1
|
Zhu X, Ji Z, Wan W, Zhu Y, Lang X, Jiang Q. Vacancy-rich heterogeneous MnCo 2O 4.5@NiS electrocatalyst for highly efficient overall water splitting. J Colloid Interface Sci 2025; 678:878-884. [PMID: 39270388 DOI: 10.1016/j.jcis.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024]
Abstract
Alkaline water electrolysis is regarded as a promising technology for sustainable energy conversion. Spinel oxides have attracted considerable attention as potential catalysts because of their diverse metal valence states. However, achieving the required current densities at low voltages is a challenge due to its limited active sites and suboptimal electron transport. In this study, we present a novel bifunctional catalyst composed of MnCo2O4.5 nanoneedles grown on NiS nanosheets for water electrolysis. Remarkably, MnCo2O4.5@NiS demonstrates exceptional catalytic activity, requiring 187 and 288 mV to achieve a current density of 100 mA cm-2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. The impressive performance of MnCo2O4.5@NiS is demonstrated by the lower value of voltage 1.44 V needed to deliver the current density of 10 mA cm-2, which outperformed the 1.66 V required for a commercial Pt/C||RuO2 system. Detailed structure analysis and density functional theory (DFT) calculations reveal that the MnCo2O4.5@NiS heterostructure enhances electron transfer at the interface, promotes the formation of oxygen vacancies and tunes the electronic structures of Mn and Co. These findings underscore the potential of MnCo2O4.5@NiS as an efficient and cost-effective electrocatalyst for hydrogen production.
Collapse
Affiliation(s)
- Xingxing Zhu
- Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Zhengtong Ji
- Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Wubin Wan
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Yongfu Zhu
- Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, Changchun 130025, China.
| | - Xingyou Lang
- Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, Changchun 130025, China
| |
Collapse
|
2
|
Gao K, Sun B, Zhou G, Cao Z, Xiang L, Yu J, Wang R, Yao Y, Lin F, Li Z, Ren F, Lv Y, Lu Q. Blood-based biomemristor for hyperglycemia and hyperlipidemia monitoring. Mater Today Bio 2024; 28:101169. [PMID: 39183770 PMCID: PMC11342282 DOI: 10.1016/j.mtbio.2024.101169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/27/2024] Open
Abstract
Thanks to its structural characteristics and signal patterns similar to those of human brain synapses, memristors are widely believed to be applicable for neuromorphic computing. However, to our knowledge, memristors have not been effectively applied in the biomedical field, especially in disease diagnosis and health monitoring. In this work, a blood-based biomemristor was prepared for in vitro detection of hyperglycemia and hyperlipidemia. It was found that the device exhibits excellent resistance switching (RS) behavior at lower voltage biases. Through mechanism analysis, it has been confirmed that the RS behavior is driven by Ohmic conduction and ion rearrangement. Furthermore, the hyperglycemia and hyperlipidemia detection devices were constructed for the first time based on memristor logic circuits, and circuit simulations were conducted. These results confirm the feasibility of blood-based biomemristors in detecting hyperglycemia and hyperlipidemia, providing new prospects for the important application of memristors in the biomedical field.
Collapse
Affiliation(s)
- Kaikai Gao
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Micro-and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Bai Sun
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Micro-and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Guangdong Zhou
- College of Artificial Intelligence, Brain-inspired Computing & Intelligent Control of Chongqing Key Lab, Southwest University, Chongqing, 400715, China
| | - Zelin Cao
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Micro-and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Linbiao Xiang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jiawei Yu
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ruixin Wang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yingmin Yao
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Fulai Lin
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhuoqun Li
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Fenggang Ren
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yi Lv
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Qiang Lu
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
3
|
Zhao B, Xu L, Peng R, Xin Z, Shi R, Wu Y, Wang B, Chen J, Pan T, Liu K. High-Performance 2D Ambipolar MoTe 2 Lateral Memristors by Mild Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402727. [PMID: 38958086 DOI: 10.1002/smll.202402727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/10/2024] [Indexed: 07/04/2024]
Abstract
2D transition metal dichalcogenides (TMDCs) have been intensively explored in memristors for brain-inspired computing. Oxidation, which is usually unavoidable and harmful in 2D TMDCs, could also be used to enhance their memristive performances. However, it is still unclear how oxidation affects the resistive switching behaviors of 2D ambipolar TMDCs. In this work, a mild oxidation strategy is developed to greatly enhance the resistive switching ratio of ambipolar 2H-MoTe2 lateral memristors by more than 10 times. Such an enhancement results from the amplified doping due to O2 and H2O adsorption and the optimization of effective gate voltage distribution by mild oxidation. Moreover, the ambipolarity of 2H-MoTe2 also enables a change of resistive switching direction, which is uncommon in 2D memristors. Consequently, as an artificial synapse, the MoTe2 device exhibits a large dynamic range (≈200) and a good linearity (1.01) in long-term potentiation and depression, as well as a high-accuracy handwritten digit recognition (>96%). This work not only provides a feasible and effective way to enhance the memristive performance of 2D ambipolar materials, but also deepens the understanding of hidden mechanisms for RS behaviors in oxidized 2D materials.
Collapse
Affiliation(s)
- Bochen Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Longlong Xu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Ruixuan Peng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Zeqin Xin
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Run Shi
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yonghuang Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Bolun Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Jiayuan Chen
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Ting Pan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Kai Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
4
|
Yang Y, Yang S, Xia X, Hui S, Wang B, Zou B, Zhang Y, Sun J, Xin JH. MXenes for Wearable Physical Sensors toward Smart Healthcare. ACS NANO 2024; 18:24705-24740. [PMID: 39186373 DOI: 10.1021/acsnano.4c08258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The gradual rise of personal healthcare awareness is accelerating the deployment of wearable sensors, whose ability of acquiring physiological vital signs depends on sensing materials. MXenes have distinct chemical and physical superiorities over other 2D nanomaterials for wearable sensors. This review presents a comprehensive summary of the latest advancements in MXenes-based materials for wearable physical sensors. It begins with an introduction to special structural features of MXenes for sensing performance, followed by an in-depth exploration of versatile functionalities. A detailed description of different sensing mechanisms is also included to illustrate the contribution of MXenes to the sensing performance and its improvement. In addition, the real-world applications of MXenes-based physical sensors for monitoring different physiological signs are included as well. The remaining challenges of MXenes-based materials for wearable physical sensors and their promising opportunities are finally narrated, in conjunction with a prospective for future development.
