1
|
Mohammadi AA, Marufi N, Hassan NE, Fallahizadeh S, Tafreshi A, Oskoei V, Ghanbari-Ghozikali M, Rezagholizade-Shirvan A. Facile fabrication of novel magnetic chitosan-alginate @ pomegranate peel extract nanocomposite for the adsorptive removal of naphthalene from aqueous solutions. Int J Biol Macromol 2025; 287:138541. [PMID: 39653214 DOI: 10.1016/j.ijbiomac.2024.138541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/23/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024]
Abstract
The prevalent presence of naphthalene contamination in aquatic ecosystems is a significant concern due to its carcinogenic and priority pollutant properties. This study focuses on the synthesis of magnetized chitosan/alginate/pomegranate peel extract nanocomposites (Fe3O4/PPE/Cs-Alg), was characterized by Zeta potential, vibrating sample magnetometer (VSM), Field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses. The results predicted that the successfully synthesis of Fe3O4/PPE/Cs-Alg. The study evaluates the efficacy of the nanocomposite in naphthalene removal, considering operational parameters like pH, varied initial naphthalene concentrations, nanocomposite doses and contact time . The maximum adsorption capacities of naphthalene optimal conditions were 88.12 mg/g for 50 ppm initial naphthalene concentration. The Langmuir, Freundlich, Temkin and Sips isotherms were applied to analyze the experimental equilibrium data. The Sips isotherm was identified as the most suitable model, as evidenced by the highest (R2 = 0.97), Also, the adsorption data conformed well to the pseudo-second-order kinetics model (R2 = 0.99). The thermodynamic study showed positive values for ΔH° and ΔS° throughout the adsorption process respectively, implying an endothermic behavior. Therefore, we found that it can significantly remove naphthalene in aqueous environments and hence could be useful for cleaning up the environment from Poly Aromatic Hydrocarbon.
Collapse
Affiliation(s)
- Ali Akbar Mohammadi
- Department of Environmental Health Engineering, Neyshabur University of Medical Sciences, Neyshabur, Iran; Workplace health research center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Nilufar Marufi
- Student Research Committee, Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Saeid Fallahizadeh
- Department of Environmental Health Engineering, School of public health, Yasuj University of Medical Sciences, Yasuj, Iran; Social Determinants of Health Research Center,Yasuj University of Medical Sciences, Yasuj, Iran
| | - Amin Tafreshi
- Department of Environmental planning,management and education, Tehran university, Tehran, Iran
| | - Vahide Oskoei
- School of Life and Environmental Science, Deakin University, Geelong, Australia
| | - Mohammad Ghanbari-Ghozikali
- Department of Environmental Health Engineering Health Engineering Tabriz University of Medical Sciences, Tabriz, Iran; Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
2
|
Yao S, Ouyang S, Zhou Q, Tao Z, Chen Y, Zheng T. Environmental remediation and sustainable design of iron oxide nanoparticles for removal of petroleum-derived pollutants from water: A critical review. ENVIRONMENTAL RESEARCH 2024; 263:120009. [PMID: 39284490 DOI: 10.1016/j.envres.2024.120009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
The global problem of major oil spills not only generates crude oil pollution, but produces many derivatives that pose ecological and human health challenges. While extensive research has focused on understanding the types of these contaminants, their transport modes, detection techniques, and ecotoxicological impacts, there are still significant research gaps in mechanisms for removal of petroleum-derived pollutants by iron oxide nanoparticles (IONPs). This work summarizes systematically the types and green synthesis of IONPs for the environmental remediation of various petroleum contaminants. We also provide comprehensive coverage of the excellent removal capacity and latest environmental remediation of IONPs-based materials (e.g., pristine, modified, or porous-supported IONPs materials) for the removal of petroleum-derived pollutants, potential interaction mechanisms (e.g., adsorption, photocatalytic oxidation, and synergistic biodegradation). A sustainable framework was highlighted in depth based on a careful assessment of the environmental impacts, associated hazards, and economic viability. Finally, the review provides an possible improvements of IONPs for petroleum-derived pollutants remediation and sustainable design on future prospect. In the current global environment of pollution reduction and carbon reduction, this information is very important for researchers to synthesize and screen suitable IONPs for the control and eradication of future petroleum-based pollutants with low environmental impact.
