1
|
Noble JE, Hsiao YW, Kepiro IE, De Santis E, Hoose A, Augagneur C, Lamarre B, Briones A, Hammond K, Bray DJ, Crain J, Ryadnov MG. A Nonlinear Peptide Topology for Synthetic Virions. ACS NANO 2024; 18:29956-29967. [PMID: 39402499 DOI: 10.1021/acsnano.4c10662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
a nonlinear de novo peptide topology for the assembly of synthetic virions is reported. The topology is a backbone cyclized amino-acid sequence in which polar l- and hydrophobic d-amino acid residues of the same-type alternate. This arrangement introduces pseudo C4 symmetries of side chains within the same cyclopeptide ring, allowing for the lateral propagation of cyclopeptides into networks with a [3/6, 4]-fold rotational symmetry closing into virus-like shells. A combination of computational and experimental approaches was used to establish that the topology forms morphologically uniform, nonaggregating and nontoxic nanoscale shells. These effectively encapsulate genetic cargo and promote its intracellular delivery and a target genetic response. The design introduces a nanotechnology inspired solution for engineering virus-like systems thereby expanding traditional molecular biology approaches used to create artificial biology to chemical space.
Collapse
Affiliation(s)
- James E Noble
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Ya-Wen Hsiao
- The Hartree Centre, STFC Daresbury Laboratory, Warrington WA4 4AD, U.K
| | - Ibolya E Kepiro
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | | | - Alex Hoose
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | | | | | - Andrea Briones
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Katharine Hammond
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - David J Bray
- The Hartree Centre, STFC Daresbury Laboratory, Warrington WA4 4AD, U.K
| | - Jason Crain
- IBM Research Europe, Hartree Centre, Daresbury WA4 4AD, U.K
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
- Department of Physics, King's College London, Strand Lane, London WC2R 2LS, U.K
| |
Collapse
|
2
|
Kraus S, Fletcher ML, Łapińska U, Chawla K, Baker E, Attrill EL, O'Neill P, Farbos A, Jeffries A, Galyov EE, Korbsrisate S, Barnes KB, Harding SV, Tsaneva-Atanasova K, Blaskovich MAT, Pagliara S. Phage-induced efflux down-regulation boosts antibiotic efficacy. PLoS Pathog 2024; 20:e1012361. [PMID: 38941361 PMCID: PMC11239113 DOI: 10.1371/journal.ppat.1012361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/11/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024] Open
Abstract
The interactions between a virus and its host vary in space and time and are affected by the presence of molecules that alter the physiology of either the host or the virus. Determining the molecular mechanisms at the basis of these interactions is paramount for predicting the fate of bacterial and phage populations and for designing rational phage-antibiotic therapies. We study the interactions between stationary phase Burkholderia thailandensis and the phage ΦBp-AMP1. Although heterogeneous genetic resistance to phage rapidly emerges in B. thailandensis, the presence of phage enhances the efficacy of three major antibiotic classes, the quinolones, the beta-lactams and the tetracyclines, but antagonizes tetrahydrofolate synthesis inhibitors. We discovered that enhanced antibiotic efficacy is facilitated by reduced antibiotic efflux in the presence of phage. This new phage-antibiotic therapy allows for eradication of stationary phase bacteria, whilst requiring reduced antibiotic concentrations, which is crucial for treating infections in sites where it is difficult to achieve high antibiotic concentrations.
Collapse
Affiliation(s)
- Samuel Kraus
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Megan L Fletcher
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Urszula Łapińska
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Krina Chawla
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Evan Baker
- Department of Mathematics and Living Systems Institute, University of Exeter, Exeter, Devon, United Kingdom
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, United Kingdom
| | - Erin L Attrill
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Paul O'Neill
- Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, United Kingdom
| | - Audrey Farbos
- Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, United Kingdom
| | - Aaron Jeffries
- Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, United Kingdom
| | - Edouard E Galyov
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, United Kingdom
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Thailand
| | - Kay B Barnes
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Sarah V Harding
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics and Living Systems Institute, University of Exeter, Exeter, Devon, United Kingdom
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, United Kingdom
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Stefano Pagliara
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| |
Collapse
|
3
|
Mourenza A, Ganesan R, Camarero JA. Resistance is futile: targeting multidrug-resistant bacteria with de novo Cys-rich cyclic polypeptides. RSC Chem Biol 2023; 4:722-735. [PMID: 37799576 PMCID: PMC10549238 DOI: 10.1039/d3cb00015j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/27/2023] [Indexed: 10/07/2023] Open
Abstract
The search for novel antimicrobial agents to combat microbial pathogens is intensifying in response to rapid drug resistance development to current antibiotic therapeutics. The use of disulfide-rich head-to-tail cyclized polypeptides as molecular frameworks for designing a new type of peptide antibiotics is gaining increasing attention among the scientific community and the pharmaceutical industry. The use of macrocyclic peptides, further constrained by the presence of several disulfide bonds, makes these peptide frameworks remarkably more stable to thermal, biological, and chemical degradation showing better activities when compared to their linear analogs. Many of these novel peptide scaffolds have been shown to have a high tolerance to sequence variability in those residues not involved in disulfide bonds, able to cross biological membranes, and efficiently target complex biomolecular interactions. Hence, these unique properties make the use of these scaffolds ideal for many biotechnological applications, including the design of novel peptide antibiotics. This article provides an overview of the new developments in the use of several disulfide-rich cyclic polypeptides, including cyclotides, θ-defensins, and sunflower trypsin inhibitor peptides, among others, in the development of novel antimicrobial peptides against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Alvaro Mourenza
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy Los Angeles CA90033 USA +1-(323) 442-1417
| | - Rajasekaran Ganesan
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy Los Angeles CA90033 USA +1-(323) 442-1417
| | - Julio A Camarero
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy Los Angeles CA90033 USA +1-(323) 442-1417
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California Los Angeles CA90033 USA
| |
Collapse
|
4
|
Qiao Y, Han Y, Guan R, Liu S, Bi X, Liu S, Cui W, Zhang T, He T. Inorganic hollow mesoporous spheres-based delivery for antimicrobial agents. FRONTIERS OF MATERIALS SCIENCE 2023; 17:230631. [PMID: 36911597 PMCID: PMC9991883 DOI: 10.1007/s11706-023-0631-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/10/2022] [Indexed: 06/18/2023]
Abstract
Microorganisms coexist with human beings and have formed a complex relationship with us. However, the abnormal spread of pathogens can cause infectious diseases thus demands antibacterial agents. Currently available antimicrobials, such as silver ions, antimicrobial peptides and antibiotics, have diverse concerns in chemical stability, biocompatibility, or triggering drug resistance. The "encapsulate-and-deliver" strategy can protect antimicrobials against decomposing, so to avoid large dose release induced resistance and achieve the controlled release. Considering loading capacity, engineering feasibility, and economic viability, inorganic hollow mesoporous spheres (iHMSs) represent one kind of promising and suitable candidates for real-life antimicrobial applications. Here we reviewed the recent research progress of iHMSs-based antimicrobial delivery. We summarized the synthesis of iHMSs and the drug loading method of various antimicrobials, and discussed the future applications. To prevent and mitigate the spread of an infective disease, multilateral coordination at the national level is required. Moreover, developing effective and practicable antimicrobials is the key to enhancing our capability to eliminate pathogenic microbes. We believe that our conclusion will be beneficial for researches on the antimicrobial delivery in both lab and mass production phases.
