1
|
Wu X, Lian H, Xia C, Deng J, Li X, Zhang C. Mechanistic insights and applications of lignin-based ultraviolet shielding composites: A comprehensive review. Int J Biol Macromol 2024; 280:135477. [PMID: 39250986 DOI: 10.1016/j.ijbiomac.2024.135477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Lignin is a green aromatic polymer constructed from repeating phenylpropane units, incorporating features such as phenolic hydroxyl groups, carbonyl groups, and conjugated double bonds that serve as chromophores. These structural attributes enable it to absorb a wide spectrum of ultraviolet radiation within the 250-400 nm range. The resulting properties make lignin a material of considerable interest for its potential applications in polymers, packaging, architectural decoration, and beyond. By examining the structure of lignin, this research delves into the structural influence on its UV-shielding capabilities. Through a comparative analysis of lignin's use in various UV-shielding applications, the study explores the interplay between lignin's structure and its interactions with other materials. This investigation aims to elucidate the UV-shielding mechanism, thereby offering insights that could inform the development of high-value applications for lignin in UV-shielding composite materials.
Collapse
Affiliation(s)
- Xinyu Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hailan Lian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing, Jiangsu 210037, China.
| | - Changlei Xia
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Junqian Deng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyu Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Changhang Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Girard V, Fragnières L, Chapuis H, Brosse N, Marchal-Heussler L, Canilho N, Parant S, Ziegler-Devin I. The Impact of Lignin Biopolymer Sources, Isolation, and Size Reduction from the Macro- to Nanoscale on the Performances of Next-Generation Sunscreen. Polymers (Basel) 2024; 16:1901. [PMID: 39000756 PMCID: PMC11244244 DOI: 10.3390/polym16131901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
In recent years, concerns about the harmful effects of synthetic UV filters on the environment have highlighted the need for natural sun blockers. Lignin, the most abundant aromatic renewable biopolymer on Earth, is a promising candidate for next-generation sunscreen due to its inherent UV absorbance and its green, biodegradable, and biocompatible properties. Lignin's limitations, such as its dark color and poor dispersity, can be overcome by reducing particle size to the nanoscale, enhancing UV protection and formulation. In this study, 100-200 nm lignin nanoparticles (LNPs) were prepared from various biomass by-products (hardwood, softwood, and herbaceous material) using an eco-friendly anti-solvent precipitation method. Pure lignin macroparticles (LMPs) were extracted from beech, spruce, and wheat straw using an ethanol-organosolv treatment and compared with sulfur-rich kraft lignin (KL). Sunscreen lotions made from these LMPs and LNPs at various concentrations demonstrated novel UV-shielding properties based on biomass source and particle size. The results showed that transitioning from the macro- to nanoscale increased the sun protection factor (SPF) by at least 2.5 times, with the best results improving the SPF from 7.5 to 42 for wheat straw LMPs and LNPs at 5 wt%. This study underscores lignin's potential in developing high-quality green sunscreens, aligning with green chemistry principles.
Collapse
Affiliation(s)
- Victor Girard
- Laboratoire d’Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculty of Science and Technology, University of Lorraine, F-54000 Nancy, France; (L.F.); (H.C.); (N.B.); (I.Z.-D.)
| | - Léane Fragnières
- Laboratoire d’Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculty of Science and Technology, University of Lorraine, F-54000 Nancy, France; (L.F.); (H.C.); (N.B.); (I.Z.-D.)
| | - Hubert Chapuis
- Laboratoire d’Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculty of Science and Technology, University of Lorraine, F-54000 Nancy, France; (L.F.); (H.C.); (N.B.); (I.Z.-D.)
| | - Nicolas Brosse
- Laboratoire d’Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculty of Science and Technology, University of Lorraine, F-54000 Nancy, France; (L.F.); (H.C.); (N.B.); (I.Z.-D.)
| | - Laurent Marchal-Heussler
- Ecole Nationale Supérieure des Industries Chimique (ENSIC), University of Lorraine, F-54000 Nancy, France;
| | - Nadia Canilho
- Laboratoire Lorrain de Chimie Moléculaire (L2CM), Faculty of Science and Technology, University of Lorraine, F-54000 Nancy, France; (N.C.); (S.P.)
| | - Stéphane Parant
- Laboratoire Lorrain de Chimie Moléculaire (L2CM), Faculty of Science and Technology, University of Lorraine, F-54000 Nancy, France; (N.C.); (S.P.)
| | - Isabelle Ziegler-Devin
- Laboratoire d’Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculty of Science and Technology, University of Lorraine, F-54000 Nancy, France; (L.F.); (H.C.); (N.B.); (I.Z.-D.)
| |
Collapse
|
3
|
Yong KJ, Wu TY. Fractionation of oil palm fronds using ethanol-assisted deep eutectic solvent: Influence of ethanol concentration on enhancing enzymatic saccharification and lignin β-O-4 content. ENVIRONMENTAL RESEARCH 2024; 250:118366. [PMID: 38331153 DOI: 10.1016/j.envres.2024.118366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Numerous fractionation methods have been developed in recent years for separating components such as cellulose, hemicellulose, and lignin from lignocellulosic biomass wastes. Deep eutectic solvents (DES) have recently been widely investigated as captivating green solvents for biomass fractionation. However, most acidic-based deep eutectic solvent fractionation produces condensed lignin with low β-O-4 content. Besides, most DESs exhibit high viscosity, which results in poor mass transfer properties. This study aimed to address the challenges above by incorporating ethanol into the deep eutectic solvent at various concentrations (10-50 wt%) to fractionate oil palm fronds at a mild condition, i.e., 80 °C, 1 atm. Cellulose residues fractionated with ethanol-assisted deep eutectic solvent showed a maximum glucose yield of 85.8% when 20 wt% of ethanol was incorporated in the deep eutectic solvent, significantly higher than that achieved by pure DES (44.8%). Lignin extracted with ethanol-assisted deep eutectic solvent is lighter in color and higher in β-O-4 contents (up to 44 β-O-4 per 100 aromatic units) than pure DES-extracted lignin. Overall, this study has demonstrated that incorporating ethanol into deep eutectic solvents could enhance the applicability of deep eutectic solvents in the complete valorization of lignocellulosic biomass. Highly enzymatic digestible cellulose-rich solid and β-O-4-rich lignin attained from the fractionation could serve as sustainable precursors for the production of biofuels.
Collapse
Affiliation(s)
- Khai Jie Yong
- Department of Chemical Engineering, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Ta Yeong Wu
- Department of Chemical Engineering, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Centre for Net-Zero Technology, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
4
|
Zheng Q, Yan S, Chen X, Chang Z, Zhao H, Guo D, Sha L, Sun RC. Multi-site sulfonation of lignin for the synthesis of a high-performance dye dispersant. Int J Biol Macromol 2024; 269:132145. [PMID: 38723819 DOI: 10.1016/j.ijbiomac.2024.132145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/15/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Sulfonated lignin-based dye dispersants have intensively attracted attention due to their low cost, renewability and abundant sources. However, their utilization is limited by the low content of sulfonic groups and high content of hydroxyl groups in their complex lignin structure, which results in various problems such as high reducing rate of dye, severe staining of the fibers and uneven dyeing. Here, the multi-site sulfonated lignin-based dispersants were prepared with high sulfonic group content (2.20 mmol/g) and low hydroxyl content (2.43 mmol/g). When using it as the dispersant, the dye uptake rate was improved from 69.23 % to 98.55 %, the reducing rate was decreased from 20.82 % to 2.03 %, the K/S value was reduced from 0.69 to 0.02, and the particle sizes in dye system before and after high temperature treatment were stabilized below 0.5 μm. Besides, the dispersion effect was significantly improved because no obvious separation between dye and water was observed even if without the assistance of grinding process. In short, the multi-site sulfonation method proposed in this work could remarkably improve the performances of the lignin-based dye dispersants, which would facilitate the development of the dye dispersion and the high value utilization of lignin.
