1
|
Mikhajlov O, Adar RM, Tătulea-Codrean M, Macé AS, Manzi J, Tabarin F, Battistella A, di Federico F, Joanny JF, Tran van Nhieu G, Bassereau P. Cell adhesion and spreading on fluid membranes through microtubules-dependent mechanotransduction. Nat Commun 2025; 16:1201. [PMID: 39885125 PMCID: PMC11782702 DOI: 10.1038/s41467-025-56343-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/16/2025] [Indexed: 02/01/2025] Open
Abstract
Integrin clusters facilitate mechanical force transmission (mechanotransduction) and regulate biochemical signaling during cell adhesion. However, most studies have focused on rigid substrates. On fluid substrates like supported lipid bilayers (SLBs), integrin ligands are mobile, and adhesive complexes are traditionally thought unable to anchor for cell spreading. Here, we demonstrate that cells spread on SLBs coated with Invasin, a high-affinity integrin ligand. Unlike SLBs functionalized with RGD peptides, integrin clusters on Invasin-SLBs grow in size and complexity comparable to those on glass. While actomyosin contraction dominates adhesion maturation on stiff substrates, we find that on fluid SLBs, integrin mechanotransduction and cell spreading rely on dynein pulling forces along microtubules perpendicular to the membranes and microtubules pushing on adhesive complexes, respectively. These forces, potentially present on non-deformable surfaces, are revealed in fluid substrate systems. Supported by a theoretical model, our findings demonstrate a mechanical role for microtubules in integrin clustering.
Collapse
Affiliation(s)
- Oleg Mikhajlov
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France.
- Institute for Integrative Biology of the Cell (I2BC), CNRS UMR9198, Inserm U1280, 1 Avenue de la Terrasse, 91190, Gif-sur-Yvette, France.
- Laboratory of Biophysics and Cell Biology of Signaling, Biochemistry department, University of Geneva, 30 quai Ernest-Ansermet, 1211, Geneva, Switzerland.
| | - Ram M Adar
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
- Collège de France, 11 place Marcelin Berthelot, 75005, Paris, France
- Department of Physics, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Maria Tătulea-Codrean
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
- Collège de France, 11 place Marcelin Berthelot, 75005, Paris, France
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, CB3 0WA, UK
| | - Anne-Sophie Macé
- Institut Curie, Université PSL, CNRS UMR144, Paris, France
- Cell and Tissue Imaging Facility (PICT-IBiSA), Institut Curie, Université PSL, CNRS, Paris, France
| | - John Manzi
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
| | - Fanny Tabarin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
| | - Aude Battistella
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
| | - Fahima di Federico
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
| | - Jean-François Joanny
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
- Collège de France, 11 place Marcelin Berthelot, 75005, Paris, France
| | - Guy Tran van Nhieu
- Institute for Integrative Biology of the Cell (I2BC), CNRS UMR9198, Inserm U1280, 1 Avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France.
| |
Collapse
|
2
|
Yu H, Jafari M, Mujahid A, Garcia CF, Shah J, Sinha R, Huang Y, Shakiba D, Hong Y, Cheraghali D, Pryce JRS, Sandler JA, Elson EL, Sacks JM, Genin GM, Alisafaei F. Expansion limits of meshed split-thickness skin grafts. Acta Biomater 2025; 191:325-335. [PMID: 39581335 DOI: 10.1016/j.actbio.2024.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Split-thickness skin grafts are widely used to treat chronic wounds. Procedure design requires surgeons to predict how much a patch of the patient's own skin expands when it is meshed with rows of slits and stretched over a larger wound area. Accurate prediction of graft expansion remains a challenge, with current models overestimating the actual expansion, leading to suboptimal outcomes. Inspired by the principles of mechanical metamaterials, we developed a model that distinguishes between the kinematic rearrangement of structural elements and their stretching, providing a more accurate prediction of skin graft expansion. Our model was validated against extensive data from skin graft surgeries, demonstrating vastly superior predictive capability compared to existing methods. This metamaterial-inspired approach enables informed decision-making for potentially improving healing outcomes. STATEMENT OF SIGNIFICANCE: Accurately predicting the expansion of meshed skin grafts is crucial for minimizing patient trauma and optimizing healing outcomes in reconstructive surgery. However, current quantitative models, which treat grafts as tessellated trusses of rigid bars, fail to accurately estimate graft expansion. We have uncovered the mechanisms underlying skin graft expansion and developed a straightforward method based on these findings. This method, designed for practical use by surgeons, provides accurate predictions of graft expansion, as validated against extensive data from skin graft surgeries.
Collapse
Affiliation(s)
- Haomin Yu
- NSF Science and Technology Center for Engineering Mechanobiology, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, USA
| | - Mohammad Jafari
- NSF Science and Technology Center for Engineering Mechanobiology, USA; Department of Mechanical Engineering, New Jersey Institute of Technology, USA
| | - Aliza Mujahid
- NSF Science and Technology Center for Engineering Mechanobiology, USA; Department of Mechanical Engineering, New Jersey Institute of Technology, USA
| | - Chelsea F Garcia
- Department of Mechanical Engineering, New Jersey Institute of Technology, USA
| | - Jaisheel Shah
- Department of Mechanical Engineering, New Jersey Institute of Technology, USA
| | - Riya Sinha
- Department of Mechanical Engineering, New Jersey Institute of Technology, USA
| | - Yuxuan Huang
- NSF Science and Technology Center for Engineering Mechanobiology, USA; Department of Biomedical Engineering, Washington University in St. Louis, USA
| | - Delaram Shakiba
- NSF Science and Technology Center for Engineering Mechanobiology, USA; Department of Pathology, Johns Hopkins University, USA
| | - Yuan Hong
- NSF Science and Technology Center for Engineering Mechanobiology, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, USA
| | - Danial Cheraghali
- NSF Science and Technology Center for Engineering Mechanobiology, USA; Department of Mechanical Engineering, New Jersey Institute of Technology, USA
| | - John R S Pryce
- Department of Mechanical Engineering, New Jersey Institute of Technology, USA
| | - Jacob A Sandler
- NSF Science and Technology Center for Engineering Mechanobiology, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, USA
| | - Elliot L Elson
- NSF Science and Technology Center for Engineering Mechanobiology, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, USA; Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, USA
| | - Justin M Sacks
- Division of Plastic and Reconstructive Surgery, Washington University in St. Louis School of Medicine, USA
| | - Guy M Genin
- NSF Science and Technology Center for Engineering Mechanobiology, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, USA; Department of Biomedical Engineering, Washington University in St. Louis, USA.
| | - Farid Alisafaei
- NSF Science and Technology Center for Engineering Mechanobiology, USA; Department of Mechanical Engineering, New Jersey Institute of Technology, USA.