Collapse
Affiliation(s)
- Yixuan Yang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Shenglin Yang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Xiaohu Xia
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Shigang Hui
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Bingsuo Zou
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Yabin Zhang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Jianping Sun
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - John H Xin
- Research Institute for Intelligent Wearable Systems School of Fashion and Textiles, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
5
|
Hao H, Wang M, Cao Y, He J, Yang Y, Zhao C, Yan L. Boron-Doped Engineering for Carbon Quantum Dots-Based Memristors with Controllable Memristance Stability. SMALL METHODS 2024; 8:e2301454. [PMID: 38204209 DOI: 10.1002/smtd.202301454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/05/2023] [Indexed: 01/12/2024]
Abstract
Carbon quantum dots-based memristors (CQDMs) have emerged as a rising star in data storage and computing. The key constraint to their commercialization is memristance variability, which mainly arises from the disordered conductive paths. Doping methodology can optimize electron and ion transport to help construct a stable conductive mode. Herein, based on boron (B)-doped engineering strategy, three kinds of comparable quantum dots are synthesized, including carbon quantum dots (CQDs), a series of boron-doped CQDs (BCQDs) with different B contents, and boron quantum dots. The corresponding device performances highlight the superiority of BCQDs-based memristors, exhibiting a ternary flash-type memory behavior with longer retention time and more controllable memristance stability. The comprehensive analysis results, including device performance, functional layer morphology, and material simulated calculation, illustrate that the doped B elements can directionally guide the migration of aluminum ions by enhancing the capture of free electrons, resulting in ordered conductive filaments and stable ternary memory behavior. Finally, the conceptual applications of logic display and logic gate are discussed, indicating a bright prospect for BCQDs-based memristors. This work proves that modest B doping can optimize memristance property, establishing a theoretical foundation and template scheme for developing effective and stable CQDMs.
Collapse
Affiliation(s)
- Haotian Hao
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Mixue Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Yanli Cao
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Jintao He
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Chun Zhao
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, P. R. China
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 72Z, UK
| | - Lingpeng Yan
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| |
Collapse
|
6
|
Dong X, Sun H, Li S, Zhang X, Chen J, Zhang X, Zhao Y, Li Y. Versatile Cu2ZnSnS4-based synaptic memristor for multi-field-regulated neuromorphic applications. J Chem Phys 2024; 160:154702. [PMID: 38619459 DOI: 10.1063/5.0206100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/28/2024] [Indexed: 04/16/2024] Open
Abstract
Integrating both electrical and light-modulated multi-type neuromorphic functions in a single synaptic memristive device holds the most potential for realizing next-generation neuromorphic systems, but is still challenging yet achievable. Herein, a simple bi-terminal optoelectronic synaptic memristor is newly proposed based on kesterite Cu2ZnSnS4, exhibiting stable nonvolatile resistive switching with excellent spatial uniformity and unique optoelectronic synaptic behaviors. The device demonstrates not only low switching voltage (-0.39 ± 0.08 V), concentrated Set/Reset voltage distribution (<0.08/0.15 V), and long retention time (>104 s) but also continuously modulable conductance by both electric (different width/interval/amplitude) and light (470-808 nm with different intensity) stimulus. These advantages make the device good electrically and optically simulated synaptic functions, including excitatory and inhibitory, paired-pulsed facilitation, short-/long-term plasticity, spike-timing-dependent plasticity, and "memory-forgetting" behavior. Significantly, decimal arithmetic calculation (addition, subtraction, and commutative law) is realized based on the linear conductance regulation, and high precision pattern recognition (>88%) is well achieved with an artificial neural network constructed by 5 × 5 × 4 memristor array. Predictably, such kesterite-based optoelectronic memristors can greatly open the possibility of realizing multi-functional neuromorphic systems.
Collapse
Affiliation(s)
- Xiaofei Dong
- Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hao Sun
- Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Siyuan Li
- Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xiang Zhang
- Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jiangtao Chen
- Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xuqiang Zhang
- Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yun Zhao
- Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yan Li
- Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
7
|
Wang Y, Guo D, Jiang J, Wang H, Shang Y, Zheng J, Huang R, Li W, Wang S. Element Regulation and Dimensional Engineering Co-Optimization of Perovskite Memristors for Synaptic Plasticity Applications. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38422456 DOI: 10.1021/acsami.3c18053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Capitalizing on rapid carrier migration characteristics and outstanding photoelectric conversion performance, halide perovskite memristors demonstrate an exceptional resistive switching performance. However, they have consistently faced constraints due to material stability issues. This study systematically employs elemental modulation and dimension engineering to effectively control perovskite memristors with different dimensions and A-site elements. Compared to pure 3D and 2D perovskites, the quasi-2D perovskite memristor, specifically BA0.15MA0.85PbI3, is identified as the optimal choice through observations of resistive switching (HRS current < 10-5 A, ON/OFF ratio > 103, endurance cycles > 1000, and retention time > 104 s) and synaptic plasticity characteristics. Subsequently, a comprehensive investigation into various synaptic plasticity aspects, including paired-pulse facilitation (PPF), spike-variability-dependent plasticity (SVDP), spike-rate-dependent plasticity (SRDP), and spike-timing-dependent plasticity (STDP), is conducted. Practical applications, such as memory-forgetting-memory and recognition of the Modified National Institute of Standards and Technology (MNIST) database handwritten data set (accuracy rate reaching 94.8%), are explored and successfully realized. This article provides good theoretical guidance for synaptic-like simulation in perovskite memristors.
Collapse
Affiliation(s)
- Yucheng Wang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Dingyun Guo
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Junyu Jiang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hexin Wang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yueyang Shang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jiawei Zheng
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ruixi Huang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wei Li
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shaoxi Wang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
8
|
Nguyen ST, Huong TTT, Ca NX, Nguyen CQ. Enhancing the electronic and optical properties of the metal/semiconductor NbS 2/BSe nanoheterostructure towards advanced electronics. NANOSCALE ADVANCES 2024; 6:1565-1572. [PMID: 38419869 PMCID: PMC10898431 DOI: 10.1039/d3na01086d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Metal-semiconductor (M-S) contacts play a vital role in advanced applications, serving as crucial components in ultracompact devices and exerting a significant impact on overall device performance. Here, in this work, we design a M-S nanoheterostructure between a metallic NbS2 monolayer and a semiconducting BSe monolayer using first-principles prediction. The stability of such an M-S nanoheterostructure is verified and its electronic and optical properties are also considered. Our results indicate that the NbS2/BSe nanoheterostructure is structurally, mechanically and thermally stable. The formation of the NbS2/BSe heterostructure leads to the generation of a Schottky contact with the Schottky barrier ranging from 0.36 to 0.51 eV, depending on the stacking configurations. In addition, the optical absorption coefficient of the NbS2/BSe heterostructure can reach up to 5 × 105 cm-1 at a photon energy of about 5 eV, which is still greater than that in the constituent NbS2 and BSe monolayers. This finding suggests that the formation of the M-S NbS2/BSe heterostructure gives rise to an enhancement in the optical absorption of both NbS2 and BSe monolayers. Notably, the tunneling probability and the contact tunneling-specific resistivity at the interface of the NbS2/BSe heterostructure are low, indicating its applicability in emerging nanoelectronic devices, such as Schottky diodes and field-effect transistors. Our findings offer valuable insights for the practical utilization of electronic devices based on the NbS2/BSe heterostructure.