Collapse
Affiliation(s)
- Yunping Qiao
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| | - Yanyang Han
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| | - Rengui Guan
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| | - Shiliang Liu
- Weifang Branch Company, Shandong HI-speed Transportation Construction Group Co., Ltd., Qingzhou, 262500 China
| | - Xinling Bi
- Shandong Jinhai Titanium Resources Technology Co., Ltd., Binzhou, 256600 China
| | - Shanshan Liu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| | - Wei Cui
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| | - Tao Zhang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| | - Tao He
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| |
Collapse
|
5
|
Zhang Y, Kepiro I, Ryadnov MG, Pagliara S. Single Cell Killing Kinetics Differentiate Phenotypic Bacterial Responses to Different Antibacterial Classes. Microbiol Spectr 2023; 11:e0366722. [PMID: 36651776 PMCID: PMC9927147 DOI: 10.1128/spectrum.03667-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023] Open
Abstract
With the spread of multidrug-resistant bacteria, there has been an increasing focus on molecular classes that have not yet yielded an antibiotic. A key capability for assessing and prescribing new antibacterial treatments is to compare the effects antibacterial agents have on bacterial growth at a phenotypic, single-cell level. Here, we combined time-lapse microscopy with microfluidics to investigate the concentration-dependent killing kinetics of stationary-phase Escherichia coli cells. We used antibacterial agents from three different molecular classes, β-lactams and fluoroquinolones, with the known antibiotics ampicillin and ciprofloxacin, respectively, and a new experimental class, protein Ψ-capsids. We found that bacterial cells elongated when treated with ampicillin and ciprofloxacin used at their minimum inhibitory concentration (MIC). This was in contrast to Ψ-capsids, which arrested bacterial elongation within the first two hours of treatment. At concentrations exceeding the MIC, all the antibacterial agents tested arrested bacterial growth within the first 2 h of treatment. Further, our single-cell experiments revealed differences in the modes of action of three different agents. At the MIC, ampicillin and ciprofloxacin caused the lysis of bacterial cells, whereas at higher concentrations, the mode of action shifted toward membrane disruption. The Ψ-capsids killed cells by disrupting their membranes at all concentrations tested. Finally, at increasing concentrations, ampicillin and Ψ-capsids reduced the fraction of the population that survived treatment in a viable but nonculturable state, whereas ciprofloxacin increased this fraction. This study introduces an effective capability to differentiate the killing kinetics of antibacterial agents from different molecular classes and offers a high content analysis of antibacterial mechanisms at the single-cell level. IMPORTANCE Antibiotics act against bacterial pathogens by inhibiting their growth or killing them directly. Different modes of action determine different antibacterial responses, whereas phenotypic differences in bacteria can challenge the efficacy of antibiotics. Therefore, it is important to be able to differentiate the concentration-dependent killing kinetics of antibacterial agents at a single-cell level, in particular for molecular classes which have not yielded an antibiotic before. Here, we measured single-cell responses using microfluidics-enabled imaging, revealing that a novel class of antibacterial agents, protein Ψ-capsids, arrests bacterial elongation at the onset of treatment, whereas elongation continues for cells treated with β-lactam and fluoroquinolone antibiotics. The study advances our current understanding of antibacterial function and offers an effective strategy for the comparative design of new antibacterial therapies, as well as clinical antibiotic susceptibility testing.
Collapse
Affiliation(s)
- Yuewen Zhang
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
- National Physical Laboratory, Teddington, United Kingdom
| | - Ibolya Kepiro
- National Physical Laboratory, Teddington, United Kingdom
| | - Maxim G. Ryadnov
- National Physical Laboratory, Teddington, United Kingdom
- Department of Physics, King’s College London, London, United Kingdom
| | - Stefano Pagliara
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
6
|
Lai Z, Chen H, Yuan X, Tian J, Dong N, Feng X, Shan A. Designing double-site lipidated peptide amphiphiles as potent antimicrobial biomaterials to combat multidrug-resistant bacteria. Front Microbiol 2022; 13:1074359. [PMID: 36569056 PMCID: PMC9780499 DOI: 10.3389/fmicb.2022.1074359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Rapidly evolving antimicrobial resistance and extremely slow development of new antibiotics have resulted in multidrug-resistant bacterial infections that present a serious threat to human health. Antimicrobial peptides (AMPs) provide promising substitutes, but more research is needed to address several of their present limitations, such as insufficient antimicrobial potency, high toxicity, and low stability. Here, we designed a series of novel double-site lipidated peptide amphiphiles based on a heptad repeat parent pentadecapeptide. The double-site lipidated peptide amphiphiles showed a broad spectrum of antimicrobial activities. Especially the double-site lipidated peptide amphiphile WL-C6 exhibited high potency to inhibit multidrug-resistant bacteria without significant toxicity toward mammalian cells. Furthermore, even at physiological salt ion concentrations, WL-C6 still exhibited outstanding antibacterial properties, and a sizeable fraction of it maintained its molecular integrity after being incubated with different proteases. Additionally, we captured the entire process of WL-C6 killing bacteria and showed that the rapid bacterial membrane disruption is the reason of bacterial death. Overall, WL-C6 shows great promise as a substitute for conventional antibiotics to combat the growing threat of multidrug-resistant bacterial infections.
Collapse
|
7
|
De Sá Magalhães S, De Santis E, Hussein-Gore S, Colomb-Delsuc M, Keshavarz-Moore E. Quality assessment of virus-like particle: A new transmission electron microscopy approach. Front Mol Biosci 2022; 9:975054. [PMID: 36504719 PMCID: PMC9732438 DOI: 10.3389/fmolb.2022.975054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022] Open
Abstract
Transmission electron microscopy (TEM) is a gold standard analytical method for nanoparticle characterization and is playing a valuable role in virus-like particle (VLP) characterization extending to other biological entities such as viral vectors. A dedicated TEM facility is a challenge to both small and medium-sized enterprises (SMEs) and companies operating in low-and-middle income countries (LMICs) due to high start-up and running costs. A low-voltage TEM solution with assisted image acquisition and analysis such as the MiniTEM system, coupled with Vironova Imaging and Analysis Software (VIAS) could provide an affordable and practical alternative. The MiniTEM system has a small footprint and software that enables semi-automated data collection and image analysis workflows using built-in deep learning methods (convolutional neural networks) for automation in analysis, increasing speed of information processing and enabling scaling to larger datasets. In this perspective we outline the potential and challenges in the use of TEM as mainstream analytical tool in manufacturing settings. We highlight the rationale and preliminary findings from our proof-of-concept study aiming to develop a method to assess critical quality attributes (CQAs) of VLPs and facilitate adoption of TEM in manufacturing settings. In our study we explored all the steps, from sample preparation to data collection and analysis using synthetic VLPs as model systems. The applicability of the method in product development was verified at pilot-scale during the technology transfer of dengue VLPs development from a university setting to an LMIC- based vaccine manufacturing company, demonstrating the applicability of this analytical technique to VLP vaccine characterization.