Collapse
Affiliation(s)
- Qian Zheng
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Shasha Yan
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Xiaohong Chen
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China.
| | - Ziyang Chang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Huifang Zhao
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Daliang Guo
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Lizheng Sha
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Run-Cang Sun
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
5
|
Szwajca A, Lucejko JJ, Berdychowska N, Zborowska M. Understanding changes in holocellulose and lignin compounds in wooden structure of veneers: Molecular insights post hydrothermal treatment and aging. Int J Biol Macromol 2024; 266:130920. [PMID: 38513902 DOI: 10.1016/j.ijbiomac.2024.130920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Veneers obtained via hydrothermal treatment serve to enhance the aesthetic appeal of furniture and other wooden surfaces. However, the impact of this treatment on the chemical composition of holocellulose and lignin, coupled with their resistance to ultraviolet (UV) irradiation, remains a relatively unexplored area requiring further investigation. In the experiment, wood samples of three distinct species underwent hydrothermal treatment followed by exposure to UV aging. Parameters including colour, contact angle, and acid-base properties were examined alongside their chemical alterations during these processes. These observed properties were then correlated with changes identified through FT-IR and Py-GC/MS analyses to uncover their molecular origins. Through these methods, the study offered insights into the chemical transformations driving the observed alterations. Findings revealed the considerable impact of hydrothermal treatment on these properties and their propensity for modification under UV radiation. In most test variations, hydrothermal treatment amplified tendencies toward colour changes, increased hydrophobicity, and basicity. Analysis of chemical changes suggested the degradation of polysaccharides due to hydrothermal treatment and lignin breakdown under UV irradiation. Understanding these molecular changes provides a foundation for mitigating the adverse effects of hydrothermal wood treatment.
Collapse
Affiliation(s)
- Anna Szwajca
- Department of Synthesis and Structure of Organic Compounds, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | | | - Natalia Berdychowska
- Department of Chemical Wood Technology, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznań, Poland
| | - Magdalena Zborowska
- Department of Chemical Wood Technology, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznań, Poland.
| |
Collapse
|
6
|
Wang Y, Yang M, Wang J, Shuai Y, Xu Z, Wan Q, Zhong S, Mao C, Ping W, Yang M. Design of Bombyx mori ( B. mori) Silk Fibroin Microspheres for Developing Biosafe Sunscreen. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15798-15808. [PMID: 38507684 DOI: 10.1021/acsami.3c17879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Sunscreens play a crucial role in protecting the skin from ultraviolet (UV) damage. However, present commercial sunscreens have a tendency to generate free radicals in the UV window, resulting in serious inflammatory responses and health problems. In this study, we demonstrate that silk fibroin microspheres (SFMPs) assembled from regenerated silk fibroin (SF) could scavenge free radicals while preventing UV irradiation and thus present a promising sunscreen. The SFMP reflected more UV light than SF and presented a higher stability than that of organic commercial sunscreens. In vitro analysis proved that SFMP could more efficiently scavenge the hydroxy radical and reduce the intracellular reactive oxygen than titanium dioxide (TiO2). In vivo experiments exhibited that SFMP provided stronger skin protection against UV irradiation than commercial sunscreens and TiO2. Furthermore, SFMP treatment significantly inhibited the skin inflammatory response. This work suggests that the SFMP has great potential to be developed into a biosafe sunscreen.
Collapse
Affiliation(s)
- Yecheng Wang
- Zhejiang Provincial Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, Zhejiang, P. R. China
| | - Mei Yang
- Zhejiang Provincial Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, Zhejiang, P. R. China
| | - Jie Wang
- Zhejiang Provincial Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, Zhejiang, P. R. China
| | - Yajun Shuai
- Zhejiang Provincial Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, Zhejiang, P. R. China
| | - Zongpu Xu
- Zhejiang Provincial Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, Zhejiang, P. R. China
| | - Quan Wan
- Zhejiang Provincial Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, Zhejiang, P. R. China
| | - Suting Zhong
- Zhejiang Provincial Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, Zhejiang, P. R. China
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 000000, China
| | - Weidong Ping
- Department of Plastic Surgery, Zhejiang Hospital, 12 Lingyin Road, Xihu District, Hangzhou 310013, China
| | - Mingying Yang
- Zhejiang Provincial Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, Zhejiang, P. R. China
| |
Collapse
|
7
|
Hadjiefstathiou C, Manière A, Attia J, Pion F, Ducrot PH, Grisel M, Gore E. Sensory signature of lignins, new generation of bio-based ingredients in cosmetics. Int J Biol Macromol 2024; 260:129399. [PMID: 38219930 DOI: 10.1016/j.ijbiomac.2024.129399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Lignins represent a high interest in cosmetics as promising multifunctional ingredients. Despite this, uncovering the sensory profile of lignin-based emulsions has remained an unexplored frontier. This study aims to bridge this gap by employing expert sensory evaluation and instrumental characterization to assess the sensory attributes of lignin-based emulsions. A comparative analysis with commercial tinted products and discrimination among lignin derivatives were integral components of the research. Results underscored the distinctive sensory properties of lignin emulsions, exhibiting significantly higher "Integrity of shape" (7.0 ± 0.1) compared to commercial products (4.8 ± 0.1). Additionally, lignin emulsions displayed longer play-time until skin absorption (4.3 ± 0.1), contrasting with the quicker absorption of commercial products (2.7 ± 0.4) and their shorter play-time. Depending on application requirements, lignin derivatives offer formulators a versatile sensory toolbox. Discrimination of lignin emulsions on certain texture properties was achieved using various instrumental tools. Despite the complex formulation of commercial products compared to lignin emulsions, similar texture properties were observed, showcasing lignins' potential to replace multiple ingredients in tinted cosmetics. Beyond their established antioxidant, anti-UV, anti-bacterial, and emulsifying properties, this study reveals additional advantageous sensory properties of lignins, positioning them as promising plant-based sensory ingredients in sustainable cosmetic applications.