Collapse
Affiliation(s)
- Shuli Yao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Zongxin Tao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yun Chen
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Tong Zheng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
3
|
Mosaffa E, Ramsheh NA, Banerjee A, Ghafuri H. Bacterial cellulose microfilament biochar-architectured chitosan/polyethyleneimine beads for enhanced tetracycline and metronidazole adsorption. Int J Biol Macromol 2024; 273:132953. [PMID: 38944566 DOI: 10.1016/j.ijbiomac.2024.132953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 07/01/2024]
Abstract
This study investigates the potential applications of incorporating 2D bacterial cellulose microfibers (BCM) biochar into chitosan/polyethyleneimine beads as a semi-natural sorbent for the efficient removal of tetracycline (TET) and metronidazole (MET) antibiotics. Batch adsorption experiments and characterization techniques evaluate removal performance and synthesized adsorbent properties. The adsorbent eliminated 99.13 % and 90 % of TET and MET at a 10 mg.L-1 concentration with optimal pH values of 8 and 6, respectively, for 90 min. Under optimum conditions and a 400 mg.L-1 concentration, MET and TET have possessed the maximum adsorption capacities of 691.325 and 960.778 mg.g-1, respectively. According to the isothermal analysis, the adsorption of TET fundamentally follows the Temkin (R2 = 0.997), Redlich-Peterson (R2 = 0.996), and Langmuir (R2 = 0.996) models. In contrast, the MET adsorption can be described by the Langmuir (R2 = 0.997), and Toth (R2 = 0.991) models. The pseudo-second-order (R2 = 0.998, 0.992) and Avrami (R2 = 0.999, 0.999) kinetic models were well-fitted with the kinetic results for MET and TET respectively. Diffusion models recommend that pore, liquid-film, and intraparticle diffusion govern the rate of the adsorption process. The developed semi-natural sorbent demonstrated exceptional adsorption capacity over eleven cycles due to its porous bead structure, making it a potential candidate for wastewater remediation.
Collapse
Affiliation(s)
- Elias Mosaffa
- Dr. K. C. Patel R & D Centre, Charotar University of Science and Technology (CHARUSAT), 388 421 Anand, Gujarat, India; P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), 388 421 Anand, Gujarat, India
| | - Nasim Amiri Ramsheh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, University of Science and Technology, 16846 Tehran, Iran
| | - Atanu Banerjee
- Dr. K. C. Patel R & D Centre, Charotar University of Science and Technology (CHARUSAT), 388 421 Anand, Gujarat, India.
| | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, University of Science and Technology, 16846 Tehran, Iran
| |
Collapse
|
4
|
Martínez-Rico O, Blanco L, Domínguez Á, González B. Accessible Eco-Friendly Method for Wastewater Removal of the Azo Dye Reactive Black 5 by Reusable Protonated Chitosan-Deep Eutectic Solvent Beads. Molecules 2024; 29:1610. [PMID: 38611889 PMCID: PMC11013712 DOI: 10.3390/molecules29071610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
A novel approach to enhance the utilization of low-cost and sustainable chitosan for wastewater remediation is presented in this investigation. The study centers around the modification of chitosan beads using a deep eutectic solvent composed of choline chloride and urea at a molar ratio of 1:2, followed by treatment with sulfuric acid using an impregnation accessible methodology. The effectiveness of the modified chitosan beads as an adsorbent was evaluated by studying the removal of the azo dye Reactive Black 5 (RB5) from aqueous solutions. Remarkably, the modified chitosan beads demonstrated a substantial increase in adsorption efficiency, achieving excellent removal of RB5 within the concentration range of 25-250 mg/L, ultimately leading to complete elimination. Several key parameters influencing the adsorption process were investigated, including initial RB5 concentration, adsorbent dosage, contact time, temperature, and pH. Quantitative analysis revealed that the pseudo-second-order kinetic model provided the best fit for the experimental data at lower dye concentrations, while the intraparticle diffusion model showed superior performance at higher RB5 concentration ranges (150-250 mg/L). The experimental data were successfully explained by the Langmuir isotherm model, and the maximum adsorption capacities were found to be 116.78 mg/g at 298 K and 379.90 mg/g at 318 K. Desorption studies demonstrated that approximately 41.7% of the dye could be successfully desorbed in a single cycle. Moreover, the regenerated adsorbent exhibited highly efficient RB5 removal (80.0-87.6%) for at least five consecutive uses. The outstanding adsorption properties of the modified chitosan beads can be attributed to the increased porosity, surface area, and swelling behavior resulting from the acidic treatment in combination with the DES modification. These findings establish the modified chitosan beads as a stable, versatile, and reusable eco-friendly adsorbent with high potential for industrial implementation.
Collapse
Affiliation(s)
| | | | | | - Begoña González
- Chemical Engineering Department, Universidade de Vigo, 36310 Vigo, Spain; (O.M.-R.); (L.B.); (Á.D.)