Collapse
Affiliation(s)
- Salomé De Sá Magalhães
- Department of Biochemical Engineering, University College London, UCL, London, United Kingdom
| | | | | | | | - Eli Keshavarz-Moore
- Department of Biochemical Engineering, University College London, UCL, London, United Kingdom
| |
Collapse
|
8
|
Dzuvor CKO, Shanbhag BK, Younas T, Shen HH, Haritos VS, He L. Engineering Self-Assembled Endolysin Nanoparticles against Antibiotic-Resistant Bacteria. ACS APPLIED BIO MATERIALS 2022; 5:4993-5003. [PMID: 36194892 DOI: 10.1021/acsabm.2c00741] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antibiotic resistance represents a serious global health concern and has stimulated the development of antimicrobial nanomaterials to combat resistant bacteria. Protein-based nanoparticles combining characteristics of both proteins and nanoparticles offer advantages including high biocompatibility, attractive biodegradability, enhanced bioavailability and functional versatility. They have played an increasing role as promising candidates for broad applications ranging from biocatalysts and drug delivery to vaccine development to cancer therapeutics. However, their application as antibacterial biomaterials to address challenging antibiotic-resistance problems has not been explicitly pursued. Herein, we describe engineering protein-only nanoparticles against resistant Gram-positive bacteria. A self-assembling peptide (P114) enables the assembly of a phage lytic enzyme (P128) into nanoparticles in response to pH reduction. Compared to native P128 and monomeric P114-P128, P128 nanoparticles (P128NANO) demonstrated a stronger bactericidal ability with high potency at lower concentrations (2-3-fold lower), particularly for methicillin-resistant Staphylococcus aureus strains. In addition, P128NANO showed an enhanced thermal (up to 65 °C) and storage stability and elicited extensive damages to bacterial cell walls. These remarkable antibacterial abilities are likely due to the P128NANO nanostructure, mediating multivalent interactions with bacterial cell walls at increased local concentrations of endolysin. The engineered endolysin nanoparticles offer a promising antimicrobial alternative to conventional antibiotics.
Collapse
Affiliation(s)
- Christian K O Dzuvor
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Bhuvana K Shanbhag
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Tayyaba Younas
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University Clayton, Victoria 3800, Australia
| | - Victoria S Haritos
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Lizhong He
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
9
|
Postek W, Pacocha N, Garstecki P. Microfluidics for antibiotic susceptibility testing. LAB ON A CHIP 2022; 22:3637-3662. [PMID: 36069631 DOI: 10.1039/d2lc00394e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rise of antibiotic resistance is a threat to global health. Rapid and comprehensive analysis of infectious strains is critical to reducing the global use of antibiotics, as informed antibiotic use could slow down the emergence of resistant strains worldwide. Multiple platforms for antibiotic susceptibility testing (AST) have been developed with the use of microfluidic solutions. Here we describe microfluidic systems that have been proposed to aid AST. We identify the key contributions in overcoming outstanding challenges associated with the required degree of multiplexing, reduction of detection time, scalability, ease of use, and capacity for commercialization. We introduce the reader to microfluidics in general, and we analyze the challenges and opportunities related to the field of microfluidic AST.
Collapse
Affiliation(s)
- Witold Postek
- Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland.
- Broad Institute of MIT and Harvard, Merkin Building, 415 Main St, Cambridge, MA 02142, USA.
| | - Natalia Pacocha
- Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland.
| | - Piotr Garstecki
- Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland.
| |
Collapse
|
10
|
Liang Y, Furukawa H, Sakamoto K, Inaba H, Matsuura K. Anticancer Activity of Reconstituted Ribonuclease S-Decorated Artificial Viral Capsid. Chembiochem 2022; 23:e202200220. [PMID: 35676201 PMCID: PMC9400862 DOI: 10.1002/cbic.202200220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/31/2022] [Indexed: 11/10/2022]
Abstract
Ribonuclease S (RNase S) is an enzyme that exhibits anticancer activity by degrading RNAs within cancer cells; however, the cellular uptake efficiency is low due to its small molecular size. Here we generated RNase S-decorated artificial viral capsids with a size of 70-170 nm by self-assembly of the β-annulus-S-peptide followed by reconstitution with S-protein at neutral pH. The RNase S-decorated artificial viral capsids are efficiently taken up by HepG2 cells and exhibit higher RNA degradation activity in cells compared with RNase S alone. Cell viability assays revealed that RNase S-decorated capsids have high anticancer activity comparable to that of standard anticancer drugs.
Collapse
Affiliation(s)
- Yingbing Liang
- Department of Chemistry and BiotechnologyGraduate School of EngineeringTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
| | - Hiroto Furukawa
- Department of Chemistry and BiotechnologyGraduate School of EngineeringTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
| | - Kentarou Sakamoto
- Department of Chemistry and BiotechnologyGraduate School of EngineeringTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
| | - Hiroshi Inaba
- Department of Chemistry and BiotechnologyGraduate School of EngineeringTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
- Centre for Research on Green Sustainable ChemistryTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
| | - Kazunori Matsuura
- Department of Chemistry and BiotechnologyGraduate School of EngineeringTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
- Centre for Research on Green Sustainable ChemistryTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
| |
Collapse
|
11
|
Mescola A, Ragazzini G, Facci P, Alessandrini A. The potential of AFM in studying the role of the nanoscale amphipathic nature of (lipo)-peptides interacting with lipid bilayers. NANOTECHNOLOGY 2022; 33:432001. [PMID: 35830770 DOI: 10.1088/1361-6528/ac80c9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Antimicrobial peptides (AMPs) and lipopeptides (LPs) represent very promising molecules to fight resistant bacterial infections due to their broad-spectrum of activity, their first target, i.e. the bacterial membrane, and the rapid bactericidal action. For both types of molecules, the action mechanism starts from the membrane of the pathogen agents, producing a disorganization of their phase structure or the formation of pores of different size altering their permeability. This mechanism of action is based on physical interactions more than on a lock-and-key recognition event and it is difficult for the pathogens to rapidly develop an effective resistance. Very small differences in the sequence of both AMPs and LPs might lead to very different effects on the target membrane. Therefore, a correct understanding of their mechanism of action is required with the aim of developing new synthetic peptides, analogues of the natural ones, with specific and more powerful bactericidal activity. Atomic force microscopy (AFM), with its high resolution and the associated force spectroscopy resource, provides a valuable technique to investigate the reorganization of lipid bilayers exposed to antimicrobial or lipopeptides. Here, we present AFM results obtained by ours and other groups on the action of AMPs and LPs on supported lipid bilayers (SLBs) of different composition. We also consider data obtained by fluorescence microscopy to compare the AFM data with another technique which can be used on different lipid bilayer model systems such as SLBs and giant unilamellar vesicles. The outcomes here presented highlight the powerful of AFM-based techniques in detecting nanoscale peptide-membrane interactions and strengthen their use as an exceptional complementary tool toin vivoinvestigations. Indeed, the combination of these approaches can help decipher the mechanisms of action of different antimicrobials and lipopeptides at both the micro and nanoscale levels, and to design new and more efficient antimicrobial compounds.
