1
|
Pruchnik B, Kwoka K, Gacka E, Badura D, Kunicki P, Sierakowski A, Janus P, Piasecki T, Gotszalk T. New design of operational MEMS bridges for measurements of properties of FEBID-based nanostructures. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1273-1282. [PMID: 39469041 PMCID: PMC11514439 DOI: 10.3762/bjnano.15.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024]
Abstract
Focused electron beam-induced deposition (FEBID) is a novel technique for the development of multimaterial nanostructures. More importantly, it is applicable to the fabrication of free-standing nanostructures. Experimenting at the nanoscale requires instruments with sufficient resolution and sensitivity to measure various properties of nanostructures. Such measurements (regardless of the nature of the quantities being measured) are particularly problematic in the case of free-standing nanostructures, whose properties must be separated from the measurement system to avoid possible interference. In this paper, we propose novel devices, namely operational micro-electromechanical system (opMEMS) bridges. These are 3D substrates with nanometer-scale actuation capability and equipped with electrical contacts characterised by leakage resistances above 100 GΩ, which provide a platform for comprehensive measurements of properties (i.e., resistance) of free-standing FEBID structures. We also present a use case scenario in which an opMEMS bridge is used to measure the resistance of a free-standing FEBID nanostructure.
Collapse
Affiliation(s)
- Bartosz Pruchnik
- Department of Nanometrology, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-370, Wrocław, Poland
| | - Krzysztof Kwoka
- Department of Nanometrology, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-370, Wrocław, Poland
| | - Ewelina Gacka
- Department of Nanometrology, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-370, Wrocław, Poland
| | - Dominik Badura
- Department of Nanometrology, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-370, Wrocław, Poland
| | - Piotr Kunicki
- Department of Nanometrology, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-370, Wrocław, Poland
| | - Andrzej Sierakowski
- Institute of Microelectronics and Photonics, Łukasiewicz Research Network, Lotników 32/46, 02-668, Warsaw, Poland
| | - Paweł Janus
- Institute of Microelectronics and Photonics, Łukasiewicz Research Network, Lotników 32/46, 02-668, Warsaw, Poland
| | - Tomasz Piasecki
- Department of Nanometrology, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-370, Wrocław, Poland
| | - Teodor Gotszalk
- Department of Nanometrology, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-370, Wrocław, Poland
| |
Collapse
|
2
|
Heravi FJ, Hajjiah A, Elsayed HA, Mehaney A. Ultra-sensitive optimized one-dimensional phononic crystal as a fluidic sensor to enhance the measurement of acetic acid concentration. Sci Rep 2024; 14:19076. [PMID: 39154019 PMCID: PMC11330524 DOI: 10.1038/s41598-024-69195-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024] Open
Abstract
The current investigation theoretically presents a one-dimensional phononic crystal (PnC) as a fluidic sensor. The sensor under consideration aims to distinguish the concentration of acetic acid. The primary configuration of the proposed sensor is constructed with lead, epoxy, and a defect layer in the middle of the structure, that is filled with acetic acid (vinegar). As a result of the rise in density and decline in the speed of sound at a 100% concentration of acetic acid in comparison to pure water, the peak frequency of the output has shifted towards lower frequencies. Given that the maximum permissible concentration of acetic acid in water for vinegar is above 30%, sensor simulations were conducted within the concentration range of 25-35% with a step size of 1%. Interestingly, the sensitivity of the sensor exhibits a polynomial change in response to the concentration of acetic acid. Consequently, the highest level of sensitivity, which corresponds to the lowest concentration of vinegar, is recorded as 48.44 × 106 (Hz). The proposed system exhibits a remarkable value of the quality factor of 2802.91. Furthermore, the optimal figure of merit (FOM) is achieved when the concentration is at its lowest, with a value of 94.00. Furthermore, the temperature effects are taken into account for a wide range between 10 and 60 °C. A pronouncing sensitivity is obtained for all temperatures changes and the highest one reached the value of 1.57 × 106 (Hz/°C) at a temperature of 25 °C. Considering the present circumstances, the suggested sensor configuration has the potential to cater to a diverse array of other fluids, specifically their concentration and temperature, thereby offering a broad scope of applications.
Collapse
Affiliation(s)
| | - Ali Hajjiah
- Department of Electrical Engineering, College of Engineering and Petroleum, Kuwait University, Kuwait City, Kuwait.
| | - Hussein A Elsayed
- Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62512, Egypt
| | - Ahmed Mehaney
- Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62512, Egypt.
| |
Collapse
|
3
|
Barth S, Porrati F, Knez D, Jungwirth F, Jochmann NP, Huth M, Winkler R, Plank H, Gracia I, Cané C. Nanoscale, surface-confined phase separation by electron beam induced oxidation. NANOSCALE 2024; 16:14722-14729. [PMID: 38922329 DOI: 10.1039/d4nr01650e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Electron-assisted oxidation of Co-Si-based focused electron beam induced deposition (FEBID) materials is shown to form a 2-4 nm metal oxide surface layer on top of an electrically insulating silicon oxide layer less than 10 nm thick. Differences between thermal and electron-induced oxidation on the resulting microstructure are illustrated.
Collapse
Affiliation(s)
- Sven Barth
- Institute of Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, 60323 Frankfurt am Main, Germany.
- Institute for Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Fabrizio Porrati
- Institute of Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, 60323 Frankfurt am Main, Germany.
| | - Daniel Knez
- Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria
| | - Felix Jungwirth
- Institute of Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, 60323 Frankfurt am Main, Germany.
- Institute for Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Nicolas P Jochmann
- Institute of Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, 60323 Frankfurt am Main, Germany.