Collapse
Affiliation(s)
- Caroline Hadjiefstathiou
- IFF-Lucas Meyer Cosmetics, Campus Eiffel-Massy - Bat. Edison 13 Rue Ella Maillart 91300 Massy, France; Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France; Université Le Havre Normandie, Normandie Univ, URCOM, UR 3221, F-76600 Le Havre, France
| | - Audrey Manière
- IFF-Lucas Meyer Cosmetics, Campus Eiffel-Massy - Bat. Edison 13 Rue Ella Maillart 91300 Massy, France
| | - Joan Attia
- IFF-Lucas Meyer Cosmetics, Campus Eiffel-Massy - Bat. Edison 13 Rue Ella Maillart 91300 Massy, France
| | - Florian Pion
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Paul-Henri Ducrot
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Michel Grisel
- Université Le Havre Normandie, Normandie Univ, URCOM, UR 3221, F-76600 Le Havre, France
| | - Ecaterina Gore
- Université Le Havre Normandie, Normandie Univ, URCOM, UR 3221, F-76600 Le Havre, France.
| |
Collapse
|
8
|
Chandna S, Olivares M CA, Baranovskii E, Engelmann G, Böker A, Tzschucke CC, Haag R. Lignin Upconversion by Functionalization and Network Formation. Angew Chem Int Ed Engl 2024; 63:e202313945. [PMID: 37830521 DOI: 10.1002/anie.202313945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023]
Abstract
Lignin, a complex and abundant biopolymer derived from plant cell walls, has emerged as a promising feedstock for sustainable material development. Due to the high abundance of phenylpropanoid units, aromatic rings, and hydroxyl groups, lignin is an ideal candidate for being explored in various material applications. Therefore, the demand on lignin valorization for development of value-added products is significantly increasing. This mini-review provides an overview of lignin upconversion, focusing on its functionalization through chemical and enzymatic routes, and its application in lignin-based polymer resins, hydrogels, and nanomaterials. The functionalization of lignin molecules with various chemical groups offers tailored properties and increased compatibility with other materials, expanding its potential applications. Additionally, the formation of lignin-based networks, either through cross-linking or blending with polymers, generates novel materials with improved mechanical, thermal, and barrier properties. However, challenges remain in optimizing functionalization techniques, preserving the innate complexity of lignin, and achieving scalability for industrial implementation. As lignin's potential continues to be unlocked, it is poised to contribute significantly to the shift towards more eco-friendly and resource-efficient industries.
Collapse
Affiliation(s)
- Sanjam Chandna
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Carmen A Olivares M
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Egor Baranovskii
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Gunnar Engelmann
- Fraunhofer-Institut für Angewandte Polymerforschung (IAP), Geiselbergstrasse 69, 14476, Potsdam, Germany
| | - Alexander Böker
- Fraunhofer-Institut für Angewandte Polymerforschung (IAP), Geiselbergstrasse 69, 14476, Potsdam, Germany
| | - C Christoph Tzschucke
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Rainer Haag
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| |
Collapse
|
9
|
Rajasekar M, Mary J, Sivakumar M, Selvam M. Recent developments in sunscreens based on chromophore compounds and nanoparticles. RSC Adv 2024; 14:2529-2563. [PMID: 38226149 PMCID: PMC10788710 DOI: 10.1039/d3ra08178h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024] Open
Abstract
Sunscreen formulations have undergone significant advancements in recent years, with a focus on improving UV radiation protection, photostability, and environmental sustainability. Chromophore compounds and nanoparticles have emerged as key components in these developments. This review highlights the latest research and innovations in chromophore compounds and nanoparticle-based sunscreens. It discusses the role of nanoparticles, such as zinc oxide and titanium dioxide, in scattering and absorbing UV radiation while remaining cosmetically acceptable. Chromophore compounds, encapsulated in nanoparticles, are explored for their potential to enhance UV protection by absorbing specific wavelengths of light. Additionally, advances in photo-stability, broad-spectrum protection, antioxidant inclusion, and biodegradability are discussed. The evolving landscape of sunscreen technology aims to provide more effective and environment-friendly solutions for safeguarding skin from the sun's harmful effects.
Collapse
Affiliation(s)
- Mani Rajasekar
- Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University) Chennai - 600 119 Tamil Nadu India +91-9710230530
| | - Jennita Mary
- School of Bio and Chemical Engineering, Department of Biotechnology, Sathyabama Institute of Science and Technology (Deemed to be University) Chennai 600119 Tamil Nadu India
| | - Meenambigai Sivakumar
- School of Bio and Chemical Engineering, Department of Biotechnology, Sathyabama Institute of Science and Technology (Deemed to be University) Chennai 600119 Tamil Nadu India
| | - Masilamani Selvam
- School of Bio and Chemical Engineering, Department of Biotechnology, Sathyabama Institute of Science and Technology (Deemed to be University) Chennai 600119 Tamil Nadu India
| |
Collapse
|
10
|
Lin CH, Lin MH, Chung YK, Alalaiwe A, Hung CF, Fang JY. Exploring the potential of the nano-based sunscreens and antioxidants for preventing and treating skin photoaging. CHEMOSPHERE 2024; 347:140702. [PMID: 37979799 DOI: 10.1016/j.chemosphere.2023.140702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/01/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Excessive exposure to sunlight, especially UV irradiation, causes skin photodamage. Sunscreens, such as TiO2 and ZnO, can potentially prevent UV via scattering, reflection, and absorption. Topical antioxidants are another means of skin photoprotection. Developing nanoparticles for sunscreens and antioxidants is recommended for photoaging prevention and treatment as it can improve uncomfortable skin appearance, stability, penetration, and safety. This study reviewed the effects of nano-sized sunscreens and antioxidants on skin photoprevention by examining published studies and articles from PubMed, Scopus, and Google Scholar, which explore the topics of skin photoaging, skin senescence, UV radiation, keratinocyte, dermal fibroblast, sunscreen, antioxidant, and nanoparticle. The researchers of this study also summarized the nano-based UV filters and therapeutics for mitigating skin photoaging. The skin photodamage mechanisms are presented, followed by the introduction of current skin photoaging treatment. The different nanoparticle types used for topical delivery were also explored in this study. This is followed by the mechanisms of how nanoparticles improve the UV filters and antioxidant performance. Lastly, recent investigations were reviewed on nanoparticulate sunscreens and antioxidants in skin photoaging management. Sunscreens and antioxidants for topical application have different concepts. Topical antioxidants are ideal for permeating into the skin to exhibit free radical scavenging activity, while UV filters are prescribed to remain on the skin surface without absorption to exert the UV-blocking effect without causing toxicity. The nanoparticle design strategy for meeting the different needs of sunscreens and antioxidants is also explored in this study. Although the benefits of using nanoparticles for alleviating photodamage are well-established, more animal-based and clinical studies are necessary.
Collapse
Affiliation(s)
- Chih-Hung Lin
- Center for General Education, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Ming-Hsien Lin
- Department of Dermatology, Chi Mei Medical Center, Tainan, Taiwan
| | - Yu-Kuo Chung
- Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City, Taiwan; School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
11
|
Shetty N, Schalka S, Lim HW, Mohammad TF. The effects of UV filters on health and the environment. Photochem Photobiol Sci 2023; 22:2463-2471. [PMID: 37344707 DOI: 10.1007/s43630-023-00446-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 06/06/2023] [Indexed: 06/23/2023]
Abstract
Sunscreens are an important means of protection against sunburns, dyspigmentation, photoaging, and photocarcinogenesis. Sunscreens come in a variety of formulations that can protect against ultraviolet B (UVB) radiation, both UVB and ultraviolet A (UVA) radiation (broad-spectrum sunscreens), and UVB, UVA, and visible light (tinted broad-spectrum sunscreens). In the USA, there is currently a paucity of FDA-approved broad-spectrum filters on the market. Studies have identified the presence of multiple UV filters in water sources globally. Many laboratory studies have implicated the potential impact of UV filters on coral reef bleaching, the food chain, and human health. However, many of these studies are performed at concentrations that are much higher than those present in the natural environment. With increasing discussion surrounding the role of organic and inorganic UV filters as potential environmental pollutants over the past decade, approval of additional broad-spectrum filters would be an important means of alleviating the use of more controversial filters. The aim of this article is to review the effects of UV filters on health and the environment and explore potential adjunctive agents for photoprotection.