| |
Collapse
|
5
|
Ismail YH, Wang K, Al Shehhi M, Al Hammadi A. Iodide ion-imprinted chitosan beads for highly selective adsorption for nuclear wastewater treatment applications. Heliyon 2024; 10:e24735. [PMID: 38318068 PMCID: PMC10838745 DOI: 10.1016/j.heliyon.2024.e24735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Iodide ions from radioactive iodine isotopes are common contaminants present in nuclear wastewater from nuclear power plants which are considered hazardous contaminants to be released in water sources even at low concentrations due to their association with metabolic disorders, therefore its removal from the nuclear wastewater effluents is necessary. Chitosan beads are natural and cost-efficient adsorbents that have been used for ion removal from wastewater. However, issues of poor selectivity persist in achieving high-efficiency iodide ion removal. In this study, ion-imprinted chitosan beads (IIC) have been synthesized using the phase-inversion method, IIC beads were modified by cross-linking with epichlorohydrin (IIC-EPI) and modified by cross-linking with epichlorohydrin and silicon dioxide nanoparticles (IIC-SiO2-EPI). Through 4 h of batch adsorption experiments, IIC beads achieved a maximum adsorption capacity (Qe) of 0.65 mmol g-1 and showed more preference for the iodide ions compared to the non-imprinted chitosan beads which achieved a maximum adsorption capacity of 0.27 mmol g-1 at pH 7. While the modified beads IIC-EPI and IIC-SiO2-EPI beads have boosted the adsorption capacities to 0.72 mmol g-1 and 0.91 mmol g-1. Scanning electron microscopic cross-sectional images have shown more pores and cavities than the surface images which agrees with the multilayer heterogeneous diffusion suggested by the Freundlich adsorption isotherm, that the experimental data has fitted. Adsorption kinetic data have fitted the Pseudo-second-order model as well as the Weber and Morris intraparticle model, which suggest an intraparticle pore diffusion adsorption mechanism, with the involvement of the physical electrostatic interactions with the cationic chitosan surface.
Collapse
Affiliation(s)
- Yassmin Handulle Ismail
- Chemical Engineering Department, Khalifa University of Science and Technology, P.O. Box 127788 Abu Dhabi, United Arab Emirates
- Emirates Nuclear Technology Center (ENTC), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Kean Wang
- Singapore Technology Institute, 138683, Singapore, Singapore
| | - Maryam Al Shehhi
- Emirates Nuclear Technology Center (ENTC), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Civil Infrastructure and Environmental Engineering Department, Khalifa University of Science and Technology, P.O. Box 127788 Abu Dhabi, United Arab Emirates
| | - Ali Al Hammadi
- Chemical Engineering Department, Khalifa University of Science and Technology, P.O. Box 127788 Abu Dhabi, United Arab Emirates
- Center for Catalysis and Separation (CeCas), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Yan Y, Shen K, Fan W, Kang X, Lu Q. Single and Competitive Adsorption of Naphthalene, Phenanthrene, and Pyrene on Polystyrene Nanofibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38306395 DOI: 10.1021/acs.langmuir.3c03090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
In this investigation, polystyrene (PS) nanofibers were prepared by electrospinning for the adsorption of naphthalene (Nap), phenanthrene (Phe), and pyrene (Pyr) from an aqueous solution. Surface morphology and physicochemical characteristics of PS nanofibers were analyzed using Fourier transform infrared spectroscopy (FT-IR) and point-of-zero-charge calorimetry (pHpzc). The effects of pH, ion concentration, and temperature on the adsorption were also investigated. The adsorption mechanism of target pollutants on PS nanofibers was investigated by a batch adsorption method. The adsorption kinetic studies showed that the adsorption of the three polycyclic aromatic hydrocarbons (PAHs) on PS nanofibers conformed to the pseudo-second-order kinetic model in both single and ternary systems. Meanwhile, in a single system, the three PAHs adsorbed on nanofibers were controlled by both intraparticle diffusion and liquid film diffusion, whereas the adsorption of Nap in a ternary system was controlled mainly by intraparticle diffusion, and the adsorption of Phe and Pyr was controlled mainly by liquid film diffusion. The isotherm data indicated that the Freundlich model performed better than the Langmuir model for the adsorptions of Nap, Phe, and Pyr on PS nanofibers in both the single system and the ternary system. Due to competitive adsorption, the adsorption capacities of Nap and Pyr on PS nanofibers decreased from 105.816 and 19.098 mg g-1 in the single system to 23.626 and 12.126 mg g-1 in the ternary system, but the adsorption of Phe was not affected. π-π interactions and pore filling may be jointly involved in the adsorption of PAHs on PS nanofibers.
Collapse
Affiliation(s)
- Yan Yan
- School of Public Health of Southeast University, Laboratory of Environment and Biosafety Research Institute of Southeast University in Suzhou, Suzhou 215123, China
| | - Kangwei Shen
- China Key Laboratory of Child Development and Learning Science, Ministry of Education, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Wei Fan
- China Key Laboratory of Child Development and Learning Science, Ministry of Education, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xuejun Kang
- China Key Laboratory of Child Development and Learning Science, Ministry of Education, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qing Lu
- China Key Laboratory of Child Development and Learning Science, Ministry of Education, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
7
|
Lingait D, Rahagude R, Gaharwar SS, Das RS, Verma MG, Srivastava N, Kumar A, Mandavgane S. A review on versatile applications of biomaterial/polycationic chitosan: An insight into the structure-property relationship. Int J Biol Macromol 2024; 257:128676. [PMID: 38096942 DOI: 10.1016/j.ijbiomac.2023.128676] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/06/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
Chitosan is a versatile and generous biopolymer obtained by alkaline deacetylation of naturally occurring chitin, the second most abundant biopolymer after cellulose. The excellent physicochemical properties of polycationic chitosan are attributed to the presence of varied functional groups such as amino, hydroxyl, and acetamido groups enabling researchers to tailor the structure and properties of chitosan by different methods such as crosslinking, grafting, copolymerization, composites, and molecular imprinting techniques. The prepared derivatives have diverse applications in the food industry, water treatment, cosmetics, pharmaceuticals, agriculture, textiles, and biomedical applications. In this review, numerous applications of chitosan and its derivatives in various fields have been discussed in detail with an insight into their structure-property relationship. This review article concludes and explains the chitosan's biocompatibility and efficiency that has been done so far with future usage and applications as well. Moreover, the possible mechanism of chitosan's activity towards several emerging fields such as energy storage, biodegradable packaging, photocatalysis, biorefinery, and environmental bioremediation are also discussed. Overall, this comprehensive review discusses the science and complete information behind chitosan's wonder function to improve our understanding which is much needful as well as will pave the way towards a sustainable future.