Collapse
Affiliation(s)
- Andrea Mescola
- CNR-Nanoscience Institute-S3, Via Campi 213/A, I-41125, Modena, Italy
| | - Gregorio Ragazzini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, I-41125, Modena, Italy
| | - Paolo Facci
- CNR-Ibf, Via De Marini 6, I-16149, Genova, Italy
| | - Andrea Alessandrini
- CNR-Nanoscience Institute-S3, Via Campi 213/A, I-41125, Modena, Italy
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, I-41125, Modena, Italy
| |
Collapse
|
12
|
Łapińska U, Voliotis M, Lee KK, Campey A, Stone MRL, Tuck B, Phetsang W, Zhang B, Tsaneva-Atanasova K, Blaskovich MAT, Pagliara S. Fast bacterial growth reduces antibiotic accumulation and efficacy. eLife 2022; 11:e74062. [PMID: 35670099 PMCID: PMC9173744 DOI: 10.7554/elife.74062] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 05/08/2022] [Indexed: 12/11/2022] Open
Abstract
Phenotypic variations between individual microbial cells play a key role in the resistance of microbial pathogens to pharmacotherapies. Nevertheless, little is known about cell individuality in antibiotic accumulation. Here, we hypothesise that phenotypic diversification can be driven by fundamental cell-to-cell differences in drug transport rates. To test this hypothesis, we employed microfluidics-based single-cell microscopy, libraries of fluorescent antibiotic probes and mathematical modelling. This approach allowed us to rapidly identify phenotypic variants that avoid antibiotic accumulation within populations of Escherichia coli, Pseudomonas aeruginosa, Burkholderia cenocepacia, and Staphylococcus aureus. Crucially, we found that fast growing phenotypic variants avoid macrolide accumulation and survive treatment without genetic mutations. These findings are in contrast with the current consensus that cellular dormancy and slow metabolism underlie bacterial survival to antibiotics. Our results also show that fast growing variants display significantly higher expression of ribosomal promoters before drug treatment compared to slow growing variants. Drug-free active ribosomes facilitate essential cellular processes in these fast-growing variants, including efflux that can reduce macrolide accumulation. We used this new knowledge to eradicate variants that displayed low antibiotic accumulation through the chemical manipulation of their outer membrane inspiring new avenues to overcome current antibiotic treatment failures.
Collapse
Affiliation(s)
- Urszula Łapińska
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Biosciences, University of ExeterExeterUnited Kingdom
| | - Margaritis Voliotis
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Department of Mathematics, University of ExeterExeterUnited Kingdom
| | - Ka Kiu Lee
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Biosciences, University of ExeterExeterUnited Kingdom
| | - Adrian Campey
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Biosciences, University of ExeterExeterUnited Kingdom
| | - M Rhia L Stone
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New JerseyPiscatawayUnited States
| | - Brandon Tuck
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Biosciences, University of ExeterExeterUnited Kingdom
| | - Wanida Phetsang
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - Bing Zhang
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - Krasimira Tsaneva-Atanasova
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Department of Mathematics, University of ExeterExeterUnited Kingdom
- EPSRC Hub for Quantitative Modelling in Healthcare, University of ExeterExeterUnited Kingdom
- Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of SciencesSofiaBulgaria
| | - Mark AT Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - Stefano Pagliara
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Biosciences, University of ExeterExeterUnited Kingdom
| |
Collapse
|
13
|
Ishkhanyan H, Ziolek RM, Barlow DJ, Lawrence MJ, Poghosyan AH, Lorenz CD. NSAID solubilisation promotes morphological transitions in Triton X-114 surfactant micelles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
An SI-traceable reference material for virus-like particles. iScience 2022; 25:104294. [PMID: 35573192 PMCID: PMC9095743 DOI: 10.1016/j.isci.2022.104294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/06/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
A reference material for virus-like particles traceable to the International System of Units (Système International d'Unités – the SI) is reported. The material addresses the need for developing reference standards to benchmark virus-like gene delivery systems and help harmonize measurement approaches for characterization and testing. The material is a major component of synthetic polypeptide virus-like particles produced by the state-of-the-art synthetic and analytical chemistry methods used to generate gene delivery systems. The purity profile of the material is evaluated to the highest metrological order demonstrating traceability to the SI. The material adds to the emerging toolkit of reference standards for quantitative biology. A reference material for virus-like particles with traceability to the SI The material is a major component of virus-like particles capable of gene delivery Purity profile of the material is evaluated to the highest metrological order The material allows comparability of physicochemical properties of virus-like systems
Collapse
|
15
|
Glover G, Voliotis M, Łapińska U, Invergo BM, Soanes D, O'Neill P, Moore K, Nikolic N, Petrov PG, Milner DS, Roy S, Heesom K, Richards TA, Tsaneva-Atanasova K, Pagliara S. Nutrient and salt depletion synergistically boosts glucose metabolism in individual Escherichia coli cells. Commun Biol 2022; 5:385. [PMID: 35444215 PMCID: PMC9021252 DOI: 10.1038/s42003-022-03336-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022] Open
Abstract
The interaction between a cell and its environment shapes fundamental intracellular processes such as cellular metabolism. In most cases growth rate is treated as a proximal metric for understanding the cellular metabolic status. However, changes in growth rate might not reflect metabolic variations in individuals responding to environmental fluctuations. Here we use single-cell microfluidics-microscopy combined with transcriptomics, proteomics and mathematical modelling to quantify the accumulation of glucose within Escherichia coli cells. In contrast to the current consensus, we reveal that environmental conditions which are comparatively unfavourable for growth, where both nutrients and salinity are depleted, increase glucose accumulation rates in individual bacteria and population subsets. We find that these changes in metabolic function are underpinned by variations at the translational and posttranslational level but not at the transcriptional level and are not dictated by changes in cell size. The metabolic response-characteristics identified greatly advance our fundamental understanding of the interactions between bacteria and their environment and have important ramifications when investigating cellular processes where salinity plays an important role.
Collapse
Affiliation(s)
- Georgina Glover
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK
| | - Margaritis Voliotis
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Department of Mathematics, University of Exeter, Stocker Road, Exeter, UK
| | - Urszula Łapińska
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4Q, UK
| | - Brandon M Invergo
- Translational Research Exchange at Exeter, University of Exeter, Exeter, UK
| | - Darren Soanes
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4Q, UK
| | - Paul O'Neill
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4Q, UK
| | - Karen Moore
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4Q, UK
| | - Nela Nikolic
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
| | - Peter G Petrov
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK
| | - David S Milner
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Sumita Roy
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4Q, UK
| | - Kate Heesom
- University of Bristol Proteomics Facility, University Walk, Bristol, BS8 1TD, UK
| | - Thomas A Richards
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Krasimira Tsaneva-Atanasova
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Department of Mathematics, University of Exeter, Stocker Road, Exeter, UK
- Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 Acad. G. Bonchev Str., 1113, Sofia, Bulgaria
| | - Stefano Pagliara
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4Q, UK.
| |
Collapse
|
16
|
Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022; 122:9145-9197. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.
Collapse
Affiliation(s)
| | | | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Mao Hori
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
17
|
Ishkhanyan H, Rhys NH, Barlow DJ, Lawrence MJ, Lorenz CD. Impact of drug aggregation on the structural and dynamic properties of Triton X-100 micelles. NANOSCALE 2022; 14:5392-5403. [PMID: 35319029 DOI: 10.1039/d1nr07936k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surfactants are used in a wide range of chemical and biological applications, and for pharmaceutical purposes are frequently employed to enhance the solubility of poorly water soluble drugs. In this study, all-atom molecular dynamics (MD) simulations and small-angle neutron scattering (SANS) experiments have been used to investigate the drug solubilisation capabilities of the micelles that result from 10 wt% aqueous solutions of the non-ionic surfactant, Triton X-100 (TX-100). Specifically, we have investigated the solubilisation of saturation amounts of the sodium salts of two nonsteroidal anti-inflammatory drugs: ibuprofen and indomethacin. We find that the ibuprofen-loaded micelles are more non-spherical than the indomethacin-loaded micelles which are in turn even more non-spherical than the TX-100 micelles that form in the absence of any drug. Our simulations show that the TX-100 micelles are able to solubilise twice as many indomethacin molecules as ibuprofen molecules, and the indomethacin molecules form larger aggregates in the core of the micelle than ibuprofen. These large indomethacin aggregates result in the destabilisation of the TX-100 micelle, which leads to an increase in the amount of water inside of the core of the micelle. These combined effects cause the eventual division of the indomethacin-loaded micelle into two daughter micelles. These results provide a mechanistic description of how drug interactions can affect the stability of the resulting nanoparticles.