- Institute for Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Michael Huth
- Institute of Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, 60323 Frankfurt am Main, Germany.
| | - Robert Winkler
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes (DEFINE), Institute of Electron Microscopy, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria
| | - Harald Plank
- Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes (DEFINE), Institute of Electron Microscopy, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria
| | - Isabel Gracia
- Institut de Microelectrònica de Barcelona (IMB), Centre Nacional de Microelectrònica (CNM), Consejo Superior de Investigaciones Científicas (CSIC), 08193 Barcelona, Spain
| | - Carles Cané
- Institut de Microelectrònica de Barcelona (IMB), Centre Nacional de Microelectrònica (CNM), Consejo Superior de Investigaciones Científicas (CSIC), 08193 Barcelona, Spain
| |
Collapse
|
4
|
Bae J, Yoo C, Yoon SY, Seol SK, Pyo J. Emission Directionality of 3D-Printed Photonic Nanowires. ACS NANO 2024; 18:16265-16273. [PMID: 38864726 DOI: 10.1021/acsnano.4c02820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Photonic devices can be advanced by increasing the density of the integrated optical components. As the integration density increases, the potential for signal interference between adjacent components, optical crosstalk, becomes a concern. To address the crosstalk issue, it is crucial to identify the emission directionality of the integrated optical components. In this study, we investigate the emission directionality of 3D printed light-emitting nano/microwires. We experimentally and numerically showed that when the diameter is reduced below the single-mode cutoff, the emission becomes noticeably directional. In addition, our demonstrations on pairs of closely positioned wires show that optical crosstalk can be effectively avoided by reducing the diameter to the nanoscale to exploit the strong directionality of its emission. We expect that our study can be applied to various fundamental research and applications in the fields of photonics, optical communication, sensing, and imaging, where the directionality of the emissions is crucial.
Collapse
Affiliation(s)
- Jongcheon Bae
- Smart 3D Printing Research Team, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Korea
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Chanbin Yoo
- Smart 3D Printing Research Team, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Korea
- Electric Energy & Materials Engineering, KERI School, University of Science and Technology (UST), Changwon 51543, Korea
| | - Seog-Young Yoon
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Seung Kwon Seol
- Smart 3D Printing Research Team, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Korea
- Electric Energy & Materials Engineering, KERI School, University of Science and Technology (UST), Changwon 51543, Korea
| | - Jaeyeon Pyo
- Smart 3D Printing Research Team, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Korea
- Electric Energy & Materials Engineering, KERI School, University of Science and Technology (UST), Changwon 51543, Korea
| |
Collapse
|
5
|
Volkov OM, Pylypovskyi OV, Porrati F, Kronast F, Fernandez-Roldan JA, Kákay A, Kuprava A, Barth S, Rybakov FN, Eriksson O, Lamb-Camarena S, Makushko P, Mawass MA, Shakeel S, Dobrovolskiy OV, Huth M, Makarov D. Three-dimensional magnetic nanotextures with high-order vorticity in soft magnetic wireframes. Nat Commun 2024; 15:2193. [PMID: 38467623 PMCID: PMC10928081 DOI: 10.1038/s41467-024-46403-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Additive nanotechnology enable curvilinear and three-dimensional (3D) magnetic architectures with tunable topology and functionalities surpassing their planar counterparts. Here, we experimentally reveal that 3D soft magnetic wireframe structures resemble compact manifolds and accommodate magnetic textures of high order vorticity determined by the Euler characteristic, χ. We demonstrate that self-standing magnetic tetrapods (homeomorphic to a sphere; χ = + 2) support six surface topological solitons, namely four vortices and two antivortices, with a total vorticity of + 2 equal to its Euler characteristic. Alternatively, wireframe structures with one loop (homeomorphic to a torus; χ = 0) possess equal number of vortices and antivortices, which is relevant for spin-wave splitters and 3D magnonics. Subsequent introduction of n holes into the wireframe geometry (homeomorphic to an n-torus; χ < 0) enables the accommodation of a virtually unlimited number of antivortices, which suggests their usefulness for non-conventional (e.g., reservoir) computation. Furthermore, complex stray-field topologies around these objects are of interest for superconducting electronics, particle trapping and biomedical applications.
Collapse
Affiliation(s)
- Oleksii M Volkov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany.
| | - Oleksandr V Pylypovskyi
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany.
- Kyiv Academic University, 03142, Kyiv, Ukraine.
| | - Fabrizio Porrati
- Physikalisches Institut, Johann Wolfgang Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany.
| | - Florian Kronast
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Jose A Fernandez-Roldan
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Attila Kákay
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Alexander Kuprava
- Physikalisches Institut, Johann Wolfgang Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany
| | - Sven Barth
- Physikalisches Institut, Johann Wolfgang Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany
| | - Filipp N Rybakov
- Department of Physics and Astronomy, Uppsala University, Box-516, Uppsala, SE-751 20, Sweden
| | - Olle Eriksson
- Department of Physics and Astronomy, Uppsala University, Box-516, Uppsala, SE-751 20, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Uppsala University, 75121, Uppsala, Sweden
| | - Sebastian Lamb-Camarena
- University of Vienna, Faculty of Physics, Nanomagnetism and Magnonics, Superconductivity and Spintronics Laboratory, Währinger Str. 17, 1090, Vienna, Austria
- University of Vienna, Vienna Doctoral School in Physics, Boltzmanngasse 5, A-1090, Vienna, Austria
| | - Pavlo Makushko
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Mohamad-Assaad Mawass
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
- Department of Interface Science, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4 - 6, 14195, Berlin, Germany
| | - Shahrukh Shakeel
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Oleksandr V Dobrovolskiy
- University of Vienna, Faculty of Physics, Nanomagnetism and Magnonics, Superconductivity and Spintronics Laboratory, Währinger Str. 17, 1090, Vienna, Austria
| | - Michael Huth
- Physikalisches Institut, Johann Wolfgang Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany
| | - Denys Makarov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany.
| |
Collapse
|
6
|
Jungwirth F, Salvador-Porroche A, Porrati F, Jochmann NP, Knez D, Huth M, Gracia I, Cané C, Cea P, De Teresa JM, Barth S. Gas-Phase Synthesis of Iron Silicide Nanostructures Using a Single-Source Precursor: Comparing Direct-Write Processing and Thermal Conversion. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:2967-2977. [PMID: 38444783 PMCID: PMC10910579 DOI: 10.1021/acs.jpcc.3c08250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 03/07/2024]
Abstract
The investigation of precursor classes for the fabrication of nanostructures is of specific interest for maskless fabrication and direct nanoprinting. In this study, the differences in material composition depending on the employed process are illustrated for focused-ion-beam- and focused-electron-beam-induced deposition (FIBID/FEBID) and compared to the thermal decomposition in chemical vapor deposition (CVD). This article reports on specific differences in the deposit composition and microstructure when the (H3Si)2Fe(CO)4 precursor is converted into an inorganic material. Maximum metal/metalloid contents of up to 90 at. % are obtained in FIBID deposits and higher than 90 at. % in CVD films, while FEBID with the same precursor provides material containing less than 45 at. % total metal/metalloid content. Moreover, the Fe:Si ratio is retained well in FEBID and CVD processes, but FIBID using Ga+ ions liberates more than 50% of the initial Si provided by the precursor. This suggests that precursors for FIBID processes targeting binary materials should include multiple bonding such as bridging positions for nonmetals. In addition, an in situ method for investigations of supporting thermal effects of precursor fragmentation during the direct-writing processes is presented, and the applicability of the precursor for nanoscale 3D FEBID writing is demonstrated.
