L.); (L.L.)
| | - Zeyuan Zhao
- Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, China;
| | - Zijing Huang
- College of Energy, Xiamen University, Xiamen 361005, China; (P.M.); (J.Z.); (D.Z.); (W.Z.); (G.L.); (L.L.)
- Fujian Research Center for Nuclear Engineering, Xiamen 361005, China
- Correspondence: (Z.H.); (L.C.)
| | - Liuxuan Cao
- College of Energy, Xiamen University, Xiamen 361005, China; (P.M.); (J.Z.); (D.Z.); (W.Z.); (G.L.); (L.L.)
- Fujian Research Center for Nuclear Engineering, Xiamen 361005, China
- Correspondence: (Z.H.); (L.C.)
| |
Collapse
|
28
|
Chen Y, Zhu Z, Tian Y, Jiang L. Rational ion transport management mediated through membrane structures. EXPLORATION (BEIJING, CHINA) 2021; 1:20210101. [PMID: 37323215 PMCID: PMC10190948 DOI: 10.1002/exp.20210101] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/13/2021] [Indexed: 06/14/2023]
Abstract
Unique membrane structures endow membranes with controlled ion transport properties in both biological and artificial systems, and they have shown broad application prospects from industrial production to biological interfaces. Herein, current advances in nanochannel-structured membranes for manipulating ion transport are reviewed from the perspective of membrane structures. First, the controllability of ion transport through ion selectivity, ion gating, ion rectification, and ion storage is introduced. Second, nanochannel-structured membranes are highlighted according to the nanochannel dimensions, including single-dimensional nanochannels (i.e., 1D, 2D, and 3D) functioning by the controllable geometrical parameters of 1D nanochannels, the adjustable interlayer spacing of 2D nanochannels, and the interconnected ion diffusion pathways of 3D nanochannels, and mixed-dimensional nanochannels (i.e., 1D/1D, 1D/2D, 1D/3D, 2D/2D, 2D/3D, and 3D/3D) tuned through asymmetric factors (e.g., components, geometric parameters, and interface properties). Then, ultrathin membranes with short ion transport distances and sandwich-like membranes with more delicate nanochannels and combination structures are reviewed, and stimulus-responsive nanochannels are discussed. Construction methods for nanochannel-structured membranes are briefly introduced, and a variety of applications of these membranes are summarized. Finally, future perspectives to developing nanochannel-structured membranes with unique structures (e.g., combinations of external macro/micro/nanostructures and the internal nanochannel arrangement) for mediating ion transport are presented.
Collapse
Affiliation(s)
- Yupeng Chen
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Zhongpeng Zhu
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Ye Tian
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
| | - Lei Jiang
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
29
|
Wang Y, Chen H, Zhai J. Gap Confinement Effect of a Tandem Nanochannel System and Its Application in Salinity Gradient Power Generation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41159-41168. [PMID: 34403239 DOI: 10.1021/acsami.1c07972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As an important nanofluidic device, an artificial ion nanochannel could selectively transport ions inside its nanoconfinement space and the surface charge of the pore wall. Here, confinement effects were realized by tandem nanochannel units, which kept their cascade gaps less than 500 nm. Within these gaps, ionic conductance was governed by the surface charge density of the channel unit. Cations could be sufficiently selected and enriched within this confined space, which improves the cation transfer number of the system. Therefore, the tandem nanochannel system could greatly improve the diffusion potential and energy conversion efficiency in the salinity gradient power generation process. Poisson-Nernst-Planck equations were introduced to numerically simulate the ionic transport behavior and confirmed the experimental results. Finally, the gap confinement effect was introduced in the porous cellulose acetate membrane tandem nanochannel system, and a high output power density of 4.72 W/m2 and energy conversion efficiency of 42.22% were achieved under stacking seven channel units.