Collapse
Affiliation(s)
- S T Nguyen
- Faculty of Electrical Engineering, Hanoi University of Industry Ha Noi 100000 Vietnam
| | - T T T Huong
- Institute of Science and Technology, TNU-University of Sciences Thai Nguyen Vietnam
- Department of Science and Technology, Ha Noi University of Industry Ha Noi 100000 Vietnam
| | - N X Ca
- Institute of Science and Technology, TNU-University of Sciences Thai Nguyen Vietnam
| | - C Q Nguyen
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| |
Collapse
|
9
|
Carrasco D, García-Dalí S, Villar-Rodil S, Munuera JM, Raymundo-Piñero E, Paredes JI. NbSe 2 Nanosheets/Nanorolls Obtained via Fast and Direct Aqueous Electrochemical Exfoliation for High-Capacity Lithium Storage. ACS APPLIED ENERGY MATERIALS 2023; 6:7180-7193. [PMID: 37448979 PMCID: PMC10337822 DOI: 10.1021/acsaem.3c00893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/03/2023] [Indexed: 07/18/2023]
Abstract
Layered transition-metal dichalcogenides (LTMDs) in two-dimensional (2D) form are attractive for electrochemical energy storage, but research efforts in this realm have so far largely focused on the best-known members of such a family of materials, mainly MoS2, MoSe2, and WS2. To exploit the potential of further, currently less-studied 2D LTMDs, targeted methods for their production, preferably by cost-effective and sustainable means, as well as control over their nanomorphology, are highly desirable. Here, we report a quick and straightforward route for the preparation of 2D NbSe2 and other metallic 2D LTMDs that relies on delaminating their bulk parent solid under aqueous cathodic conditions. Unlike typical electrochemical exfoliation methods for 2D materials, which generally require an additional processing step (e.g., sonication) to complete delamination, the present electrolytic strategy yielded directly exfoliated nano-objects in a very short time (1-2 min) and with significant yields (∼16 wt %). Moreover, the dominant morphology of the exfoliated 2D NbSe2 products could be tuned between rolled-up nanosheets (nanorolls) and unfolded nanosheets, depending on the solvent where the nano-objects were dispersed (water or isopropanol). This rather unusual delamination behavior of NbSe2 was explored and concluded to occur via a redox mechanism that involves some degree of hydrolytic oxidation of the material triggered by the cathodic treatment. The delamination strategy could be extended to other metallic LTMDs, such as NbS2 and VSe2. When tested toward electrochemical lithium storage, electrodes based on the exfoliated NbSe2 products delivered very high capacity values, up to 750-800 mA h g-1 at 0.5 A g-1, where the positive effect of the nanoroll morphology, associated to increased accessibility of the lithium storage sites, was made apparent. Overall, these results are expected to expand the availability of fit-for-purpose 2D LTMDs by resorting to simple and expeditious production strategies of low environmental impact.
Collapse
Affiliation(s)
- Daniel
F. Carrasco
- Instituto
de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe 26, Oviedo 33011, Spain
| | - Sergio García-Dalí
- Instituto
de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe 26, Oviedo 33011, Spain
- CNRS,
CEMHTI UPR3079, Univ. Orléans, 1D Avenue de la Recherche Scientifique, Orléans 45071, France
| | - Silvia Villar-Rodil
- Instituto
de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe 26, Oviedo 33011, Spain
| | - José M. Munuera
- Instituto
de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe 26, Oviedo 33011, Spain
| | | | - Juan I. Paredes
- Instituto
de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe 26, Oviedo 33011, Spain
| |
Collapse
|
10
|
Zhang ZC, Chen XD, Lu TB. Recent progress in neuromorphic and memory devices based on graphdiyne. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2196240. [PMID: 37090847 PMCID: PMC10116926 DOI: 10.1080/14686996.2023.2196240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Graphdiyne (GDY) is an emerging two-dimensional carbon allotrope featuring a direct bandgap and fascinating physical and chemical properties, and it has demonstrated its promising potential in applications of catalysis, energy conversion and storage, electrical/optoelectronic devices, etc. In particular, the recent breakthrough in the synthesis of large-area, high-quality and ultrathin GDY films provides a feasible approach to developing high-performance electrical devices based on GDY. Recently, various GDY-based electrical and optoelectronic devices including multibit optoelectronic memories, ultrafast nonvolatile memories, artificial synapses and memristors have been proposed, in which GDY plays a crucial role. It is essential to summarize the recent breakthrough of GDY in device applications as a guidance, especially considering that the existing GDY-related reviews mainly focus on the applications in catalysis and energy-related fields. Herein, we review GDY-based novel memory and neuromorphic devices and their applications in neuromorphic computing and artificial visual systems. This review will provide an insight into the design and preparation of GDY-based devices and broaden the application fields of GDY.
Collapse
Affiliation(s)
- Zhi-Cheng Zhang
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Tianjin, China
| | - Xu-Dong Chen
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Tianjin, China
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Material Science and Engineering, Tianjin University of Technology, Tianjin, China
| | - Tong-Bu Lu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Material Science and Engineering, Tianjin University of Technology, Tianjin, China
| |
Collapse
|
11
|
Ye X, Qi M, Qiang H, Chen M, Zheng X, Gu M, Zhao X, Yang Y, He C, Zhang J. Laser-ablated violet phosphorus/graphene heterojunction as ultrasensitive ppb-level room-temperature NO sensor. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
12
|
Atomic transistors based on seamless lateral metal-semiconductor junctions with a sub-1-nm transfer length. Nat Commun 2022; 13:4916. [PMID: 35995776 PMCID: PMC9395343 DOI: 10.1038/s41467-022-32582-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/08/2022] [Indexed: 11/08/2022] Open
Abstract
The edge-to-edge connected metal-semiconductor junction (MSJ) for two-dimensional (2D) transistors has the potential to reduce the contact length while improving the performance of the devices. However, typical 2D materials are thermally and chemically unstable, which impedes the reproducible achievement of high-quality edge contacts. Here we present a scalable synthetic strategy to fabricate low-resistance edge contacts to atomic transistors using a thermally stable 2D metal, PtTe2. The use of PtTe2 as an epitaxial template enables the lateral growth of monolayer MoS2 to achieve a PtTe2-MoS2 MSJ with the thinnest possible, seamless atomic interface. The synthesized lateral heterojunction enables the reduced dimensions of Schottky barriers and enhanced carrier injection compared to counterparts composed of a vertical 3D metal contact. Furthermore, facile position-selected growth of PtTe2-MoS2 MSJ arrays using conventional lithography can facilitate the design of device layouts with high processability, while providing low contact resistivity and ultrashort transfer length on wafer scales.
