1
|
Wang X, Wang W, Gao M, Fu M, Ma L, Chen W. A flexible electrochemical sensor based on Fe-doped polydopamine derived carbon for simultaneous detection of dopamine and uric acid. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6974-6987. [PMID: 39283493 DOI: 10.1039/d4ay00980k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A free-standing electrode based on carbon cloth-supported Fe-doped polydopamine-derived carbon (Fe/PDA-C/CC) was developed for the simultaneous detection of dopamine (DA) and uric acid (UA). First, dopamine was self-polymerized on the surface of the carbon cloth to obtain polydopamine coatings. Subsequently, Fe3+ was introduced through the formation of a coordinate bond with the hydroxyl functional group in the polydopamine layer. After calcination, a flexible and free-standing electrode was obtained. The sensing performance and mechanism of the Fe/PDA-C/CC sensor was investigated and is discussed in detail herein. Experimental results demonstrated that Fe/PDA-C/CC could simultaneously detect DA and UA with a wide detection range of 0.5-300 μM and 0.5-400 μM with low detection limits of 0.041 μM and 0.012 μM, respectively. Meanwhile, Fe/PDA-C/CC possessed excellent anti-interference performance, repeatability, stability, and accuracy in real samples. Overall, this study provides a facile and effective approach for simultaneous detection of UA and DA.
Collapse
Affiliation(s)
- Xinyu Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| | - Wenbin Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| | - Meng Gao
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Min Fu
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Linzheng Ma
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| | - Wei Chen
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| |
Collapse
|
2
|
Abe H, Nakayasu Y, Haga K, Watanabe M. Progress on Separation and Hydrothermal Carbonization of Rice Husk Toward Environmental Applications. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300112. [PMID: 37635706 PMCID: PMC10448154 DOI: 10.1002/gch2.202300112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Indexed: 08/29/2023]
Abstract
Owing to the increasing global demand for carbon resources, pressure on finite materials, including petroleum and inorganic resources, is expected to increase in the future. Efficient utilization of waste resources has become crucial for sustainable resource acquisition for creating the next generation of industries. Rice husks, which are abundant worldwide as agricultural waste, are a rich carbon source with a high silica content and have the potential to be an effective raw material for energy-related and environmental purification materials such as battery, catalyst, and adsorbent. Converting these into valuable resources often requires separation and carbonization; however, these processes incur significant energy losses, which may offset the benefits of using biomass resources in the process steps. This review summarizes and discusses the high value of RHs, which are abundant as agricultural waste. Technologies for separating and converting RHs into valuable resources by hydrothermal carbonization are summarized based on the energy efficiency of the process.
Collapse
Affiliation(s)
- Hiroya Abe
- Frontier Research Institute for Interdisciplinary Sciences (FRIS)Tohoku University6‐3 Aoba, Aramaki, Aoba‐kuSendai980–8578Japan
- Graduate School of EngineeringTohoku University6‐6‐11 Aoba, Aramaki, Aoba‐kuSendai980‐8579Japan
| | - Yuta Nakayasu
- Frontier Research Institute for Interdisciplinary Sciences (FRIS)Tohoku University6‐3 Aoba, Aramaki, Aoba‐kuSendai980–8578Japan
- Graduate School of EngineeringTohoku University6‐6‐11 Aoba, Aramaki, Aoba‐kuSendai980‐8579Japan
| | - Kazutoshi Haga
- Graduate School of International Resource SciencesAkita University1‐1, Tegata‐GakuenmachiAkita010‐8502Japan
| | - Masaru Watanabe
- Graduate School of EngineeringTohoku University6‐6‐11 Aoba, Aramaki, Aoba‐kuSendai980‐8579Japan
| |
Collapse
|
3
|
Li B, Zhang J, Zhu Q, Xiang T, Wang R, Hu T, Jin R, Yang J. Nanoreactor of Fe, N Co-Doped Hollow Carbon Spheres for Oxygen Reduction Catalysis. Inorg Chem 2023; 62:6510-6517. [PMID: 37027781 DOI: 10.1021/acs.inorgchem.3c00582] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
A simple template strategy was applied to prepare a Fe, N co-doped hollow carbon (Fe-NHC) nanoreactor for the oxygen reduction reaction (ORR) by coating Fe nanoparticles (Fe-NPs) with polydopamine (PDA), followed by high temperature pyrolysis and acid-leaching. With this method, Fe-NPs were used as both the template and the metal precursor, so that the nanoreactors can preserve the original spherical morphology and embed Fe single atoms on the inner walls. The carbonized PDA contained abundant N content, offering an ideal coordination environment for Fe atoms. By regulating the mass ratio of Fe-NPs and PDA, an optimal sample with a carbon layer thickness of 12 nm (Fe-NHC-3) was obtained. The hollow spherical structure of the nanoreactors and the atomically dispersed Fe were verified by various physical characterizations. As a result, Fe-NHC-3 performed well in ORR tests under alkaline conditions, with high catalytic activity, durability, and methanol resistance, demonstrating that the as-fabricated materials have the potential to be applied in the cathodic catalysis of fuel cells.