Collapse
Affiliation(s)
- Yuting Wang
- Key Laboratory of Smart Bioinspired Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, P. R. China
| | - Huaxiang Chen
- China National Petroleum Corporation Energy East Road, Petrochemical Research Institute, Shahe Town, Changping District, Beijing 102200, P.R.China
| | - Jin Zhai
- Key Laboratory of Smart Bioinspired Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
30
|
High energy density in poly(vinylidene fluoride-trifluoroethylene) composite incorporated with modified halloysite nanotubular architecture. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Peng R, Pan Y, Liu B, Li Z, Pan P, Zhang S, Qin Z, Wheeler AR, Tang XS, Liu X. Understanding Carbon Nanotube-Based Ionic Diodes: Design and Mechanism. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100383. [PMID: 34171160 DOI: 10.1002/smll.202100383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/27/2021] [Indexed: 06/13/2023]
Abstract
The rectification of ion transport through biological ion channels has attracted much attention and inspired the thriving invention and applications of ionic diodes. However, the development of high-performance ionic diodes is still challenging, and the working mechanisms of ionic diodes constructed by 1D ionic nanochannels have not been fully understood. This work reports the systematic investigation of the design and mechanism of a new type of ionic diode constructed from horizontally aligned multi-walled carbon nanotubes (MWCNTs) with oppositely charged polyelectrolytes decorated at their two entrances. The major design and working parameters of the MWCNT-based ionic diode, including the ion channel size, the driven voltage, the properties of working fluids, and the quantity and length of charge modification, are extensively investigated through numerical simulations and/or experiments. An optimized ionic current rectification (ICR) ratio of 1481.5 is experimentally achieved on the MWCNT-based ionic diode. These results promise potential applications of the MWCNT-based ionic diode in biosensing and biocomputing. As a proof-of-concept, DNA detection and HIV-1 diagnosis is demonstrated on the ionic diode. This work provides a comprehensive understanding of the working principle of the MWCNT-based ionic diodes and will allow rational device design and optimization.
Collapse
Affiliation(s)
- Ran Peng
- Department of Marine Engineering, Dalian Maritime University, 1 Lingshui Road, Dalian, Liaoning, 116026, China
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Yueyue Pan
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Biwu Liu
- Department of Chemistry & Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Zhi Li
- Department of Chemistry & Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Peng Pan
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Shuailong Zhang
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Zhen Qin
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Xiaowu Shirley Tang
- Department of Chemistry & Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| |
Collapse
|
32
|
Cai J, Ma W, Hao C, Sun M, Guo J, Xu L, Xu C, Kuang H. Artificial light-triggered smart nanochannels relying on optoionic effects. Chem 2021. [DOI: 10.1016/j.chempr.2021.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Size-Dependent Ion Adsorption in Graphene Oxide Membranes. NANOMATERIALS 2021; 11:nano11071676. [PMID: 34202268 PMCID: PMC8304616 DOI: 10.3390/nano11071676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 11/19/2022]
Abstract
Graphene oxide (GO)-based materials have demonstrated promising potential for adsorption and purification applications. Due to its amphiphilic nature, GO offers the possibility of removing various kinds of contaminants, including heavy metal ions and organic pollutants from aqueous environments. Here, we present size-selective ion adsorption in GO-based laminates by directly measuring the weight uptake of slats. Adsorption studies were conducted in graphene oxide purchased from Nisina Materials Japan prepared using a controlled method. We tuned the interlayer spacing of GO membranes via cationic control solutions using intercalation of very small salts ions (i.e., K+, Na+, Cl−) very precisely to facilitate the adsorption of larger ions such as [Fe(CN)6]4− and [Fe(CN)6]3−. This study demonstrates that if the opening of nanocapillaries within the laminates is bigger than the hydrated diameter of ions, the adsorption occurs within the membranes while for smaller opening, with no ion entrance the sorption occurs on the surface of the membranes.