Collapse
Affiliation(s)
- Felix Jungwirth
- Institute
of Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, Frankfurt am Main 60323, Germany
- Institute
for Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, Frankfurt 60438, Germany
| | - Alba Salvador-Porroche
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC−Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Fabrizio Porrati
- Institute
of Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, Frankfurt am Main 60323, Germany
| | - Nicolas P. Jochmann
- Institute
of Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, Frankfurt am Main 60323, Germany
- Institute
for Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, Frankfurt 60438, Germany
| | - Daniel Knez
- Institute
of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, Graz 8010, Austria
| | - Michael Huth
- Institute
of Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, Frankfurt am Main 60323, Germany
| | - Isabel Gracia
- Institut
de Microelectrònica de Barcelona (IMB), Centre Nacional de
Microelectrònica (CNM), Consejo Superior
de Investigaciones Científicas (CSIC), Barcelona 08193, Spain
| | - Carles Cané
- Institut
de Microelectrònica de Barcelona (IMB), Centre Nacional de
Microelectrònica (CNM), Consejo Superior
de Investigaciones Científicas (CSIC), Barcelona 08193, Spain
| | - Pilar Cea
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC−Universidad de Zaragoza, Zaragoza 50009, Spain
- Laboratorio
de Microscopías Avanzadas (LMA), Universidad de Zaragoza, Edificio de
I+D+i, Campus Río Ebro, Zaragoza 50018, Spain
| | - José María De Teresa
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC−Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Sven Barth
- Institute
of Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, Frankfurt am Main 60323, Germany
- Institute
for Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, Frankfurt 60438, Germany
| |
Collapse
|
7
|
Porrati F, Barth S, Gazzadi GC, Frabboni S, Volkov OM, Makarov D, Huth M. Site-Selective Chemical Vapor Deposition on Direct-Write 3D Nanoarchitectures. ACS NANO 2023; 17:4704-4715. [PMID: 36826847 DOI: 10.1021/acsnano.2c10968] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Recent advancements in additive manufacturing have enabled the preparation of free-shaped 3D objects with feature sizes down to and below the micrometer scale. Among the fabrication methods, focused electron beam- and focused ion beam-induced deposition (FEBID and FIBID, respectively) associate a high flexibility and unmatched accuracy in 3D writing with a wide material portfolio, thereby allowing for the growth of metallic to insulating materials. The combination of the free-shaped 3D nanowriting with established chemical vapor deposition (CVD) techniques provides attractive opportunities to synthesize complex 3D core-shell heterostructures. Hence, this hybrid approach enables the fabrication of morphologically tunable layer-based nanostructures with the great potential of unlocking further functionalities. Here, the fundamentals of such a hybrid approach are demonstrated by preparing core-shell heterostructures using 3D FEBID scaffolds for site-selective CVD. In particular, 3D microbridges are printed by FEBID with the (CH3)3CH3C5H4Pt precursor and coated by thermal CVD using the Nb(NMe2)3(N-t-Bu) and HFeCo3(CO)12 precursors. Two model systems on the basis of CVD layers consisting of a superconducting NbC-based layer and a ferromagnetic Co3Fe layer are prepared and characterized with regard to their composition, microstructure, and magneto-transport properties.
Collapse
Affiliation(s)
- Fabrizio Porrati
- Physikalisches Institut, Goethe-Universität, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main, Germany
| | - Sven Barth
- Physikalisches Institut, Goethe-Universität, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main, Germany
| | - Gian Carlo Gazzadi
- S3 Center, Nanoscience Institute-CNR, Via Campi 213/a, I-41125 Modena, Italy
| | - Stefano Frabboni
- S3 Center, Nanoscience Institute-CNR, Via Campi 213/a, I-41125 Modena, Italy
- FIM Department, University of Modena and Reggio Emilia, Via G. Campi 213/a, I-41125 Modena, Italy
| | - Oleksii M Volkov
- Helmholtz-Zentrum DresdenRossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01328 Dresden, Germany
| | - Denys Makarov
- Helmholtz-Zentrum DresdenRossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01328 Dresden, Germany
| | - Michael Huth
- Physikalisches Institut, Goethe-Universität, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
8
|
Orús P, Sigloch F, Sangiao S, De Teresa JM. Superconducting W-C nanopillars fabricated by Ga+ focused ion beam induced deposition. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Sigloch F, Sangiao S, Orús P, de Teresa JM. Direct-write of tungsten-carbide nanoSQUIDs based on focused ion beam induced deposition. NANOSCALE ADVANCES 2022; 4:4628-4634. [PMID: 36341293 PMCID: PMC9595190 DOI: 10.1039/d2na00602b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
NanoSQUIDs are quantum sensors that excel in detecting a small change in magnetic flux with high sensitivity and high spatial resolution. Here, we employ resist-free direct-write Ga+ Focused Ion Beam Induced Deposition (FIBID) techniques to grow W-C nanoSQUIDs, and we investigate their electrical response to changes in the magnetic flux. Remarkably, FIBID allows the fast (3 min) growth of 700 nm × 300 nm nanoSQUIDs based on narrow nanobridges (50 nm wide) that act as Josephson junctions. Albeit the SQUIDs exhibit a comparatively low modulation depth and obtain a high inductance, the observed transfer coefficient (output voltage to magnetic flux change) is comparable to other SQUIDs (up to 1300 μV/Φ 0), which correlates with the high resistivity of W-C in the normal state. We discuss here the potential of this approach to reduce the active area of the nanoSQUIDs to gain spatial resolution as well as their integration on cantilevers for scanning-SQUID applications.