Collapse
|
13
|
Sun Y, Wang Y, Wang E, Wang B, Zhao H, Zeng Y, Zhang Q, Wu Y, Gu L, Li X, Liu K. Determining the interlayer shearing in twisted bilayer MoS 2 by nanoindentation. Nat Commun 2022; 13:3898. [PMID: 35794157 PMCID: PMC9259563 DOI: 10.1038/s41467-022-31685-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/24/2022] [Indexed: 12/03/2022] Open
Abstract
The rise of twistronics has increased the attention of the community to the twist-angle-dependent properties of two-dimensional van der Waals integrated architectures. Clarification of the relationship between twist angles and interlayer mechanical interactions is important in benefiting the design of two-dimensional twisted structures. However, current mechanical methods have critical limitations in quantitatively probing the twist-angle dependence of two-dimensional interlayer interactions in monolayer limits. Here we report a nanoindentation-based technique and a shearing-boundary model to determine the interlayer mechanical interactions of twisted bilayer MoS2. Both in-plane elastic moduli and interlayer shear stress are found to be independent of the twist angle, which is attributed to the long-range interaction of intermolecular van der Waals forces that homogenously spread over the interfaces of MoS2. Our work provides a universal approach to determining the interlayer shear stress and deepens the understanding of twist-angle-dependent behaviours of two-dimensional layered materials. The study of the mechanical properties of twisted van der Waals structures can provide important information about their interlayer coupling and electronic behaviour. Here, the authors report a nanoindentation-based technique to determine the interlayer shear stress in bilayer MoS2, showing its independence as a function of the twist angle.
Collapse
Affiliation(s)
- Yufei Sun
- State Key Laboratory of New Ceramics and Fine Processing & Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yujia Wang
- Center for Advanced Mechanics and Materials, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Enze Wang
- State Key Laboratory of New Ceramics and Fine Processing & Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Bolun Wang
- State Key Laboratory of New Ceramics and Fine Processing & Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Hengyi Zhao
- Center for Advanced Mechanics and Materials, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Yongpan Zeng
- Center for Advanced Mechanics and Materials, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Qinghua Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yonghuang Wu
- State Key Laboratory of New Ceramics and Fine Processing & Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Lin Gu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaoyan Li
- Center for Advanced Mechanics and Materials, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China.
| | - Kai Liu
- State Key Laboratory of New Ceramics and Fine Processing & Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
14
|
Recent Progress in Two-Dimensional MoTe 2 Hetero-Phase Homojunctions. NANOMATERIALS 2021; 12:nano12010110. [PMID: 35010060 PMCID: PMC8746702 DOI: 10.3390/nano12010110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022]
Abstract
With the demand for low contact resistance and a clean interface in high-performance field-effect transistors, two-dimensional (2D) hetero-phase homojunctions, which comprise a semiconducting phase of a material as the channel and a metallic phase of the material as electrodes, have attracted growing attention in recent years. In particular, MoTe2 exhibits intriguing properties and its phase is easily altered from semiconducting 2H to metallic 1T' and vice versa, owing to the extremely small energy barrier between these two phases. MoTe2 thus finds potential applications in electronics as a representative 2D material with multiple phases. In this review, we briefly summarize recent progress in 2D MoTe2 hetero-phase homojunctions. We first introduce the properties of the diverse phases of MoTe2, demonstrate the approaches to the construction of 2D MoTe2 hetero-phase homojunctions, and then show the applications of the homojunctions. Lastly, we discuss the prospects and challenges in this research field.
Collapse
|
15
|
Wang B, Wang X, Wang E, Li C, Peng R, Wu Y, Xin Z, Sun Y, Guo J, Fan S, Wang C, Tang J, Liu K. Monolayer MoS 2 Synaptic Transistors for High-Temperature Neuromorphic Applications. NANO LETTERS 2021; 21:10400-10408. [PMID: 34870433 DOI: 10.1021/acs.nanolett.1c03684] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As essential units in an artificial neural network (ANN), artificial synapses have to adapt to various environments. In particular, the development of synaptic transistors that can work above 125 °C is desirable. However, it is challenging due to the failure of materials or mechanisms at high temperatures. Here, we report a synaptic transistor working at hundreds of degrees Celsius. It employs monolayer MoS2 as the channel and Na+-diffused SiO2 as the ionic gate medium. A large on/off ratio of 106 can be achieved at 350 °C, 5 orders of magnitude higher than that of a normal MoS2 transistor in the same range of gate voltage. The short-term plasticity has a synaptic transistor function as an excellent low-pass dynamic filter. Long-term potentiation/depression and spike-timing-dependent plasticity are demonstrated at 150 °C. An ANN can be simulated, with the recognition accuracy reaching 90%. Our work provides promising strategies for high-temperature neuromorphic applications.
Collapse
Affiliation(s)
- Bolun Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xuewen Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Enze Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Chenyu Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Ruixuan Peng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yonghuang Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zeqin Xin
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yufei Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jing Guo
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Shoushan Fan
- Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People's Republic of China
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, People's Republic of China
| | - Chen Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jianshi Tang
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, People's Republic of China
- Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing 100084, People's Republic of China
| | - Kai Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
16
|
Wang J, Teng C, Zhang Z, Chen W, Tan J, Pan Y, Zhang R, Zhou H, Ding B, Cheng HM, Liu B. A Scalable Artificial Neuron Based on Ultrathin Two-Dimensional Titanium Oxide. ACS NANO 2021; 15:15123-15131. [PMID: 34534433 DOI: 10.1021/acsnano.1c05565] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A spiking neural network consists of artificial synapses and neurons and may realize human-level intelligence. Unlike the widely reported artificial synapses, the fabrication of large-scale artificial neurons with good performance is still challenging due to the lack of a suitable material system and integration method. Here, we report an ultrathin (less than10 nm) and inch-size two-dimensional (2D) oxide-based artificial neuron system produced by a controllable assembly of solution-processed 2D monolayer TiOx nanosheets. Artificial neuron devices based on such 2D TiOx films show a high on/off ratio of 109 and a volatile resistance switching phenomenon. The devices can not only emulate the leaky integrate-and-fire activity but also self-recover without additional circuits for sensing and reset. Moreover, the artificial neuron arrays are fabricated and exhibited good uniformity, indicating their large-area integration potential. Our results offer a strategy for fabricating large-scale and ultrathin 2D material-based artificial neurons and 2D spiking neural networks.