Collapse
Affiliation(s)
- Diksha Lingait
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Rashmi Rahagude
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Shivali Singh Gaharwar
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Ranjita S Das
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Manisha G Verma
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Nupur Srivastava
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India.
| | - Anupama Kumar
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India.
| | - Sachin Mandavgane
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| |
Collapse
|
8
|
Nascimento DP, de Farias MB, Queiroz RN, da Silva MGC, Prediger P, Vieira MGA. Fluoranthene adsorption by graphene oxide and magnetic chitosan composite (mCS/GO). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6891-6906. [PMID: 38157165 DOI: 10.1007/s11356-023-31528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
The oil industry faces the challenge of reducing its high polluting potential, due to the presence of aromatic pollutants, such as polycyclic aromatic hydrocarbons (PAHs). Efforts have been made to mitigate the impact of PAHs in industry through the development of detection technologies and the implementation of mitigation strategies. This study presents the adsorption of fluoranthene, through a magnetic composite of graphene oxide and chitosan as a method of remediation of produced water. The efficiency of the process was evaluated through kinetic, equilibrium, thermodynamic, and characterization analyses. The nanocomposite was able to remove 90.9% of FLT after 60 min and showed a maximum adsorption capacity of 28.22 mg/g, demonstrating that they can be implemented to remove fluoranthene. Kinetic and equilibrium experimental data showed that physisorption is the predominant adsorptive mechanism; however, the process is also influenced by chemisorption, which occurs through electrostatic interactions between the surface of the material and the adsorbate. The thermodynamic study showed that fluoranthene and graphene composite have high affinity, and that the adsorption is exothermic and spontaneous. The results presented in this paper indicate that the magnetic composite is a potential and sustainable adsorbent for fluoranthene remediation.
Collapse
Affiliation(s)
- Danilo Patrício Nascimento
- School of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Avenue, 500, 13083-852 Campinas, São Paulo, Brazil
| | - Marina Barbosa de Farias
- School of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Avenue, 500, 13083-852 Campinas, São Paulo, Brazil
| | - Ruth Nóbrega Queiroz
- School of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Avenue, 500, 13083-852 Campinas, São Paulo, Brazil
| | - Meuris Gurgel Carlos da Silva
- School of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Avenue, 500, 13083-852 Campinas, São Paulo, Brazil
| | - Patrícia Prediger
- School of Technology, University of Campinas - UNICAMP, 13484-332 Limeira, São Paulo, Brazil
| | - Melissa Gurgel Adeodato Vieira
- School of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Avenue, 500, 13083-852 Campinas, São Paulo, Brazil.
| |
Collapse
|
9
|
Devanesan S, AlSalhi MS, Liu X, Shanmuganathan R. G-C 3N 4-Ag composite mediated photocatalytic degradation of phenanthrene - A remedy for environmental pollution. ENVIRONMENTAL RESEARCH 2023; 239:117387. [PMID: 37832767 DOI: 10.1016/j.envres.2023.117387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/01/2023] [Accepted: 10/11/2023] [Indexed: 10/15/2023]
Abstract
In recent years, g-C3N4-Ag nanocomposite synthesis has gained considerable attention for its potential to treat polycyclic aromatic hydrocarbons (PAHs) and to act against bacteria and fungi. In this study, we present a novel approach to the synthesis of g-C3N4-Ag nanocomposite and evaluate its efficiency in both PAH removal and antimicrobial activity. The synthesis process involved the preparation of g-C3N4 by thermal polycondensation of melamine. The factors that affect the adsorption process of PAHs, like time, pH, irradiation type, and adsorbent dosage, were also evaluated. Isotherm models like Langmuir and Freundlich determined the adsorption capability of g-C3N4-Ag. In simulated models, phenanthrene was degraded to a maximum of 85% at lower concentrations of catalyst. The adsorption profile of phenanthrene obeys the pseudo-second-order and Freundlich isotherms pattern. The g-C3N4-Ag nanocomposite also exhibited antimicrobial activity against bacteria (Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumoniae) and fungi (Candida albicans). The present study is the first report stating the dual application of g-C3N4-Ag nanocomposite in reducing the concentration of PAH and killing bacterial and fungal pathogens. The higher adsorption capability proclaimed by g-C3N4-Ag nanocomposite shows the fabricated nanomaterial with great potential to remediate organic pollutants from the ecosystem.