Collapse
Affiliation(s)
- Fabian Sigloch
- Instituto de Nanociencia y Materiales de Aragon (INMA), Universidad de Zaragoza-CSIC 50009 Zaragoza Spain
| | - Soraya Sangiao
- Instituto de Nanociencia y Materiales de Aragon (INMA), Universidad de Zaragoza-CSIC 50009 Zaragoza Spain
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza 50018 Spain
| | - Pablo Orús
- Instituto de Nanociencia y Materiales de Aragon (INMA), Universidad de Zaragoza-CSIC 50009 Zaragoza Spain
| | - José M de Teresa
- Instituto de Nanociencia y Materiales de Aragon (INMA), Universidad de Zaragoza-CSIC 50009 Zaragoza Spain
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza 50018 Spain
| |
Collapse
|
10
|
Fomin VM, Rezaev RO, Dobrovolskiy OV. Topological transitions in ac/dc-driven superconductor nanotubes. Sci Rep 2022; 12:10069. [PMID: 35710913 PMCID: PMC9203797 DOI: 10.1038/s41598-022-13543-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Extending of nanostructures into the third dimension has become a major research avenue in condensed-matter physics, because of geometry- and topology-induced phenomena. In this regard, superconductor 3D nanoarchitectures feature magnetic field inhomogeneity, non-trivial topology of Meissner currents and complex dynamics of topological defects. Here, we investigate theoretically topological transitions in the dynamics of vortices and slips of the phase of the order parameter in open superconductor nanotubes under a modulated transport current. Relying upon the time-dependent Ginzburg–Landau equation, we reveal two distinct voltage regimes when (i) a dominant part of the tube is in either the normal or superconducting state and (ii) a complex interplay between vortices, phase-slip regions and screening currents determines a rich FFT voltage spectrum. Our findings unveil novel dynamical states in superconductor open nanotubes, such as paraxial and azimuthal phase-slip regions, their branching and coexistence with vortices, and allow for control of these states by superimposed dc and ac current stimuli.
Collapse
Affiliation(s)
- Vladimir M Fomin
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069, Dresden, Germany. .,Laboratory of Physics and Engineering of Nanomaterials, Department of Theoretical Physics, Moldova State University, strada A. Mateevici 60, 2009, Chisinau, Republic of Moldova. .,Institute of Engineering Physics for Biomedicine, National Research Nuclear University "MEPhI", Kashirskoe shosse 31, Moscow, 115409, Russia.
| | - Roman O Rezaev
- Tomsk Polytechnic University, Lenin av. 30, Tomsk, 634050, Russia
| | - Oleksandr V Dobrovolskiy
- University of Vienna, Faculty of Physics, Nanomagnetism and Magnonics, Superconductivity and Spintronics Laboratory, Währinger Str. 17, 1090, Vienna, Austria
| |
Collapse
|
11
|
Orús P, Sigloch F, Sangiao S, De Teresa JM. Superconducting Materials and Devices Grown by Focused Ion and Electron Beam Induced Deposition. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1367. [PMID: 35458074 PMCID: PMC9029853 DOI: 10.3390/nano12081367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 01/27/2023]
Abstract
Since its discovery in 1911, superconductivity has represented an equally inciting and fascinating field of study in several areas of physics and materials science, ranging from its most fundamental theoretical understanding, to its practical application in different areas of engineering. The fabrication of superconducting materials can be downsized to the nanoscale by means of Focused Ion/Electron Beam Induced Deposition: nanopatterning techniques that make use of a focused beam of ions or electrons to decompose a gaseous precursor in a single step. Overcoming the need to use a resist, these approaches allow for targeted, highly-flexible nanopatterning of nanostructures with lateral resolution in the range of 10 nm to 30 nm. In this review, the fundamentals of these nanofabrication techniques are presented, followed by a literature revision on the published work that makes use of them to grow superconducting materials, the most remarkable of which are based on tungsten, niobium, molybdenum, carbon, and lead. Several examples of the application of these materials to functional devices are presented, related to the superconducting proximity effect, vortex dynamics, electric-field effect, and to the nanofabrication of Josephson junctions and nanoSQUIDs. Owing to the patterning flexibility they offer, both of these techniques represent a powerful and convenient approach towards both fundamental and applied research in superconductivity.
Collapse
Affiliation(s)
- Pablo Orús
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Fabian Sigloch
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Soraya Sangiao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Laboratorio de Microscopías Avanzadas (LMA), University of Zaragoza, 50018 Zaragoza, Spain
| | - José María De Teresa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Laboratorio de Microscopías Avanzadas (LMA), University of Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
12
|
Liu X, Liu H, Xu H, Xie W, Li M, Liu J, Liu G, Weidenkaff A, Riedel R. Natural wood templated hierarchically cellular NbC/Pyrolytic carbon foams as Stiff, lightweight and High-Performance electromagnetic shielding materials. J Colloid Interface Sci 2022; 606:1543-1553. [PMID: 34500157 DOI: 10.1016/j.jcis.2021.08.110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
Hierarchically cellular, stiff, and lightweight niobium carbide (NbC)-pyrolytic carbon (PyC) monolithic foam composites possessing excellent electromagnetic interference shielding effectiveness (EMI SE) were developed via a natural wood template-based method. Pyrolytic carbon derived from the decomposed cellulose in the wood worked as the carbon source for the growth of NbC phase, and the NbC-PyC heterogeneous nano-interface formed between the residual PyC and the freshly formed NbC. Multi-loss mechanisms (e.g. conductive loss, dipole polarization loss, and especially interface polarization loss) were established by controlling the NbC content and residual PyC phase in the NbC-PyC foams, which significantly improved the absorption capability. Compared to 28.0 dB of PyC monolith, the EMI SE of NbC-PyC foam can reach 54.8 dB when the thickness is 0.5 mm, which outperforms the other porous-based shielding materials. Due to the highly porous structure of pristine wood, the resulting NbC-PyC foam exhibited a low density of 0.48 g/cm3, which is ~ 1/16 of dense NbC (7.78 g/cm3). Generally, this work introduces innovative ideas for designing novel and advanced transition metal carbide-carbon composite materials.
