1
|
Malenfant C, Denis M, Canesi S. Two-Step Formation of Substituted Pyridines from Iodoenones. J Org Chem 2024. [PMID: 39670591 DOI: 10.1021/acs.joc.4c02502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
A new access to substituted pyridines was developed from iodoenones. This two-step procedure involves a Sonogashira coupling with a free alkyne containing a nosylamide followed by a thiophenol treatment in basic conditions that triggers nosyl deprotection, a Michael-retro-Michael process, condensation, and isomerization in cascade to yield the heterocycle. This method enables the introduction of different substituents at several pyridine positions. This approach offers new synthetic opportunities to produce heterocycles present in many bioactive compounds.
Collapse
Affiliation(s)
- Carl Malenfant
- Laboratoire de Méthodologie et Synthèse de Produits Naturels, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8 Canada
| | - Maxime Denis
- Laboratoire de Méthodologie et Synthèse de Produits Naturels, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8 Canada
| | - Sylvain Canesi
- Laboratoire de Méthodologie et Synthèse de Produits Naturels, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8 Canada
| |
Collapse
|
2
|
Venu prasad K, Kallauraya B, Bhat RS, Bhat SI, Kamat V, Akki M, Kumar A, Jyothi K, Bharat B. Synthesis, characterization, and evaluation of pyrimidinone-linked thiazoles: DFT analysis, molecular docking, corrosion inhibition, and bioactivity studies. Heliyon 2024; 10:e39421. [PMID: 39498036 PMCID: PMC11533589 DOI: 10.1016/j.heliyon.2024.e39421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 11/07/2024] Open
Abstract
The paper describes the construction of a new series of pyrimidinone-linked thiazole derivatives through bromination of the initial Biginelli reaction product followed by the Hantzsch thiazole synthesis route. Various analytical techniques, including FT-IR, 1H NMR, 13C NMR, and LCMS analysis, were employed to confirm the formation of the products. The synthesized compounds were primarily evaluated for their antibacterial activity, with a specific focus on their IC50 values. Compound 4c demonstrated the most potent efficacy, displaying MIC and MBC values that varied from 0.23 to 0.71 mg/mL and 0.46-0.95 mg/mL, respectively. The anti-inflammatory potential was also observed in analogs 4a and 4c with marked activity in the 33.2-82.9 μM concentration range. Moreover, compounds 4a, and 4c demonstrated strong antioxidant effects, as reflected by their excellent IC50 values of 38.6-43.5 μM respectively. DFT investigation showed that B. cereus was more susceptible, and E. coli was more resistant, with chloro-substituted compounds exhibiting potential reactivity. Some molecules with chloro-substituents showed promising results in density functional theory when compared to other substituents. In addition, the molecules underwent a corrosion study and demonstrated a high level of inhibition efficiency (4c) in comparison to other molecules. Further in silico studies of the synthesized thiazoles confirmed the good interactions with the target.
Collapse
Affiliation(s)
- K.D. Venu prasad
- Department of Studies in Chemistry. Mangalore University, Mangalagangotri, 574 199, Karnataka, India
| | - Balakrishna Kallauraya
- Department of Studies in Chemistry. Mangalore University, Mangalagangotri, 574 199, Karnataka, India
| | - Ramesh S. Bhat
- Department of Chemistry, NMAM Institute of Technology, NITTE (Deemed to be University), Nitte, 574110, India
| | - Subrahmanya I. Bhat
- Department of Chemistry, NMAM Institute of Technology, NITTE (Deemed to be University), Nitte, 574110, India
| | - Vinuta Kamat
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India
| | - Mahesh Akki
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India
| | - Amit Kumar
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India
| | - K. Jyothi
- Department of Chemistry, St. Joseph Engineering College, Mangalore, 575028, India
| | - B.R. Bharat
- Jai Research Foundation, Valvada, Vapi, Gujarat, 396105, India
| |
Collapse
|
3
|
Lotfi Shahpar E, Mahdavi A, Mohamadnia Z. Inhibitory Effects, Fluorescence Studies, and Molecular Docking Analysis of Some Novel Pyridine-Based Compounds on Mushroom Tyrosinase. Biochemistry 2024; 63:2063-2074. [PMID: 39110954 DOI: 10.1021/acs.biochem.4c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Melanin biosynthesis in different organisms is performed by a tyrosinase action. Excessive enzyme activity and pigment accumulation result in different diseases and disorders including skin cancers, blemishes, and darkening. In fruits and vegetables, it causes unwanted browning of these products and reduces their appearance quality and economic value. Inhibiting enzyme activity and finding novel powerful and safe inhibitors are highly important in agriculture, food, medical, and pharmaceutical industries. In this regard, in the present study, some novel synthetic pyridine-based compounds including 2,6-bis (tosyloxymethyl) pyridine (compound 3), 2,6-bis (butylthiomethyl) pyridine (compound 4), and 2,6-bis (phenylthiomethyl) pyridine (compound 5) were synthesized for the first time, and their inhibitory potencies were assessed on mushroom tyrosinase diphenolase activity. The results showed that while all tested compounds significantly decreased the enzyme activity, compounds 4 and 5 had the highest inhibitory effects (respectively, 80 and 89% inhibition with the IC50 values of 17.0 and 9.0 μmol L-1), and the inhibition mechanism was mixed-type for both compounds. Ligand-binding studies were carried out by fluorescence quenching and molecular docking methods to investigate the enzyme-compound interactions. Fluorescence quenching results revealed that the compounds can form nonfluorescent complexes with the enzyme and result in quenching of its intrinsic emission by the static process. Molecular docking analyses predicted the binding positions and the amino acid residues involved in the interactions. These compounds appear to be suitable candidates for more studies on tyrosinase inhibition.