| |
Collapse
|
3
|
Fischer AG, Elliott EM, Brittian KR, Garrett L, Sadri G, Aebersold J, Singhal RA, Nong Y, Leask A, Jones SP, Moore Iv JB. Matricellular protein CCN1 promotes collagen alignment and scar integrity after myocardial infarction. Matrix Biol 2024; 133:14-32. [PMID: 39098433 PMCID: PMC11476287 DOI: 10.1016/j.matbio.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Members of the cellular communication network family (CCN) of matricellular proteins, like CCN1, have long been implicated in the regulation of cellular processes underlying wound healing, tissue fibrogenesis, and collagen dynamics. While many studies suggest antifibrotic actions for CCN1 in the adult heart through the promotion of myofibroblast senescence, they largely relied on exogenous supplementation strategies in in vivo models of cardiac injury where its expression is already induced-which may confound interpretation of its function in this process. The objective of this study was to interrogate the role of the endogenous protein on fibroblast function, collagen structural dynamics, and its associated impact on cardiac fibrosis after myocardial infarction (MI). METHODS/RESULTS Here, we employed CCN1 loss-of-function methodologies, including both in vitro siRNA-mediated depletion and in vivo fibroblast-specific knockout mice to assess the role of the endogenous protein on cardiac fibroblast fibrotic signaling, and its involvement in acute scar formation after MI. In vitro depletion of CCN1 reduced cardiac fibroblast senescence and proliferation. Although depletion of CCN1 decreased the expression of collagen processing and stabilization enzymes (i.e., P4HA1, PLOD1, and PLOD2), it did not inhibit myofibroblast induction or type I collagen synthesis. Alone, fibroblast-specific removal of CCN1 did not negatively impact ventricular performance or myocardial collagen content but did contribute to disorganization of collagen fibrils and increased matrix compliance. Similarly, Ccn1 ablated animals subjected to MI showed no discernible alterations in cardiac structure or function one week after permanent coronary artery ligation, but exhibited marked increases in incidence of mortality and cardiac rupture. Consistent with our findings that CCN1 depletion does not assuage myofibroblast conversion or type I collagen synthesis in vitro, Ccn1 knockout animals revealed no measurable differences in collagen scar width or mass compared to controls; however, detailed structural analyses via SHG and TEM of scar regions revealed marked alterations in their scar collagen topography-exhibiting changes in numerous macro- and micro-level collagen architectural attributes. Specifically, Ccn1 knockout mice displayed heightened ECM structural complexity in post-MI scar regions, including diminished local alignment and heightened tortuosity of collagen fibers, as well as reduced organizational coherency, packing, and size of collagen fibrils. Associated with these changes in ECM topography with the loss of CCN1 were reductions in fibroblast-matrix interactions, as evidenced by reduced fibroblast nuclear and cellular deformation in vivo and reduced focal-adhesion formation in vitro; findings that ultimately suggest CCN1's ability to influence fibroblast-led collagen alignment may in part be credited to its capacity to augment fibroblast-matrix interactions. CONCLUSIONS These findings underscore the pivotal role of endogenous CCN1 in the scar formation process occurring after MI, directing the appropriate arrangement of the extracellular matrix's collagenous components in the maturing scar-shaping the mechanical properties that support its structural stability. While this suggests an adaptive role for CCN1 in regulating collagen structural attributes crucial for supporting scar integrity post MI, the long-term protracted expression of CCN1 holds maladaptive implications, potentially diminishing collagen structural complexity and compliance in non-infarct regions.
Collapse
Affiliation(s)
- Annalara G Fischer
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA
| | - Erin M Elliott
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA
| | - Kenneth R Brittian
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA
| | - Lauren Garrett
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA
| | - Ghazal Sadri
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA
| | - Julia Aebersold
- Micro/Nano Technology Center, University of Louisville, Louisville, KY, USA
| | - Richa A Singhal
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA
| | - Yibing Nong
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Steven P Jones
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA
| | - Joseph B Moore Iv
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA.
| |
Collapse
|
4
|
Xiao C, Xie N, Shu Q, Liang X, Wang Z, Wu J, Shi N, Huang X, Wei ZC, Gao X, Liu H, Wu K, Xu J, Wang JH, Liu N, Xu F. Synergistic Effects of Matrix Biophysical Properties on Gastric Cancer Cell Behavior via Integrin-Mediated Cell-ECM Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309907. [PMID: 38712486 DOI: 10.1002/smll.202309907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/26/2024] [Indexed: 05/08/2024]
Abstract
The biophysical properties of the extracellular matrix (ECM) play a pivotal role in modulating cancer progression via cell-ECM interactions. However, the biophysical properties specific to gastric cancer (GC) remain largely unexplored. Pertinently, GC ECM shows significantly heterogeneous metamorphoses, such as matrix stiffening and intricate restructuring. By combining collagen I and alginate, this study designs an in vitro biomimetic hydrogel platform to independently modulate matrix stiffness and structure across a physiological stiffness spectrum while preserving consistent collagen concentration and fiber topography. With this platform, this study assesses the impacts of matrix biophysical properties on cell proliferation, migration, invasion, and other pivotal dynamics of AGS. The findings spotlight a compelling interplay between matrix stiffness and structure, influencing both cellular responses and ECM remodeling. Furthermore, this investigation into the integrin/actin-collagen interplay reinforces the central role of integrins in mediating cell-ECM interactions, reciprocally sculpting cell conduct, and ECM adaptation. Collectively, this study reveals a previously unidentified role of ECM biophysical properties in GC malignant potential and provides insight into the bidirectional mechanical cell-ECM interactions, which may facilitate the development of novel therapeutic horizons.
Collapse
Affiliation(s)
- Cailan Xiao
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Ning Xie
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Qiuai Shu
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Xiru Liang
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Ziwei Wang
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Jian Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Nianyuan Shi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Key Laboratory of Magnetic Medicine, Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xindi Huang
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Zhong-Cao Wei
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Xiaoliang Gao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Hao Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Jingyuan Xu
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- Department of Gastroenterology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, P. R. China
| | - Jin-Hai Wang
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Na Liu
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| |
Collapse
|
5
|
Karunasagara S, Taghizadeh A, Kim SH, Kim SJ, Kim YJ, Taghizadeh M, Kim MY, Oh KY, Lee JH, Kim HS, Hyun J, Kim HW. Tissue Mechanics and Hedgehog Signaling Crosstalk as a Key Epithelial-Stromal Interplay in Cancer Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400063. [PMID: 38976559 PMCID: PMC11425211 DOI: 10.1002/advs.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/30/2024] [Indexed: 07/10/2024]
Abstract
Epithelial-stromal interplay through chemomechanical cues from cells and matrix propels cancer progression. Elevated tissue stiffness in potentially malignant tissues suggests a link between matrix stiffness and enhanced tumor growth. In this study, employing chronic oral/esophageal injury and cancer models, it is demonstrated that epithelial-stromal interplay through matrix stiffness and Hedgehog (Hh) signaling is key in compounding cancer development. Epithelial cells actively interact with fibroblasts, exchanging mechanoresponsive signals during the precancerous stage. Specifically, epithelial cells release Sonic Hh, activating fibroblasts to produce matrix proteins and remodeling enzymes, resulting in tissue stiffening. Subsequently, basal epithelial cells adjacent to the stiffened tissue become proliferative and undergo epithelial-to-mesenchymal transition, acquiring migratory and invasive properties, thereby promoting invasive tumor growth. Notably, transcriptomic programs of oncogenic GLI2, mechano-activated by actin cytoskeletal tension, govern this process, elucidating the crucial role of non-canonical GLI2 activation in orchestrating the proliferation and mesenchymal transition of epithelial cells. Furthermore, pharmacological intervention targeting tissue stiffening proves highly effective in slowing cancer progression. These findings underscore the impact of epithelial-stromal interplay through chemo-mechanical (Hh-stiffness) signaling in cancer development, and suggest that targeting tissue stiffness holds promise as a strategy to disrupt chemo-mechanical feedback, enabling effective cancer treatment.
Collapse
Affiliation(s)
- Shanika Karunasagara
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Ali Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sang-Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Chemistry, College of Science & Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - So Jung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Yong-Jae Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Mohsen Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Moon-Young Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Kyu-Young Oh
- Department of Oral Pathology, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hye Sung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
6
|
Alisafaei F, Mandal K, Saldanha R, Swoger M, Yang H, Shi X, Guo M, Hehnly H, Castañeda CA, Janmey PA, Patteson AE, Shenoy VB. Vimentin is a key regulator of cell mechanosensing through opposite actions on actomyosin and microtubule networks. Commun Biol 2024; 7:658. [PMID: 38811770 PMCID: PMC11137025 DOI: 10.1038/s42003-024-06366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
The cytoskeleton is a complex network of interconnected biopolymers consisting of actin filaments, microtubules, and intermediate filaments. These biopolymers work in concert to transmit cell-generated forces to the extracellular matrix required for cell motility, wound healing, and tissue maintenance. While we know cell-generated forces are driven by actomyosin contractility and balanced by microtubule network resistance, the effect of intermediate filaments on cellular forces is unclear. Using a combination of theoretical modeling and experiments, we show that vimentin intermediate filaments tune cell stress by assisting in both actomyosin-based force transmission and reinforcement of microtubule networks under compression. We show that the competition between these two opposing effects of vimentin is regulated by the microenvironment stiffness. These results reconcile seemingly contradictory results in the literature and provide a unified description of vimentin's effects on the transmission of cell contractile forces to the extracellular matrix.