Collapse
Affiliation(s)
- Xingmin Liu
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China; Institut für Materialwissenschaft, Technische Universität Darmstadt, Darmstadt D-64287, Germany.
| | - Heqiang Liu
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hailong Xu
- Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Wenjie Xie
- Institut für Materialwissenschaft, Technische Universität Darmstadt, Darmstadt D-64287, Germany
| | - Minghang Li
- Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jianxi Liu
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
| | - Guoqiang Liu
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Anke Weidenkaff
- Institut für Materialwissenschaft, Technische Universität Darmstadt, Darmstadt D-64287, Germany
| | - Ralf Riedel
- Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China; Institut für Materialwissenschaft, Technische Universität Darmstadt, Darmstadt D-64287, Germany
| |
Collapse
|
13
|
Makarov D, Volkov OM, Kákay A, Pylypovskyi OV, Budinská B, Dobrovolskiy OV. New Dimension in Magnetism and Superconductivity: 3D and Curvilinear Nanoarchitectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2101758. [PMID: 34705309 PMCID: PMC11469131 DOI: 10.1002/adma.202101758] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/16/2021] [Indexed: 06/13/2023]
Abstract
Traditionally, the primary field, where curvature has been at the heart of research, is the theory of general relativity. In recent studies, however, the impact of curvilinear geometry enters various disciplines, ranging from solid-state physics over soft-matter physics, chemistry, and biology to mathematics, giving rise to a plethora of emerging domains such as curvilinear nematics, curvilinear studies of cell biology, curvilinear semiconductors, superfluidity, optics, 2D van der Waals materials, plasmonics, magnetism, and superconductivity. Here, the state of the art is summarized and prospects for future research in curvilinear solid-state systems exhibiting such fundamental cooperative phenomena as ferromagnetism, antiferromagnetism, and superconductivity are outlined. Highlighting the recent developments and current challenges in theory, fabrication, and characterization of curvilinear micro- and nanostructures, special attention is paid to perspective research directions entailing new physics and to their strong application potential. Overall, the perspective is aimed at crossing the boundaries between the magnetism and superconductivity communities and drawing attention to the conceptual aspects of how extension of structures into the third dimension and curvilinear geometry can modify existing and aid launching novel functionalities. In addition, the perspective should stimulate the development and dissemination of research and development oriented techniques to facilitate rapid transitions from laboratory demonstrations to industry-ready prototypes and eventual products.
Collapse
Affiliation(s)
- Denys Makarov
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
| | - Oleksii M. Volkov
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
| | - Attila Kákay
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
| | - Oleksandr V. Pylypovskyi
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
- Kyiv Academic UniversityKyiv03142Ukraine
| | - Barbora Budinská
- Superconductivity and Spintronics LaboratoryNanomagnetism and MagnonicsFaculty of PhysicsUniversity of ViennaVienna1090Austria
| | - Oleksandr V. Dobrovolskiy
- Superconductivity and Spintronics LaboratoryNanomagnetism and MagnonicsFaculty of PhysicsUniversity of ViennaVienna1090Austria
| |
Collapse
|
14
|
Wu C, Chin CSM, Huang Q, Chan HY, Yu X, Roy VAL, Li WJ. Rapid nanomolding of nanotopography on flexible substrates to control muscle cell growth with enhanced maturation. MICROSYSTEMS & NANOENGINEERING 2021; 7:89. [PMID: 34754504 PMCID: PMC8571286 DOI: 10.1038/s41378-021-00316-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/20/2021] [Accepted: 09/13/2021] [Indexed: 05/11/2023]
Abstract
In vivo, multiple biophysical cues provided by highly ordered connective tissues of the extracellular matrix regulate skeletal muscle cells to align in parallel with one another. However, in routine in vitro cell culture environments, these key factors are often missing, which leads to changes in cell behavior. Here, we present a simple strategy for using optical media discs with nanogrooves and other polymer-based substrates nanomolded from the discs to directly culture muscle cells to study their response to the effect of biophysical cues such as nanotopography and substrate stiffness. We extend the range of study of biophysical cues for myoblasts by showing that they can sense ripple sizes as small as a 100 nm width and a 20 nm depth for myotube alignment, which has not been reported previously. The results revealed that nanotopography and substrate stiffness regulated myoblast proliferation and morphology independently, with nanotopographical cues showing a higher effect. These biophysical cues also worked synergistically, and their individual effects on cells were additive; i.e., by comparing cells grown on different polymer-based substrates (with and without nanogrooves), the cell proliferation rate could be reduced by as much as ~29%, and the elongation rate could be increased as much as ~116%. Moreover, during myogenesis, muscle cells actively responded to nanotopography and consistently showed increases in fusion and maturation indices of ~28% and ~21%, respectively. Finally, under electrical stimulation, the contraction amplitude of well-aligned myotubes was found to be almost 3 times greater than that for the cells on a smooth surface, regardless of the substrate stiffness.
Collapse
Affiliation(s)
- Cong Wu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Chriss S. M. Chin
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qingyun Huang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Ho-Yin Chan
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | | | - Wen J. Li
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
Qin T, Wang Z, Wang Y, Besenbacher F, Otyepka M, Dong M. Recent Progress in Emerging Two-Dimensional Transition Metal Carbides. NANO-MICRO LETTERS 2021; 13:183. [PMID: 34417663 PMCID: PMC8379312 DOI: 10.1007/s40820-021-00710-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/25/2021] [Indexed: 05/17/2023]
Abstract
As a new member in two-dimensional materials family, transition metal carbides (TMCs) have many excellent properties, such as chemical stability, in-plane anisotropy, high conductivity and flexibility, and remarkable energy conversation efficiency, which predispose them for promising applications as transparent electrode, flexible electronics, broadband photodetectors and battery electrodes. However, up to now, their device applications are in the early stage, especially because their controllable synthesis is still a great challenge. This review systematically summarized the state-of-the-art research in this rapidly developing field with particular focus on structure, property, synthesis and applicability of TMCs. Finally, the current challenges and future perspectives are outlined for the application of 2D TMCs.
Collapse
Affiliation(s)
- Tianchen Qin
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Zegao Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Yuqing Wang
- Interdisciplinary Nanoscience Center, Aarhus University, 8000, Aarhus, Denmark
| | | | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, 77146, Olomouc, Czech Republic
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center, Aarhus University, 8000, Aarhus, Denmark.