Collapse
Affiliation(s)
- Bing Li
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiali Zhang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qingchao Zhu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tingting Xiang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ruibo Wang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tieyu Hu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ran Jin
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Juan Yang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
Chi M, Li N, Cui J, Karlin S, Rohr N, Sharma N, Thieringer FM. Biomimetic, mussel-inspired surface modification of 3D-printed biodegradable polylactic acid scaffolds with nano-hydroxyapatite for bone tissue engineering. Front Bioeng Biotechnol 2022; 10:989729. [PMID: 36159699 PMCID: PMC9493000 DOI: 10.3389/fbioe.2022.989729] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Polylactic acid (PLA) has been widely used as filaments for material extrusion additive manufacturing (AM) to develop patient-specific scaffolds in bone tissue engineering. Hydroxyapatite (HA), a major component of natural bone, has been extensively recognized as an osteoconductive biomolecule. Here, inspired by the mussel-adhesive phenomenon, in this study, polydopamine (PDA) coating was applied to the surface of 3D printed PLA scaffolds (PLA@PDA), acting as a versatile adhesive platform for immobilizing HA nanoparticles (nHA). Comprehensive analyses were performed to understand the physicochemical properties of the 3D-printed PLA scaffold functionalized with nHA and PDA for their potent clinical application as a bone regenerative substitute. Scanning electron microscopy (SEM) and element dispersive X-ray (EDX) confirmed a successful loading of nHA particles on the surface of PLA@PDA after 3 and 7 days of coating (PLA@PDA-HA3 and PLA@PDA-HA7), while the surface micromorphology and porosity remain unchanged after surface modification. The thermogravimetric analysis (TGA) showed that 7.7 % and 12.3% mass ratio of nHA were loaded on the PLA scaffold surface, respectively. The wettability test indicated that the hydrophilicity of nHA-coated scaffolds was greatly enhanced, while the mechanical properties remained uncompromised. The 3D laser scanning confocal microscope (3DLS) images revealed that the surface roughness was significantly increased, reaching Sa (arithmetic mean height) of 0.402 μm in PLA@PDA-HA7. Twenty-eight days of in-vitro degradation results showed that the introduction of nHA to the PLA surface enhances its degradation properties, as evidenced by the SEM images and weight loss test. Furthermore, a sustainable release of Ca2+ from PLA@PDA-HA3 and PLA@PDA-HA7 was recorded, during the degradation process. In contrast, the released hydroxyl group of nHA tends to neutralize the local acidic environments, which was more conducive to osteoblastic differentiation and extracellular mineralization. Taken together, this facile surface modification provides 3D printed PLA scaffolds with effective bone regenerative properties by depositing Ca2+ contents, improving surface hydrophilicity, and enhancing the in-vitro degradation rate.
Collapse
Affiliation(s)
- Minghan Chi
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Na Li
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Junkui Cui
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, United States
| | - Sabrina Karlin
- Biomaterials and Technology, Department of Research, University Center for Dental Medicine Basel UZB, University of Basel, Basel, Switzerland
| | - Nadja Rohr
- Biomaterials and Technology, Department of Research, University Center for Dental Medicine Basel UZB, University of Basel, Basel, Switzerland
- Biomaterials and Technology, Department of Reconstructive Dentistry, University Center for Dental Medicine Basel UZB, University of Basel, Basel, Switzerland
- *Correspondence: Nadja Rohr, ; Neha Sharma,
| | - Neha Sharma
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
- Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland
- *Correspondence: Nadja Rohr, ; Neha Sharma,
| | - Florian M. Thieringer
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
- Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
5
|
Yabu H, Ishibashi K, Grewal MS, Matsuo Y, Shoji N, Ito K. Bifunctional rare metal-free electrocatalysts synthesized entirely from biomass resources. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:31-40. [PMID: 35069011 PMCID: PMC8774140 DOI: 10.1080/14686996.2021.2020597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/04/2021] [Accepted: 12/16/2021] [Indexed: 06/02/2023]
Abstract
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are important processes for various energy devices, including polymer electrolyte fuel cells, rechargeable metal-air batteries, and water electrolyzers. We herein report the preparation of a rare metal-free and highly efficient ORR/OER electrocatalyst by calcination of a mixture of blood meal and ascidian-derived cellulose nanofibers. The obtained carbon alloys showed high ORR/OER performances and proved to be promising electrocatalysts. The carbon alloys synthesized entirely from biomass resources not only lead to a new electrocatalyst fabrication process but also contribute to CO2 reduction and the realization of a good life-cycle assessment value in fabrication of a sustainable energy device.