Collapse
Affiliation(s)
- Farid Alisafaei
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Kalpana Mandal
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Medicine and Engineering, University of Pennsylvania, 3340 Smith Walk, Philadelphia, PA, 19104, USA
| | - Renita Saldanha
- Physics Department, Syracuse University, Syracuse, NY, 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA
| | - Maxx Swoger
- Physics Department, Syracuse University, Syracuse, NY, 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA
| | - Haiqian Yang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Xuechen Shi
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Medicine and Engineering, University of Pennsylvania, 3340 Smith Walk, Philadelphia, PA, 19104, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Heidi Hehnly
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
| | - Carlos A Castañeda
- Departments of Biology and Chemistry, Syracuse University, Syracuse, NY, 13244, USA
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, 13244, USA
| | - Paul A Janmey
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Medicine and Engineering, University of Pennsylvania, 3340 Smith Walk, Philadelphia, PA, 19104, USA
- Departments of Physiology, and Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alison E Patteson
- Physics Department, Syracuse University, Syracuse, NY, 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA
| | - Vivek B Shenoy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
7
|
Kuo CH, Lee GH, Wu HL, Huang JY, Tang MJ. Breaking the symmetry of cell contractility drives tubulogenesis via CXCL1 polarization. Proc Natl Acad Sci U S A 2024; 121:e2315894121. [PMID: 38377213 PMCID: PMC10907267 DOI: 10.1073/pnas.2315894121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/12/2024] [Indexed: 02/22/2024] Open
Abstract
The intricate interplay between biomechanical and biochemical pathways in modulating morphogenesis is an interesting research topic. How biomechanical force regulates epithelial cell tubulogenesis remains poorly understood. Here, we established a model of tubulogenesis by culturing renal proximal tubular epithelial cells on a collagen gel while manipulating contractile force. Epithelial cells were dynamically self-organized into tubule-like structures by augmentation of cell protrusions and cell-cell association. Reduction and asymmetric distribution of phosphorylated myosin light chain 2, the actomyosin contractility, in cells grown on soft matrix preceded tube connection. Notably, reducing matrix stiffness via sonication of collagen fibrils and inhibiting actomyosin contractility with blebbistatin promoted tubulogenesis, whereas inhibition of cytoskeleton polymerization suppressed it. CXC chemokine ligand 1 (CXCL1) expression was transcriptionally upregulated in cells undergoing tubulogenesis. Additionally, inhibiting actomyosin contractility facilitated CXCL1 polarization and cell protrusions preceding tube formation. Conversely, inhibiting the CXCL1-CXC receptor 1 pathway hindered cell protrusions and tubulogenesis. Mechanical property asymmetry with cell-collagen fibril interaction patterns at cell protrusions and along the tube structure supported the association of anisotropic contraction with tube formation. Furthermore, suppressing the mechanosensing machinery of integrin subunit beta 1 reduced CXCL1 expression, collagen remodeling, and impaired tubulogenesis. In summary, symmetry breaking of cell contractility on a soft collagen gel promotes CXCL1 polarization at cell protrusions which in turn facilitates cell-cell association and thus tubule connection.
Collapse
Affiliation(s)
- Cheng-Hsiang Kuo
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan701, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan701, Taiwan
| | - Gang-Hui Lee
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan701, Taiwan
| | - Hua-Lin Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan701, Taiwan
| | - Jyun-Yuan Huang
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan701, Taiwan
| | - Ming-Jer Tang
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan701, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan701, Taiwan
| |
Collapse
|
8
|
Schmidt CJ, Stehbens SJ. Microtubule control of migration: Coordination in confinement. Curr Opin Cell Biol 2024; 86:102289. [PMID: 38041936 DOI: 10.1016/j.ceb.2023.102289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 12/04/2023]
Abstract
The microtubule cytoskeleton has a well-established, instrumental role in coordinating cell migration. Decades of research has focused on understanding how microtubules couple intracellular trafficking with cortical targeting and spatial organization of signaling to facilitate locomotion. Movement in physically challenging environments requires coordination of forces generated by the actin cytoskeleton to drive cell shape changes, with microtubules acting to spatially regulate contractility. Recent work has demonstrated that the mechanical properties of microtubules are adaptive to stress, leading to a new understanding of their roles in cell migration. Herein we review new developments in how microtubules sense and adapt to changes in the physical properties of their environment during migration. We frame our discussion around our current understanding of how microtubules target cell-matrix adhesions, and their role in the spatiotemporal coordination of signaling to form mechano feedback loops. We expand on how these mechanisms may influence cell morphology in confined three-dimensional settings, and the importance of locally tuning the mechanical stability of polymers in response to mechanical cues. Finally, we discuss new roles for Golgi-derived microtubules in mechanosensing, and how preferential motor use may influence polymer stability to resist the physical constraints cells experience in confined environments.
Collapse
Affiliation(s)
- Christanny J Schmidt
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Samantha J Stehbens
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
9
|
Peng X, Huang Y, Genin GM. The fibrous character of pericellular matrix mediates cell mechanotransduction. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 2023; 180:105423. [PMID: 38559448 PMCID: PMC10978028 DOI: 10.1016/j.jmps.2023.105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cells in solid tissues sense and respond to mechanical signals that are transmitted through extracellular matrix (ECM) over distances that are many times their size. This long-range force transmission is known to arise from strain-stiffening and buckling in the collagen fiber ECM network, but must also pass through the denser pericellular matrix (PCM) that cells form by secreting and compacting nearby collagen. However, the role of the PCM in the transmission of mechanical signals is still unclear. We therefore studied an idealized computational model of cells embedded within fibrous collagen ECM and PCM. Our results suggest that the smaller network pore sizes associated with PCM attenuates tension-driven collagen-fiber alignment, undermining long-range force transmission and shielding cells from mechanical stress. However, elongation of the cell body or anisotropic cell contraction can compensate for these effects to enable long distance force transmission. Results are consistent with recent experiments that highlight an effect of PCM on shielding cells from high stresses. Results have implications for the transmission of mechanical signaling in development, wound healing, and fibrosis.
Collapse
Affiliation(s)
- Xiangjun Peng
- U.S. National Science Foundation Science and Technology Center for Engineering Mechanobiology, and Department of Biomedical Engineering, Washington University, St. Louis, MO 63130 United States
| | - Yuxuan Huang
- U.S. National Science Foundation Science and Technology Center for Engineering Mechanobiology, and Department of Biomedical Engineering, Washington University, St. Louis, MO 63130 United States
| | - Guy M. Genin
- U.S. National Science Foundation Science and Technology Center for Engineering Mechanobiology, and Department of Biomedical Engineering, Washington University, St. Louis, MO 63130 United States
| |
Collapse
|
10
|
Tagay Y, Kheirabadi S, Ataie Z, Singh RK, Prince O, Nguyen A, Zhovmer AS, Ma X, Sheikhi A, Tsygankov D, Tabdanov ED. Dynein-Powered Cell Locomotion Guides Metastasis of Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302229. [PMID: 37726225 PMCID: PMC10625109 DOI: 10.1002/advs.202302229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/20/2023] [Indexed: 09/21/2023]
Abstract
The principal cause of death in cancer patients is metastasis, which remains an unresolved problem. Conventionally, metastatic dissemination is linked to actomyosin-driven cell locomotion. However, the locomotion of cancer cells often does not strictly line up with the measured actomyosin forces. Here, a complementary mechanism of metastatic locomotion powered by dynein-generated forces is identified. These forces arise within a non-stretchable microtubule network and drive persistent contact guidance of migrating cancer cells along the biomimetic collagen fibers. It is also shown that the dynein-powered locomotion becomes indispensable during invasive 3D migration within a tissue-like luminal network formed by spatially confining granular hydrogel scaffolds (GHS) made up of microscale hydrogel particles (microgels). These results indicate that the complementary motricity mediated by dynein is always necessary and, in certain instances, sufficient for disseminating metastatic breast cancer cells. These findings advance the fundamental understanding of cell locomotion mechanisms and expand the spectrum of clinical targets against metastasis.