Collapse
Affiliation(s)
- Nayha Shetty
- Department of Dermatology, Henry Ford Health, 3031 W. Grand Blvd, Suite 800, Detroit, MI, 48202, USA
| | - Sérgio Schalka
- Medcin Skin Research Center and Biochemistry Department, Chemistry Institute of São Paulo University, São Paulo, Brazil
| | - Henry W Lim
- Department of Dermatology, Henry Ford Health, 3031 W. Grand Blvd, Suite 800, Detroit, MI, 48202, USA
| | - Tasneem F Mohammad
- Department of Dermatology, Henry Ford Health, 3031 W. Grand Blvd, Suite 800, Detroit, MI, 48202, USA.
| |
Collapse
|
12
|
Zhao H, Zhu Y, Zhang H, Ren H, Zhai H. UV-blocking composite films containing hydrophilized spruce kraft lignin and nanocellulose: Fabrication and performance evaluation. Int J Biol Macromol 2023:124946. [PMID: 37236567 DOI: 10.1016/j.ijbiomac.2023.124946] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
The development of biodegradable films with good UV-blocking and mechanical properties is of great significance for the alleviation of plastic pollution and the establishment of a sustainable society. Given that most natural biomass-derived films have poor mechanical and UV aging properties and are therefore of limited applicability, additives capable of mitigating these drawbacks are highly sought after. In particular, industrial alkali lignin, which is a byproduct of the pulp and paper industry, features a benzene ring-dominated structure with abundant active functional groups and is therefore a promising natural anti-UV additive and composite reinforcing agent. However, the commercial applications of alkali lignin are hindered by its structural complexity and polydispersity. Herein, spruce kraft lignin was fractionated and purified using acetone, subjected to structural characterization, and then quaternized based on the obtained structural data to increase water solubility. TEMPO-oxidized cellulose was supplemented with quaternized lignin at different loadings, and the mixtures were homogenized under high pressure to obtain uniform and stable lignin-containing nanocellulose dispersions, which were subsequently converted into films through suction filtration-based dewatering under pressure. The quaternization of lignin improved its compatibility with nanocellulose and endowed the corresponding composite films with excellent mechanical properties as well as high visible light transmission and UV-blocking performance. The film with a quaternized lignin loading of 6 % had UVA and UVB shielding efficiencies of 98.3 and 100 %, respectively, and featured a tensile strength (175.2 MPa) and elongation at break (7.6 %) that were 50.4 % and 72.7 % higher than those of the pure nanocellulose (CNF) film prepared under the same conditions, respectively. Thus, our work provides a cost-effective and viable method of preparing fully biomass-derived UV-blocking composite films.
Collapse
Affiliation(s)
- Hui Zhao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Yanchen Zhu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Haonan Zhang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Hao Ren
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China.
| | - Huamin Zhai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
13
|
Ruwoldt J, Blindheim FH, Chinga-Carrasco G. Functional surfaces, films, and coatings with lignin - a critical review. RSC Adv 2023; 13:12529-12553. [PMID: 37101953 PMCID: PMC10123495 DOI: 10.1039/d2ra08179b] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/03/2023] [Indexed: 04/28/2023] Open
Abstract
Lignin is the most abundant polyaromatic biopolymer. Due to its rich and versatile chemistry, many applications have been proposed, which include the formulation of functional coatings and films. In addition to replacing fossil-based polymers, the lignin biopolymer can be part of new material solutions. Functionalities may be added, such as UV-blocking, oxygen scavenging, antimicrobial, and barrier properties, which draw on lignin's intrinsic and unique features. As a result, various applications have been proposed, including polymer coatings, adsorbents, paper-sizing additives, wood veneers, food packaging, biomaterials, fertilizers, corrosion inhibitors, and antifouling membranes. Today, technical lignin is produced in large volumes in the pulp and paper industry, whereas even more diverse products are prospected to be available from future biorefineries. Developing new applications for lignin is hence paramount - both from a technological and economic point of view. This review article is therefore summarizing and discussing the current research-state of functional surfaces, films, and coatings with lignin, where emphasis is put on the formulation and application of such solutions.
Collapse
Affiliation(s)
- Jost Ruwoldt
- RISE PFI AS Høgskoleringen 6B Trondheim 7491 Norway
| | | | | |
Collapse
|
14
|
Potential of lignin multifunctionality for a sustainable skincare: Impact of emulsification process parameters and oil-phase on the characteristics of O/W Pickering emulsions. Int J Biol Macromol 2023; 233:123561. [PMID: 36758754 DOI: 10.1016/j.ijbiomac.2023.123561] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
Colloidal lignin particles (CLPs) from softwood kraft lignin were evaluated as a multifunctional ingredient to prepare bio-based oil-in-water (O/W) Pickering emulsions. After a preliminary screening, three Pickering emulsions systems were formulated using orange, coconut, and paraffin oils, at varying concentration of CLPs, oil/water ratio, and by applying two-step homogenisation processes (rotor-stator homogenisation followed by ultrasonication). Ultrasonication as a second homogenisation step considerably enhanced the emulsification efficiency, generating emulsions with smaller droplet size and less polydisperse distribution. Furthermore, the effect of ultrasonication on the characteristics of emulsions and the stability of the systems was evaluated over time. The oil content and type, the concentration of CLPs, and the homogenisation methods significantly influenced the characteristics of the emulsions and drop size. Higher concentrations of oil and CLPs favoured the formation of the emulsion and contributed to higher physical stability after 120 days of monitoring. The in vitro Sun Protection Factor (SPF) results demonstrated that the incorporation of natural oils containing phenolic compounds in Pickering formulations improves the SPF value of emulsions, showing an interesting synergic effect between lignin particles and vegetable oils, which was not observed in the case of paraffin oil. Furthermore, the broad-spectrum sun blocker of Pickering emulsions was confirmed by the values of UVA/UVB between 0.74 and 0.90 and Cλ > 380.
Collapse
|
15
|
Zhang J, Tian Z, Ji XX, Zhang F. Light-colored lignin extraction by ultrafiltration membrane fractionation for lignin nanoparticles preparation as UV-blocking sunscreen. Int J Biol Macromol 2023; 231:123244. [PMID: 36639084 DOI: 10.1016/j.ijbiomac.2023.123244] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
A wide range of applications are available for kraft lignin (KL). However, the dark color and wide size distribution of KL make it challenging to use in cosmetics and nanoparticle preparation. In this study, we fractionated KL from a paper-making enterprise using ultrafiltration membrane fractionation, and obtained four kinds of lignin with different molecular weights, namely ultrafiltration lignin (UL). Following that, lignin nanoparticles (ULNPs) were formed by self-assembly from four types of UL. Analyzing the UL and ULNP properties, the low molecular weight lignin, such as ULA, exhibited good antioxidant properties (89.47 %, 5 mg/mL), high brightness (ISO% = 7.55), high L⁎ value (L⁎ = 72.3) and low polydispersity index (PDI = 1.41). The ULNP showed a narrow size distribution (0.8-1.4 m) and high dispersibility in sunscreen. When ULNP was added to sunscreen with 5 % load, its sun protection factor (SPF) value increased from 14.93 to 63.74. Therefore, this study offered an effective way for the comprehensive utilization of pulping waste KL.
Collapse
Affiliation(s)
- Jiawei Zhang
- State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong 250353, China
| | - Zhongjian Tian
- State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong 250353, China; Shandong Huatai Paper Co., Ltd, Dongying, Shandong 257355, China.
| | - Xing-Xiang Ji
- State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong 250353, China.