Collapse
Affiliation(s)
- Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Xinghui Liu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong, China
| | - Rajasree Shanmuganathan
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, India.
| |
Collapse
|
10
|
Janarthanam VA, Issac PK, Guru A, Arockiaraj J. Hazards of polycyclic aromatic hydrocarbons: a review on occurrence, detection, and role of green nanomaterials on the removal of PAH from the water environment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1531. [PMID: 38008868 DOI: 10.1007/s10661-023-12076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 10/30/2023] [Indexed: 11/28/2023]
Abstract
Organic pollutant contamination in the environment is a serious and dangerous issue, especially for developing countries. Among all organic pollutants, polycyclic aromatic hydrocarbons (PAHs) are the more frequently discovered ones in the environment. PAH contamination is caused chiefly by anthropogenic sources, such as the disposal of residential and industrial waste and automobile air emissions. They are gaining interest due to their environmental persistence, toxicity, and probable bioaccumulation. The existence of PAHs may result in damage to the environment and living things, and there is widespread concern about the acute and chronic threats posed by the release of these contaminants. The detection and elimination of PAHs from wastewater have been the focus of numerous technological developments during recent decades. The development of sensitive and economical monitoring systems for detecting these substances has attracted a lot of scientific attention. Using several nanomaterials and nanocomposites is a promising treatment option for the identification and elimination of PAHs in aquatic ecosystems. This review elaborated on the sources of origin, pathogenicity, and widespread occurrence of PAHs. In addition, the paper highlighted the use of nanomaterial-based sensors in detecting PAHs from contaminated sites and nanomaterial-based absorbents in PAH elimination from wastewater. This review also addresses the development of Graphene and Biofunctionalized nanomaterials for the elimination of PAHs from the contaminated sites.
Collapse
Affiliation(s)
- Vishnu Adith Janarthanam
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India.
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, , Tamil Nadu, 603203, India.
| |
Collapse
|
11
|
Phonlakan K, Khamsuk B, Soontonhong N, Panawong C, Kongseng P, Chantarak S, Budsombat S. Composite beads from chitosan and zeolitic imidazolate framework-8 for the adsorption and photocatalytic degradation of reactive red 141. RSC Adv 2023; 13:12295-12308. [PMID: 37091605 PMCID: PMC10114064 DOI: 10.1039/d3ra01187a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/10/2023] [Indexed: 04/25/2023] Open
Abstract
This study describes the fabrication of composite beads comprising chitosan and zeolitic imidazolate framework-8 (ZIF-8) as a natural biodegradable dye adsorbent and support for ZnO photocatalyst. Chitosan beads were cross-linked with trisodium citrate dihydrate to enhance the adsorption capacity for the reactive red 141 dye (RR141). The ability was further improved by adding ZIF-8. The optimum loading was 2.5%, and the adsorption equilibrium was reached within 2 h. The maximum adsorption capacity of the composite beads was 6.51 mg g-1 at pH 4 when an initial concentration of 1000 mg L-1 was used. The pseudo-second-order kinetics model and the Langmuir isotherm model best described the adsorption process. The composite beads could also adsorb dyes like reactive black, Congo red, direct yellow, reactive orange, rhodamine B, crystal violet, and methylene blue (MB). Thermal stability was significantly improved after coating the surface of the 2.5% ZIF beads with a ZnO photocatalyst. After UV irradiation for 5 h, the photocatalytic beads containing 2.59 weight percent of ZnO could decolorize 99% of MB and 90% of RR141 dyes with a degradation rate of 0.6032 h-1 and 0.3198 h-1, respectively. Furthermore, the photocatalytic beads remained effective for at least ten consecutive cycles.
Collapse
Affiliation(s)
- Kunlarat Phonlakan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Materials Chemistry Research Center, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Benjawan Khamsuk
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Materials Chemistry Research Center, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Natthanicha Soontonhong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Materials Chemistry Research Center, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Chonnakarn Panawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Materials Chemistry Research Center, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Piyawan Kongseng
- Division of Physical Science, Faculty of Science, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Sirinya Chantarak
- Division of Physical Science, Faculty of Science, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Surangkhana Budsombat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Materials Chemistry Research Center, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| |
Collapse
|
12
|
Xu Y, Shen W, Liu Y, Wei J. Chitosan/lemon residues activated carbon efficiently removal of acid red 18 from aqueous solutions: batch study, isotherm and kinetics. ENVIRONMENTAL TECHNOLOGY 2023; 44:1405-1414. [PMID: 34779747 DOI: 10.1080/09593330.2021.2003439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
In this research, chitosan-decorated activated carbon (AC-CS) was proposed. The AC was cross-linked with glutaraldehyde to prepare an adsorbent (AC-CS). The AC-CS has a rough surface. Adding the AC-CS directly to the dye solution can achieve simple and convenient removal of anionic azo dyes acid red 18 (AR-18). In the dye solution, the AC-CS was used as an adsorbent. The effects of pH, contact time, temperature, initial concentration of AR-18 and the AC-CS dosage on the adsorption efficiency were investigated. Full kinetic and isotherm analyses were also undertaken. In addition, the reusability of the AC-CS was evaluated, and the results showed that the removal rate of AR18 after regeneration remained relatively stable, above 90%. This experiment has shown that AC-CS is a promising anionic azo dye adsorbent.