Collapse
Affiliation(s)
- Yerbol Tagay
- Department of PharmacologyPenn State College of MedicineThe Pennsylvania State UniversityHersheyPA17033USA
| | - Sina Kheirabadi
- Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Zaman Ataie
- Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Rakesh K. Singh
- Department of Obstetrics & GynecologyGynecology OncologyUniversity of Rochester Medical CenterRochesterNY14642USA
| | - Olivia Prince
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMD20903USA
| | - Ashley Nguyen
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMD20903USA
| | - Alexander S. Zhovmer
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMD20903USA
| | - Xuefei Ma
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMD20903USA
| | - Amir Sheikhi
- Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
| | - Erdem D. Tabdanov
- Department of PharmacologyPenn State College of MedicineThe Pennsylvania State UniversityHersheyPA17033USA
- Penn State Cancer InstitutePenn State College of MedicineThe Pennsylvania State UniversityHersheyPA17033USA
| |
Collapse
|
11
|
Zhovmer AS, Manning A, Smith C, Wang J, Ma X, Tsygankov D, Dokholyan NV, Cartagena-Rivera AX, Singh RK, Tabdanov ED. Septins Enable T Cell Contact Guidance via Amoeboid-Mesenchymal Switch. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559597. [PMID: 37808814 PMCID: PMC10557721 DOI: 10.1101/2023.09.26.559597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Lymphocytes exit circulation and enter in-tissue guided migration toward sites of tissue pathologies, damage, infection, or inflammation. By continuously sensing and adapting to the guiding chemo-mechano-structural properties of the tissues, lymphocytes dynamically alternate and combine their amoeboid (non-adhesive) and mesenchymal (adhesive) migration modes. However, which mechanisms guide and balance different migration modes are largely unclear. Here we report that suppression of septins GTPase activity induces an abrupt amoeboid-to-mesenchymal transition of T cell migration mode, characterized by a distinct, highly deformable integrin-dependent immune cell contact guidance. Surprisingly, the T cell actomyosin cortex contractility becomes diminished, dispensable and antagonistic to mesenchymal-like migration mode. Instead, mesenchymal-like T cells rely on microtubule stabilization and their non-canonical dynein motor activity for high fidelity contact guidance. Our results establish septin's GTPase activity as an important on/off switch for integrin-dependent migration of T lymphocytes, enabling their dynein-driven fluid-like mesenchymal propulsion along the complex adhesion cues.
Collapse
Affiliation(s)
- Alexander S Zhovmer
- Center for Biologics Evaluation & Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Alexis Manning
- Center for Biologics Evaluation & Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Chynna Smith
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Jian Wang
- Departments of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Xuefei Ma
- Center for Biologics Evaluation & Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nikolay V Dokholyan
- Departments of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, The Pennsylvania State University Hershey-Hummelstown, PA, USA
| | - Alexander X Cartagena-Rivera
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Rakesh K Singh
- Department of Obstetrics & Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Erdem D Tabdanov
- Departments of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
- Penn State Cancer Institute, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| |
Collapse
|
12
|
Wang D, Brady T, Santhanam L, Gerecht S. The extracellular matrix mechanics in the vasculature. NATURE CARDIOVASCULAR RESEARCH 2023; 2:718-732. [PMID: 39195965 DOI: 10.1038/s44161-023-00311-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 06/20/2023] [Indexed: 08/29/2024]
Abstract
Mechanical stimuli from the extracellular matrix (ECM) modulate vascular differentiation, morphogenesis and dysfunction of the vasculature. With innovation in measurements, we can better characterize vascular microenvironment mechanics in health and disease. Recent advances in material sciences and stem cell biology enable us to accurately recapitulate the complex and dynamic ECM mechanical microenvironment for in vitro studies. These biomimetic approaches help us understand the signaling pathways in disease pathologies, identify therapeutic targets, build tissue replacement and activate tissue regeneration. This Review analyzes how ECM mechanics regulate vascular homeostasis and dysfunction. We highlight approaches to examine ECM mechanics at tissue and cellular levels, focusing on how mechanical interactions between cells and the ECM regulate vascular phenotype, especially under certain pathological conditions. Finally, we explore the development of biomaterials to emulate, measure and alter the physical microenvironment of pathological ECM to understand cell-ECM mechanical interactions toward the development of therapeutics.
Collapse
Affiliation(s)
- Dafu Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Travis Brady
- Department of Anesthesiology and Critical Care Medicine and Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Lakshmi Santhanam
- Department of Anesthesiology and Critical Care Medicine and Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sharon Gerecht
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
13
|
Shakiba D, Genin GM, Zustiak SP. Mechanobiology of cancer cell responsiveness to chemotherapy and immunotherapy: Mechanistic insights and biomaterial platforms. Adv Drug Deliv Rev 2023; 196:114771. [PMID: 36889646 PMCID: PMC10133187 DOI: 10.1016/j.addr.2023.114771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/17/2022] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Mechanical forces are central to how cancer treatments such as chemotherapeutics and immunotherapies interact with cells and tissues. At the simplest level, electrostatic forces underlie the binding events that are critical to therapeutic function. However, a growing body of literature points to mechanical factors that also affect whether a drug or an immune cell can reach a target, and to interactions between a cell and its environment affecting therapeutic efficacy. These factors affect cell processes ranging from cytoskeletal and extracellular matrix remodeling to transduction of signals by the nucleus to metastasis of cells. This review presents and critiques the state of the art of our understanding of how mechanobiology impacts drug and immunotherapy resistance and responsiveness, and of the in vitro systems that have been of value in the discovery of these effects.
Collapse
Affiliation(s)
- Delaram Shakiba
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
| | - Guy M Genin
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA.
| | - Silviya P Zustiak
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Biomedical Engineering, School of Science and Engineering, Saint Louis University, St. Louis, MO, USA.
| |
Collapse
|
14
|
Tagay Y, Kheirabadi S, Ataie Z, Singh RK, Prince O, Nguyen A, Zhovmer AS, Ma X, Sheikhi A, Tsygankov D, Tabdanov ED. Dynein-Powered Cell Locomotion Guides Metastasis of Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.535605. [PMID: 37066378 PMCID: PMC10104034 DOI: 10.1101/2023.04.04.535605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Metastasis is a principal cause of death in cancer patients, which remains an unresolved fundamental and clinical problem. Conventionally, metastatic dissemination is linked to the actomyosin-driven cell locomotion. However, locomotion of cancer cells often does not strictly line up with the measured actomyosin forces. Here, we identify a complementary mechanism of metastatic locomotion powered by the dynein-generated forces. These forces that arise within a non-stretchable microtubule network drive persistent contact guidance of migrating cancer cells along the biomimetic collagen fibers. We also show that dynein-powered locomotion becomes indispensable during invasive 3D migration within a tissue-like luminal network between spatially confining hydrogel microspheres. Our results indicate that the complementary contractile system of dynein motors and microtubules is always necessary and in certain instances completely sufficient for dissemination of metastatic breast cancer cells. These findings advance fundamental understanding of cell locomotion mechanisms and expand the spectrum of clinical targets against metastasis.