Collapse
Affiliation(s)
- Jingyun Wang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Changjiu Teng
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Zhiyuan Zhang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Wenjun Chen
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Junyang Tan
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Yikun Pan
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Rongjie Zhang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Heyuan Zhou
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Baofu Ding
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Hui-Ming Cheng
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| |
Collapse
|
17
|
Li J, Xin M, Ma Z, Shi Y, Pan L. Nanomaterials and their applications on bio-inspired wearable electronics. NANOTECHNOLOGY 2021; 32:472002. [PMID: 33592596 DOI: 10.1088/1361-6528/abe6c7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Wearable electronics featuring conformal attachment, sensitive perception and intellectual signal processing have made significant progress in recent years. However, when compared with living organisms, artificial sensory devices showed undeniable bulky shape, poor adaptability, and large energy consumption. To make up for the deficiencies, biological examples provide inspirations of novel designs and practical applications. In the field of biomimetics, nanomaterials from nanoparticles to layered two-dimensional materials are actively involved due to their outstanding physicochemical properties and nanoscale configurability. This review focuses on nanomaterials related to wearable electronics through bioinspired approaches on three different levels, interfacial packaging, sensory structure, and signal processing, which comprehensively guided recent progress of wearable devices in leveraging both nanomaterial superiorities and biorealistic functionalities. In addition, opinions on potential development trend are proposed aiming at implementing bioinspired electronics in multifunctional portable sensors, health monitoring, and intelligent prosthetics.
Collapse
Affiliation(s)
- Jiean Li
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Ming Xin
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Zhong Ma
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
18
|
Vu VT, Vu TTH, Phan TL, Kang WT, Kim YR, Tran MD, Nguyen HTT, Lee YH, Yu WJ. One-Step Synthesis of NbSe 2/Nb-Doped-WSe 2 Metal/Doped-Semiconductor van der Waals Heterostructures for Doping Controlled Ohmic Contact. ACS NANO 2021; 15:13031-13040. [PMID: 34350752 DOI: 10.1021/acsnano.1c02038] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
van der Waals heterostructures (vdWHs) of metallic (m-) and semiconducting (s-) transition-metal dichalcogenides (TMDs) exhibit an ideal metal/semiconductor (M/S) contact in a field-effect transistor. However, in the current two-step chemical vapor deposition process, the synthesis of m-TMD on pregrown s-TMD contaminates the van der Waals (vdW) interface and hinders the doping of s-TMD. Here, NbSe2/Nb-doped-WSe2 metal-doped-semiconductor (M/d-S) vdWHs are created via a one-step synthesis approach using a niobium molar ratio-controlled solution-phase precursor. The one-step growth approach synthesizes Nb-doped WSe2 with a controllable doping concentration and metal/doped-semiconductor vdWHs. The hole carrier concentration can be precisely controlled by controlling the Nb/(W + Nb) molar ratio in the precursor solution from ∼3 × 1011/cm2 at Nb-0% to ∼1.38 × 1012/cm2 at Nb-60%; correspondingly, the contact resistance RC value decreases from 10 888.78 at Nb-0% to 70.60 kΩ.μm at Nb-60%. The Schottky barrier height measurement in the Arrhenius plots of ln(Isat/T2) versus q/KBT demonstrated an ohmic contact in the NbSe2/WxNb1-xSe2 vdWHs. Combining p-doping in WSe2 and M/d-S vdWHs, the mobility (27.24 cm2 V-1 s-1) and on/off ratio (2.2 × 107) are increased 1238 and 4400 times, respectively, compared to that using the Cr/pure-WSe2 contact (0.022 cm2 V-1 s-1 and 5 × 103, respectively). Together, the RC value using the NbSe2 contact shows 2.46 kΩ.μm, which is ∼29 times lower than that of using a metal contact. This method is expected to guide the synthesis of various M/d-S vdWHs and applications in future high-performance integrated circuits.
Collapse
Affiliation(s)
- Van Tu Vu
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Thi Thanh Huong Vu
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Thanh Luan Phan
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Won Tae Kang
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young Rae Kim
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Minh Dao Tran
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Huong Thi Thanh Nguyen
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young Hee Lee
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Woo Jong Yu
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
19
|
Wang X, Wang B, Zhang Q, Sun Y, Wang E, Luo H, Wu Y, Gu L, Li H, Liu K. Grain-Boundary Engineering of Monolayer MoS 2 for Energy-Efficient Lateral Synaptic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102435. [PMID: 34219298 DOI: 10.1002/adma.202102435] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/28/2021] [Indexed: 06/13/2023]
Abstract
Synaptic devices based on 2D-layered materials have emerged as high-efficiency electronic synapses and neurons for neuromorphic computing. Lateral 2D synaptic devices have the advantages of multiple functionalities by responding to diverse stimuli, but they consume large amounts of energy, far more than the human brain. Moreover, current lateral devices employ several mechanisms based on conductive filaments and grain boundaries (GBs), but their formation is random and difficult to control, also hindering their practical applications. Here, four-terminal, lateral synaptic devices with artificially engineered GBs are reported, which are made from monolayer MoS2 . With lithography-free, direct-laser-writing-controlled MoS2 /MoS2- x Oδ GBs, such synaptic devices exhibit short-term and long-term plasticity characteristics that are responsive to electric and light stimulation simultaneously. This enables detailed simulations of biological learning and cognitive processes as well as image perception and processing. In particular, the device exhibits low energy consumption, similar to that of the human brain and much lower than those of other lateral 2D synaptic devices. This work provides an effective way to fabricate lateral synaptic devices for practical application development and sheds light on controllable electrical state switching for neuromorphic computing.