Collapse
|
34
|
Jia P, Wang L, Zhang Y, Yang Y, Jin X, Zhou M, Quan D, Jia M, Cao L, Long R, Jiang L, Guo W. Harnessing Ionic Power from Equilibrium Electrolyte Solution via Photoinduced Active Ion Transport through van-der-Waals-Like Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007529. [PMID: 33656226 DOI: 10.1002/adma.202007529] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Nanofluidic ion transport through van der Waals heterostructures, composed of two or more types of reconstructed 2D nanomaterials, gives rise to fascinating opportunities for light-energy harvesting, due to coupling between the optoelectronic properties of the layered constituents and ion transport in between the atomic layers. Here, a photoinduced active ion transport phenomenon through transition metal dichalcogenides (TMDs)-based van-der-Waals-like multilayer heterostructures is reported for harnessing ionic power from equilibrium electrolyte solution. The binary heterostructure comprises sequentially stacked 2D-WS2 and 2D-MoS2 multilayers with sub-1 nm interlayer spacing. Upon visible-light illumination, a net ionic flow is initiated through the Janus membrane, suggesting a directional cationic transport from WS2 to MoS2 part. The transport mechanism is explained in terms of a photovoltaic effect due to type II band alignment of WS2 /MoS2 heterostructures. The driving mechanism can be generally applied to a variety of heterogeneous TMD membranes with type II semiconductor heterojunctions. In equilibrium ionic solutions, the maximum ionic photoresponse approaches ≈21 µA cm-2 and ≈45 mV under one sun equivalent excitation. Under optimized conditions, the harvested power density reaches 2 mW m-2 . The proof-of-concept demonstration of photonic-to-ionic power generation within angstrom-scale confinement anticipates potential for light-controlled ionic circuits, artificial photosynthesis, and biomimetic energy conversion.
Collapse
Affiliation(s)
- Pan Jia
- Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, P. R. China
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lili Wang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuhui Zhang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yating Yang
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaoyan Jin
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Min Zhou
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Di Quan
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Meijuan Jia
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Liuxuan Cao
- College of Energy, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wei Guo
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
35
|
Green Y. Ion transport in nanopores with highly overlapping electric double layers. J Chem Phys 2021; 154:084705. [PMID: 33639761 DOI: 10.1063/5.0037873] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Investigation of ion transport through nanopores with highly overlapping electric double layers is extremely challenging. This can be attributed to the non-linear Poisson-Boltzmann equation that governs the behavior of the electrical potential distribution as well as other characteristics of ion transport. In this work, we leverage the approach of Schnitzer and Yariv [Phys. Rev. E 87, 054301 (2013)] to reduce the complexity of the governing equation. An asymptotic solution is derived, which shows remarkable correspondence to simulations of the non-approximated equations. This new solution is leveraged to address a number of highly debated issues. We derive the equivalent of the Gouy-Chapman equation for systems with highly overlapping electric double layers. This new relationship between the surface charge density and the surface potential is then utilized to determine the power-law scaling of nanopore conductances as a function of the bulk concentrations. We derive the coefficients of transport for the case of overlapping electric double layers and compare it to the renowned uniform potential model. We show that the uniform potential model is only an approximation for the exact solution for small surface charges. The findings of this work can be leveraged to uncover additional hidden attributes of ion transport through nanopores.
Collapse
Affiliation(s)
- Yoav Green
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
36
|
Lu J, Zhang H, Hu X, Qian B, Hou J, Han L, Zhu Y, Sun C, Jiang L, Wang H. Ultraselective Monovalent Metal Ion Conduction in a Three-Dimensional Sub-1 nm Nanofluidic Device Constructed by Metal-Organic Frameworks. ACS NANO 2021; 15:1240-1249. [PMID: 33332960 DOI: 10.1021/acsnano.0c08328] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Construction of nanofluidic devices with an ultimate ion selectivity analogue to biological ion channels has been of great interest for their versatile applications in energy harvesting and conversion, mineral extraction, and ion separation. Herein, we report a three-dimensional (3D) sub-1 nm nanofluidic device to achieve high monovalent metal ion selectivity and conductivity. The 3D nanofluidic channel is constructed by assembly of a carboxyl-functionalized metal-organic framework (MOF, UiO-66-COOH) crystals with subnanometer pores into an ethanediamine-functionalized polymer nanochannel via a nanoconfined interfacial growth method. The 3D UiO-66-COOH nanofluidic channel achieves an ultrahigh K+/Mg2+ selectivity up to 1554.9, and the corresponding K+ conductivity is one to three orders of magnitude higher than that in bulk. Drift-diffusion experiments of the nanofluidic channel further reveal an ultrahigh charge selectivity (K+/Cl-) up to 112.1, as verified by the high K/Cl content ratio in UiO-66-COOH. The high metal ion selectivity is attributed to the size-exclusion, charge selectivity, and ion binding of the negatively charged MOF channels. This work will inspire the design of diverse MOF-based nanofluidic devices for ultimate ion separation and energy conversion.