Collapse
Affiliation(s)
- Hrachya Ishkhanyan
- Biological & Soft Matter Research Group, Department of Physics, Faculty of Natural, Mathematical & Engineering Sciences, King's College London, London, UK.
| | - Natasha H Rhys
- Biological & Soft Matter Research Group, Department of Physics, Faculty of Natural, Mathematical & Engineering Sciences, King's College London, London, UK.
| | - David J Barlow
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Stopford Building, Oxford Road, Manchester, UK
| | - M Jayne Lawrence
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Stopford Building, Oxford Road, Manchester, UK
| | - Christian D Lorenz
- Biological & Soft Matter Research Group, Department of Physics, Faculty of Natural, Mathematical & Engineering Sciences, King's College London, London, UK.
| |
Collapse
|
18
|
Cama J, Al Nahas K, Fletcher M, Hammond K, Ryadnov MG, Keyser UF, Pagliara S. An ultrasensitive microfluidic approach reveals correlations between the physico-chemical and biological activity of experimental peptide antibiotics. Sci Rep 2022; 12:4005. [PMID: 35256720 PMCID: PMC8901753 DOI: 10.1038/s41598-022-07973-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial resistance challenges the ability of modern medicine to contain infections. Given the dire need for new antimicrobials, polypeptide antibiotics hold particular promise. These agents hit multiple targets in bacteria starting with their most exposed regions-their membranes. However, suitable approaches to quantify the efficacy of polypeptide antibiotics at the membrane and cellular level have been lacking. Here, we employ two complementary microfluidic platforms to probe the structure-activity relationships of two experimental series of polypeptide antibiotics. We reveal strong correlations between each peptide's physicochemical activity at the membrane level and biological activity at the cellular level. We achieve this knowledge by assaying the membranolytic activities of the compounds on hundreds of individual giant lipid vesicles, and by quantifying phenotypic responses within clonal bacterial populations with single-cell resolution. Our strategy proved capable of detecting differential responses for peptides with single amino acid substitutions between them, and can accelerate the rational design and development of peptide antimicrobials.
Collapse
Affiliation(s)
- Jehangir Cama
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Exeter, EX4 4QF, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
| | - Kareem Al Nahas
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Marcus Fletcher
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Katharine Hammond
- National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK
- Department of Physics, King's College London, Strand Lane, London, WC2R 2LS, UK
| | - Ulrich F Keyser
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Stefano Pagliara
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
- College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
19
|
Nanotechnology in aquaculture: Applications, perspectives and regulatory challenges. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Liu Y, Lu Y, Xu Z, Ma X, Chen X, Liu W. Repurposing of the gold drug auranofin and a review of its derivatives as antibacterial therapeutics. Drug Discov Today 2022; 27:1961-1973. [DOI: 10.1016/j.drudis.2022.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/22/2022] [Accepted: 02/16/2022] [Indexed: 12/18/2022]
|
21
|
Furukawa H, Inaba H, Sasaki Y, Akiyoshi K, Matsuura K. Embedding a membrane protein into an enveloped artificial viral replica. RSC Chem Biol 2022; 3:231-241. [PMID: 35360888 PMCID: PMC8827153 DOI: 10.1039/d1cb00166c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022] Open
Abstract
Natural enveloped viruses, in which nucleocapsids are covered with lipid bilayers, contain membrane proteins on the outer surface that are involved in diverse functions, such as adhesion and infection of host cells. Previously, we constructed an enveloped artificial viral capsid through the complexation of cationic lipid bilayers onto an anionic artificial viral capsid self-assembled from β-annulus peptides. Here we demonstrate the embedding of the membrane protein Connexin-43 (Cx43), on the enveloped artificial viral capsid using a cell-free expression system. The expression of Cx43 in the presence of the enveloped artificial viral capsid was confirmed by western blot analysis. The embedding of Cx43 on the envelope was evaluated by detection via the anti-Cx43 antibody, using fluorescence correlation spectroscopy (FCS) and transmission electron microscopy (TEM). Interestingly, many spherical structures connected to each other were observed in TEM images of the Cx43-embedded enveloped viral replica. In addition, it was shown that fluorescent dyes could be selectively transported from Cx43-embedded enveloped viral replicas into Cx43-expressing HepG2 cells. This study provides a proof of concept for the creation of multimolecular crowding complexes, that is, an enveloped artificial viral replica embedded with membrane proteins. We demonstrate the embedding membrane protein, Cx43, on the enveloped artificial viral capsid using a cell-free expression system. The embedding of Cx43 on the envelope was evaluated by detection with anti-Cx43 antibody using FCS and TEM.![]()
Collapse
Affiliation(s)
- Hiroto Furukawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama-Minami 4-101, Tottori 680-8552, Japan
| | - Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama-Minami 4-101, Tottori 680-8552, Japan
- Centre for Research on Green Sustainable Chemistry, Tottori University, Koyama-Minami 4-101, Tottori 680-8552, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama-Minami 4-101, Tottori 680-8552, Japan
- Centre for Research on Green Sustainable Chemistry, Tottori University, Koyama-Minami 4-101, Tottori 680-8552, Japan
| |
Collapse
|
22
|
Najda A, Bains A, Chawla P, Kumar A, Balant S, Walasek-Janusz M, Wach D, Kaushik R. Assessment of Anti-Inflammatory and Antimicrobial Potential of Ethanolic Extract of Woodfordia fruticosa Flowers: GC-MS Analysis. Molecules 2021; 26:molecules26237193. [PMID: 34885782 PMCID: PMC8659256 DOI: 10.3390/molecules26237193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/30/2022] Open
Abstract
Currently, the potential utilization of natural plant-derived extracts for medicinal and therapeutic purposes has increased remarkably. The current study, therefore, aimed to assess the antimicrobial and anti-inflammatory activity of modified solvent evaporation-assisted ethanolic extract of Woodfordia fruticosa flowers. For viable use of the extract, qualitative analysis of phytochemicals and their identification was carried out by gas chromatography-mass spectroscopy. Analysis revealed that phenolic (65.62 ± 0.05 mg/g), flavonoid (62.82 ± 0.07 mg/g), and ascorbic acid (52.46 ± 0.1 mg/g) components were present in high amounts, while β-carotene (62.92 ± 0.02 µg/mg) and lycopene (60.42 ± 0.8 µg/mg) were present in lower amounts. The antimicrobial proficiency of modified solvent-assisted extract was evaluated against four pathogenic bacterial and one fungal strain, namely Staphylococcusaureus (MTCC 3160), Klebsiellapneumoniae (MTCC 3384), Pseudomonasaeruginosa (MTCC 2295), and Salmonellatyphimurium (MTCC 1254), and Candidaalbicans (MTCC 183), respectively. The zone of inhibition was comparable to antibiotics streptomycin and amphotericin were used as a positive control for pathogenic bacterial and fungal strains. The extract showed significantly higher (p < 0.05) anti-inflammatory activity during the albumin denaturation assay (43.56-86.59%) and HRBC membrane stabilization assay (43.62-87.69%). The extract showed significantly (p < 0.05) higher DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging assay and the obtained results are comparable with BHA (butylated hydroxyanisole) and BHT (butylated hydroxytoluene) with percentage inhibitions of 82.46%, 83.34%, and 84.23%, respectively. Therefore, the obtained results concluded that ethanolic extract of Woodfordia fruticosa flowers could be utilized as a magnificent source of phenols used for the manufacturing of value-added food products.