Collapse
Affiliation(s)
- Xuewen Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Bolun Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Qinghua Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yufei Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Enze Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Hao Luo
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yonghuang Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Lin Gu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huanglong Li
- Department of Precision Instrument, Center for Brain Inspired Computing Research, Tsinghua University, Beijing, 100084, China
| | - Kai Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
20
|
Liao K, Lei P, Tu M, Luo S, Jiang T, Jie W, Hao J. Memristor Based on Inorganic and Organic Two-Dimensional Materials: Mechanisms, Performance, and Synaptic Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32606-32623. [PMID: 34253011 DOI: 10.1021/acsami.1c07665] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A memristor is a two-terminal device with nonvolatile resistive switching (RS) behaviors. Recently, memristors have been highly desirable for both fundamental research and technological applications because of their great potential in the development of high-density memory technology and neuromorphic computing. Benefiting from the unique two-dimensional (2D) layered structure and outstanding properties, 2D materials have proven to be good candidates for use in gate-tunable, highly reliable, heterojunction-compatible, and low-power memristive devices. More intriguing, stable and reliable nonvolatile RS behaviors can be achieved in multi- and even monolayer 2D materials, which seems unlikely to be achieved in traditional oxides with thicknesses less than a few nanometers because of the leakage currents. Moreover, such two-terminal devices show a series of synaptic functionalities, suggesting applications in simulating a biological synapse in the neural network. In this review article, we summarize the recent progress in memristors based on inorganic and organic 2D materials, from the material synthesis, device structure and fabrication, and physical mechanism to some versatile memristors based on diverse 2D materials with good RS properties and memristor-based synaptic applications. The development prospects and challenges at the current stage are then highlighted, which is expected to inspire further advancements and new insights into the fields of information storage and neuromorphic computing.
Collapse
Affiliation(s)
- Kanghong Liao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Peixian Lei
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Meilin Tu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Songwen Luo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Ting Jiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Wenjing Jie
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong China
| |
Collapse
|
21
|
Liu L, Cheng Z, Jiang B, Liu Y, Zhang Y, Yang F, Wang J, Yu XF, Chu PK, Ye C. Optoelectronic Artificial Synapses Based on Two-Dimensional Transitional-Metal Trichalcogenide. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30797-30805. [PMID: 34169714 DOI: 10.1021/acsami.1c03202] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The memristor is a foundational device for an artificial synapse, which is essential to realize next-generation neuromorphic computing. Herein, an optoelectronic memristor based on a two-dimensional (2D) transitional-metal trichalcogenide (TMTC) is designed and demonstrated. Owing to the excellent optical and electrical characteristics of titanium trisulfide (TiS3), the memristor exhibits stable bipolar resistance switching (RS) as a result of the controllable formation and rupturing of the conductive aluminum filaments. Multilevel storage is realized with light of multiple wavelengths between 400 and 808 nm, and the synaptic properties such as conduction modulation and spiking timing-dependent plasticity (STDP) are achieved. On the basis of the photonic potentiation and electrical habitual ability, Pavlovian-associative learning is successfully established on this TiS3-based artificial synapse. All these results reveal the large potential of 2D TMTCs in artificial neuromorphic chips.
Collapse
Affiliation(s)
- Lei Liu
- Faculty of Physics and Electronic Science, Hubei Key Laboratory of Ferro- & Piezoelectric Materials and Devices, Hubei University, Wuhan 430062, P.R. China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Ziqiang Cheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
- Department of Applied Physics, East China Jiaotong University, Nanchang 330013, P.R. China
| | - Bei Jiang
- Faculty of Physics and Electronic Science, Hubei Key Laboratory of Ferro- & Piezoelectric Materials and Devices, Hubei University, Wuhan 430062, P.R. China
| | - Yanxin Liu
- Faculty of Physics and Electronic Science, Hubei Key Laboratory of Ferro- & Piezoelectric Materials and Devices, Hubei University, Wuhan 430062, P.R. China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Yanli Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Fan Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Jiahong Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Xue-Feng Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, P.R. China
| | - Cong Ye
- Faculty of Physics and Electronic Science, Hubei Key Laboratory of Ferro- & Piezoelectric Materials and Devices, Hubei University, Wuhan 430062, P.R. China
| |
Collapse
|
22
|
Yin L, Cheng R, Wen Y, Liu C, He J. Emerging 2D Memory Devices for In-Memory Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007081. [PMID: 34105195 DOI: 10.1002/adma.202007081] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/27/2020] [Indexed: 06/12/2023]
Abstract
It is predicted that the conventional von Neumann computing architecture cannot meet the demands of future data-intensive computing applications due to the bottleneck between the processing and memory units. To try to solve this problem, in-memory computing technology, where calculations are carried out in situ within each nonvolatile memory unit, has been intensively studied. Among various candidate materials, 2D layered materials have recently demonstrated many new features that have been uniquely exploited to build next-generation electronics. Here, the recent progress of 2D memory devices is reviewed for in-memory computing. For each memory configuration, their operation mechanisms and memory characteristics are described, and their pros and cons are weighed. Subsequently, their versatile applications for in-memory computing technology, including logic operations, electronic synapses, and random number generation are presented. Finally, the current challenges and potential strategies for future 2D in-memory computing systems are also discussed at the material, device, circuit, and architecture levels. It is hoped that this manuscript could give a comprehensive review of 2D memory devices and their applications in in-memory computing, and be helpful for this exciting research area.
Collapse
Affiliation(s)
- Lei Yin
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Ruiqing Cheng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Yao Wen
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Chuansheng Liu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
23
|
Wang B, Peng R, Wang X, Yang Y, Wang E, Xin Z, Sun Y, Li C, Wu Y, Wei J, Sun J, Liu K. Ultrafast, Kinetically Limited, Ambient Synthesis of Vanadium Dioxides through Laser Direct Writing on Ultrathin Chalcogenide Matrix. ACS NANO 2021; 15:10502-10513. [PMID: 34009934 DOI: 10.1021/acsnano.1c03050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Vanadium dioxide (VO2) is a strongly correlated electronic material and has attracted significant attention due to its metal-to-insulator transition and diverse smart applications. Traditional synthesis of VO2 usually requires minutes or hours of global heating and low oxygen partial pressure to achieve thermodynamic control of the valence state. Further patterning of VO2 through a series of lithography and etching processes may inevitably change its surface valence, which poses a great challenge for the assembly of micro- and nanoscale VO2-based heterojunction devices. Herein, we report an ultrafast method to simultaneously synthesize and pattern VO2 on the time scale of seconds under ambient conditions through laser direct writing on a V5S8 "canvas". The successful ambient synthesis of VO2 is attributed to the ultrafast local heating and cooling process, resulting in controlled freezing of the intermediate oxidation phase during the relatively long kinetic reaction. A Mott memristor based on a V5S8-VO2-V5S8 lateral heterostructure can be fabricated and integrated with a MoS2 channel, delivering a transistor with abrupt switching transfer characteristics. The other device with a VSxOy channel exhibits a large negative temperature coefficient of approximately 4.5%/K, which is highly desirable for microbolometers. The proposed approach enables fast and efficient integration of VO2-based heterojunction devices and is applicable to other intriguing intermediate phases of oxides.