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd, Dongying, Shandong 257355, China
| |
Collapse
|
16
|
Fonseca M, Rehman M, Soares R, Fonte P. The Impact of Flavonoid-Loaded Nanoparticles in the UV Protection and Safety Profile of Topical Sunscreens. Biomolecules 2023; 13:biom13030493. [PMID: 36979428 PMCID: PMC10046639 DOI: 10.3390/biom13030493] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 03/10/2023] Open
Abstract
Excessive UV radiation exposure is harmful to skin cells since sunburn is accompanied by oxidative burst, leading to a rapid increase in skin cancer. However, the insufficient UV photoprotection of approved sunscreens and the negative impact of their compositions on ecosystems and human health makes the utility of sunscreen a questionable recommendation. Therefore, discovering UV filters with significant antioxidant activity and improved topical performance and photostability is an urgent need. Recently, the use of nanosized natural molecules incorporated in sunscreens has been a scientific hot topic, as it has been suggested that they provide a synergistic effect with synthetic UV filters, improving overall SPF and antioxidant activity, higher retention on the epidermis, and less toxicity. The aim of this review was to verify the usefulness of sunscreens incorporating flavonoid-loaded nanoparticles. A literature review was performed, where original and review articles published in the last 6 years were analyzed. Formulations containing nanosized flavonoids with improved UVA photoprotection and safer toxicological profiles, associated or not with synthetic filters, are promising sunscreens and more clinical investigation must be performed to validate these findings.
Collapse
Affiliation(s)
- Magda Fonseca
- EPI Unit, Department of Epidemiological Research, Institute of Public Health of University of Porto (ISPUP), Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Mubashar Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Raquel Soares
- Department of Biomedicine, Faculty of Medicine, University of Porto, Al Prof Hernani Monteiro, 4200-319 Porto, Portugal
- I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Pedro Fonte
- Center for Marine Sciences (CCMAR), Gambelas Campus, University of Algarve, 8005-139 Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, Gambelas Campus, University of Algarve, 8005-139 Faro, Portugal
- IBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
17
|
Chotirotsukon C, Jirachavala K, Raita M, Pongchaiphol S, Hararak B, Laosiripojana N, Champreda V. Effects of thermal and physical modification on functional properties of organosolv lignin from sugarcane bagasse and its application in cosmeceutical products. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2023.1099010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Organosolv lignin is an emerging bio-additive for creating functional properties in various products with its advantages in high-purity, sulfur-free, biocompatibility, and solubility in green solvents. In this study, effects of thermal and physical modification on alterations of functional properties and particle size distribution of isolated organosolv lignin from sugarcane bagasse (OLB) were studied. Thermal treatment of OLB at increasing temperatures from 170 to 230°C in 70%w/w aqueous ethanol led to alteration of phenolic hydroxyl content, while ultrasonication resulted in homogeneous size distribution of the modified OLB according to laser diffraction and scanning electron micrograph. The highest ultraviolet light absorbance and antioxidant activities were obtained at 190°C treatment which were correlated to the highest phenolic group content. Application of the modified OLB at 3% w/w in a base cream formulation resulted in enhancement of the anti-UV activity to exceed SPF 50 with increasing antioxidant activity in the product. The work provides basis on modification of organosolv lignin for application as a potent functional additive in cosmeceutical products.
Collapse
|
18
|
Loto AM, Morales JMN, Cisneros AB, Coria MS, Tulli F, Morán Vieyra FE, Borsarelli CD. Simple preparation of broadband UV filters based on TiO 2 coated with aqueous extracts of native trees from the Chaco region of Argentina. Photochem Photobiol Sci 2023; 22:319-331. [PMID: 36269518 DOI: 10.1007/s43630-022-00316-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022]
Abstract
The native forest of northwestern Argentina, as part of the Chaco region, is a rich and unexploited source of phytochemical compounds for medicinal/cosmetic applications. In the present study, fruit, leaf, branch, and bark organs of the native trees Sarcomphalus mistol (Mistol, M) and Schinopsis lorentzii (Quebracho Colorado santiagueño, QC) were harvested, and aqueous plant extracts (PE) were prepared. The spectroscopic (UV-Vis absorbance, diffuse reflectance, ATR-FTIR) and antioxidant (TEAC, Folin-Ciocalteu) properties of PE were characterized and used as TiO2 coating material to obtain a series of TiO2@PE nanocomposites. These materials showed almost null photocatalytic activity compared to aqueous suspensions of bare TiO2, displaying yellowish to brownish coloration and high long-term stability in both freshwater and seawater model solutions. The loss of photocatalytic activity in TiO2@PE was associated with the combination of the internal filter effect and the antioxidant/radical capacity exerted by the phytochemicals of the PE coating, with higher broadband photoprotection for the nanocomposites prepared with QC extracts. Thus, this study shows the potential capacity of the forest resources of the Chaco region of Argentina for the development of new cosmetic and/or sun protection formulations.
Collapse
Affiliation(s)
- Alba M Loto
- Instituto de Bionanotecnología del NOA (INBIONATEC), CONICET. Universidad Nacional de Santiago del Estero (UNSE), RN 9, Km 1125, G4206XCP, Santiago del Estero, Argentina
| | - Jesús M N Morales
- Instituto de Bionanotecnología del NOA (INBIONATEC), CONICET. Universidad Nacional de Santiago del Estero (UNSE), RN 9, Km 1125, G4206XCP, Santiago del Estero, Argentina
| | - Ana B Cisneros
- Instituto de Bionanotecnología del NOA (INBIONATEC), CONICET. Universidad Nacional de Santiago del Estero (UNSE), RN 9, Km 1125, G4206XCP, Santiago del Estero, Argentina
| | - M Sumampa Coria
- Instituto de Bionanotecnología del NOA (INBIONATEC), CONICET. Universidad Nacional de Santiago del Estero (UNSE), RN 9, Km 1125, G4206XCP, Santiago del Estero, Argentina
| | - Fiorella Tulli
- Instituto de Bionanotecnología del NOA (INBIONATEC), CONICET. Universidad Nacional de Santiago del Estero (UNSE), RN 9, Km 1125, G4206XCP, Santiago del Estero, Argentina
| | - Faustino E Morán Vieyra
- Instituto de Bionanotecnología del NOA (INBIONATEC), CONICET. Universidad Nacional de Santiago del Estero (UNSE), RN 9, Km 1125, G4206XCP, Santiago del Estero, Argentina
- Instituto de Ciencias Químicas (ICQ), Facultad de Agronomía y Agroindustrias, UNSE, Av. Belgrano (S) 1912, Santiago del Estero, Argentina
| | - Claudio D Borsarelli
- Instituto de Bionanotecnología del NOA (INBIONATEC), CONICET. Universidad Nacional de Santiago del Estero (UNSE), RN 9, Km 1125, G4206XCP, Santiago del Estero, Argentina.