Collapse
Affiliation(s)
- Hiroshi Yabu
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, Japan
- Headquarter, AZUL Energy, Inc., Sendai, Japan
| | - Kosuke Ishibashi
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan
| | - Manjit Singh Grewal
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan
| | - Yasutaka Matsuo
- Institute for Electronic Science (RIES), Hokkaido University, Japan
| | - Naoki Shoji
- Center for the Cooperation of Community Development and Research Promotion, Miyagi University, Miyagi, Japan
| | - Koju Ito
- Headquarter, AZUL Energy, Inc., Sendai, Japan
| |
Collapse
|
6
|
Goto Y, Nakayasu Y, Abe H, Katsuyama Y, Itoh T, Watanabe M. Synthesis of unused-wood-derived C-Fe-N catalysts for oxygen reduction reaction by heteroatom doping during hydrothermal carbonization and subsequent carbonization in nitrogen atmosphere. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200348. [PMID: 34510926 DOI: 10.1098/rsta.2020.0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/18/2021] [Indexed: 06/13/2023]
Abstract
There is an urgent need to develop renewable sources of energy and use existing resources in an efficient manner. In this study, in order to improve the utilization of unused biomass and develop green processes and sustainable technologies for energy production and storage, unused Douglas fir sawdust (SD) was transformed into catalysts for the oxygen reduction reaction. Fe and N were doped into SD during hydrothermal carbonization, and the N- and Fe-doped wood-derived carbon (Fe/N/SD) was carbonized in a nitrogen atmosphere. After the catalyst had been calcined at 800°C, its showed the highest current density (-5.86 mAcm-2 at 0.5 V versus reversible hydrogen electrode or RHE) and Eonset value (0.913 V versus RHE). Furthermore, its current density was higher than that of Pt/C (20 wt% Pt) (-5.66 mA cm-2 @0.5 V versus RHE). Finally, after 50 000 s, the current density of sample Fe/N/SD (2 : 10 : 10) remained at 79.3% of the initial value. Thus, the synthesized catalysts, which can be produced readily at a low cost, are suitable for use in various types of energy generation and storage devices, such as fuel cells and air batteries. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 2)'.
Collapse
Affiliation(s)
- Yasuto Goto
- Research Center of Supercritical Fluid Technology, Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yuta Nakayasu
- Research Center of Supercritical Fluid Technology, Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Hiroya Abe
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Yuto Katsuyama
- Research Center of Supercritical Fluid Technology, Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Takashi Itoh
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Masaru Watanabe
- Research Center of Supercritical Fluid Technology, Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Environment Conservation Center, Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
7
|
Abe H, Yabu H. Bio-inspired Incrustation Interfacial Polymerization of Dopamine and Cross-linking with Gelatin toward Robust, Biodegradable Three-Dimensional Hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6201-6207. [PMID: 33949870 DOI: 10.1021/acs.langmuir.1c00364] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In nature, laccase enzymatically catalyzes the reaction of phenolic compounds with oxygen to produce hardened surfaces known as cuticles on insects and plants. Inspired by this natural process, the present work investigated a robust, biodegradable hydrogel synthesized from dopamine and gelatin. This gel is obtained by the oxidation of dopamine dissolved in water, after which the resulting quinone compound automatically undergoes self-polymerization. The oxidized dopamine subsequently undergoes Schiff base and Michael addition reactions with gelatin, such that the exposed gelatin surface cross-links to generate a continuous hardened hydrogel film. Because gelatin transitions between sol and gel states with changes in temperature, two- and three-dimensional structures could be obtained from the gel state. This bio-inspired interfacial cross-linking reaction provides a simple means of forming complex morphologies and represents a promising technique for bio-applications.
Collapse
Affiliation(s)
- Hiroya Abe
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aramaki Aoba, Aoba-ku, Sendai 980-8578, Japan
- WPI-Advanced Institute for Materials Research (AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Hiroshi Yabu
- WPI-Advanced Institute for Materials Research (AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
8
|
Grewal MS, Matsuo Y, Yabu H. Heteroatom-doped carbon electrocatalysts prepared from marine biomass cellulose nanocrystals and bio-inspired polydopamine for the oxygen reduction reaction. NEW J CHEM 2021. [DOI: 10.1039/d1nj04368d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Heteroatom-doped carbon electrocatalysts were prepared from marine biomass cellulose nanocrystals as potential electrocatalysts for an efficient oxygen reduction reaction.
Collapse
Affiliation(s)
- Manjit Singh Grewal
- WPI-Advanced Institute of Materials Research (WPI-AIMR), Tohoku University, 2-1-1, Katahira, Aoba-Ku, Sendai 980-8577, Japan
| | - Yasutaka Matsuo
- Research Institute for Electronic Science (RIES), Hokkaido University, N21W10, Kita-Ku, Sapporo 001-0021, Japan
| | - Hiroshi Yabu
- WPI-Advanced Institute of Materials Research (WPI-AIMR), Tohoku University, 2-1-1, Katahira, Aoba-Ku, Sendai 980-8577, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1, Katahira, Aoba-Ku, Sendai 980-8577, Japan
| |
Collapse
|