| |
Collapse
|
16
|
Liu W, Wang J, Xu X, Zhao C, Xu X, Weiss PS. Single-Step Dual-Layer Photolithography for Tunable and Scalable Nanopatterning. ACS NANO 2021; 15:12180-12188. [PMID: 34170108 DOI: 10.1021/acsnano.1c03703] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Conventional photolithography, due to its scalability, robustness, and straightforward processes, has been widely applied to micro- and nanostructure manufacturing in electronics, optics, and biology. However, optical diffraction limits the ultimate resolution of conventional photolithography, which hinders its potential in nanoscale patterning for broader applications. Here, we introduce a derivative of conventional photolithography for nanoscale patterning called dual-layer photolithography (DLPL), which is based on the controlled exposure and development of overlapping positive and negative photoresists. In a typical experiment, substrates are sequentially coated by two layers of photoresists (both positive and negative). Then, we purposefully control the exposure time to generate slightly larger features in the positive photoresist than those in the negative photoresist. After development, their overlapping areas become the final features, which outline the original features. We demonstrate line widths down to 300 nm here, which can be readily improved with more precise control. By adjusting the lithography parameters and material deposition, the feature sizes, shapes (e.g., rings, numbers, letters), line widths (300-900 nm), and materials (e.g., SiO2, Cr, and Ag) of these features can be independently controlled. Combined with anisotropic etching, more complex three-dimensional nanostructures can be fabricated as well, as we demonstrate here with Si. We further fabricate photodetectors as an example application to show that these nanostructures fabricated by DLPL can be used to promote light-trapping MAPbI3 perovskite films to achieve good photoelectric properties. This strategy is not limited to ultraviolet photolithography and may also be incorporated into other energetic beam-based lithographic approaches, including deep and extreme ultraviolet photolithographies and electron beam lithography, to enhance their resolution.
Collapse
Affiliation(s)
- Wenfei Liu
- California NanoSystems Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jiabao Wang
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, & Institute for Advanced Study, Tongji University, Shanghai 201804, China
| | - Xiuzhen Xu
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, & Institute for Advanced Study, Tongji University, Shanghai 201804, China
| | - Chuanzhen Zhao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xiaobin Xu
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, & Institute for Advanced Study, Tongji University, Shanghai 201804, China
| | - Paul S Weiss
- California NanoSystems Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering and Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
17
|
Blom T, Mechielsen TW, Fermin R, Hesselberth MBS, Aarts J, Lahabi K. Direct-Write Printing of Josephson Junctions in a Scanning Electron Microscope. ACS NANO 2021; 15:322-329. [PMID: 33231428 PMCID: PMC7844821 DOI: 10.1021/acsnano.0c03656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
Josephson junctions are the building blocks of superconducting electronics, with well-established applications in precision metrology and quantum computing. Fabricating a Josephson junction has been a resource-intensive and multistep procedure, involving lithography and wet-processing, which are not compatible with many applications. Here, we introduce a fully additive direct-write approach, where a scanning electron microscope can print substrate-conformal Josephson devices in a matter of minutes, requiring no additional processing. The junctions are made entirely by electron-beam-induced deposition (EBID) of tungsten carbide. We utilize EBID-tunable material properties to write, in one go, full proximity junctions with superconducting electrodes and metallic weak links and tailor their Josephson coupling. The Josephson behavior of these junctions is established and characterized by their microwave-induced Shapiro response and field-dependent transport. Our efforts provide a versatile and nondestructive alternative to conventional nanofabrication and can be expanded to print three-dimensional superconducting sensor arrays and quantum networks.
Collapse
|
18
|
Dobrovolskiy OV, Bunyaev SA, Vovk NR, Navas D, Gruszecki P, Krawczyk M, Sachser R, Huth M, Chumak AV, Guslienko KY, Kakazei GN. Spin-wave spectroscopy of individual ferromagnetic nanodisks. NANOSCALE 2020; 12:21207-21217. [PMID: 33057527 DOI: 10.1039/d0nr07015g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The increasing demand for nanoscale magnetic devices requires development of 3D magnetic nanostructures. In this regard, focused electron beam induced deposition (FEBID) is a technique of choice for direct-writing of complex nano-architectures with applications in nanomagnetism, magnon spintronics, and superconducting electronics. However, intrinsic properties of nanomagnets are often poorly known and can hardly be assessed by local optical probe techniques. Here, an original spatially resolved approach is demonstrated for spin-wave spectroscopy of individual circular magnetic elements with sample volumes down to about 10-3 μm3. The key component of the setup is a coplanar waveguide whose microsized central part is placed over a movable substrate with well-separated CoFe-FEBID nanodisks which exhibit standing spin-wave resonances. The circular symmetry of the disks allows for the deduction of the saturation magnetization and the exchange stiffness of the material using an analytical theory. A good correspondence between the results of analytical calculations and micromagnetic simulations is revealed, indicating a validity of the used analytical model going beyond the initial thin-disk approximation used in the theoretical derivation. The presented approach is especially valuable for the characterization of direct-write magnetic elements opening new horizons for 3D nanomagnetism and magnonics.
Collapse
Affiliation(s)
| | - Sergey A Bunyaev
- Institute of Physics for Advanced Materials, Nanotechnology and Photonics (IFIMUP)/Departamento de Física e Astronomia, Universidade do Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal
| | - Nikolay R Vovk
- Institute of Physics for Advanced Materials, Nanotechnology and Photonics (IFIMUP)/Departamento de Física e Astronomia, Universidade do Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal and Department of Physics, V. N. Karazin Kharkiv National University, Svobody Sq. 4, Kharkiv 61022, Ukraine
| | - David Navas
- Institute of Physics for Advanced Materials, Nanotechnology and Photonics (IFIMUP)/Departamento de Física e Astronomia, Universidade do Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal and Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, 28049 Madrid, Spain
| | - Pawel Gruszecki
- Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego St. 2, 61-614 Poznań, Poland and Institute of Molecular Physics, Polish Academy of Sciences, Mariana Smoluchowskiego St. 17, 60-179 Poznań, Poland
| | - Maciej Krawczyk
- Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego St. 2, 61-614 Poznań, Poland
| | - Roland Sachser
- Institute of Physics, Goethe University, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - Michael Huth
- Institute of Physics, Goethe University, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - Andrii V Chumak
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
| | - Konstantin Y Guslienko
- Division de Fisica de Materiales, Depto. Polimeros y Materiales Avanzados: Fisica, Quimica y Tecnologia, Universidad del Pais Vasco, UPV/EHU, Paseo M. Lardizabal 3, 20018 San Sebastian, Spain and IKERBASQUE, the Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Gleb N Kakazei
- Institute of Physics for Advanced Materials, Nanotechnology and Photonics (IFIMUP)/Departamento de Física e Astronomia, Universidade do Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal
| |
Collapse
|
19
|
Fernández-Pacheco A, Skoric L, De Teresa JM, Pablo-Navarro J, Huth M, Dobrovolskiy OV. Writing 3D Nanomagnets Using Focused Electron Beams. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3774. [PMID: 32859076 PMCID: PMC7503546 DOI: 10.3390/ma13173774] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022]
Abstract
Focused electron beam induced deposition (FEBID) is a direct-write nanofabrication technique able to pattern three-dimensional magnetic nanostructures at resolutions comparable to the characteristic magnetic length scales. FEBID is thus a powerful tool for 3D nanomagnetism which enables unique fundamental studies involving complex 3D geometries, as well as nano-prototyping and specialized applications compatible with low throughputs. In this focused review, we discuss recent developments of this technique for applications in 3D nanomagnetism, namely the substantial progress on FEBID computational methods, and new routes followed to tune the magnetic properties of ferromagnetic FEBID materials. We also review a selection of recent works involving FEBID 3D nanostructures in areas such as scanning probe microscopy sensing, magnetic frustration phenomena, curvilinear magnetism, magnonics and fluxonics, offering a wide perspective of the important role FEBID is likely to have in the coming years in the study of new phenomena involving 3D magnetic nanostructures.