Collapse
Affiliation(s)
- Yerbol Tagay
- Department of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Sina Kheirabadi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Zaman Ataie
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Rakesh K. Singh
- Department of Obstetrics & Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Olivia Prince
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20903, USA
| | - Ashley Nguyen
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20903, USA
| | - Alexander S. Zhovmer
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20903, USA
| | - Xuefei Ma
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20903, USA
| | - Amir Sheikhi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Erdem D. Tabdanov
- Department of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
- Penn State Cancer Institute, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| |
Collapse
|
15
|
Putra VDL, Kilian KA, Knothe Tate ML. Biomechanical, biophysical and biochemical modulators of cytoskeletal remodelling and emergent stem cell lineage commitment. Commun Biol 2023; 6:75. [PMID: 36658332 PMCID: PMC9852586 DOI: 10.1038/s42003-022-04320-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/30/2022] [Indexed: 01/20/2023] Open
Abstract
Across complex, multi-time and -length scale biological systems, redundancy confers robustness and resilience, enabling adaptation and increasing survival under dynamic environmental conditions; this review addresses ubiquitous effects of cytoskeletal remodelling, triggered by biomechanical, biophysical and biochemical cues, on stem cell mechanoadaptation and emergent lineage commitment. The cytoskeleton provides an adaptive structural scaffold to the cell, regulating the emergence of stem cell structure-function relationships during tissue neogenesis, both in prenatal development as well as postnatal healing. Identification and mapping of the mechanical cues conducive to cytoskeletal remodelling and cell adaptation may help to establish environmental contexts that can be used prospectively as translational design specifications to target tissue neogenesis for regenerative medicine. In this review, we summarize findings on cytoskeletal remodelling in the context of tissue neogenesis during early development and postnatal healing, and its relevance in guiding lineage commitment for targeted tissue regeneration. We highlight how cytoskeleton-targeting chemical agents modulate stem cell differentiation and govern responses to mechanical cues in stem cells' emerging form and function. We further review methods for spatiotemporal visualization and measurement of cytoskeletal remodelling, as well as its effects on the mechanical properties of cells, as a function of adaptation. Research in these areas may facilitate translation of stem cells' own healing potential and improve the design of materials, therapies, and devices for regenerative medicine.
Collapse
Affiliation(s)
- Vina D L Putra
- School of Chemistry and School of Materials Science & Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Kristopher A Kilian
- School of Chemistry and School of Materials Science & Engineering, University of New South Wales, Sydney, NSW, Australia.
| | - Melissa L Knothe Tate
- Blue Mountains World Interdisciplinary Innovation Institute (bmwi³), Blue Mountains, NSW, Australia.
| |
Collapse
|
16
|
Gomez-Florit M, Labrador-Rached CJ, Domingues RM, Gomes ME. The tendon microenvironment: Engineered in vitro models to study cellular crosstalk. Adv Drug Deliv Rev 2022; 185:114299. [PMID: 35436570 DOI: 10.1016/j.addr.2022.114299] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022]
Abstract
Tendinopathy is a multi-faceted pathology characterized by alterations in tendon microstructure, cellularity and collagen composition. Challenged by the possibility of regenerating pathological or ruptured tendons, the healing mechanisms of this tissue have been widely researched over the past decades. However, so far, most of the cellular players and processes influencing tendon repair remain unknown, which emphasizes the need for developing relevant in vitro models enabling to study the complex multicellular crosstalk occurring in tendon microenvironments. In this review, we critically discuss the insights on the interaction between tenocytes and the other tendon resident cells that have been devised through different types of existing in vitro models. Building on the generated knowledge, we stress the need for advanced models able to mimic the hierarchical architecture, cellularity and physiological signaling of tendon niche under dynamic culture conditions, along with the recreation of the integrated gradients of its tissue interfaces. In a forward-looking vision of the field, we discuss how the convergence of multiple bioengineering technologies can be leveraged as potential platforms to develop the next generation of relevant in vitro models that can contribute for a deeper fundamental knowledge to develop more effective treatments.
Collapse
|
17
|
Abstract
A strain gradient was created by punching a hole in the center of a stretched elastic polydimethylsiloxane membrane to determine the effect of different strains on cultured human keratocytes (HK). In this study, two stretching methods were used: continuous stretching and cyclic stretching. Continuous stretching is relatively static, while acyclic stretching is relatively dynamic. These methods, respectively, represented the effects of high intraocular pressure and rubbing of the eyes on corneal cells. Image processing codes were developed to observe the effects of stress concentration, shear stress, continuous stretching, and cyclic stretching on HKs. The results demonstrate that stretching and shear stress are not conducive to the proliferation of corneal cells and instead cause cell death. A 10% strain had greater inhibitory effects than a 3% strain on cell proliferation. Cell survival rates for continuous stretching (static) were higher than those for cyclic stretching (dynamic). The stretching experiment revealed that cyclic stretching has a greater inhibitory effect on the growth and proliferation of corneal cells than continuous stretching. Accordingly, it shows that cyclic loading is more harmful than high intraocular pressure (static loading) to corneal cells.
Collapse
|
18
|
Qu C, Roth R, Puapatanakul P, Loitman C, Hammad D, Genin GM, Miner JH, Suleiman HY. Three-Dimensional Visualization of the Podocyte Actin Network Using Integrated Membrane Extraction, Electron Microscopy, and Machine Learning. J Am Soc Nephrol 2022; 33:155-173. [PMID: 34758982 PMCID: PMC8763187 DOI: 10.1681/asn.2021020182] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 10/19/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Actin stress fibers are abundant in cultured cells, but little is known about them in vivo. In podocytes, much evidence suggests that mechanobiologic mechanisms underlie podocyte shape and adhesion in health and in injury, with structural changes to actin stress fibers potentially responsible for pathologic changes to cell morphology. However, this hypothesis is difficult to rigorously test in vivo due to challenges with visualization. A technology to image the actin cytoskeleton at high resolution is needed to better understand the role of structures such as actin stress fibers in podocytes. METHODS We developed the first visualization technique capable of resolving the three-dimensional cytoskeletal network in mouse podocytes in detail, while definitively identifying the proteins that comprise this network. This technique integrates membrane extraction, focused ion-beam scanning electron microscopy, and machine learning image segmentation. RESULTS Using isolated mouse glomeruli from healthy animals, we observed actin cables and intermediate filaments linking the interdigitated podocyte foot processes to newly described contractile actin structures, located at the periphery of the podocyte cell body. Actin cables within foot processes formed a continuous, mesh-like, electron-dense sheet that incorporated the slit diaphragms. CONCLUSIONS Our new technique revealed, for the first time, the detailed three-dimensional organization of actin networks in healthy podocytes. In addition to being consistent with the gel compression hypothesis, which posits that foot processes connected by slit diaphragms act together to counterbalance the hydrodynamic forces across the glomerular filtration barrier, our data provide insight into how podocytes respond to mechanical cues from their surrounding environment.
Collapse
Affiliation(s)
- Chengqing Qu
- Department of Mechanical Engineering, National Science Foundation Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, Missouri
| | - Robyn Roth
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | | | - Charles Loitman
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri
| | - Dina Hammad
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri
| | - Guy M. Genin
- Department of Mechanical Engineering, National Science Foundation Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, Missouri
| | - Jeffrey H. Miner
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri,Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri
| | - Hani Y. Suleiman
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
19
|
Slater B, Li J, Indana D, Xie Y, Chaudhuri O, Kim T. Transient mechanical interactions between cells and viscoelastic extracellular matrix. SOFT MATTER 2021; 17:10274-10285. [PMID: 34137758 PMCID: PMC8695121 DOI: 10.1039/d0sm01911a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
During various physiological processes, such as wound healing and cell migration, cells continuously interact mechanically with a surrounding extracellular matrix (ECM). Contractile forces generated by the actin cytoskeleton are transmitted to a surrounding ECM, resulting in structural remodeling of the ECM. To better understand how matrix remodeling takes place, a myriad of in vitro experiments and simulations have been performed during recent decades. However, physiological ECMs are viscoelastic, exhibiting stress relaxation or creep over time. The time-dependent nature of matrix remodeling induced by cells remains poorly understood. Here, we employed a discrete model to investigate how the viscoelastic nature of ECMs affects matrix remodeling and stress profiles. In particular, we used explicit transient cross-linkers with varied density and unbinding kinetics to capture viscoelasticity unlike most of the previous models. Using this model, we quantified the time evolution of generation, propagation, and relaxation of stresses induced by a contracting cell in an ECM. It was found that matrix connectivity, regulated by fiber concentration and cross-linking density, significantly affects the magnitude and propagation of stress and subsequent matrix remodeling, as characterized by fiber displacements and local net deformation. In addition, we demonstrated how the base rate and force sensitivity of cross-linker unbinding regulate stress profiles and matrix remodeling. We verified simulation results using in vitro experiments performed with fibroblasts encapsulated in a three-dimensional collagen matrix. Our study provides key insights into the dynamics of physiologically relevant mechanical interactions between cells and a viscoelastic ECM.