- Instituto de Ciencias Químicas (ICQ), Facultad de Agronomía y Agroindustrias, UNSE, Av. Belgrano (S) 1912, Santiago del Estero, Argentina.
| |
Collapse
|
19
|
Ge M, Liu S, Li J, Li M, Li S, James TD, Chen Z. Luminescent materials derived from biomass resources. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Zhang X, Zhang J, Yang H, He C, Ke Y, Singh S, Cheng G. Determination of the Structures of Lignin Subunits and Nanoparticles in Solution by Small-Angle Neutron Scattering: Towards Improving Lignin Valorization. CHEMSUSCHEM 2022; 15:e202201230. [PMID: 35916324 DOI: 10.1002/cssc.202201230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Lignin nanoparticles (LNPs) are usually produced from lignin solution through supersaturation. The structure of the lignin in solution is still poorly understood due to structural variability of isolated lignins. Here, lignins were extracted from different plants to establish a general pattern of their structure in several lignin solvents. Lignin molecules (lignin subunits) and larger aggregates were observed in dimethyl sulfoxide (DMSO), ethylene glycol (EG) and 0.1 N NaOD solutions by small-angle neutron scattering (SANS). It was proposed that the aggregates were composed of lignin subunits with a higher molecular weight and a higher ratio of the aliphatic to phenolic hydroxyl groups. The size, shape, and compactness are important factors that affect the uses of the LNPs, which were obtained from the SANS data for the first time. A discrepancy in the radius between SANS and DLS was discovered, pointing to a large hydration shell around the LNPs in aqueous solutions. The cytotoxicity of the corncob lignin, kraft lignin, and their LNPs were measured and compared.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Organic-Inorganic Composites and College of Life Science and Technology, Beijing University of Chemical Technology, North 3rd Ring East, # 15, 100029, Beijing, P. R. China
- State Key Laboratory of Tribology, Tsinghua University, 100084, Beijing, P. R. China
| | - Jinxu Zhang
- State Key Laboratory of Organic-Inorganic Composites and College of Life Science and Technology, Beijing University of Chemical Technology, North 3rd Ring East, # 15, 100029, Beijing, P. R. China
| | - Hua Yang
- Dongguan Neutron Source Science Center, 523803, Dongguan, P. R. China
- Institute of High Energy Physics, Chinese Academy of Science, 100049, Beijing, P. R. China
| | - Chunyong He
- Dongguan Neutron Source Science Center, 523803, Dongguan, P. R. China
- Institute of High Energy Physics, Chinese Academy of Science, 100049, Beijing, P. R. China
| | - Yubin Ke
- Dongguan Neutron Source Science Center, 523803, Dongguan, P. R. China
- Institute of High Energy Physics, Chinese Academy of Science, 100049, Beijing, P. R. China
| | - Seema Singh
- Deconstruction Division, Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 94608, Emeryville, CA, USA
- Sandia National Laboratories, 7011 East Ave, 94551, Livermore, CA, USA
| | - Gang Cheng
- State Key Laboratory of Organic-Inorganic Composites and College of Life Science and Technology, Beijing University of Chemical Technology, North 3rd Ring East, # 15, 100029, Beijing, P. R. China
| |
Collapse
|
21
|
Li R, Huang D, Chen S, Lei L, Chen Y, Tao J, Zhou W, Wang G. Insight into the self-assembly process of bamboo lignin purified by solvent fractionation to form uniform nanospheres with excellent UV resistance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Kim KW, Kwon YM, Kim SY, Kim JYH. One-pot synthesis of UV-protective carbon nanodots from sea cauliflower (Leathesia difformis). ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
23
|
Mejía-Giraldo JC, Scaiano JC, Gallardo-Cabrera C, Puertas-Mejía MA. Photoprotection and Photostability of a New Lignin-Gelatin- Baccharis antioquensis-Based Hybrid Biomaterial. Antioxidants (Basel) 2021; 10:1904. [PMID: 34943007 PMCID: PMC8750119 DOI: 10.3390/antiox10121904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/02/2022] Open
Abstract
The aim of this study was to develop a new hybrid biomaterial that could photo-stabilize and improve the photoprotective capacity of a Baccharis antioquensis extract. Different combinations of lignin/gelatin/natural extract were applied to prepare hybrid biomaterial nanoparticles (NPs), which were then incorporated into an emulsion. The in vitro photoprotection and photostability were evaluated. The methanolic extract showed high phenolic content (646.4 ± 9.5 mg GAE/g dry extract) and a DPPH radical assay revealed that the antiradical capacity of the extract (0.13 to 0.05 g extract/mmol DPPH) was even better than that of BHT. The particle size of the hybrid biomaterial ranged from 100 to 255 nm; a polydispersity index (PdI) between 0.416 and 0.788 is suitable for topical use in dermocosmetic products. The loading capacity of the extract ranged from 27.0 to 44.5%, and the nanoparticles (NPs) showed electrostatic stability in accordance with the zeta potential value. We found that the formulation based on lignin: extract (1:1 ratio) and gelatin: lignin: extract (0.5:0.5:1 ratio) demonstrated photoprotection qualities with a sun protection factor (SPF) ranging from 9.4 to 22.6. In addition, all the hybrid NP-formulations were time-stable with %SPFeff and %UVAPFeff greater than 80% after exposure to 2 h of radiation. These results suggest that the hybrid biopolymer-natural extract improved the photoprotection and photostability properties, as well as the antiradical capacity, of the B. antioquensis extract, and may be useful for trapping high polyphenol content from natural extracts, with potential application in cosmeceutical formulations.
Collapse
Affiliation(s)
- Juan C. Mejía-Giraldo
- Grupo de Investigación en Compuestos Funcionales, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia;
- Grupo de Estabilidad de Medicamentos, Cosméticos y Alimentos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia;
| | - Juan C. Scaiano
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Cecilia Gallardo-Cabrera
- Grupo de Estabilidad de Medicamentos, Cosméticos y Alimentos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia;
| | - Miguel A. Puertas-Mejía
- Grupo de Investigación en Compuestos Funcionales, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia;
| |
Collapse
|
24
|
Zou T, Nonappa N, Khavani M, Vuorte M, Penttilä P, Zitting A, Valle-Delgado JJ, Elert AM, Silbernagl D, Balakshin M, Sammalkorpi M, Österberg M. Experimental and Simulation Study of the Solvent Effects on the Intrinsic Properties of Spherical Lignin Nanoparticles. J Phys Chem B 2021; 125:12315-12328. [PMID: 34723534 PMCID: PMC8591612 DOI: 10.1021/acs.jpcb.1c05319] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Spherical lignin
nanoparticles (LNPs) fabricated via nanoprecipitation
of dissolved lignin are among the most attractive
biomass-derived nanomaterials. Despite various studies exploring the
methods to improve the uniformity of LNPs or seeking more application
opportunities for LNPs, little attention has been given to the fundamental
aspects of the solvent effects on the intrinsic properties of LNPs.
In this study, we employed a variety of experimental techniques and
molecular dynamics (MD) simulations to investigate the solvent effects
on the intrinsic properties of LNPs. The LNPs were prepared from softwood
Kraft lignin (SKL) using the binary solvents of aqueous acetone or
aqueous tetrahydrofuran (THF) via nanoprecipitation.
The internal morphology, porosity, and mechanical properties of the
LNPs were analyzed with electron tomography (ET), small-angle X-ray
scattering (SAXS), atomic force microscopy (AFM), and intermodulation
AFM (ImAFM). We found that aqueous acetone resulted in smaller LNPs
with higher uniformity compared to aqueous THF, mainly ascribing to
stronger solvent–lignin interactions as suggested by MD simulation
results and confirmed with aqueous 1,4-dioxane (DXN) and aqueous dimethyl
sulfoxide (DMSO). More importantly, we report that both LNPs were
compact particles with relatively homogeneous density distribution
and very low porosity in the internal structure. The stiffness of
the particles was independent of the size, and the Young’s
modulus was in the range of 0.3–4 GPa. Overall, the fundamental
understandings of LNPs gained in this study are essential for the
design of LNPs with optimal performance in applications.