Collapse
Affiliation(s)
- Amalio Fernández-Pacheco
- SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK;
| | - Luka Skoric
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK;
| | - José María De Teresa
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
- Laboratorio de Microscopías Avanzadas (LMA) and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain;
| | - Javier Pablo-Navarro
- Laboratorio de Microscopías Avanzadas (LMA) and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Michael Huth
- Institute of Physics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany;
| | - Oleksandr V. Dobrovolskiy
- Institute of Physics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany;
- Faculty of Physics, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
20
|
Córdoba R, Ibarra A, Mailly D, Guillamón I, Suderow H, De Teresa JM. 3D superconducting hollow nanowires with tailored diameters grown by focused He + beam direct writing. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:1198-1206. [PMID: 32832315 PMCID: PMC7431759 DOI: 10.3762/bjnano.11.104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/14/2020] [Indexed: 06/01/2023]
Abstract
Currently, the patterning of innovative three-dimensional (3D) nano-objects is required for the development of future advanced electronic components. Helium ion microscopy in combination with a precursor gas can be used for direct writing of three-dimensional nanostructures with a precise control of their geometry, and a significantly higher aspect ratio than other additive manufacturing technologies. We report here on the deposition of 3D hollow tungsten carbide nanowires with tailored diameters by tuning two key growth parameters, namely current and dose of the ion beam. Our results show the control of geometry in 3D hollow nanowires, with outer and inner diameters ranging from 36 to 142 nm and from 5 to 28 nm, respectively; and lengths from 0.5 to 8.9 µm. Transmission electron microscopy experiments indicate that the nanowires have a microstructure of large grains with a crystalline structure compatible with the face-centered cubic WC1- x phase. In addition, 3D electron tomographic reconstructions show that the hollow center of the nanowires is present along the whole nanowire length. Moreover, these nanowires become superconducting at 6.8 K and show high values of critical magnetic field and critical current density. Consequently, these 3D nano-objects could be implemented as components in the next generation of electronics, such as nano-antennas and sensors, based on 3D superconducting architectures.
Collapse
Affiliation(s)
- Rosa Córdoba
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - Alfonso Ibarra
- Laboratorio de Microscopías Avanzadas (LMA)-Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, E-50018 Zaragoza, Spain Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza, Spain
| | - Dominique Mailly
- Centre de Nanosciences et de Nanotechnologies, CNRS, Univ Paris Sud, Université Paris Saclay, 91120 Palaiseau, France
| | - Isabel Guillamón
- Laboratorio de Bajas Temperaturas y Altos Campos Magnéticos, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Hermann Suderow
- Laboratorio de Bajas Temperaturas y Altos Campos Magnéticos, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - José María De Teresa
- Laboratorio de Microscopías Avanzadas (LMA)-Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, E-50018 Zaragoza, Spain Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Instituto de Nanociencia y de Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, E-50009 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza, Spain
| |
Collapse
|
21
|
Dobrovolskiy OV, Vodolazov DY, Porrati F, Sachser R, Bevz VM, Mikhailov MY, Chumak AV, Huth M. Ultra-fast vortex motion in a direct-write Nb-C superconductor. Nat Commun 2020; 11:3291. [PMID: 32620789 PMCID: PMC7335109 DOI: 10.1038/s41467-020-16987-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/05/2020] [Indexed: 11/09/2022] Open
Abstract
The ultra-fast dynamics of superconducting vortices harbors rich physics generic to nonequilibrium collective systems. The phenomenon of flux-flow instability (FFI), however, prevents its exploration and sets practical limits for the use of vortices in various applications. To suppress the FFI, a superconductor should exhibit a rarely achieved combination of properties: weak volume pinning, close-to-depairing critical current, and fast heat removal from heated electrons. Here, we demonstrate experimentally ultra-fast vortex motion at velocities of 10-15 km s-1 in a directly written Nb-C superconductor with a close-to-perfect edge barrier. The spatial evolution of the FFI is described using the edge-controlled FFI model, implying a chain of FFI nucleation points along the sample edge and their development into self-organized Josephson-like junctions (vortex rivers). In addition, our results offer insights into the applicability of widely used FFI models and suggest Nb-C to be a good candidate material for fast single-photon detectors.
Collapse
Affiliation(s)
- O V Dobrovolskiy
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria.
- School of Physics, V. Karazin Kharkiv National University, Svobody Sq. 4, Kharkiv, 61022, Ukraine.
| | - D Yu Vodolazov
- Institute for Physics of Microstructures, Russian Academy of Sciences, Academicheskaya Str. 7, Afonino, Nizhny Novgorod region, 603087, Russia
- Physics Department, Moscow Pedagogical State University, Malaya Pirogovskaya Str. 29/7, Bld. 1, Moscow, 119435, Russia
| | - F Porrati
- Institute of Physics, Goethe University, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - R Sachser
- Institute of Physics, Goethe University, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - V M Bevz
- School of Physics, V. Karazin Kharkiv National University, Svobody Sq. 4, Kharkiv, 61022, Ukraine
| | - M Yu Mikhailov
- B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Nauky Avenue 47, Kharkiv, 61103, Ukraine
| | - A V Chumak
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria
| | - M Huth
- Institute of Physics, Goethe University, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| |
Collapse
|
22
|
Wang H, Liang X, Wang J, Jiao S, Xue D. Multifunctional inorganic nanomaterials for energy applications. NANOSCALE 2020; 12:14-42. [PMID: 31808494 DOI: 10.1039/c9nr07008g] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Our society has been facing more and more serious challenges towards achieving highly efficient utilization of energy. In the field of energy applications, multifunctional nanomaterials have been attracting increasing attention. Various energy applications, such as energy generation, conversion, storage, saving and transmission, are strongly dependent upon the electrical, thermal, mechanical, optical and catalytic functions of materials. In the nanoscale range, thermoelectric, piezoelectric, triboelectric, photovoltaic, catalytic and electrochromic materials have made major contributions to various energy applications. Inorganic nanomaterials' unique properties, such as excellent electrical and thermal conductivity, large surface area and chemical stability, make them highly competitive in energy applications. In this review, the latest research and development of multifunctional inorganic nanomaterials in energy applications were summarized from the perspective of different energy applications. Furthermore, we also illustrated the unique functions of inorganic nanomaterials to improve their performances and the combination of the functions of nanomaterials into a device. However, challenges may be traced back to the limitations set by scaling the relations between multifunctional inorganic nanomaterials and energy devices.
