1
|
Zhong D, Liu S, Yue L, Feng Z, Wang H, Yang P, Su B, Yang X, Sun Y, Zhou G. Achieving pure room temperature phosphorescence (RTP) in phenoselenazine-based organic emitters through synergism among heavy atom effect, enhanced n → π* transitions and magnified electron coupling by the A-D-A molecular configuration. Chem Sci 2024; 15:9112-9119. [PMID: 38903225 PMCID: PMC11186343 DOI: 10.1039/d4sc01200c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/01/2024] [Indexed: 06/22/2024] Open
Abstract
The weak spin-orbit coupling (SOC) in metal-free organic molecules poses a challenge in achieving phosphorescence emission. To attain pure phosphorescence in RTP organic emitters, a promising molecular design concept has been proposed. This involves incorporating n → π* transitions and leveraging the heavy atomic effect within the spin-orbit charge transfer-induced intersystem crossing (SOCT-ISC) mechanism of bipolar molecules. Following this design concept, two bipolar metal-free organic molecules (PhSeB and PhSeDB) with donor-acceptor (D-A) and acceptor-donor-acceptor (A-D-A) configurations have been synthesized. When the molecular configuration changes from D-A to A-D-A, PhSeDB exhibits stronger electron coupling and n → π* transitions, which can further enhance the spin-orbit coupling (SOC) together with the heave atom effect from the selenium atom. By the advanced synergism among enhanced n → π* transitions, heavy atom effect and magnified electron coupling to efficiently promote phosphorescence emission, PhSeDB can achieve pure RTP emission in both the solution and doped solid film. Thanks to the higher spin-orbit coupling matrix elements (SOCMEs) for T1 ↔ S0, PhSeDB attains the highest phosphorescence quantum yield (ca. 0.78) among all the RTP organic emitters reported. Consequently, the purely organic phosphorescent light-emitting diodes (POPLEDs) based on PhSeDB achieve the highest external quantum efficiencies of 18.2% and luminance of 3000 cd m-2. These encouraging results underscore the significant potential of this innovative molecular design concept for highly efficient POPLEDs.
Collapse
Affiliation(s)
- Daokun Zhong
- Engineering Research Center of Energy Storage Materials and Devices, School of Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Siqi Liu
- Engineering Research Center of Energy Storage Materials and Devices, School of Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Ling Yue
- Engineering Research Center of Energy Storage Materials and Devices, School of Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Zhao Feng
- Engineering Research Center of Energy Storage Materials and Devices, School of Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Hongyan Wang
- Engineering Research Center of Energy Storage Materials and Devices, School of Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Peng Yang
- Engineering Research Center of Energy Storage Materials and Devices, School of Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Bochao Su
- Engineering Research Center of Energy Storage Materials and Devices, School of Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Xiaolong Yang
- Engineering Research Center of Energy Storage Materials and Devices, School of Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yuanhui Sun
- Engineering Research Center of Energy Storage Materials and Devices, School of Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Guijiang Zhou
- Engineering Research Center of Energy Storage Materials and Devices, School of Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
2
|
Sun C, Zhang X, Xie Y, Zhou Y, Gao X. True and False Chirality in Chiral Magnetic Nanoparticles. J Phys Chem Lett 2024; 15:4679-4685. [PMID: 38656159 DOI: 10.1021/acs.jpclett.4c01016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Determining the true or false chirality of a system is essential for the design of advanced chiral materials and for improving their applications. Typically, a magnetic field would cause false optical activity in the chiral material system, thus confusing the true chirality's influence. Here, we provide a simple way to uncover the true and false chirality in chiral ferrimagnetic nanoparticles (FNPs) by using the gel as a rigid frame. The remnant local magnetic field of the FNP gel can be easily adjusted by an external magnetic field or by controlling the concentration of the FNPs. Moreover, the potential application of the FNP gel is detected by induced magnetic circularly polarized luminescence. This work provides deep insight into the true and false chirality in magnetic nanosystems and offers a strategy to construct new optic elements with an adjustable local magnetic field.