Collapse
Affiliation(s)
- Tao Zou
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150 Espoo, Finland
| | - Nonappa Nonappa
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 6, 33720 Tampere, Finland
| | - Mohammad Khavani
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Maisa Vuorte
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Paavo Penttilä
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150 Espoo, Finland
| | - Aleksi Zitting
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150 Espoo, Finland
| | - Juan José Valle-Delgado
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150 Espoo, Finland
| | - Anna Maria Elert
- Division 6.6, Physical and Chemical Analysis of Polymers, Bundesanstalt für Materialforschung und - prüfung (BAM), Unter den Eichen 87, D-12205 Berlin, Germany
| | - Dorothee Silbernagl
- Division 6.6, Physical and Chemical Analysis of Polymers, Bundesanstalt für Materialforschung und - prüfung (BAM), Unter den Eichen 87, D-12205 Berlin, Germany
| | - Mikhail Balakshin
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150 Espoo, Finland
| | - Maria Sammalkorpi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150 Espoo, Finland.,Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150 Espoo, Finland
| |
Collapse
|
25
|
Zhang M, Wang M, Guo Y, Shi Y, Wang J, Chen Y, Zhao C, Zhou Y, Xiao Y, Zhang H, Zhao G. Unveiling the nonadiabatic photoisomerization mechanism of hemicyanines for UV photoprotection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119949. [PMID: 34023551 DOI: 10.1016/j.saa.2021.119949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/15/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
In this work, the nonadiabatic energy relaxation mechanism of hemicyanines for UV photoprotection were investigated by using the density functional theory (DFT) and time-dependent density functional theory (TDDFT) method for the first time. The absorption spectra and potential energy surfaces (PESs) of four hemicyanines with different positions of substituents were presented. The maximum absorption peaks of the four hemicyanines are located in the UVA region. In addition, all these hemicyanine molecules also have light absorption in both the UVB and UVC regions. At the same time, we found that the trans-cis photoisomerization PESs of all these hemicyanines have a significant conical intersection (CI) point between the first excited state and the ground state. Herein, it was first demonstrated that the UV energy absorbed by the hemicyanines could be dissipated nonadiabatically through the CI point by using the trans-cis photoisomerization dynamics mechanism. This work proves that hemicyanines have the possibility to be applied for UV photoabsorbers, and provides important basis for designing new type of hemicyanines for UV photoprotection.
Collapse
Affiliation(s)
- Mingshui Zhang
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, Heilongjiang Province 163318, China
| | - Mengqi Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Yurong Guo
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Yanan Shi
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Jun Wang
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, Heilongjiang Province 163318, China.
| | - Yibing Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Chenyang Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Yi Zhou
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Yongze Xiao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Haoyue Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Guangjiu Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
26
|
An Exploratory Study of Consumers’ Knowledge and Attitudes about Lignin-Based Sunscreens and Bio-Based Skincare Products. COSMETICS 2021. [DOI: 10.3390/cosmetics8030078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Daily consumption of synthetic sunscreens is harmful to the environment and consumers’ health, so greener alternatives need to be produced. Lignin is a multifunctional and widely available biopolymer that can replace several ingredients, but its dark color and low sun protection limit its perceived usefulness. With a survey made for this study, we explored the knowledge and attitudes of 230 consumers towards lignin-based sunscreen, their motives and barriers to purchase it, and how it relates to their environmental and health consciousness. Participants were also asked about their sunscreen habits, their familiarity with the environmental and health impacts of skincare, their perceptions of bio-based ingredients in general, and their skincare product purchasing decisions. Those who are more familiar with environmental issues have a positive attitude towards bio-based ingredients, are accustomed to purchasing more environmentally friendly skincare, and are likelier to be interested in a lignin product. Consumers are welcoming towards a natural, healthy, and environmentally friendly sunscreen alternative but are worried about the lower SPF. Because organic is perceived as luxurious, they are concerned about its price, and some are apprehensive about its pigmentation. While a lignin-based sunscreen at this stage of development is unlikely to take on the role of primary sunscreen on warm, sunny days, it may be more useful as a general-purpose, everyday product that can offer some protection, moisture, and coverage.
Collapse
|
27
|
Piccinino D, Capecchi E, Delfino I, Crucianelli M, Conte N, Avitabile D, Saladino R. Green and Scalable Preparation of Colloidal Suspension of Lignin Nanoparticles and Its Application in Eco-friendly Sunscreen Formulations. ACS OMEGA 2021; 6:21444-21456. [PMID: 34471747 PMCID: PMC8387983 DOI: 10.1021/acsomega.1c02268] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/16/2021] [Indexed: 05/15/2023]
Abstract
Lignin nanoparticles (LNPs) are applied in several industrial applications. The nanoprecipitation of LNPs is fast and inexpensive but currently still limited to the use of hazardous organic solvents, making it difficult to apply them on a large scale. Here, we report a scalable nanoprecipitation procedure for the preparation of colloidal lignin nanoparticles (cLNPs) by the use of the green solvents dimethylisosorbide and isopropylidene glycerol. Irrespective of the experimental conditions, cLNPs showed higher UV absorbing properties and radical scavenging activity than parent LNPs and raw lignin. cLNPs were successively used in the preparation of eco-friendly sunscreen formulations (SPF 15, 30, and 50+, as evaluated by the COLIPA assay), which showed high UV-shielding activity even in the absence of synthetic boosters (microplastics) and physical filters (TiO2 and ZnO). Biological assays on human HaCaT keratinocytes and human skin equivalents demonstrated the absence of cytotoxicity and genotoxicity, associated with an optimal protection of the skin from UV-A damage.
Collapse
Affiliation(s)
- Davide Piccinino
- Department
of Biological and Ecological Sciences, University
of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Eliana Capecchi
- Department
of Biological and Ecological Sciences, University
of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Ines Delfino
- Department
of Biological and Ecological Sciences, University
of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Marcello Crucianelli
- Department
of Physical and Chemical Sciences, University
of Aquila, Via Vetoio
I, Coppito, 67100 L’Aquila, Italy
| | - Nicola Conte
- IDI
Farmaceutici, Via dei castelli Romani 73/75, Pomezia 00071, Rome, Italy
| | - Daniele Avitabile
- IDI
Farmaceutici, Via dei castelli Romani 73/75, Pomezia 00071, Rome, Italy
| | - Raffaele Saladino
- Department
of Biological and Ecological Sciences, University
of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
28
|
Arruda MDM, da Paz Leôncio Alves S, da Cruz Filho IJ, de Sousa GF, de Souza Silva GA, do Nascimento Santos DKD, do Carmo Alves de Lima M, de Moraes Rocha GJ, de Souza IA, de Melo CML. Characterization of a lignin from Crataeva tapia leaves and potential applications in medicinal and cosmetic formulations. Int J Biol Macromol 2021; 180:286-298. [PMID: 33737189 DOI: 10.1016/j.ijbiomac.2021.03.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 12/18/2022]
Abstract
Lignins are phenolic macromolecules that have several applications. In this work, we examine some biological activities of a lignin-like macromolecule isolated from the Crataeva tapia leaves, not yet studied to evaluate its potential applications in medicinal and cosmetic formulations. Lignin was obtained by alkaline delignification and its physical-chemical characterization was made by means of FT-IR, UV-Vis, NMR spectroscopy, elementary analysis, molecular mass determination and thermal analysis. Lignin is of the GSH type, with levels of hydrogen (5.10%), oxygen (27.18%), carbon (67.60%), nitrogen (0.12%) and phenolic content of 189.6 ± 9.6 mg GAE/g. In addition, it is a thermally stable macromolecule with low antioxidant activity. Cytotoxicity and cytokine production were assessed by flow cytometry. The photoprotective activity was evaluated by adding different concentrations of lignin to a commercial cream. Lignin was not cytotoxic, it stimulated the production of TNF-α, IL-6 and IL-10 and did not promote a significant change in nitric oxide levels. In addition, this macromolecule was able to promote increased absorption of ultraviolet light from a commercial cream. These results reinforce the ethnopharmacological use of C. tapia leaves and suggest the need for further studies to determine the potential medicinal and cosmetic applications (sunscreen) of lignin from C. tapia leaves.