Collapse
Affiliation(s)
- Huilin Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei 230026, China
| | - Xitong Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei 230026, China
| | - Jiutian Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei 230026, China
| | - Shengjian Jiao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei 230026, China
| | - Dongfeng Xue
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
23
|
Huth M, Porrati F, Gruszka P, Barth S. Temperature-Dependent Growth Characteristics of Nb- and CoFe-Based Nanostructures by Direct-Write Using Focused Electron Beam-Induced Deposition. MICROMACHINES 2019; 11:mi11010028. [PMID: 31881650 PMCID: PMC7019710 DOI: 10.3390/mi11010028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/25/2022]
Abstract
Focused electron and ion beam-induced deposition (FEBID/FIBID) are direct-write techniques with particular advantages in three-dimensional (3D) fabrication of ferromagnetic or superconducting nanostructures. Recently, two novel precursors, HCo3Fe(CO)12 and Nb(NMe3)2(N-t-Bu), were introduced, resulting in fully metallic CoFe ferromagnetic alloys by FEBID and superconducting NbC by FIBID, respectively. In order to properly define the writing strategy for the fabrication of 3D structures using these precursors, their temperature-dependent average residence time on the substrate and growing deposit needs to be known. This is a prerequisite for employing the simulation-guided 3D computer aided design (CAD) approach to FEBID/FIBID, which was introduced recently. We fabricated a series of rectangular-shaped deposits by FEBID at different substrate temperatures between 5 °C and 24 °C using the precursors and extracted the activation energy for precursor desorption and the pre-exponential factor from the measured heights of the deposits using the continuum growth model of FEBID based on the reaction-diffusion equation for the adsorbed precursor.
Collapse
|
24
|
Córdoba R, Mailly D, Rezaev RO, Smirnova EI, Schmidt OG, Fomin VM, Zeitler U, Guillamón I, Suderow H, De Teresa JM. Three-Dimensional Superconducting Nanohelices Grown by He +-Focused-Ion-Beam Direct Writing. NANO LETTERS 2019; 19:8597-8604. [PMID: 31730351 PMCID: PMC7005939 DOI: 10.1021/acs.nanolett.9b03153] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/12/2019] [Indexed: 06/01/2023]
Abstract
Novel schemes based on the design of complex three-dimensional (3D) nanoscale architectures are required for the development of the next generation of advanced electronic components. He+ focused-ion-beam (FIB) microscopy in combination with a precursor gas allows one to fabricate 3D nanostructures with an extreme resolution and a considerably higher aspect ratio than FIB-based methods, such as Ga+ FIB-induced deposition, or other additive manufacturing technologies. In this work, we report the fabrication of 3D tungsten carbide nanohelices with on-demand geometries via controlling key deposition parameters. Our results show the smallest and highest-densely packed nanohelix ever fabricated so far, with dimensions of 100 nm in diameter and aspect ratio up to 65. These nanohelices become superconducting at 7 K and show a large critical magnetic field and critical current density. In addition, given its helical 3D geometry, fingerprints of vortex and phase-slip patterns are experimentally identified and supported by numerical simulations based on the time-dependent Ginzburg-Landau equation. These results can be understood by the helical geometry that induces specific superconducting properties and paves the way for future electronic components, such as sensors, energy storage elements, and nanoantennas, based on 3D compact nanosuperconductors.
Collapse
Affiliation(s)
- Rosa Córdoba
- Instituto
de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, E-50009 Zaragoza, Spain
- Departamento
de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
2, 46980 Paterna, Spain
| | - Dominique Mailly
- Centre
de Nanosciences et de Nanotechnologies, CNRS, Université Paris Sud, Université Paris Saclay, 91120 Palaiseau, France
| | - Roman O. Rezaev
- Institute
for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, D-01069 Dresden, Germany
- Tomsk Polytechnic
University, Lenin Ave.
30, 634050 Tomsk, Russia
| | - Ekaterina I. Smirnova
- Institute
for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, D-01069 Dresden, Germany
| | - Oliver G. Schmidt
- Institute
for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, D-01069 Dresden, Germany
- Research
Center for Materials, Architectures, and Integration of Nanomembranes
(MAIN), TU Chemnitz, Rosenbergstraße 6, D-09126 Chemnitz, Germany
| | - Vladimir M. Fomin
- Institute
for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, D-01069 Dresden, Germany
- National
Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409 Moscow, Russia
| | - Uli Zeitler
- High
Field Magnet Laboratory (HFML-EFML), Radboud
University, 6525 ED Nijmegen, The Netherlands
| | - Isabel Guillamón
- Laboratorio
de Bajas Temperaturas y Altos Campos Magnéticos, Departamento
de Física de la Materia Condensada, Instituto de Ciencia de
Materiales Nicolás Cabrera, Condensed Matter Physics Center
(IFIMAC), Universidad Autónoma de
Madrid, 28049 Madrid, Spain
| | - Hermann Suderow
- Laboratorio
de Bajas Temperaturas y Altos Campos Magnéticos, Departamento
de Física de la Materia Condensada, Instituto de Ciencia de
Materiales Nicolás Cabrera, Condensed Matter Physics Center
(IFIMAC), Universidad Autónoma de
Madrid, 28049 Madrid, Spain
| | - José María De Teresa
- Instituto
de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, E-50009 Zaragoza, Spain
- Departamento
de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Laboratorio
de Microscopías Avanzadas (LMA), Instituto de Nanociencia de
Aragón (INA), Universidad de Zaragoza, E-50018 Zaragoza, Spain
| |
Collapse
|