Collapse
Affiliation(s)
- Agnieszka Najda
- Department of Vegetable and Heerbal Crops, University of Life Science in Lublin, 51A Doświadczalna Street, 20-280 Lublin, Poland; (A.N.); (S.B.); (M.W.-J.)
| | - Aarti Bains
- Department of Biotechnology, CT Institute of Pharmaceutical Sciences, South Campus, Jalandhar 144020, Punjab, India
- Correspondence: (A.B.); (P.C.)
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
- Correspondence: (A.B.); (P.C.)
| | - Anil Kumar
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, Himachal Pradesh, India;
| | - Sebastian Balant
- Department of Vegetable and Heerbal Crops, University of Life Science in Lublin, 51A Doświadczalna Street, 20-280 Lublin, Poland; (A.N.); (S.B.); (M.W.-J.)
| | - Magdalena Walasek-Janusz
- Department of Vegetable and Heerbal Crops, University of Life Science in Lublin, 51A Doświadczalna Street, 20-280 Lublin, Poland; (A.N.); (S.B.); (M.W.-J.)
| | - Dariusz Wach
- Subdepartment of Plant Nutrition, University of Life Science in Lublin, 28 Głęboka Street, 20-612 Lublin, Poland;
| | - Ravinder Kaushik
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, Uttrakhand, India;
| |
Collapse
|
23
|
Lai Z, Jian Q, Li G, Shao C, Zhu Y, Yuan X, Chen H, Shan A. Self-Assembling Peptide Dendron Nanoparticles with High Stability and a Multimodal Antimicrobial Mechanism of Action. ACS NANO 2021; 15:15824-15840. [PMID: 34549935 DOI: 10.1021/acsnano.1c03301] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Self-assembling nanometer-scale structured peptide polymers and peptide dendrimers have shown promise in biomedical applications due to their versatile properties and easy availability. Herein, self-assembling peptide dendron nanoparticles (SPDNs) with potent antimicrobial activity against a range of bacteria were developed based on the nanoscale self-assembly of an arginine-proline repeat branched peptide dendron bearing a hexadecanoic acid chain. The SPDNs are biocompatible, and our most active peptide dendron nanoparticle, C16-3RP, was found to have negligible toxicity after both in vitro and in vivo studies. Furthermore, the C16-3RP nanoparticles showed excellent stability under physiological concentrations of salt ions and against serum and protease degradation, resulting in highly effective treatment in a mouse acute peritonitis model. Comprehensive analyses using a series of biofluorescence, microscopy, and transcriptome sequencing techniques revealed that C16-3RP nanoparticles kill Gram-negative bacteria by increasing bacterial membrane permeability, inducing cytoplasmic membrane depolarization and drastic membrane disruption, inhibiting ribosome biogenesis, and influencing energy generation and other processes. Collectively, C16-3RP nanoparticles show promising biocompatibility and in vivo therapeutic efficacy without apparent resistance development. These advancements may facilitate the development of peptide-based antibiotics in clinical settings.
Collapse
Affiliation(s)
- Zhenheng Lai
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Qiao Jian
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Guoyu Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Changxuan Shao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yongjie Zhu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xiaojie Yuan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Hongyu Chen
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| |
Collapse
|
24
|
Rey S, Faruqui N, Hoose A, Dondi C, Ryadnov MG. Designer protein pseudo-capsids targeting intracellular bacteria. Biomater Sci 2021; 9:6807-6812. [PMID: 34491257 DOI: 10.1039/d1bm01235e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The emergence of multidrug-resistant bacteria stimulates the search for antimicrobial materials capable of addressing challenges conventional antibiotics fail to address. The ability to target intracellular bacteria remains one of the most fundamental tasks for contemporary antimicrobial treatments. Here we report engineered protein pseudo-capsids targeting bacteria internalised in macrophages. Using a combination of live-cell imaging and single-cell electron microscopy analysis we show that these materials effectively disrupt the bacteria without affecting the host cells. The study offers a disruptive antimicrobial strategy demonstrating potential for developing principally more challenging mechanisms for bacteria to overcome.
Collapse
Affiliation(s)
- Stephanie Rey
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK.
| | - Nilofar Faruqui
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK.
| | - Alex Hoose
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK.
| | - Camilla Dondi
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK.
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK. .,Department of Physics, King's College London, London, WC2R 2LS, UK
| |
Collapse
|
25
|
Cruz CHB, Marzuoli I, Fraternali F. Virus-inspired designs of antimicrobial nanocapsules. Faraday Discuss 2021; 232:448-462. [PMID: 34596638 DOI: 10.1039/d1fd00041a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Antimicrobial resistance is becoming a serious burden for drug design. The challenges are in finding novel approaches for effectively targeting a number of different bacterial strains, and in delivering these to the site of action. We propose here a novel approach that exploits the assembly of antimicrobial peptidic units in nanocapsules that can penetrate and rupture the bacterial membrane. Additionally, the chemical versatility of the designed units can be tailored to specific targets and to the delivery of genetic material in the cell. The proposed design exploits a β-annulus (sequence ITHVGGVGGSIMAPVAVSRQLVGS) triskelion unit from the Tomato Bushy Stunt Virus, able to self assemble in solution, and functionalised with antimicrobial sequences to form dodecahedral antimicrobial nanocapsules. The stability and the activity of the antimicrobial β-annulus capsule is measured by molecular dynamics simulations in water and in the presence of model membranes.
Collapse
Affiliation(s)
- Carlos H B Cruz
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
| | - Irene Marzuoli
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
| | - Franca Fraternali
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
| |
Collapse
|
26
|
Hammond K, Cipcigan F, Al Nahas K, Losasso V, Lewis H, Cama J, Martelli F, Simcock PW, Fletcher M, Ravi J, Stansfeld PJ, Pagliara S, Hoogenboom BW, Keyser UF, Sansom MSP, Crain J, Ryadnov MG. Switching Cytolytic Nanopores into Antimicrobial Fractal Ruptures by a Single Side Chain Mutation. ACS NANO 2021; 15:9679-9689. [PMID: 33885289 PMCID: PMC8219408 DOI: 10.1021/acsnano.1c00218] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Disruption of cell membranes is a fundamental host defense response found in virtually all forms of life. The molecular mechanisms vary but generally lead to energetically favored circular nanopores. Here, we report an elaborate fractal rupture pattern induced by a single side-chain mutation in ultrashort (8-11-mers) helical peptides, which otherwise form transmembrane pores. In contrast to known mechanisms, this mode of membrane disruption is restricted to the upper leaflet of the bilayer where it exhibits propagating fronts of peptide-lipid interfaces that are strikingly similar to viscous instabilities in fluid flow. The two distinct disruption modes, pores and fractal patterns, are both strongly antimicrobial, but only the fractal rupture is nonhemolytic. The results offer wide implications for elucidating differential membrane targeting phenomena defined at the nanoscale.