Collapse
Affiliation(s)
- Marcela Daniela Muniz Arruda
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Artur de Sá, s/n, 50740-520 Recife, PE, Brazil
| | - Simone da Paz Leôncio Alves
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Artur de Sá, s/n, 50740-520 Recife, PE, Brazil
| | - Iranildo José da Cruz Filho
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Artur de Sá, s/n, 50740-520 Recife, PE, Brazil
| | - Georon Ferreira de Sousa
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Artur de Sá, s/n, 50740-520 Recife, PE, Brazil
| | - Guilherme Antonio de Souza Silva
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Artur de Sá, s/n, 50740-520 Recife, PE, Brazil
| | | | - Maria do Carmo Alves de Lima
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Artur de Sá, s/n, 50740-520 Recife, PE, Brazil
| | - George Jackson de Moraes Rocha
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Polo II de Alta Tecnologia, Rua Giuseppe Máximo Scolfaro, 10.000, PO Box 6192, 13083-100 Campinas, SP, Brazil.
| | - Ivone Antonia de Souza
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Artur de Sá, s/n, 50740-520 Recife, PE, Brazil
| | - Cristiane Moutinho Lagos de Melo
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Artur de Sá, s/n, 50740-520 Recife, PE, Brazil
| |
Collapse
|
29
|
Piccinino D, Capecchi E, Tomaino E, Gabellone S, Gigli V, Avitabile D, Saladino R. Nano-Structured Lignin as Green Antioxidant and UV Shielding Ingredient for Sunscreen Applications. Antioxidants (Basel) 2021; 10:274. [PMID: 33578879 PMCID: PMC7916605 DOI: 10.3390/antiox10020274] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Green, biocompatible, and biodegradable antioxidants represent a milestone in cosmetic and cosmeceutical applications. Lignin is the most abundant polyphenol in nature, recovered as a low-cost waste from the pulp and paper industry and biorefinery. This polymer is characterized by beneficial physical and chemical properties which are improved at the nanoscale level due to the emergence of antioxidant and UV shielding activities. Here we review the use of lignin nanoparticles in cosmetic and cosmeceutical applications, focusing on sunscreen and antiaging formulations. Advances in the technology for the preparation of lignin nanoparticles are described highlighting structure activity relationships.
Collapse
Affiliation(s)
- Davide Piccinino
- Department of Ecology and Biology, University of Tuscia, San Camillo De Lellis, 01100 Viterbo, Italy; (E.C.); (E.T.); (S.G.); (V.G.)
| | - Eliana Capecchi
- Department of Ecology and Biology, University of Tuscia, San Camillo De Lellis, 01100 Viterbo, Italy; (E.C.); (E.T.); (S.G.); (V.G.)
| | - Elisabetta Tomaino
- Department of Ecology and Biology, University of Tuscia, San Camillo De Lellis, 01100 Viterbo, Italy; (E.C.); (E.T.); (S.G.); (V.G.)
| | - Sofia Gabellone
- Department of Ecology and Biology, University of Tuscia, San Camillo De Lellis, 01100 Viterbo, Italy; (E.C.); (E.T.); (S.G.); (V.G.)
| | - Valeria Gigli
- Department of Ecology and Biology, University of Tuscia, San Camillo De Lellis, 01100 Viterbo, Italy; (E.C.); (E.T.); (S.G.); (V.G.)
| | - Daniele Avitabile
- IDI Farmaceutici, Via dei Castelli Romani 73/75, 00071 Pomezia, Italy;
| | - Raffaele Saladino
- Department of Ecology and Biology, University of Tuscia, San Camillo De Lellis, 01100 Viterbo, Italy; (E.C.); (E.T.); (S.G.); (V.G.)
| |
Collapse
|
30
|
Vahabi H, Brosse N, Latif NA, Fatriasari W, Solihat N, Hashim R, Hazwan Hussin M, Laoutid F, Saeb M. Nanolignin in materials science and technology— does flame retardancy matter? BIOPOLYMERIC NANOMATERIALS 2021:515-559. [DOI: 10.1016/b978-0-12-824364-0.00003-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
31
|
Abstract
This review covers the latest developments and challenges in the field of broad-spectrum sunscreens and how sunscreens based on lignin address their requirements in terms of sunlight protection, antioxidants, and preservatives.
Collapse
|
32
|
Jardim JM, Hart PW, Lucia L, Jameel H. Insights into the Potential of Hardwood Kraft Lignin to Be a Green Platform Material for Emergence of the Biorefinery. Polymers (Basel) 2020; 12:polym12081795. [PMID: 32796539 PMCID: PMC7464338 DOI: 10.3390/polym12081795] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/25/2022] Open
Abstract
Lignin is an abundant, renewable, and relatively cheap biobased feedstock that has potential in energy, chemicals, and materials. Kraft lignin, more specifically, has been used for more than 100 years as a self-sustaining energy feedstock for industry after which it has finally reached more widespread commercial appeal. Unfortunately, hardwood kraft lignin (HWKL) has been neglected over these years when compared to softwood kraft lignin (SWKL). Therefore, the present work summarizes and critically reviews the research and development (R&D) dealing specifically with HWKL. It will also cover methods for HWKL extraction from black liquor, as well as its structure, properties, fractionation, and modification. Finally, it will reveal several interesting opportunities for HWKL that include dispersants, adsorbents, antioxidants, aromatic compounds (chemicals), and additives in briquettes, pellets, hydrogels, carbon fibers and polymer blends and composites. HWKL shows great potential for all these applications, however more R&D is needed to make its utilization economically feasible and reach the levels in the commercial lignin market commensurate with SWKL. The motivation for this critical review is to galvanize further studies, especially increased understandings in the field of HWKL, and hence amplify much greater utilization.
Collapse
Affiliation(s)
- Juliana M. Jardim
- Department of Forest Biomaterials, North Carolina State University, 2820 Faucette Dr. Campus Box 8005, Raleigh, NC 27695, USA; (J.M.J.); (L.L.); (H.J.)
| | - Peter W. Hart
- WestRock, 501 South 5th Street, Richmond, VA 23219, USA
- Correspondence:
| | - Lucian Lucia
- Department of Forest Biomaterials, North Carolina State University, 2820 Faucette Dr. Campus Box 8005, Raleigh, NC 27695, USA; (J.M.J.); (L.L.); (H.J.)
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr. Campus Box 8204, Raleigh, NC 27695, USA
- State Key Laboratory of Biobased Materials & Green Papermaking, Qilu University of Technology/Shandong Academy of Sciences, Jinan 250353, China
| | - Hasan Jameel
- Department of Forest Biomaterials, North Carolina State University, 2820 Faucette Dr. Campus Box 8005, Raleigh, NC 27695, USA; (J.M.J.); (L.L.); (H.J.)
| |
Collapse
|