Collapse
Affiliation(s)
- Jun Lu
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Xiaoyi Hu
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Binbin Qian
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jue Hou
- Manufacturing, CSIRO, Clayton, Victoria 3168, Australia
| | - Li Han
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yinlong Zhu
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Chenghua Sun
- Department of Chemistry and Biotechnology, Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Lei Jiang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
37
|
Qu R, Zeng X, Lin L, Zhang G, Liu F, Wang C, Ma S, Liu C, Miao H, Cao L. Vertically-Oriented Ti 3C 2T x MXene Membranes for High Performance of Electrokinetic Energy Conversion. ACS NANO 2020; 14:16654-16662. [PMID: 33231081 DOI: 10.1021/acsnano.0c02202] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The electrokinetic effect to convert the mechanical energy from ambient has gained sustained research attention because it is free of moving parts and easy to be miniaturized for microscale applications. The practical application is constrained by the limited electrokinetic energy conversion performance. Herein, we report vertically oriented MXene membranes (VMMs) with ultrafast permeation as well as high ion selectivity, in which the permeation is several thousand higher than the largely researched horizontally stacked MXene membranes (HMMs). The VMMs can achieve a high streaming current of 8.17 A m-2 driven by the hydraulic pressure, largely outperforming all existing materials. The theoretical analysis and numerical calculation reveal the underlying mechanism of the ultrafast transport in VMMs originates from the evident short migration paths, the low energy loss during the ionic migration, and the large effective inlet area on the membrane surface. The orientation of the 2D lamella in membranes, the long-overlooked element in the existing literatures, is identified to be an essential determinant in the performance of 2D porous membranes. These understandings can largely promote the development of electrokinetic energy conversion devices and bring advanced design strategy for high-performance 2D materials.
Collapse
Affiliation(s)
- Renjie Qu
- College of Energy, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Xianhai Zeng
- College of Energy, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Lingxin Lin
- College of Energy, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Gehui Zhang
- State Key Laboratory of Nuclear Physics and Technology, Peking University, 100871 Beijing, P. R. China
| | - Feng Liu
- State Key Laboratory of Nuclear Physics and Technology, Peking University, 100871 Beijing, P. R. China
| | - Chao Wang
- College of Energy, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Shenglin Ma
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Chang Liu
- College of Energy, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Huifang Miao
- College of Energy, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Liuxuan Cao
- College of Energy, Xiamen University, Xiamen, Fujian 361005, P. R. China
| |
Collapse
|
38
|
Ye H, Wang Q, Sun Q, Xu L. High energy density and interfacial polarization in poly(vinylidene fluoride-chlorotrifluoroethylene) nanocomposite incorporated with halloysite nanotube architecture. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Zhang Y, Zhao G, Zhu H, Jiang L. Enhanced ionic photocurrent generation through a homogeneous graphene derivative composite membrane. Chem Commun (Camb) 2020; 56:9819-9822. [PMID: 32716018 DOI: 10.1039/d0cc04204h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report an enhanced light-harvesting two-dimensional nanofluidic system based on a homogeneous graphene derivative nanocomposite membrane, and demonstrate an enhanced proton flow upon asymmetric light illumination. The maximum photocurrent is achieved by appropriately sandwiching graphene oxide quantum dots for adjusting the interlayer spacing of the membrane and reinforcing the membrane potential.
Collapse
Affiliation(s)
- Yanbing Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guoke Zhao
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Hongwei Zhu
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
40
|
Liu FF, Guo YC, Wang W, Chen YM, Wang C. In situ synthesis of a MOFs/PAA hybrid with ultrahigh ionic current rectification. NANOSCALE 2020; 12:11899-11907. [PMID: 32236224 DOI: 10.1039/d0nr01054e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent decades, the ionic current rectification (ICR) property of asymmetric nanochannels has been widely explored in applications of energy conversion, gas separation, water purification and bioanalysis/sensors. How to fabricate nanofluidic devices with a high ICR characteristic remains of critical importance to the development of nanofluidics. Herein, we fabricated an asymmetric MOFs/PAA hybrid via in situ synthesis of a zeolitic imidazole framework (ZIF-90) on porous anodic alumina (PAA) nanochannels. The introduction of asymmetric geometry and charge distribution provides the hybrid with ultrahigh ionic rectification, which can be easily measured using an electrochemical detector. This rectification mechanism is elucidated via finite element simulation, which proves that asymmetric geometry as well as the protonation and deprotonation under varied pH values dominates the ICR property. With the advantages of low cost and facile fabrication while supporting high ionic current rectification, the prepared MOFs/PAA hybrid can be considered as a significant paradigm in nanofluidic systems and has potential applications in the fields of new ionic devices and energy conversion systems.