Collapse
Affiliation(s)
- Chao Sun
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P. R. China
| | - Xueyan Zhang
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P. R. China
| | - Yuyu Xie
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P. R. China
| | - Yunlong Zhou
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P. R. China
| | - Xiaoqing Gao
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P. R. China
| |
Collapse
|
3
|
Gu Q, Zha J, Chen C, Wang X, Yao W, Liu J, Kang F, Yang J, Li YY, Lei D, Tang Z, Han Y, Tan C, Zhang Q. Constructing Chiral Covalent-Organic Frameworks for Circularly Polarized Light Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306414. [PMID: 37589261 DOI: 10.1002/adma.202306414] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/15/2023] [Indexed: 08/18/2023]
Abstract
The use of chiral covalent organic frameworks (COFs) as active elements in photodetectors to directly identify circularly polarized light (CPL) can meet the requirement of integration and miniaturization of the as-fabricated devices. Herein, the design and synthesis of two isoreticular chiral two-dimensional (2D) COFs (CityU-7 and CityU-8) by introducing photosensitive porphyrin-based amines (5,10,15,20-tetrakis(4-aminophenyl)porphyrin) to enhance the optical absorption and chiral aldehyde linkage (2,5-bis((S/R))-2-methylbutoxy)terephthalaldehyde) to engender chirality for direct CPL detection are reported. Their crystalline structures were confirmed by powder X-ray diffraction, Fourier-transform infrared spectroscopy, and low-dose transition electron microscopy. Employing both chiral COFs as the active layers in photodetectors, left-handed circularly (LHC) and right-handed circularly (RHC) polarized light at 405 nm can be well distinguishable with short response time, high responsivity, and satisfying detectivity. The study provides the first example on the design and synthesis of chiral COFs for direct detection of CPL.
Collapse
Affiliation(s)
- Qianfeng Gu
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Jiajia Zha
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Cailing Chen
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xin Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Wenyan Yao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Jiahe Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Fangyuan Kang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Jinglun Yang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Yang Yang Li
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Dangyuan Lei
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yu Han
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Chaoliang Tan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, 999077, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong, SAR, 999077, P. R. China
- Department of Chemistry & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong, SAR, 999077, P. R. China
| |
Collapse
|
4
|
Hashikawa Y, Sadai S, Okamoto S, Murata Y. Near-Infrared-Absorbing Chiral Open [60]Fullerenes. Angew Chem Int Ed Engl 2023; 62:e202215380. [PMID: 36357327 DOI: 10.1002/anie.202215380] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 11/12/2022]
Abstract
Though [60]fullerene is an achiral molecular nanocarbon with Ih symmetry, it could attain an inherent chirality depending upon a functionalization pattern. The conventional chiral induction of C60 relies mainly upon a multiple addition affording a mixture of achiral and chiral isomers while their chiral function would be largely offset by the existence of pseudo-mirror plane(s). These are major obstacles to proceed further study on fullerene chirality and yet leave its understanding elusive. Herein, we showcase a carbene-mediated synthesis of C1 -symmetric chiral open [60]fullerenes showing an intense far-red to near-infrared absorption. The large dissymmetry factor of |gabs |=0.12 was achieved at λ=820 nm for circular dichroism in benzonitrile. This is, in general, unachievable by other small chiral organic molecules, demonstrating the potential usage of open [60]fullerenes as novel types of chiral chromophores.
Collapse
Affiliation(s)
- Yoshifumi Hashikawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shumpei Sadai
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shu Okamoto
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yasujiro Murata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
5
|
Gao M, Zhang K, Hao XT, Qin W. Synergistic Effect of Chiral Nanofibers Amplifying the Orbit Angular Momentum To Enhance Optomagnetic Coupling. ACS NANO 2022; 16:4843-4850. [PMID: 35171574 DOI: 10.1021/acsnano.2c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Manipulating magnetic bits by photon in spintronics, opto-magnetic coupling, is lagging far behind what we could expect. To investigate the issue, one should face the problem to find photon dependence of spin dynamics and spin manipulation. In this work, through introducing chiral orbit in organic crystals, circularly polarized photon can manipulate spin via the channel of photon-orbit-spin interactions. Under the stimulus of the magnetic field, strong spin polarization will feed back to the change in polarized state of light. Moreover, twisting several chiral nanofibers into a thick one, a more pronounced opto-magnetic coupling is clearly observed due to the chirality generated larger chiral orbit. Meanwhile, spin dynamics (or spin response times) inside the aggregated thick chiral fiber can be further tuned by circularly polarized light. Hopefully, this study can deepen the understanding of organic chiral spin-photonics and enhance the application of organic functional crystals in the future.