Collapse
Affiliation(s)
- Bolun Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Ruixuan Peng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xuewen Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yueyang Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Enze Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zeqin Xin
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yufei Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Chenyu Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yonghuang Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jinquan Wei
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jingbo Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Kai Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Wang X, Wang B, Wu Y, Wang E, Luo H, Sun Y, Fu D, Sun Y, Liu K. Two-Dimensional Lateral Heterostructures Made by Selective Reaction on a Patterned Monolayer MoS 2 Matrix. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26143-26151. [PMID: 34043911 DOI: 10.1021/acsami.1c00725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional (2D) heterostructures have attracted widespread attention for their promising prospects in the fields of electronics and optoelectronics. However, in order to truly realize 2D-material-based integrated circuits, precisely controllable fabrication of 2D heterostructures is crucial and urgently needed. Here, we demonstrate an ex situ growth method of MoSe2/MoS2 lateral heterostructures by selective selenization of a laser-scanned, ultrathin oxidized region (MoOx) on a monolayer MoS2 matrix. In our method, monolayer MoS2 is scanned by a laser with a pre-designed pattern, where the laser-scanned MoS2 is totally oxidized into MoOx. The oxidized region is then selenized in a furnace, while the unoxidized MoS2 region remains unchanged, delivering a MoSe2/MoS2 heterostructure. Unlike in situ laser direct growth methods, our method separates the laser-scanned process from the selenization process, which avoids the long time of point-by-point selenization of MoS2 by laser, making the efficiency of the synthesis greatly improved. The formation process of the heterostructure is studied by Raman spectroscopy and Auger electron spectroscopy. This simple and controllable approach to lateral heterostructures with desired patterns paves the way for fast and mass integration of devices based on 2D heterostructures.
Collapse
Affiliation(s)
- Xuewen Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Bolun Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yonghuang Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Enze Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Hao Luo
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yufei Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Deyi Fu
- College of Physical Science and Technology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yinghui Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Kai Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Zeng X, Huang S, Ye Q, Rajagopalan P, Li W, Kuang H, Ye G, Chen C, Li M, Liu Y, Shi L, Guo Y, Lu X, Shi W, Luo J, Wang X. Controllable high-performance memristors based on 2D Fe 2GeTe 3oxide for biological synapse imitation. NANOTECHNOLOGY 2021; 32:325205. [PMID: 33930891 DOI: 10.1088/1361-6528/abfd58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Memristors are an important component of the next-generation artificial neural network, high computing systems, etc. In the past, two-dimensional materials based memristors have achieved a high performance and low power consumption, though one at the cost of the other. Furthermore, their performance can not be modulated frequently once their structures are fixed, which remains the bottleneck in the development. Herein, a series of forming free memristors are fabricated with the same Cu/Fe3GeTe2oxide/Fe3GeTe2/Al structure, yet the On/Off ratio and set voltage is modulated continuously by varying the oxidation time during fabrication. With an optimal oxidation time, a large On/Off ratio (1.58 × 103) and low set voltage (0.74 V) is achieved in a single device. The formation and rapture of Al conductive filaments are found to be responsible for the memristors, and the filaments density and the cross-section area increase with the increase of current compliance, which achieves a higher On/Off ratio. The memristor can imitate basic biological synaptic functions using voltage pulses, demonstrating the potential for low-power consuming neuromorphic computing applications.
Collapse
Affiliation(s)
- Xiangyu Zeng
- College of Information Science and Electronic Engineering, Hangzhou 310027, People's Republic of China
| | - Shuyi Huang
- College of Information Science and Electronic Engineering, Hangzhou 310027, People's Republic of China
| | - Qikai Ye
- College of Information Science and Electronic Engineering, Hangzhou 310027, People's Republic of China
| | - Pandey Rajagopalan
- College of Information Science and Electronic Engineering, Hangzhou 310027, People's Republic of China
| | - Wei Li
- College of Information Science and Electronic Engineering, Hangzhou 310027, People's Republic of China
| | - Haoze Kuang
- College of Information Science and Electronic Engineering, Hangzhou 310027, People's Republic of China
| | - Ge Ye
- Center for correlated matter and Department of Physics, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Chufan Chen
- Center for correlated matter and Department of Physics, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Menglu Li
- College of Information Science and Electronic Engineering, Hangzhou 310027, People's Republic of China
| | - Yulu Liu
- College of Information Science and Electronic Engineering, Hangzhou 310027, People's Republic of China
| | - Lin Shi
- College of Information Science and Electronic Engineering, Hangzhou 310027, People's Republic of China
| | - Yuzheng Guo
- School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xin Lu
- Center for correlated matter and Department of Physics, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Wenhua Shi
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Jikui Luo
- College of Information Science and Electronic Engineering, Hangzhou 310027, People's Republic of China
| | - Xiaozhi Wang
- College of Information Science and Electronic Engineering, Hangzhou 310027, People's Republic of China
| |
Collapse
|
26
|
Su J, Liu G, Liu L, Chen J, Hu X, Li Y, Li H, Zhai T. Recent Advances in 2D Group VB Transition Metal Chalcogenides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005411. [PMID: 33694286 DOI: 10.1002/smll.202005411] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/25/2020] [Indexed: 06/12/2023]
Abstract
2D materials have received considerable research interest owing to their abundant material systems and remarkable properties. Among them, 2D group VB transition metal chalcogenides (GVTMCs) stand out as emerging 2D metallic materials and significantly broaden the research scope of 2D materials. 2D GVTMCs have great advantages in electrical transport, 2D magnetism, charge density wave, sensing, catalysis, and charge storage, making them attractive in the fields of functional devices and energy chemistry. In this review, the recent progress of 2D GVTMCs is summarized systematically from fundamental properties, growth methodologies to potential applications. The challenges and prospects are also discussed for future research in this field.