Collapse
Affiliation(s)
- Fei-Fei Liu
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198, China.
| | - Ye-Chang Guo
- Institute of Microelectronics, Peking University, Beijing, 100871, China.
| | - Wei Wang
- Institute of Microelectronics, Peking University, Beijing, 100871, China. and National Key Laboratory of Science and Technology on Micro/Nano Fabrication, 100871, China
| | - Yu-Ming Chen
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chen Wang
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
41
|
Zhan H, Xiong Z, Cheng C, Liang Q, Liu JZ, Li D. Solvation-Involved Nanoionics: New Opportunities from 2D Nanomaterial Laminar Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904562. [PMID: 31867816 DOI: 10.1002/adma.201904562] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Nanoporous laminar membranes composed of multilayered 2D nanomaterials (2D-NLMs) are increasingly being exploited as a unique material platform for understanding solvated ion transport under nanoconfinement and exploring novel nanoionics-related applications, such as ion sieving, energy storage and harvesting, and in other new ionic devices. Here, the fundamentals of solvation-involved nanoionics in terms of ionic interactions and their effect on ionic transport behaviors are discussed. This is followed by a summary of key requirements for materials that are being used for solvation-involved nanoionics research, culminating in a demonstration of unique features of 2D-NLMs. Selected examples of using 2D-NLMs to address the key scientific problems related to nanoconfined ion transport and storage are then presented to demonstrate their enormous potential and capabilities for nanoionics research and applications. To conclude, a personal perspective on the challenges and opportunities in this emerging field is presented.
Collapse
Affiliation(s)
- Hualin Zhan
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Zhiyuan Xiong
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Chi Cheng
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Qinghua Liang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jefferson Zhe Liu
- Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Dan Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
42
|
Luo R, Xiao T, Li W, Liu Z, Wang Y. An ionic diode based on a spontaneously formed polypyrrole-modified graphene oxide membrane. RSC Adv 2020; 10:17079-17084. [PMID: 35521453 PMCID: PMC9053440 DOI: 10.1039/d0ra01145b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/24/2020] [Indexed: 12/30/2022] Open
Abstract
Asymmetric membranes derived from the stacking of graphene oxide (GO) nanosheets have attracted great attention for the fabrication of ionic diodes. Herein, we described an ionic diode based on a polypyrrole-modified GO membrane with a vertical asymmetry, which was achieved by a spontaneous oxidation polymerization of pyrrole monomers on one side of the GO membrane in vapor phase. This asymmetric modification resulted in an asymmetric geometry due to the occupation of the interlayer space of one side of the GO membrane by polypyrrole. Our ionic diode demonstrated an obvious ionic rectification behavior over a wide voltage range. A calculation based on Poisson-Nernst-Planck equations was used to theoretically investigate the role of asymmetric modification of polypyrrole.