Collapse
Affiliation(s)
- Brandon Slater
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr, West Lafayette, IN 47907, USA.
| | - Jing Li
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr, West Lafayette, IN 47907, USA.
| | - Dhiraj Indana
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA, 94305, USA
| | - Yihao Xie
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, 452 Escondido Mall, Stanford, CA, 94305, USA
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr, West Lafayette, IN 47907, USA.
| |
Collapse
|
20
|
Zhovmer AS, Manning A, Smith C, Hayes JB, Burnette DT, Wang J, Cartagena-Rivera AX, Dokholyan NV, Singh RK, Tabdanov ED. Mechanical Counterbalance of Kinesin and Dynein Motors in a Microtubular Network Regulates Cell Mechanics, 3D Architecture, and Mechanosensing. ACS NANO 2021; 15:17528-17548. [PMID: 34677937 PMCID: PMC9291236 DOI: 10.1021/acsnano.1c04435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Microtubules (MTs) and MT motor proteins form active 3D networks made of unstretchable cables with rod-like bending mechanics that provide cells with a dynamically changing structural scaffold. In this study, we report an antagonistic mechanical balance within the dynein-kinesin microtubular motor system. Dynein activity drives the microtubular network inward compaction, while isolated activity of kinesins bundles and expands MTs into giant circular bands that deform the cell cortex into discoids. Furthermore, we show that dyneins recruit MTs to sites of cell adhesion, increasing the topographic contact guidance of cells, while kinesins antagonize it via retraction of MTs from sites of cell adhesion. Actin-to-microtubule translocation of septin-9 enhances kinesin-MT interactions, outbalances the activity of kinesins over that of dyneins, and induces the discoid architecture of cells. These orthogonal mechanisms of MT network reorganization highlight the existence of an intricate mechanical balance between motor activities of kinesins and dyneins that controls cell 3D architecture, mechanics, and cell-microenvironment interactions.
Collapse
Affiliation(s)
- Alexander S. Zhovmer
- Center
for Biologics Evaluation and Research, U.S.
Food and Drug Administration, Silver Spring, Maryland 20903, United States
| | - Alexis Manning
- Center
for Biologics Evaluation and Research, U.S.
Food and Drug Administration, Silver Spring, Maryland 20903, United States
| | - Chynna Smith
- Section
on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - James B. Hayes
- Department
of Cell and Developmental Biology, Vanderbilt Medical Center, University of Vanderbilt, Nashville, Tennessee 37232, United States
| | - Dylan T. Burnette
- Department
of Cell and Developmental Biology, Vanderbilt Medical Center, University of Vanderbilt, Nashville, Tennessee 37232, United States
| | - Jian Wang
- Department
of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hummelstown, Pennsylvania 17036, United States
| | - Alexander X. Cartagena-Rivera
- Section
on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Nikolay V. Dokholyan
- Department
of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hummelstown, Pennsylvania 17036, United States
- Department
of Biochemistry & Molecular Biology, Penn State College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033, United States
| | - Rakesh K. Singh
- Department
of Obstetrics and Gynecology, University
of Rochester Medical Center, Rochester, New York 14620, United States
| | - Erdem D. Tabdanov
- Department
of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hummelstown, Pennsylvania 17036, United States
| |
Collapse
|
21
|
Javanmardi Y, Colin-York H, Szita N, Fritzsche M, Moeendarbary E. Quantifying cell-generated forces: Poisson's ratio matters. COMMUNICATIONS PHYSICS 2021; 4:237. [PMID: 34841089 PMCID: PMC7612038 DOI: 10.1038/s42005-021-00740-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 10/14/2021] [Indexed: 05/09/2023]
Abstract
Quantifying mechanical forces generated by cellular systems has led to key insights into a broad range of biological phenomena from cell adhesion to immune cell activation. Traction force microscopy (TFM), the most widely employed force measurement methodology, fundamentally relies on knowledge of the force-displacement relationship and mechanical properties of the substrate. Together with the elastic modulus, the Poisson's ratio is a basic material property that to date has largely been overlooked in TFM. Here, we evaluate the sensitivity of TFM to Poisson's ratio by employing a series of computer simulations and experimental data analysis. We demonstrate how applying the correct Poisson's ratio is important for accurate force reconstruction and develop a framework for the determination of error levels resulting from the misestimation of the Poisson's ratio. In addition, we provide experimental estimation of the Poisson's ratios of elastic substrates commonly applied in TFM. Our work thus highlights the role of Poisson's ratio underpinning cellular force quantification studied across many biological systems.
Collapse
Affiliation(s)
- Yousef Javanmardi
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Huw Colin-York
- Kennedy Institute for Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7LF, UK
| | - Nicolas Szita
- Department of Biochemical Engineering, University College London, London WC1E 6BT, UK
| | - Marco Fritzsche
- Kennedy Institute for Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7LF, UK
- Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
22
|
Zhang C, Zhu H, Ren X, Gao B, Cheng B, Liu S, Sha B, Li Z, Zhang Z, Lv Y, Wang H, Guo H, Lu TJ, Xu F, Genin GM, Lin M. Mechanics-driven nuclear localization of YAP can be reversed by N-cadherin ligation in mesenchymal stem cells. Nat Commun 2021; 12:6229. [PMID: 34711824 PMCID: PMC8553821 DOI: 10.1038/s41467-021-26454-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 10/01/2021] [Indexed: 12/30/2022] Open
Abstract
Mesenchymal stem cells adopt differentiation pathways based upon cumulative effects of mechanosensing. A cell's mechanical microenvironment changes substantially over the course of development, beginning from the early stages in which cells are typically surrounded by other cells and continuing through later stages in which cells are typically surrounded by extracellular matrix. How cells erase the memory of some of these mechanical microenvironments while locking in memory of others is unknown. Here, we develop a material and culture system for modifying and measuring the degree to which cells retain cumulative effects of mechanosensing. Using this system, we discover that effects of the RGD adhesive motif of fibronectin (representative of extracellular matrix), known to impart what is often termed "mechanical memory" in mesenchymal stem cells via nuclear YAP localization, are erased by the HAVDI adhesive motif of the N-cadherin (representative of cell-cell contacts). These effects can be explained by a motor clutch model that relates cellular traction force, nuclear deformation, and resulting nuclear YAP re-localization. Results demonstrate that controlled storage and removal of proteins associated with mechanical memory in mesenchymal stem cells is possible through defined and programmable material systems.