Collapse
Affiliation(s)
- Mingsheng Gao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Kangning Zhang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Xiao-Tao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Wei Qin
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
6
|
Wang H, Shi HY, Yuan XJ, Zhao JF, Bu HX, Hu GC. Spin-Dependent Polaron Dynamics in Organic Ferromagnets. J Phys Chem Lett 2022; 13:614-621. [PMID: 35019650 DOI: 10.1021/acs.jpclett.1c03344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The spin-dependent polaron dynamics in organic ferromagnets under driven electric fields are investigated by using the extended Su-Schrieffer-Heeger (SSH) model coupled with a nonadiabatic dynamics method. It is found that the spin-down polaron with the same spin orientation as the radicals drifts faster than the spin-up one under the same driven electric field. In an applicable range of driven electric fields, the velocity of the spin-down polaron is about 3.4 times that of the spin-up one. The dynamical property of the polaron with each spin (up or down) is asymmetric upon the reversal of the driven electric fields. The diverse dynamical properties of polarons with specific spins can be attributed to the spin nondegenerate polaron energy levels, the dipole moment generated by the asymmetrical polaron charge distributions and the strong electron-lattice coupling in organic ferromagnets. Our findings are expected to be useful for improving organic ferromagnet based spintronic devices.
Collapse
Affiliation(s)
- Hui Wang
- College of Physics and Electronic Engineering, Qilu Normal University, Zhangqiu 250200, People's Republic of China
| | - Hong-Yan Shi
- College of Physics and Electronic Engineering, Qilu Normal University, Zhangqiu 250200, People's Republic of China
| | - Xiao-Juan Yuan
- College of Physics and Electronic Engineering, Qilu Normal University, Zhangqiu 250200, People's Republic of China
| | - Jing-Fen Zhao
- College of Physics and Electronic Engineering, Qilu Normal University, Zhangqiu 250200, People's Republic of China
| | - Hong-Xia Bu
- College of Physics and Electronic Engineering, Qilu Normal University, Zhangqiu 250200, People's Republic of China
| | - Gui-Chao Hu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250100, People's Republic of China
| |
Collapse
|
7
|
Perera T, Mallawaarachchi S, Premaratne M. Chiral Plasmonic Ellipsoids: An Extended Mie-Gans Model. J Phys Chem Lett 2021; 12:11214-11219. [PMID: 34761942 DOI: 10.1021/acs.jpclett.1c03144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mie-Gans theory optically characterizes ellipsoidal and by extension generally elongated nonchiral metal nanoparticles (MNPs) and is ubiquitous in verifying experimental results and predicting particle behavior. Recently, elongated chiral MNPs have garnered enthusiasm, but a theory to characterize their chiroptical behavior is lacking in the literature. In this Letter, we present an ab initio model for chiral ellipsoidal MNPs to address this shortcoming and demonstrate that it reduces to the general Mie-Gans model under nonchiral conditions, produces results that concur with state-of-the-art numerical simulations, and can accurately replicate recent experimental measurements. Furthermore, to gain physical insights, we analyze factors such as background medium permittivity and particle size that drive the chiroptical activity using two types of plasmonic chiral MNPs. We also demonstrate the utility of our model in metamaterial design. Generic features of our model can be extended to characterize similar elongated chiral MNPs, fueling many other variants of the current model.