Collapse
Affiliation(s)
- Rifeng Luo
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University Beijing 100191 P. R. China
| | - Tianliang Xiao
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University Beijing 100191 P. R. China
| | - Wenping Li
- Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education), School of Physics, Beihang University Beijing 100191 P. R. China
| | - Zhaoyue Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University Beijing 100191 P. R. China
| | - Yao Wang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University Guangzhou 510006 P. R. China
| |
Collapse
|
43
|
Wen Q, Jia P, Cao L, Li J, Quan D, Wang L, Zhang Y, Lu D, Jiang L, Guo W. Electric-Field-Induced Ionic Sieving at Planar Graphene Oxide Heterojunctions for Miniaturized Water Desalination. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903954. [PMID: 32115802 DOI: 10.1002/adma.201903954] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 02/02/2020] [Indexed: 05/22/2023]
Abstract
Layered graphene oxide membranes (GOMs) offer a unique platform for precise sieving of small ions and molecules due to controlled sub-nanometer-wide interlayer distance and versatile surface chemistry. Pristine and chemically modified GOMs effectively block organic dyes and nanoparticles, but fail to exclude smaller ions with hydrated diameters less than 9 Å. Toward sieving of small inorganic salt ions, a number of strategies are proposed by reducing the interlayer spacing down to merely several angstroms. However, one critical challenge for such compressed GOMs is the extremely low water flux (<0.1 Lm-2 h-1 bar-1 ) that prevents these innovative nanomaterials from being used in real-world applications. Here, a planar heterogeneous graphene oxide membrane (PHGOM) with both nearly perfect salt rejection and high water flux is reported. Horizontal ion transport through oppositely charged GO multilayer lateral heterojunction exhibits bi-unipolar transport behavior, blocking the conduction of both cations and anions. Assisted by a forward electric field, salt concentration is depleted in the near-neutral transition area of the PHGOM. In this situation, deionized water can be extracted from the depletion zone. Following this mechanism, a high rejection rate of 97.0% for NaCl and water flux of 1529 Lm-2 h-1 bar-1 at the outlet via an inverted T-shaped water extraction mode are achieved.
Collapse
Affiliation(s)
- Qi Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Pan Jia
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Liuxuan Cao
- College of Energy, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Jipeng Li
- State Key Joint Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Di Quan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lili Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yanbing Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Diannan Lu
- State Key Joint Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wei Guo
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
44
|
Ding L, Xiao D, Lu Z, Deng J, Wei Y, Caro J, Wang H. Oppositely Charged Ti
3
C
2
T
x
MXene Membranes with 2D Nanofluidic Channels for Osmotic Energy Harvesting. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915993] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Li Ding
- School of Chemistry and Chemical Engineering South China University of Technology 510640 Guangzhou China
| | - Dan Xiao
- School of Chemistry and Chemical Engineering South China University of Technology 510640 Guangzhou China
| | - Zong Lu
- School of Chemistry and Chemical Engineering South China University of Technology 510640 Guangzhou China
| | - Junjie Deng
- School of Chemistry and Chemical Engineering South China University of Technology 510640 Guangzhou China
| | - Yanying Wei
- School of Chemistry and Chemical Engineering South China University of Technology 510640 Guangzhou China
| | - Jürgen Caro
- School of Chemistry and Chemical Engineering South China University of Technology 510640 Guangzhou China
- Institute of Physical Chemistry and Electrochemistry Leibniz University Hannover Callinstrasse 3A 30167 Hannover Germany
| | - Haihui Wang
- School of Chemistry and Chemical Engineering South China University of Technology 510640 Guangzhou China
| |
Collapse
|
45
|
Ding L, Xiao D, Lu Z, Deng J, Wei Y, Caro J, Wang H. Oppositely Charged Ti
3
C
2
T
x
MXene Membranes with 2D Nanofluidic Channels for Osmotic Energy Harvesting. Angew Chem Int Ed Engl 2020; 59:8720-8726. [DOI: 10.1002/anie.201915993] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Li Ding
- School of Chemistry and Chemical Engineering South China University of Technology 510640 Guangzhou China
| | - Dan Xiao
- School of Chemistry and Chemical Engineering South China University of Technology 510640 Guangzhou China
| | - Zong Lu
- School of Chemistry and Chemical Engineering South China University of Technology 510640 Guangzhou China
| | - Junjie Deng
- School of Chemistry and Chemical Engineering South China University of Technology 510640 Guangzhou China
| | - Yanying Wei
- School of Chemistry and Chemical Engineering South China University of Technology 510640 Guangzhou China
| | - Jürgen Caro
- School of Chemistry and Chemical Engineering South China University of Technology 510640 Guangzhou China
- Institute of Physical Chemistry and Electrochemistry Leibniz University Hannover Callinstrasse 3A 30167 Hannover Germany