Collapse
Affiliation(s)
- Katharine Hammond
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
- Department of Physics & Astronomy, University College London, London WC1E 6BT, UK
| | | | - Kareem Al Nahas
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | | | - Helen Lewis
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Jehangir Cama
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
- College of Engineering, Mathematics and Phys Sciences, University of Exeter, Exeter EX4 4QF, UK
| | | | - Patrick W Simcock
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Marcus Fletcher
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Jascindra Ravi
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | | | - Stefano Pagliara
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
- Department of Physics & Astronomy, University College London, London WC1E 6BT, UK
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Jason Crain
- IBM Research Europe, Hartree Centre, Daresbury WA4 4AD, UK
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
- Department of Physics, King’s College London, London, WC2R 2LS, UK
- Corresponding author: Prof Maxim G Ryadnov; National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK, Tel: (+44) 20 89436078;
| |
Collapse
|
27
|
Marzuoli I, Cruz CHB, Lorenz CD, Fraternali F. Nanocapsule designs for antimicrobial resistance. NANOSCALE 2021; 13:10342-10355. [PMID: 34137751 DOI: 10.1039/d0nr08146a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The pressing need of new antimicrobial products is growing stronger, particularly because of widespread antimicrobial resistance, endangering our ability to treat common infections. The recent coronavirus pandemic has dramatically highlighted the necessity of effective antibacterial and antiviral protection. This work explores at the molecular level the mechanism of action of antibacterial nanocapsules assembled in virus-like particles, their stability and their interaction with mammal and antimicrobial model membranes. We use Molecular Dynamics with force-fields of different granularity and protein design strategies to study the stability, self-assembly and membrane poration properties of these nanocapsules.
Collapse
Affiliation(s)
- Irene Marzuoli
- Randall Centre for Cell and Molecular Biology, King's College London, London, UK.
| | - Carlos H B Cruz
- Randall Centre for Cell and Molecular Biology, King's College London, London, UK.
| | | | - Franca Fraternali
- Randall Centre for Cell and Molecular Biology, King's College London, London, UK.
| |
Collapse
|
28
|
Kobayashi R, Inaba H, Matsuura K. Fluorescence Correlation Spectroscopy Analysis of Effect of Molecular Crowding on Self-Assembly of β-Annulus Peptide into Artificial Viral Capsid. Int J Mol Sci 2021; 22:ijms22094754. [PMID: 33946174 PMCID: PMC8125178 DOI: 10.3390/ijms22094754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Recent progress in the de novo design of self-assembling peptides has enabled the construction of peptide-based viral capsids. Previously, we demonstrated that 24-mer β-annulus peptides from tomato bushy stunt virus spontaneously self-assemble into an artificial viral capsid. Here we propose to use the artificial viral capsid through the self-assembly of β-annulus peptide as a simple model to analyze the effect of molecular crowding environment on the formation process of viral capsid. Artificial viral capsids formed by co-assembly of fluorescent-labelled and unmodified β-annulus peptides in dilute aqueous solutions and under molecular crowding conditions were analyzed using fluorescence correlation spectroscopy (FCS). The apparent particle size and the dissociation constant (Kd) of the assemblies decreased with increasing concentration of the molecular crowding agent, i.e., polyethylene glycol (PEG). This is the first successful in situ analysis of self-assembling process of artificial viral capsid under molecular crowding conditions.
Collapse
Affiliation(s)
- Risako Kobayashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan; (R.K.); (H.I.)
| | - Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan; (R.K.); (H.I.)
- Centre for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan; (R.K.); (H.I.)
- Centre for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan
- Correspondence: ; Tel.: +81-857-31-5262
| |
Collapse
|
29
|
Cama J, Pagliara S. Microfluidic Single-Cell Phenotyping of the Activity of Peptide-Based Antimicrobials. Methods Mol Biol 2021; 2208:237-253. [PMID: 32856267 DOI: 10.1007/978-1-0716-0928-6_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Antibiotic resistance is a major challenge for modern medicine, and there is a dire need to refresh the antibiotic development pipeline to treat infections that are resistant to currently available drugs. Peptide-based antimicrobials represent a promising source of novel anti-infectives, but their development is severely impeded due to the lack of suitable techniques to accurately quantify their antimicrobial efficacy. A major problem involves the heterogeneity of cellular phenotypes in response to these peptides, even within a clonal population of bacteria. There is thus a need to develop single-cell resolution assays to quantify drug efficacy for these novel therapeutics. We present here a detailed microfluidics-microscopy protocol for testing the efficacy of peptide-based antimicrobials on hundreds to thousands of individual bacteria in well-defined microenvironments. This enables the study of cell-to-cell differences in drug response within a clonal population. It is a highly versatile tool, which can be used to quantify drug efficacy, including the number of individual survivors at defined drug doses; it even enables the potential exploration of the molecular mechanisms of action of the drug, which are often unknown in the early stages of drug development. We present here protocols for working with Escherichia coli, but organisms of different geometric shapes and sizes may also be tested with suitable modifications of the microfluidic device.
Collapse
Affiliation(s)
- Jehangir Cama
- Living Systems Institute, University of Exeter, Exeter, UK.
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK.
| | - Stefano Pagliara
- Living Systems Institute, University of Exeter, Exeter, UK.
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
30
|
Abstract
Nanoscale systems encapsulating biomacromolecules hold promise for cell and gene therapies. Common issues hampering progress include polydispersity, heterogeneity in size and shape, agglomeration, and poor stability. Much attention is given to the search of novel designs. However, reliable protocols for the validation of encapsulating systems in the continuum of their physicochemical properties, from design to ultrastructure, are lacking. Herein, we report electron microscopy protocols for biologically functional shell-like peptide capsids, which exhibit the physical characteristics of viruses including folding-mediated self-assembly, hollow shell morphology, and uniformity in size.
Collapse
|
31
|
Horseradish Peroxidase-Decorated Artificial Viral Capsid Constructed from β-Annulus Peptide via Interaction between His-Tag and Ni-NTA. Processes (Basel) 2020. [DOI: 10.3390/pr8111455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Artificial construction of spherical protein assemblies has attracted considerable attention due to its potential use in nanocontainers, nanocarriers, and nanoreactors. In this work, we demonstrate a novel strategy to construct peptide nanocapsules (artificial viral capsids) decorated with enzymes via interactions between His-tag and Ni-NTA. A β-annulus peptide derived from the tomato bushy stunt virus was modified with Ni-NTA at the C-terminus, which is directed toward the exterior surface of the artificial viral capsid. The β-annulus peptide bearing Ni-NTA at the C-terminus self-assembled into capsids of about 50 nm in diameter. The Ni-NTA-displayed capsids were complexed with recombinant horseradish peroxidase (HRP) with a C-terminal His-tag which was expressed in Escherichia coli. The β-annulus peptide-HRP complex formed spherical assemblies whose sizes were 30–90 nm, with the ζ-potential revealing that the HRP was decorated on the outer surface of the capsid.
Collapse
|
32
|
Zhu MM, Fang Y, Chen YC, Lei YQ, Fang LF, Zhu BK, Matsuyama H. Antifouling and antibacterial behavior of membranes containing quaternary ammonium and zwitterionic polymers. J Colloid Interface Sci 2020; 584:225-235. [PMID: 33069021 DOI: 10.1016/j.jcis.2020.09.041] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/03/2020] [Accepted: 09/13/2020] [Indexed: 01/05/2023]
Abstract
To overcome the organic-/bio- fouling of the membrane, a dual-functional ultrafiltration membrane containing quaternary ammonium and zwitterionic polymers via quaternization and surface radical polymerization was designed, and its antifouling and antibacterial behavior was studied. In this work, poly(vinylidene fluoride)/poly(methyl methacrylate-co-dimethylamino-2-ethyl methacrylate) (PVDF/P(MMA-co-DMAEMA)) blend membrane was quaternized by p-chloromethyl styrene (p-CMS), and the double bonds were introduced onto the membrane surface, which further participated in the polymerization of zwitterionic monomers on the membrane surface. The results indicated that the resultant membrane exhibited obviously improved hydrophilicity and weak positive charge (isoelectric point, 7.49). The membrane presented higher flux recovery ratio and lower protein adhesion compared with the pure PVDF membrane. Meanwhile, the membrane showed high-efficiency broad-spectrum antibacterial performance, that is, the bacteria killing efficiency of S. aureus and E. coli reached 98.2% and 97.0%, respectively. Moreover, the membrane effectively inhibited bacterial adhesion, which is important for the long-term antibacterial properties of membrane. This antifouling and antibacterial PVDF membrane may have potential in the long-term filtration process, especially when dealing with microbiologically contaminated water.