Collapse
Affiliation(s)
- Jianwei Su
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Guiheng Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Lixin Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Jiazhen Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Xiaozong Hu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yuan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| |
Collapse
|
27
|
Ahmad W, Gong Y, Abbas G, Khan K, Khan M, Ali G, Shuja A, Tareen AK, Khan Q, Li D. Evolution of low-dimensional material-based field-effect transistors. NANOSCALE 2021; 13:5162-5186. [PMID: 33666628 DOI: 10.1039/d0nr07548e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Field-effect transistors (FETs) have tremendous applications in the electronics industry due to their outstanding features such as small size, easy fabrication, compatibility with integrated electronics, high sensitivity, rapid detection and easy measuring procedures. However, to meet the increasing demand of the electronics industry, efficient FETs with controlled short channel effects, enhanced surface stability, reduced size, and superior performances based on low-dimensional materials are desirable. In this review, we present the developmental roadmap of FETs from conventional to miniaturized devices and highlight their prospective applications in the field of optoelectronic devices. Initially, a detailed study of the general importance of bulk and low-dimensional materials is presented. Then, recent advances in low-dimensional material heterostructures, classification of FETs, and the applications of low-dimensional materials in field-effect transistors and photodetectors are presented in detail. In addition, we also describe current issues in low-dimensional material-based FETs and propose potential approaches to address these issues, which are crucial for developing electronic and optoelectronic devices. This review will provide guidelines for low-dimensional material-based FETs with high performance and advanced applications in the future.
Collapse
Affiliation(s)
- Waqas Ahmad
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Youning Gong
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Ghulam Abbas
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Karim Khan
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Maaz Khan
- Nanomaterials Research Group, Physics Division, PINSTECH, Nilore 45650, Islamabad, Pakistan
| | - Ghafar Ali
- Nanomaterials Research Group, Physics Division, PINSTECH, Nilore 45650, Islamabad, Pakistan
| | - Ahmed Shuja
- Centre for Advanced Electronics & Photovoltaic Engineering, International Islamic University, Islamabad, Pakistan
| | - Ayesha Khan Tareen
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Qasim Khan
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Delong Li
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| |
Collapse
|
28
|
A Non-Volatile Memory Based on NbOx/NbSe2 Van der Waals Heterostructures. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Two-dimensional (2D) van der Waals (vdW) layered transition metal dichalcogenides (TMDs) materials have been receiving a huge interest due to atomically thin thickness, excellent optoelectronic properties, and free dangling bonds. Especially the metallic TMDs, such as MoTe2 (1T’ phase), NbS2, or NbSe2, have shown fascinating physical properties through various applications, such as superconductor and charge density wave. However, carrier transport of metallic TMDs would be degraded due to the poor stability in ambient conditions. To date, achieving both high device performance and long-term stability is still a huge challenge. Thus, an alternative way to develop both unavoidable native oxide and metallic TMDs is under consideration for new era research. In this respect, 2D metallic TMD materials have attracted high attention due to their great potential in neuromorphic-based devices with metal-insulator-metal structures, making it possible to produce scalable, flexible, and transparent memory devices. Herein, we experimentally demonstrated a synthesized metallic NbSe2 by a chemical vapor deposition method with a highly uniform, good shape distribution and layer controller ranging from 2–10 layers. Together, for the first time, we proposed the NbOx/NbSe2 heterostructure memristor device based on the native NbOx oxide on the interface of multi-layer NbSe2 flakes. The ultra-thin native NbOx oxide of 3 nm was formed after a period of oxidation time under air condition, which acts as a memristive surface in the Au-NbOx-Au lateral memristor device, in which oxygen vacancies form a conductive filament. Our NbOx/NbSe2 hetero-tructured memristor exhibits a stable memory window, a low-resistance-state/high-resistance-state ratio of 20, and stable endurance properties over 20 cycles at a low working voltage of 1 V. Furthermore, by the retention property test, non-volatile characteristics were confirmed after over 3000 s in our best data. Through a systematic study of the NbOx/NbSe2 heterostructured memristor device, this report will open new opportunities for next-generation memory devices application.
Collapse
|
29
|
Scalable lateral heterojunction by chemical doping of 2D TMD thin films. Sci Rep 2020; 10:12970. [PMID: 32737425 PMCID: PMC7395794 DOI: 10.1038/s41598-020-70127-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/20/2020] [Indexed: 01/05/2023] Open
Abstract
Scalable heterojunctions based on two-dimensional transitional metal dichalcogenides are of great importance for their applications in the next generation of electronic and optoelectronic devices. However, reliable techniques for the fabrication of such heterojunctions are still at its infancy. Here we demonstrate a simple technique for the scalable fabrication of lateral heterojunctions via selective chemical doping of TMD thin films. We demonstrate that the resistance of large area MoS2 and MoSe2 thin film, prepared via low pressure chalcogenation of molybdenum film, decreases by up to two orders of magnitude upon doping using benzyl viologen (BV) molecule. X-ray photoelectron spectroscopy (XPS) measurements confirms n-doping of the films by BV molecules. Since thin films of MoS2 and MoSe2 are typically more resistive than their exfoliated and co-evaporation based CVD counterparts, the decrease in resistance by BV doping represents a significant step in the utilization of these samples in electronic devices. Using selective BV doping, we simultaneously fabricated many lateral heterojunctions in 1 cm2 MoS2 and 1 cm2 MoSe2 films. The electrical transport measurements performed across the heterojunctions exhibit current rectification behavior due to a band offset created between the doped and undoped regions of the material. Almost 84% of the fabricated devices showed rectification behavior demonstrating the scalability of this technique.
Collapse
|
30
|
Tian Z, Wei C, Sun J. Recent advances in the template-confined synthesis of two-dimensional materials for aqueous energy storage devices. NANOSCALE ADVANCES 2020; 2:2220-2233. [PMID: 36133388 PMCID: PMC9417973 DOI: 10.1039/d0na00257g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/28/2020] [Indexed: 05/14/2023]
Abstract
The template-confined synthesis strategy is a simple and effective methodology to prepare two-dimensional nanomaterials. It has multiple advantages including green process, controllable morphology and adjustable crystal structure, and therefore, it is promising in the energy storage realm to synthesize high-performance electrode materials. In this review, we summarize the recent advances in the template-confined synthesis of two-dimensional nanostructures for aqueous energy storage applications. The material design is discussed in detail to accommodate target usage in aqueous supercapacitors and zinc metal batteries. The remaining challenges and future prospective are also covered.
Collapse
Affiliation(s)
- Zhengnan Tian
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University Suzhou 215006 P. R. China
| | - Chaohui Wei
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University Suzhou 215006 P. R. China
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University Suzhou 215006 P. R. China
- Beijing Graphene Institute Beijing 100095 P. R. China
| |
Collapse
|