Collapse
Affiliation(s)
- Tharaka Perera
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Sudaraka Mallawaarachchi
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia
- Melbourne Integrative Genomics, School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Malin Premaratne
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
8
|
Wei M, Song K, Yang Y, Huang Q, Tian Y, Hao X, Qin W. Organic Multiferroic Magnetoelastic Complexes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003293. [PMID: 32875629 DOI: 10.1002/adma.202003293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/31/2020] [Indexed: 06/11/2023]
Abstract
The design of crystal structures aids the discovery of interesting physical phenomena in organic crystals. In this work, the optimization of the coronene-tetracyanoquinodimethane (TCNQ) structure generates non-degenerate energy levels of spin-up and spin-down electrons after charge transfer, producing spontaneous spin polarization, leading to pronounced ferromagnetism. The deformed crystal lattice can significantly affect the saturation magnetization of organic ferromagnets to present a remarkable magnetoelastic coupling. Furthermore, the magnetic-field-induced lattice shrinkage of the ferromagnetic crystals supports a spin-lattice-interaction-dependent magnetoelastic coupling. This concept of organic magnetoelastic coupling will pave the way for the rapid mechanical control of spin polarization in organic multiferroic magnetoelastic materials.
Collapse
Affiliation(s)
- Mengmeng Wei
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Kepeng Song
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Yuying Yang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Qikun Huang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Yufeng Tian
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Wei Qin
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
9
|
Liu C, Niazi MR, Perepichka DF. Strong Enhancement of π‐Electron Donor/Acceptor Ability by Complementary DD/AA Hydrogen Bonding. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Cheng‐Hao Liu
- Department of ChemistryMcGill University 801 Sherbrooke Street W Quebec H3A 0B1 Canada
| | - Muhammad Rizwan Niazi
- Department of ChemistryMcGill University 801 Sherbrooke Street W Quebec H3A 0B1 Canada
| | - Dmitrii F. Perepichka
- Department of ChemistryMcGill University 801 Sherbrooke Street W Quebec H3A 0B1 Canada
| |
Collapse
|
10
|
Liu CH, Niazi MR, Perepichka DF. Strong Enhancement of π-Electron Donor/Acceptor Ability by Complementary DD/AA Hydrogen Bonding. Angew Chem Int Ed Engl 2019; 58:17312-17321. [PMID: 31560447 DOI: 10.1002/anie.201910288] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Indexed: 11/11/2022]
Abstract
π-Conjugated organic materials possess a wide range of tunable optoelectronic properties which are dictated by their molecular structure and supramolecular arrangement. While many efforts have been put into tuning the molecular structure to achieve the desired properties, rational supramolecular control remains a challenge. Here, we report a novel series of supramolecular materials formed by the co-assembly of weak π-electron donor (indolo[2,3-a]carbazole) and acceptor (aromatic o-quinones) molecules via complementary hydrogen bonding. The resulting polarization creates a drastic perturbation of the molecular energy levels, causing strong charge transfer in the weak donor-acceptor pairs. This leads to a significant lowering (up to 1.5 eV) of the band gaps, intense absorption in the near-IR region, very short π-stacking distances (≥3.15 Å), and strong ESR signals in the co-crystals. By varying the strength of the acceptor, the characteristics of the complexes can be tuned between intrinsic, gate-, or light-induced semiconductivity with a p-type or ambipolar transport mechanism.
Collapse
Affiliation(s)
- Cheng-Hao Liu
- Department of Chemistry, McGill University, 801 Sherbrooke Street W, Quebec, H3A 0B1, Canada
| | - Muhammad Rizwan Niazi
- Department of Chemistry, McGill University, 801 Sherbrooke Street W, Quebec, H3A 0B1, Canada
| | - Dmitrii F Perepichka
- Department of Chemistry, McGill University, 801 Sherbrooke Street W, Quebec, H3A 0B1, Canada
| |
Collapse
|
11
|
Tian Q, Xie S. Spin Injection and Transport in Organic Materials. MICROMACHINES 2019; 10:mi10090596. [PMID: 31510018 PMCID: PMC6780273 DOI: 10.3390/mi10090596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
This review introduces some important spin phenomena of organic molecules and solids and their devices: Organic spin injection and transport, organic spin valves, organic magnetic field effects, organic excited ferromagnetism, organic spin currents, etc. We summarize the experimental and theoretical progress of organic spintronics in recent years and give prospects.
Collapse
Affiliation(s)
- Qipeng Tian
- School of Physics, Shandong University, Jinan 250100, China.
| | - Shijie Xie
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| |
Collapse
|