Collapse
Affiliation(s)
- Ming-Ming Zhu
- Department of Polymer Science and Engineering, Key Laboratory of Macromolecular Synthesis and Functionalization (MOE), Zhejiang University, Hangzhou 310027, China; Engineering Research Center of Membrane and Water Treatment (MOE), Zhejiang University, Hangzhou 310027, China
| | - Yu Fang
- Department of Polymer Science and Engineering, Key Laboratory of Macromolecular Synthesis and Functionalization (MOE), Zhejiang University, Hangzhou 310027, China
| | - Yan-Chen Chen
- Department of Polymer Science and Engineering, Key Laboratory of Macromolecular Synthesis and Functionalization (MOE), Zhejiang University, Hangzhou 310027, China; Engineering Research Center of Membrane and Water Treatment (MOE), Zhejiang University, Hangzhou 310027, China
| | - Yu-Qing Lei
- Department of Polymer Science and Engineering, Key Laboratory of Macromolecular Synthesis and Functionalization (MOE), Zhejiang University, Hangzhou 310027, China; Engineering Research Center of Membrane and Water Treatment (MOE), Zhejiang University, Hangzhou 310027, China
| | - Li-Feng Fang
- Department of Polymer Science and Engineering, Key Laboratory of Macromolecular Synthesis and Functionalization (MOE), Zhejiang University, Hangzhou 310027, China; Engineering Research Center of Membrane and Water Treatment (MOE), Zhejiang University, Hangzhou 310027, China.
| | - Bao-Ku Zhu
- Department of Polymer Science and Engineering, Key Laboratory of Macromolecular Synthesis and Functionalization (MOE), Zhejiang University, Hangzhou 310027, China; Engineering Research Center of Membrane and Water Treatment (MOE), Zhejiang University, Hangzhou 310027, China.
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
33
|
Hammond K, Ryadnov MG, Hoogenboom BW. Atomic force microscopy to elucidate how peptides disrupt membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183447. [PMID: 32835656 DOI: 10.1016/j.bbamem.2020.183447] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/30/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022]
Abstract
Atomic force microscopy is an increasingly attractive tool to study how peptides disrupt membranes. Often performed on reconstituted lipid bilayers, it provides access to time and length scales that allow dynamic investigations with nanometre resolution. Over the last decade, AFM studies have enabled visualisation of membrane disruption mechanisms by antimicrobial or host defence peptides, including peptides that target malignant cells and biofilms. Moreover, the emergence of high-speed modalities of the technique broadens the scope of investigations to antimicrobial kinetics as well as the imaging of peptide action on live cells in real time. This review describes how methodological advances in AFM facilitate new insights into membrane disruption mechanisms.
Collapse
Affiliation(s)
- Katharine Hammond
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK; London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; Department of Physics & Astronomy, University College London, London WC1E 6BT, UK.
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK; Department of Physics, King's College London, Strand Lane, London WC2R 2LS, UK.
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; Department of Physics & Astronomy, University College London, London WC1E 6BT, UK.
| |
Collapse
|
34
|
Abstract
Recently an artificial protein named Pizza6 was reported, which possesses six identical tandem repeats and adopts a monomeric β -propeller fold with sixfold structural symmetry. Pizza2, a truncated form that consists of a double tandem repeat, self-assembles into a trimer reconstructing the same propeller architecture as Pizza6. The ability of pizza proteins to self-assemble to form complete propellers makes them interesting building blocks to engineer larger symmetrical protein complexes such as symmetric nanoparticles. Here we have explored the self-assembly of Pizza2 fused to homo-oligomerizing peptides. In total, we engineered five different fusion proteins, of which three appeared to assemble successfully into larger complexes. Further characterization of these proteins showed one monodisperse designer protein with a structure close to the intended design. This protein was further fused to eGFP to investigate functionalization of the nanoparticle. The fusion protein was stable and could be expressed in high yield, showing that Pizza-based nanoparticles may be further decorated with functional domains.
Collapse
|
35
|
Furukawa H, Inaba H, Inoue F, Sasaki Y, Akiyoshi K, Matsuura K. Enveloped artificial viral capsids self-assembled from anionic β-annulus peptide and cationic lipid bilayer. Chem Commun (Camb) 2020; 56:7092-7095. [PMID: 32490862 DOI: 10.1039/d0cc02622k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Anionic artificial viral capsids were self-assembled from β-annulus-EE peptide, then complexed with lipid-bilayer-containing cationic lipids via electrostatic interaction to form enveloped artificial viral capsids. The critical aggregation concentration of the enveloped artificial viral capsid was significantly lower than that of the uncomplexed artificial viral capsid, indicating that the lipid bilayer stabilised the capsid structure.
Collapse
Affiliation(s)
- Hiroto Furukawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama-Minami 4-101, Tottori 680-8552, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Abstract
The use of proteins and peptides as nanoscale components to generate new-to-nature physical entities holds great promise in biocatalysis, therapeutic or diagnostic delivery, and materials templating. The majority of functionalized particles have been based on existing structures found in nature. Developing biomimetic particles in this way takes advantage of highly evolved platforms for organization or encapsulation of functional moieties, offering significant advantages in stoichiometry, multivalency, and sequestration. However, novel assembly paradigms for the modular construction of macromolecular structures are now greatly expanding the functional diversity of protein-based nanoparticles in health and manufacturing. In the February issue of ACS Nano, Kepiro et al. demonstrate the refinement of this concept, engineering the capacity for self-assembly such that it is integral to pore-forming peptide motifs, resulting in superior antibiotic activity of the self-assembled particle. Nature encodes multiple functions in proteins with exquisite efficiency, and emulating this multiplicity may be the ultimate goal of biomimetic nanotechnologies.
Collapse
Affiliation(s)
- Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
- Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation, Brisbane, Queensland 4001, Australia
| |
Collapse
|
38
|
Revealing Sources of Variation for Reproducible Imaging of Protein Assemblies by Electron Microscopy. MICROMACHINES 2020; 11:mi11030251. [PMID: 32120860 PMCID: PMC7143348 DOI: 10.3390/mi11030251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/27/2022]
Abstract
Electron microscopy plays an important role in the analysis of functional nano-to-microstructures. Substrates and staining procedures present common sources of variation for the analysis. However, systematic investigations on the impact of these sources on data interpretation are lacking. Here we pinpoint key determinants associated with reproducibility issues in the imaging of archetypal protein assemblies, protein shells, and filaments. The effect of staining on the morphological characteristics of the assemblies was assessed to reveal differential features for anisotropic (filaments) and isotropic (shells) forms. Commercial substrates and coatings under the same staining conditions gave comparable results for the same model assembly, while highlighting intrinsic sample variations including the density and heterogenous distribution of assemblies on the substrate surface. With no aberrant or disrupted structures observed, and putative artefacts limited to substrate-associated markings, the study emphasizes that reproducible imaging must correlate with an optimal combination of substrate stability, stain homogeneity, accelerating voltage, and magnification.
Collapse
|