Collapse
Affiliation(s)
- Elahe Lotfi Shahpar
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Gavazang, Zanjan 45195-1159, Iran
| | - Atiyeh Mahdavi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Gavazang, Zanjan 45195-1159, Iran
| | - Zahra Mohamadnia
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gavazang, Zanjan 45195-1159, Iran
| |
Collapse
|
4
|
Alkorbi F, Alshareef SA, Abdelaziz MA, Omer N, Jame R, Alatawi IS, Ali AM, Omran OA, Bakr RB. Multicomponent reaction for synthesis, molecular docking, and anti-inflammatory evaluation of novel indole-thiazole hybrid derivatives. Mol Divers 2024:10.1007/s11030-024-10969-8. [PMID: 39143406 DOI: 10.1007/s11030-024-10969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
In this article, novel thiazol-indolin-2-one derivatives 4a-f have been synthesized via treatment of thiosemicarbazide (1) with some isatin derivative 2a-f and N-(4-(2-bromoacetyl)phenyl)-4-tolyl-sulfonamide (3) under reflux in ethanol in the presence of triethyl amine (TEA). The structures of new products were elucidated by elemental and spectral analyses. Moreover, all compounds were investigated for their in vivo anti-inflammatory activity using celecoxib as a reference drug. The target compound 4b was the most active anti-inflammatory candidate and exhibited higher edema inhibition (EI = 38.50%) than that recorded by celecoxib (EI = 34.58%) after 3 h. Furthermore, the most active compounds 4b and 4f were subjected to a molecular docking study inside COX-2 enzyme to show their binding interactions. Both compounds 4b and 4f showed good fitting into COX-2 binding site with docking energy scores - 11.45 kcal/mol and - 10.48 kcal/mol, respectively which indicated that compound 4b revealed the most promising and effective anti-inflammatory potential.
Collapse
Affiliation(s)
- Faeza Alkorbi
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, 68342, Sharurah, Saudi Arabia
| | - Shareefa Ahmed Alshareef
- Department of Chemistry, Faculty of Science, University of Tabuk, Alwajh College, Tabuk, 71491, Saudi Arabia
| | - Mahmoud A Abdelaziz
- Department of Chemistry, Faculty of Science, University of Tabuk, Alwajh College, Tabuk, 71491, Saudi Arabia
| | - Noha Omer
- Department of Chemistry, Faculty of Science, University of Tabuk, Alwajh College, Tabuk, 71491, Saudi Arabia
| | - Rasha Jame
- Department of Chemistry, Faculty of Science, University of Tabuk, Alwajh College, Tabuk, 71491, Saudi Arabia
| | - Ibrahim Saleem Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Alwajh College, Tabuk, 71491, Saudi Arabia
| | - Ali M Ali
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| | - Omran A Omran
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Rania B Bakr
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
5
|
Villa-Reyna AL, Perez-Velazquez M, González-Félix ML, Gálvez-Ruiz JC, Gonzalez-Mosquera DM, Valencia D, Ballesteros-Monreal MG, Aguilar-Martínez M, Leyva-Peralta MA. The Structure-Antiproliferative Activity Relationship of Pyridine Derivatives. Int J Mol Sci 2024; 25:7640. [PMID: 39062883 PMCID: PMC11276865 DOI: 10.3390/ijms25147640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Pyridine, a compound with a heterocyclic structure, is a key player in medicinal chemistry and drug design. It is widely used as a framework for the design of biologically active molecules and is the second most common heterocycle in FDA-approved drugs. Pyridine is known for its diverse biological activity, including antituberculosis, antitumor, anticoagulant, antiviral, antimalarial, antileishmania, anti-inflammatory, anti-Alzheimer's, antitrypanosomal, antimalarial, vasodilatory, antioxidant, antimicrobial, and antiproliferative effects. This review, spanning from 2022 to 2012, involved the meticulous identification of pyridine derivatives with antiproliferative activity, as indicated by their minimum inhibitory concentration values (IC50) against various cancerous cell lines. The aim was to determine the most favorable structural characteristics for their antiproliferative activity. Using computer programs, we constructed and calculated the molecular descriptors and analyzed the electrostatic potential maps of the selected pyridine derivatives. The study found that the presence and positions of the -OMe, -OH, -C=O, and NH2 groups in the pyridine derivatives enhanced their antiproliferative activity over the cancerous cellular lines studied. Conversely, pyridine derivatives with halogen atoms or bulky groups in their structures exhibited lower antiproliferative activity.