| | - Haihui Wang
- School of Chemistry and Chemical Engineering South China University of Technology 510640 Guangzhou China
| |
Collapse
|
46
|
Jia M, Kong X, Wang L, Zhang Y, Quan D, Ding L, Lu D, Jiang L, Guo W. Light-Powered Directional Nanofluidic Ion Transport in Kirigami-Made Asymmetric Photonic-Ionic Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905557. [PMID: 31805218 DOI: 10.1002/smll.201905557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Nacre-mimetic 2D nanofluidic materials with densely packed sub-nanometer-height lamellar channels find widespread applications in water-, energy-, and environment-related aspects by virtue of their scalable fabrication methods and exceptional transport properties. Recently, light-powered nanofluidic ion transport in synthetic materials gained considerable attention for its remote, noninvasive, and active control of the membrane transport property using the energy of light. Toward practical application, a critical challenge is to overcome the dependence on inhomogeneous or site-specific light illumination. Here, asymmetric photonic-ionic devices based on kirigami-tailored graphene oxide paper are fabricated, and directional nanofluidic ion transport properties therein powered by full-area light illumination are demonstrated. The in-plane asymmetry of the graphene oxide paper is essential to the generation of photoelectric driving force under homogeneous illumination. This light-powered ion transport phenomenon is explained based on a modified carrier diffusion model. In asymmetric nanofluidic structures, enhanced recombination of photoexcited charge carriers at the membrane boundary breaks the electric potential balance in the horizontal direction, and thus drives the ion transport in that direction under symmetric illumination. The kirigami-based strategy provides a facile and scalable way to fabricate paper-like photonic-ionic devices with arbitrary shapes, working as fundamental elements for large-scale light-harvesting nanofluidic circuits.
Collapse
Affiliation(s)
- Meijuan Jia
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xian Kong
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Lili Wang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yanbing Zhang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Di Quan
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Ding
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Diannan Lu
- State Key Joint Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wei Guo
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
47
|
Zhang Z, Huang X, Qian Y, Chen W, Wen L, Jiang L. Engineering Smart Nanofluidic Systems for Artificial Ion Channels and Ion Pumps: From Single-Pore to Multichannel Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904351. [PMID: 31793736 DOI: 10.1002/adma.201904351] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Biological ion channels and ion pumps with intricate ion transport functions widely exist in living organisms and play irreplaceable roles in almost all physiological functions. Nanofluidics provides exciting opportunities to mimic these working processes, which not only helps understand ion transport in biological systems but also paves the way for the applications of artificial devices in many valuable areas. Recent progress in the engineering of smart nanofluidic systems for artificial ion channels and ion pumps is summarized. The artificial systems range from chemically and structurally diverse lipid-membrane-based nanopores to robust and scalable solid-state nanopores. A generic strategy of gate location design is proposed. The single-pore-based platform concept can be rationally extended into multichannel membrane systems and shows unprecedented potential in many application areas, such as single-molecule analysis, smart mass delivery, and energy conversion. Finally, some present underpinning issues that need to be addressed are discussed.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaodong Huang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yongchao Qian
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weipeng Chen
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wen
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
48
|
Ye J, Simon P, Zhu Y. Designing ionic channels in novel carbons for electrochemical energy storage. Natl Sci Rev 2020; 7:191-201. [PMID: 34692031 PMCID: PMC8289042 DOI: 10.1093/nsr/nwz140] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/24/2019] [Accepted: 09/11/2019] [Indexed: 01/08/2023] Open
Abstract
Tremendous efforts have been dedicated to developing high-performance energy storage devices based on the micro- or nano-manipulation of novel carbon electrodes, as certain nanocarbons are perceived to have advantages such as high specific surface areas, superior electric conductivities, excellent mechanical properties and so on. In typical electrochemical electrodes, ions are intercalated/deintercalated into/from the bulk (for batteries) or adsorbed/desorbed on/from the surface (for electrochemical capacitors). Fast ionic transport, significantly determined by ionic channels in active electrodes or supporting materials, is a prerequisite for the efficient energy storage with carbons. In this report, we summarize recent design strategies for ionic channels in novel carbons and give comments on the promising features based on those carbons towards tailorable ionic channels.