Collapse
Affiliation(s)
- Yongyao Xu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui, People's Republic of China
| | - Wangqing Shen
- School of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, Sichuan, People's Republic of China
| | - Yin Liu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui, People's Republic of China
| | - Jiafeng Wei
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui, People's Republic of China
| |
Collapse
|
13
|
Queiroz RN, da Silva MGC, Mastelaro VR, Prediger P, Vieira MGA. Adsorption of naphthalene polycyclic aromatic hydrocarbon from wastewater by a green magnetic composite based on chitosan and graphene oxide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27603-27621. [PMID: 36383320 DOI: 10.1007/s11356-022-24198-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
A green magnetic composite mCS/GO was synthesized using water hyacinth extract, as a reducing agent, and proanthocyanidin, as a crosslinking agent, for the adsorption of naphthalene from effluents. The green composite was evaluated using different characterization techniques to determine its thermal (TG/DTG), structural (BET, XPS and FTIR), crystallographic (XRD), and textural (SEM) properties in natura and post-adsorption. The results obtained through a central composite design (CCD) experiment indicated that the initial concentration of NAP and the adsorbent dosage are significant for the adsorption capacity. The adsorption assays indicated that physisorption, through π-π and hydrophobic interactions, were the main mechanism involved in the NAP adsorption. However, the adjustment to the PSO and Freundlich models, obtained through kinetic and equilibrium studies, indicated that chemisorption also influences the adsorptive process. The thermodynamic study indicated physisorption as the mechanism responsible for the NAP adsorption. Also, the adsorbent has high affinity for the adsorbate and the process is spontaneous and endothermic. The maximum adsorption capacity (qmax) of the green mCS/GO was 334.37 mg g-1 at 20 °C. Furthermore, the green mCS/GO was effectively regenerated with methanol and reused for five consecutive cycles, the percentage of NAP recovery went from approximately 91 to 75% after the fifth cycle. The green composite was also applied in the adsorption of NAP from river water samples, aiming to evaluate the feasibility of the method in real applications. The adsorption efficiency was approximately 70%. From what we know, this it is the first time that a green adsorbent was recycled after the polycyclic aromatic hydrocarbon (PAHs) adsorption process.
Collapse
Affiliation(s)
- Ruth Nóbrega Queiroz
- Process and Product Development Department, School of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Avenue, Campinas, São Paulo, 50013083-852, Brazil
| | - Meuris Gurgel Carlos da Silva
- Process and Product Development Department, School of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Avenue, Campinas, São Paulo, 50013083-852, Brazil
| | - Valmor Roberto Mastelaro
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São Carlense, São Carlos, SP, 40013566-590, Brazil
| | - Patricia Prediger
- School of Technology, University of Campinas - UNICAMP, Limeira, São Paulo, 13484-332, Brazil
| | - Melissa Gurgel Adeodato Vieira
- Process and Product Development Department, School of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Avenue, Campinas, São Paulo, 50013083-852, Brazil.
| |
Collapse
|
14
|
Dong Q, Qiu W, Li L, Tao N, Liang Wang A, Deng S, Jin Y. Extraction of Chitin from White Shrimp (Penaeus vannamei) Shells Using Binary Ionic Liquid Mixtures. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Comparative Studies of RSM, RSM–GA and ANFILS for Modeling and Optimization of Naphthalene Adsorption on Chitosan–CTAB–Sodium Bentonite Clay Matrix. JOURNAL OF APPLIED SCIENCE & PROCESS ENGINEERING 2022. [DOI: 10.33736/jaspe.4749.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The aim of this article was to compare the predictive abilities of the optimization techniques of response surface methodology (RSM), the hybrid of RSM–genetic algorithm (RSM–GA) and adaptive neuro-fuzzy interference logic system (ANFILS) for design responses of % removal of naphthalene and adsorption capacity of the synthesized composite nanoparticles of chitosan–cetyltrimethylammonium bromide (CTAB)–sodium bentonite clay. The process variables considered were surfactant concentration, , activation time, , activation temperature, , and chitosan dosage, . The ANFILS models showed better modeling abilities of the adsorption data on the synthesized composite adsorbent than those of ANN for reason of lower % mean absolute deviation, lower % error value, higher coefficient of determination, , amongst others and lower error functions’ values than those obtained using ANN for both responses. When applied RSM, the hybrid of RSM–genetic algorithm (RSM–GA) and ANFILS 3–D surface pot optimization technique to determine the optimal conditions for both responses, ANFILS was adjudged the best. The ANFILS predicted optimal conditions were = 116.00 mg/L, = 2.06 h, = 81.2oC and = 5.20 g. Excellent agreements were achieved between the predicted responses of 99.055% removal of naphthalene and 248.6375 mg/g adsorption capacity and their corresponding experimental values of 99.020% and 248.86 mg/g with % errors of -0.0353 and 0.0894 respectively. Hence, in this study, ANFILS has been successfully used to model and optimize the conditions for the treatment of industrial wastewater containing polycyclic aromatic compounds, especially naphthalene and is hereby recommended for such and similar studies.