Collapse
Affiliation(s)
- Cheng Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Hongyuan Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Xinru Ren
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Bin Gao
- Department of Endocrinology, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, People's Republic of China
| | - Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Shaobao Liu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
| | - Baoyong Sha
- School of Basic Medical Science, Xi'an Medical University, Xi'an, 710021, People's Republic of China
| | - Zhaoqing Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Zheng Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, People's Republic of China
| | - Haohua Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, People's Republic of China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
- MOE Key Laboratory of Multifunctional Materials and Structures, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Guy M Genin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, 63130, MO, USA
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, 63130, MO, USA
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
23
|
Xu Z, Zhang L, Bentil SA, Bratlie KM. Gellan gum-gelatin viscoelastic hydrogels as scaffolds to promote fibroblast differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112370. [PMID: 34579889 DOI: 10.1016/j.msec.2021.112370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/31/2021] [Accepted: 08/10/2021] [Indexed: 11/18/2022]
Abstract
Fabricating hydrogel scaffolds that are both bioreactive toward fibroblasts while still mechanically compatible with surrounding tissue is a major challenge in tissue engineering. This is because the outcome of scaffold implantation is largely determined by fibroblasts differentiating toward myofibroblasts, which is characterized by the expression of α-smooth muscle actin (α-SMA). Previous studies promoted fibroblasts differentiation by increasing scaffold substrate stiffness. However, the stiffness of scaffold has to be compatible with surrounding tissue, as mismatched stiffness may cause initial hyperplasia and inappropriate endothelial layer development. Therefore, we adjusted the hydrogel chemical component, and thus viscoelasticity to affect the mechano-signaling of fibroblasts and promote fibroblasts differentiation. Elastic gellan gum and viscoelastic gelatin were hybridized at different ratios to fabricate hydrogel scaffold with varied stress-relaxation. Vitronectin (VN) was used to further regulate the interaction between fibroblasts and the substrate. Fibroblast differentiation, characterized by α-SMA area per cell, increased from~3000-4000 μm2/cell on less viscoelastic gels to ~5000 μm2/cell on the most viscoelastic gel. Fibroblasts seeded on hydrogels had a slower migration rate on more viscoelastic hydrogels (slowest at 38 ± 14 μm/h) compared to the migration speed on less viscoelastic hydrogels (74 ± 20 μm/h). VN slowed the migration speed on all hydrogels. The organization of collagen deposited by fibroblasts cultured on the hydrogels was characterized by second harmonic generation (SHG), which showed that collagen was more organized (parallel) on more viscoelastic hydrogels. In summary, we provided a novel strategy to fabricate hydrogel scaffolds that can promote fibroblasts differentiation while keeping the stiffness compatible with blood vessels. The most viscoelastic hydrogel studied here meets these requirements best.
Collapse
Affiliation(s)
- Zihao Xu
- Department of Materials Science & Engineering, Iowa State University, Ames, IA 50011, United States of America
| | - Ling Zhang
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, United States of America
| | - Sarah A Bentil
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, United States of America
| | - Kaitlin M Bratlie
- Department of Materials Science & Engineering, Iowa State University, Ames, IA 50011, United States of America; Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States of America.
| |
Collapse
|
24
|
Dai ZX, Shih PJ, Yen JY, Wang IJ. Functional assistance for stress distribution in cell culture membrane under periodically stretching. J Biomech 2021; 125:110564. [PMID: 34237658 DOI: 10.1016/j.jbiomech.2021.110564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 11/19/2022]
Abstract
Dynamic cell cultures simulate the in vivo cell environment for a regular loading system with curtain strains. However, it is difficult to obtain strains that are suitable for cells without conducting multiple trials. This study develops a device that increases the strain gradient by changing the tensile section, in order to determine the effect of various cyclic strains on cultured human keratinocytes (HK) cells. This device is used to determine the effect of 3% and 5% cyclic strain and shear strain on cell proliferation and arrangement at 1 Hz. The results show that compared with static and 3% strain, a 5% cyclic strain better inhibits the proliferation of HK cells. Compared to the initial cell attachment when there is no specific directionality, the cells are aligned in the vertical stretching direction after cyclic stretching. This equipment increases the efficiency of the experiment and more intuitively maps the cell behavior and shape to the strain field and the response to the shear strain.
Collapse
Affiliation(s)
- Zhi-Xuan Dai
- Department of Mechanical Engineering, National Taiwan University, 10617 Taipei, Taiwan
| | - Po-Jen Shih
- Department of Biomedical Engineering, National Taiwan University, 10617 Taipei, Taiwan.
| | - Jia-Yush Yen
- Department of Mechanical Engineering, National Taiwan University, 10617 Taipei, Taiwan; Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
25
|
Shi N, Li Y, Chang L, Zhao G, Jin G, Lyu Y, Genin GM, Ma Y, Xu F. A 3D, Magnetically Actuated, Aligned Collagen Fiber Hydrogel Platform Recapitulates Physical Microenvironment of Myoblasts for Enhancing Myogenesis. SMALL METHODS 2021; 5:e2100276. [PMID: 34927916 DOI: 10.1002/smtd.202100276] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/23/2021] [Indexed: 06/14/2023]
Abstract
Many cell responses that underlie the development, maturation, and function of tissues are guided by the architecture and mechanical loading of the extracellular matrix (ECM). Because mechanical stimulation must be transmitted through the ECM architecture, the synergy between these two factors is important. However, recapitulating the synergy of these physical microenvironmental cues in vitro remains challenging. To address this, a 3D magnetically actuated collagen hydrogel platform is developed that enables combined control of ECM architecture and mechanical stimulation. With this platform, it is demonstrated how these factors synergistically promote cell alignment of C2C12 myoblasts and enhance myogenesis. This promotion is driven in part by the dynamics of Yes-associated protein and structure of cellular microtubule networks. This facile platform holds great promises for regulating cell behavior and fate, generating a broad range of engineered physiologically representative microtissues in vitro, and quantifying the mechanobiology underlying their functions.
Collapse
Affiliation(s)
- Nianyuan Shi
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuhui Li
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Le Chang
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Guoxu Zhao
- School of Material Science and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, China
| | - Guorui Jin
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yi Lyu
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Guy M Genin
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
- NSF Science and Technology Center for Engineering MechanoBiology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Yufei Ma
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
26
|
Xin Y, Kang BS, Zheng YP, Shan SW, Kee CS, Tan Y. Biophysical properties of corneal cells reflect high myopia progression. Biophys J 2021; 120:3498-3507. [PMID: 34022236 DOI: 10.1016/j.bpj.2021.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/07/2021] [Accepted: 05/17/2021] [Indexed: 01/07/2023] Open
Abstract
Myopia is a common ocular disorder with significant alterations in the anterior ocular structure, including the cornea. The cell biophysical phenotype has been proposed to reflect the state of various diseases. However, the biophysical properties of corneal cells have not been characterized during myopia progression and their relationship with myopia remains unknown. This study characterizes the biophysical properties of corneal cells in normal, myopic, and recovered conditions, using two classical myopia models. Surprisingly, myopic corneal cells considerably reduce F-actin and microtubule content and cellular stiffness and generate elevated traction force compared with control cells. When myopia is restored to the healthy state, these biophysical properties are partially or fully restored to the levels of control cells. Furthermore, the level of chromatin condensation is significantly increased in the nucleus of myopic corneal cells and reduced to a level similar to healthy cells after recovery. These findings demonstrate that the reversible biophysical alterations of corneal cells reflect myopia progression, facilitating the study of the role of corneal cell biophysics in myopia.
Collapse
Affiliation(s)
- Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Byung Soo Kang
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yong-Ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sze Wan Shan
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chea-Su Kee
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
27
|
Alisafaei F, Gong Z, Johnson VE, Dollé JP, Smith DH, Shenoy VB. Mechanisms of Local Stress Amplification in Axons near the Gray-White Matter Interface. Biophys J 2021; 119:1290-1300. [PMID: 33027609 DOI: 10.1016/j.bpj.2020.08.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Diffuse axonal injury is a primary neuropathological feature of concussion and is thought to greatly contribute to the classical symptoms of decreased processing speed and memory dysfunction. Although previous studies have investigated the injury biomechanics at the micro- and mesoscale of concussion, few have addressed the multiscale transmission of mechanical loading at thresholds that can induce diffuse axonal injury. Because it has been recognized that axonal pathology is commonly found at anatomic interfaces across all severities of traumatic brain injury, we combined computational, analytical, and experimental approaches to investigate the potential mechanical vulnerability of axons that span the gray-white tissue interface. Our computational models predict that material heterogeneities at the gray-white interface lead to a highly nonuniform distribution of stress in axons, which was most amplified in axonal regions near the interface. This mechanism was confirmed using an analytical model of an individual fiber in a strained bimaterial interface. Comparisons of these collective data with histopathological evaluation of a swine model of concussion demonstrated a notably similar pattern of axonal damage adjacent to the gray-white interface. The results suggest that the tissue property mismatch at the gray-white matter interface places axons crossing this region at greater risk of mechanical damage during brain tissue deformation from traumatic brain injury.