Collapse
Affiliation(s)
- Jianglin Ye
- Hefei National Research Center for Physical Sciences at the Microscale & CAS Key Laboratory of Materials for Energy Conversion & Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Patrice Simon
- CIRIMAT UMR CNRS 5085, Université Paul Sabatier, Toulouse 31062, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, Amiens 80039, France
| | - Yanwu Zhu
- Hefei National Research Center for Physical Sciences at the Microscale & CAS Key Laboratory of Materials for Energy Conversion & Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- iChEM, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
49
|
Mao X, Xu M, Wu H, He X, Shi B, Cao L, Yang P, Qiu M, Geng H, Jiang Z. Supramolecular Calix[ n]arenes-Intercalated Graphene Oxide Membranes for Efficient Proton Conduction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42250-42260. [PMID: 31644869 DOI: 10.1021/acsami.9b15331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphene oxide (GO) membranes with 2D interlaminar channels have triggered intensive interest as ion conductors. Incorporating abundant ion-conducting sites into GO interlayers is recognized as an effective strategy to facilitate ion conduction. Herein, we designed supramolecular compounds, para-sulphonato-calix[n]arenes (p-SC[n]As), as versatile intercalators to acquire highly conductive and robust GO membranes. The SC[n]A with ultrahigh ionic exchange capacity (IECw, 5.37 mmol g-1) imparts sufficient proton donors, and its rigid framework imparts strong support of adjacent nanosheets. We designed three kinds of SC[n]As with the same IECw but different sizes as intercalators, endowing the GO/SC[n]A membranes with increasing ion concentration and d-spacing in the order of GO/SC[4]A < GO/SC[6]A < GO/SC[8]A. Therefore, the interlayers of GO/SC[8]A membranes afforded higher density of proton donors and could accommodate more water molecules to construct more continuous H-bond networks for proton transfer. Accordingly, the proton conductivities exhibited the same increasing trend, up to 327.0 mS cm-1 of GO/SC[8]A-30% at 80 °C, 100% RH, which was 2.80 times higher than that of the GO membrane. Moreover, the GO/SC[n]A membranes remained stable in wet state, along with a 66% elevation in mechanical performance compared to the GO membrane.
Collapse
Affiliation(s)
- Xunli Mao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , P. R. China
| | - Mingzhao Xu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , P. R. China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology , Tianjin University , Tianjin 300072 , P. R. China
| | - Xueyi He
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , P. R. China
| | - Benbing Shi
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , P. R. China
| | - Li Cao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , P. R. China
| | - Pengfei Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , P. R. China
| | - Ming Qiu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , P. R. China
| | - Haobo Geng
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , P. R. China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , P. R. China
| |
Collapse
|
50
|
Shi B, Wu H, Shen J, Cao L, He X, Ma Y, Li Y, Li J, Xu M, Mao X, Qiu M, Geng H, Yang P, Jiang Z. Control of Edge/in-Plane Interactions toward Robust, Highly Proton Conductive Graphene Oxide Membranes. ACS NANO 2019; 13:10366-10375. [PMID: 31442372 DOI: 10.1021/acsnano.9b04156] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphene oxide (GO) membrane, bearing well-aligned interlayer nanochannels and well-defined physicochemical properties, promises fast proton transport. However, the deficiency of proton donor groups on the basal plane of GO and weak interlamellar interactions between the adjacent nanosheets often cause low proton conduction capability and poor water stability. Herein, we incorporate sulfonated graphene quantum dots (SGQD) into GO membrane to solve the above dilemma via synergistically controlling the edge electrostatic interaction and in-plane π-π interaction of SGQD with GO nanosheets. SGQD with three different kinds of electron-withdrawing groups are employed to modulate the edge electrostatic interactions and improve the water swelling resistant property of GO membranes. Meanwhile, SGQD with abundant proton donor groups assemble on the sp2 domain of GO via in-plane π-π interaction and confer the GO membranes with low-energy-barrier proton transport channels. As a result, the GO membrane achieves an enhanced proton conductivity of 324 mS cm-1, maximum power density of 161.6 mW cm-2, and superior water stability when immersed into water for one month. This study demonstrates a strategy for independent manipulation of conductive function and nonconductive function to fabricate high-performance proton exchange membranes.
Collapse
Affiliation(s)
- Benbing Shi
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology , Tianjin University , Tianjin 300072 , China
| | - Jianliang Shen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Li Cao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Xueyi He
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Yu Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Yan Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Jinzhao Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Mingzhao Xu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Xunli Mao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Ming Qiu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Haobo Geng
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Pengfei Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| |
Collapse
|