Collapse
|
16
|
Tee GT, Gok XY, Yong WF. Adsorption of pollutants in wastewater via biosorbents, nanoparticles and magnetic biosorbents: A review. ENVIRONMENTAL RESEARCH 2022; 212:113248. [PMID: 35405129 DOI: 10.1016/j.envres.2022.113248] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/08/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Adsorption has gained much attention as one of the efficient approaches to remediate the contaminants in wastewater. Herein, this critical review focuses on the preparation, modification, application and regeneration of the biosorbents, nanoparticles and magnetic biosorbents for the wastewater treatment in recent 5 years (2017-2021). Among these materials, the development of magnetic biosorbents is attractive owing to their variable active sites, high specific surface area, easy separation and low cost. To improve the adsorption performance of biosorbents, the chemical activations such as acid, alkali and salt activations of biosorbents are discussed. In general, the oxidation reaction in acid, alkali and salt activations increases the porosity of biosorbents. The surface characteristics, surface chemistry of the biosorbents and magnetic biosorbents such as electrostatic interaction, π-π interaction and hydrogen bonding are highlighted. Ionic compounds are separated through ion exchange, surface charge and electrostatic interactions while the organic pollutants are removed via hydrophobicity, π-π interactions and hydrogen bonding. The effect of solution pH, adsorbent dosage, initial concentration of pollutants, adsorption duration and temperature on the adsorption capacity, and removal efficiency are discussed. Generally, an increase in adsorbent dosage resulted in a decrease in adsorption capacity due to the excessive active sites. On the other hand, a higher initial concentration or an increase in contact time of adsorbent increased the driving force, subsequently enhancing the adsorption capacity. Finally, this review will be concluded with a summary, challenges and future outlook of magnetic biosorbents. It is anticipated that this review will provide insights into engineering advanced and suitable materials to achieve cost-effective and scalable adsorbents for practical and sustainable environmental remediation.
Collapse
Affiliation(s)
- Guat Teng Tee
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Xie Yuen Gok
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Wai Fen Yong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China.
| |
Collapse
|
17
|
Olafadehan OA, Bello VE, Amoo KO. Production and characterization of composite nanoparticles derived from chitosan, CTAB and bentonite clay. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02228-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Yadav P, Yadav A, Labhasetwar PK. Sustainable adsorptive removal of antibiotics from aqueous streams using Fe 3O 4-functionalized MIL101(Fe) chitosan composite beads. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37204-37217. [PMID: 35032269 DOI: 10.1007/s11356-021-18385-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/24/2021] [Indexed: 04/15/2023]
Abstract
In this study, we synthesized recyclable Fe3O4-functionalized MIL101(Fe) chitosan composite beads for the removal of tetracycline (TC), doxycycline (DC) and ciprofloxacin (CFX) antibiotics from aqueous streams. More than 99% removal efficiency for each antibiotic was achieved at optimum pH, dosage, concentration and contact time. Langmuir adsorption isotherms and pseudo-second-ord er kinetic model were suitable with correlation coefficient values close to 1 for all the antibiotics. Adsorption capacities of 45.33, 33.20 and 31.30 mg g-1 for TC, DC and CFX, respectively, were reported by the synthesized Fe3O4-functionalized MIL101(Fe) chitosan composite beads. The Fe3O4-functionalized MIL101(Fe) chitosan composite beads were also tested for their regeneration ability, and a remarkable regeneration ability over up to 5 cycles was observed. The adsorption of TC, DC and CFX on the surface of Fe3O4-functionalized MIL101(Fe) chitosan composite beads was governed by the π-π interaction, H-bonding and electrostatic interaction between the antibiotics and adsorbent due to protonation, deprotonation and cation exchange in the aqueous solution. These results showed a good prospect for applying the reported beads towards removing antibiotics from pharmaceutical industry wastewater.
Collapse
Affiliation(s)
- Pratibha Yadav
- Department of Chemistry, Institute for Excellence in Higher Education, Bhopal, 462016, India
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, 364002, India
| | - Anshul Yadav
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, 364002, India.
| | - Pawan Kumar Labhasetwar
- Water Technology and Management Division, CSIR- National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India
| |
Collapse
|
19
|
Abstract
Naphthalene is one of the most hazardous polycyclic aromatic hydrocarbons to public health. This paper comprehensively summarized the recent development of modification methods of adsorbents for naphthalene removal in the environment. Various modification methods used in the adsorbent were summarized, mainly including acid oxidation modification, salt modification, doping modification, amino modification, microwave modification, and plasma modification. These methods enhance the adsorption performance of naphthalene mainly by changing the pore size and the oxygen content on the surface of the adsorbent. The modification parameters and their effects on naphthalene removal as well as the advantages and disadvantages of each method are described in detail. This review provides the necessary inspiration and guidance for the researchers who develop polycyclic aromatic hydrocarbons adsorption materials in the environment.