Collapse
Affiliation(s)
- Farid Alisafaei
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ze Gong
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Victoria E Johnson
- Penn Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jean-Pierre Dollé
- Penn Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Douglas H Smith
- Penn Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vivek B Shenoy
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
28
|
Wang WY, Jarman EH, Lin D, Baker BM. Dynamic Endothelial Stalk Cell-Matrix Interactions Regulate Angiogenic Sprout Diameter. Front Bioeng Biotechnol 2021; 9:620128. [PMID: 33869150 PMCID: PMC8044977 DOI: 10.3389/fbioe.2021.620128] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis is a complex, multicellular process that involves bidirectional interactions between extracellular matrix (ECM) and collectively invading endothelial cell (EC) sprouts that extend the microvasculature during development, wound healing, and disease processes. While many aspects of angiogenesis have been well studied, the relationship between endothelial sprout morphology and subsequent neovessel function remains relatively unknown. Here, we investigated how various soluble and physical matrix cues that regulate endothelial sprouting speed and proliferation correspond to changes in sprout morphology, namely, sprout stalk diameter. We found that sprout stalk cells utilize a combination of cytoskeletal forces and proteolysis to physically compact and degrade the surrounding matrix, thus creating sufficient space in three-dimensional (3D) ECM for lateral expansion. As increasing sprout diameter precedes lumenization to generate perfusable neovessels, this work highlights how dynamic endothelial stalk cell-ECM interactions promote the generation of functional neovessels during sprouting angiogenesis to provide insight into the design of vascularized, implantable biomaterials.
Collapse
Affiliation(s)
| | | | | | - Brendon M. Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
29
|
Alisafaei F, Chen X, Leahy T, Janmey PA, Shenoy VB. Long-range mechanical signaling in biological systems. SOFT MATTER 2021; 17:241-253. [PMID: 33136113 PMCID: PMC8385661 DOI: 10.1039/d0sm01442g] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cells can respond to signals generated by other cells that are remarkably far away. Studies from at least the 1920's showed that cells move toward each other when the distance between them is on the order of a millimeter, which is many times the cell diameter. Chemical signals generated by molecules diffusing from the cell surface would move too slowly and dissipate too fast to account for these effects, suggesting that they might be physical rather than biochemical. The non-linear elastic responses of sparsely connected networks of stiff or semiflexible filament such as those that form the extracellular matrix (ECM) and the cytoskeleton have unusual properties that suggest multiple mechanisms for long-range signaling in biological tissues. These include not only direct force transmission, but also highly non-uniform local deformations, and force-generated changes in fiber alignment and density. Defining how fibrous networks respond to cell-generated forces can help design new methods to characterize abnormal tissues and can guide development of improved biomimetic materials.
Collapse
Affiliation(s)
- Farid Alisafaei
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA. and Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xingyu Chen
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA. and Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas Leahy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA. and Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA and McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul A Janmey
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA. and Institute for Medicine and Engineering, University of Pennsylvania, 3340 Smith Walk, Philadelphia, PA 19104, USA and Departments of Physiology, and Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vivek B Shenoy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA. and Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
30
|
Jagiełło A, Lim M, Botvinick E. Dermal fibroblasts and triple-negative mammary epithelial cancer cells differentially stiffen their local matrix. APL Bioeng 2020; 4:046105. [PMID: 33305163 PMCID: PMC7719046 DOI: 10.1063/5.0021030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
The bulk measurement of extracellular matrix (ECM) stiffness is commonly used in mechanobiology. However, past studies by our group show that peri-cellular stiffness is quite heterogeneous and divergent from the bulk. We use optical tweezers active microrheology (AMR) to quantify how two phenotypically distinct migratory cell lines establish dissimilar patterns of peri-cellular stiffness. Dermal fibroblasts (DFs) and triple-negative human breast cancer cells MDA-MB-231 (MDAs) were embedded within type 1 collagen (T1C) hydrogels polymerized at two concentrations: 1.0 mg/ml and 1.5 mg/ml. We found DFs increase the local stiffness of 1.0 mg/ml T1C hydrogels but, surprisingly, do not alter the stiffness of 1.5 mg/ml T1C hydrogels. In contrast, MDAs predominantly do not stiffen T1C hydrogels as compared to cell-free controls. The results suggest that MDAs adapt to the bulk ECM stiffness, while DFs regulate local stiffness to levels they intrinsically prefer. In other experiments, cells were treated with transforming growth factor-β1 (TGF-β1), glucose, or ROCK inhibitor Y27632, which have known effects on DFs and MDAs related to migration, proliferation, and contractility. The results show that TGF-β1 alters stiffness anisotropy, while glucose increases stiffness magnitude around DFs but not MDAs and Y27632 treatment inhibits cell-mediated stiffening. Both cell lines exhibit an elongated morphology and local stiffness anisotropy, where the stiffer axis depends on the cell line, T1C concentration, and treatment. In summary, our findings demonstrate that AMR reveals otherwise masked mechanical properties such as spatial gradients and anisotropy, which are known to affect cell behavior at the macro-scale. The same properties manifest with similar magnitude around single cells.
Collapse
Affiliation(s)
- Alicja Jagiełło
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, USA
| | - Micah Lim
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, USA
| | | |
Collapse
|
31
|
Shiwarski DJ, Tashman JW, Tsamis A, Bliley JM, Blundon MA, Aranda-Michel E, Jallerat Q, Szymanski JM, McCartney BM, Feinberg AW. Fibronectin-based nanomechanical biosensors to map 3D surface strains in live cells and tissue. Nat Commun 2020; 11:5883. [PMID: 33208732 PMCID: PMC7675982 DOI: 10.1038/s41467-020-19659-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 10/19/2020] [Indexed: 01/07/2023] Open
Abstract
Mechanical forces are integral to cellular migration, differentiation and tissue morphogenesis; however, it has proved challenging to directly measure strain at high spatial resolution with minimal perturbation in living sytems. Here, we fabricate, calibrate, and test a fibronectin (FN)-based nanomechanical biosensor (NMBS) that can be applied to the surface of cells and tissues to measure the magnitude, direction, and strain dynamics from subcellular to tissue length-scales. The NMBS is a fluorescently-labeled, ultra-thin FN lattice-mesh with spatial resolution tailored by adjusting the width and spacing of the lattice from 2-100 µm. Time-lapse 3D confocal imaging of the NMBS demonstrates 2D and 3D surface strain tracking during mechanical deformation of known materials and is validated with finite element modeling. Analysis of the NMBS applied to single cells, cell monolayers, and Drosophila ovarioles highlights the NMBS's ability to dynamically track microscopic tensile and compressive strains across diverse biological systems where forces guide structure and function.
Collapse
Affiliation(s)
- Daniel J Shiwarski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Joshua W Tashman
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Alkiviadis Tsamis
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Jaci M Bliley
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Malachi A Blundon
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Edgar Aranda-Michel
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Quentin Jallerat
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - John M Szymanski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Brooke M McCartney
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Adam W Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
32
|
Narasimhan BN, Ting MS, Kollmetz T, Horrocks MS, Chalard AE, Malmström J. Mechanical Characterization for Cellular Mechanobiology: Current Trends and Future Prospects. Front Bioeng Biotechnol 2020; 8:595978. [PMID: 33282852 PMCID: PMC7689259 DOI: 10.3389/fbioe.2020.595978] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/27/2020] [Indexed: 11/13/2022] Open
Abstract
Accurate mechanical characterization of adherent cells and their substrates is important for understanding the influence of mechanical properties on cells themselves. Recent mechanobiology studies outline the importance of mechanical parameters, such as stress relaxation and strain stiffening on the behavior of cells. Numerous techniques exist for probing mechanical properties and it is vital to understand the benefits of each technique and how they relate to each other. This mini review aims to guide the reader through the toolbox of mechanical characterization techniques by presenting well-established and emerging methods currently used to assess mechanical properties of substrates and cells.
Collapse
Affiliation(s)
- Badri Narayanan Narasimhan
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Matthew S. Ting
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Tarek Kollmetz
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Matthew S. Horrocks
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Anaïs E. Chalard
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Jenny Malmström
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| |
Collapse
|