Collapse
|
20
|
Recent advances of chitosan-based nanoparticles for biomedical and biotechnological applications. Int J Biol Macromol 2022; 203:379-388. [PMID: 35104473 DOI: 10.1016/j.ijbiomac.2022.01.162] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 12/15/2022]
Abstract
Chitosan is a natural alkaline polysaccharide, which widely exists in marine crustaceans such as shrimp and crab, has been shown to have various biological activities. It has attracted considerable attention in biomedicine and nanomaterials fields because of its excellent properties, such as biocompatibility, biodegradability, non-toxicity and easy access. In addition, because of active hydroxyl and amino groups in chitosan molecules, different functional groups can be introduced into chitosan molecules by molecular modification or chemical modification, which extends their applications. Nanoparticles with small size and large surface area can be used as diagnostic and therapeutic tools in the biomedical field, which make it easier to understand, detect and treat human diseases. The nanomaterials based on chitosan have important applications in biomedicine, industry, pharmacy, agriculture, and other fields. This review highlights the recent advances on chitosan-based nanoparticles for antibacterial property, drug and gene delivery, cancer and hyperthermia therapy, cell imaging, restorative dentistry, wound healing, tissue engineering and other biomedical fields. The nanotechnology fields involving biosensors, water treatment, food industry and agriculture are also briefly reviewed.
Collapse
|
21
|
Queiroz RN, Prediger P, Vieira MGA. Adsorption of polycyclic aromatic hydrocarbons from wastewater using graphene-based nanomaterials synthesized by conventional chemistry and green synthesis: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126904. [PMID: 34418840 DOI: 10.1016/j.jhazmat.2021.126904] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/26/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants formed mainly by the incomplete combustion of organic matter, such as oil, gas and coal. The presence of PAHs can cause irreparable damage to the environment and living beings, which has generated a global concern with the short and long term risks that the emission of these pollutants can cause. Many technologies have been developed in the last decades aiming at the identification and treatment of these compounds, mainly, the PAHs from wastewater. This review features an overview of studies on the main methods of PAHs remediation from wastewater, highlighting the adsorption processes, through the application of different adsorbent nanomaterials, with a main focus on graphene-based nanomaterials, synthesized by conventional and green routes. Batch and fixed-bed adsorptive processes were evaluated, as well as, the mechanisms associated with such processes, based on kinetic, equilibrium and thermodynamic studies. Based on the studies analyzed in this review, green nanomaterials showed higher efficiency in removing PAHs than the conventional nanomaterials. As perspectives for future research, the use of green nanomaterials has shown to be sustainable and promising for PAHs remediation, so that further studies are needed to overcome the possible challenges and limitations of green synthesis methodologies.
Collapse
Affiliation(s)
- Ruth Nóbrega Queiroz
- Process and Product Development Department, School of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Avenue, 500, 13083-852 Campinas, São Paulo, Brazil
| | - Patrícia Prediger
- School of Technology, University of Campinas - UNICAMP, 13484-332 Limeira, São Paulo, Brazil
| | - Melissa Gurgel Adeodato Vieira
- Process and Product Development Department, School of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Avenue, 500, 13083-852 Campinas, São Paulo, Brazil.
| |
Collapse
|
22
|
Quintero V, Gonzalez-Quiroga A, Gonzalez-Delgado AD. A Hybrid Methodology to Minimize Freshwater Consumption during Shrimp Shell Waste Valorization Combining Multi-Contaminant Pinch Analysis and Superstructure Optimization. Polymers (Basel) 2021; 13:polym13111887. [PMID: 34204156 PMCID: PMC8201339 DOI: 10.3390/polym13111887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
The conservation and proper management of natural resources constitute one of the main objectives of the 2030 Agenda for Sustainable Development designed by the Member States of the United Nations. In this work, a hybrid strategy based on process integration is proposed to minimize freshwater consumption while reusing wastewater. As a novelty, the strategy included a heuristic approach for identifying the minimum consumption of freshwater with a preliminary design of the water network, considering the concept of reuse and multiple pollutants. Then, mathematical programming techniques were applied to evaluate the possibilities of regeneration of the source streams through the inclusion of intercept units and establish the optimal design of the network. This strategy was used in the shrimp shell waste process to obtain chitosan, where a minimum freshwater consumption of 277 t/h was identified, with a reuse strategy and an optimal value of US $5.5 million for the design of the water network.
Collapse
Affiliation(s)
- Viviana Quintero
- Nanomaterials and Computer Aided Process Engineering Research Group (NIPAC), Chemical Engineering Department, University of Cartagena, Avenida del Consulado St. 30, Cartagena de Indias 130015, Colombia;
| | - Arturo Gonzalez-Quiroga
- UREMA Research Unit, Mechanical Engineering Department, Universidad del Norte, Barranquilla 25138, Colombia;
| | - Angel Darío Gonzalez-Delgado
- Nanomaterials and Computer Aided Process Engineering Research Group (NIPAC), Chemical Engineering Department, University of Cartagena, Avenida del Consulado St. 30, Cartagena de Indias 130015, Colombia;
- Correspondence:
| |
Collapse
|