Collapse
Affiliation(s)
- Ana-Laura Villa-Reyna
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Caborca, Caborca 83600, Mexico; (A.-L.V.-R.); (D.V.); (M.G.B.-M.)
| | - Martin Perez-Velazquez
- Departamento de Investigaciones Científicas y Tecnológicas, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Hermosillo, Hermosillo 83000, Mexico; (M.P.-V.); (M.L.G.-F.)
| | - Mayra Lizett González-Félix
- Departamento de Investigaciones Científicas y Tecnológicas, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Hermosillo, Hermosillo 83000, Mexico; (M.P.-V.); (M.L.G.-F.)
| | - Juan-Carlos Gálvez-Ruiz
- Departamento de Ciencias Químico Biológicas, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Hermosillo, Hermosillo 83000, Mexico;
| | - Dulce María Gonzalez-Mosquera
- Departamento de Farmacia, Facultad de Química-Farmacia, Universidad Central Marta Abreu Las Villitas, Santa Clara, Cuba;
| | - Dora Valencia
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Caborca, Caborca 83600, Mexico; (A.-L.V.-R.); (D.V.); (M.G.B.-M.)
| | - Manuel G. Ballesteros-Monreal
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Caborca, Caborca 83600, Mexico; (A.-L.V.-R.); (D.V.); (M.G.B.-M.)
| | - Milagros Aguilar-Martínez
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Caborca, Caborca 83600, Mexico; (A.-L.V.-R.); (D.V.); (M.G.B.-M.)
| | - Mario-Alberto Leyva-Peralta
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Caborca, Caborca 83600, Mexico; (A.-L.V.-R.); (D.V.); (M.G.B.-M.)
| |
Collapse
|
6
|
Devi R, Singh G, Singh A, Singh J, Kaur N, Singh N. Silver and Copper Nanoparticle-Loaded Self-Assembled Pseudo-Peptide Thiourea-Based Organic-Inorganic Hybrid Gel with Antibacterial and Superhydrophobic Properties for Antifouling Surfaces. ACS APPLIED BIO MATERIALS 2024; 7:4162-4174. [PMID: 38769764 DOI: 10.1021/acsabm.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The escalating threat of antimicrobial resistance has become a global health crisis. Therefore, there is a rising momentum in developing biomaterials with self-sanitizing capabilities and inherent antibacterial properties. Despite their promising antimicrobial properties, metal nanoparticles (MNPs) have several disadvantages, including increased toxicity as the particle size decreases, leading to oxidative stress and DNA damage that need consideration. One solution is surface functionalization with biocompatible organic ligands, which can improve nanoparticle dispersibility, reduce aggregation, and enable targeted delivery to microbial cells. The existing research predominantly concentrates on the advancement of peptide-based hydrogels for coating materials to prevent bacterial infection, with limited exploration of developing surface coatings using organogels. Herein, we have synthesized organogel-based coatings doped with MNPs that can offer superior hydrophobicity, oleophobicity, and high stability that are not easily achievable with hydrogels. The self-assembled gels displayed distinct morphologies, as revealed by scanning electron microscopy and atomic force microscopy. The cross-linked matrix helps in the controlled and sustained release of MNPs at the site of bacterial infection. The synthesized self-assembled gel@MNPs exhibited excellent antibacterial properties against harmful bacteria such as Escherichia coli and Staphylococcus aureus and reduced bacterial viability up to 95% within 4 h. Cytotoxicity testing against metazoan cells demonstrated that the gels doped with MNPs were nontoxic (IC50 > 100 μM) to mammalian cells. Furthermore, in this study, we coated the organogel@MNPs on cotton fabric and tested it against Gram +ve and Gram -ve bacteria. Additionally, the developed cotton fabric exhibited superhydrophobic properties and developed a barrier that limits the interaction between bacteria and the surface, making it difficult for bacteria to adhere and colonize, which holds potential as a valuable resource for self-cleaning coatings.
Collapse
Affiliation(s)
- Renu Devi
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Gagandeep Singh
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Anoop Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Jagdish Singh
- Bioprocess Technology Laboratory, Department of Biotechnology, Mata Gujri College Fatehgarh Sahib, Fatehgarh Sahib, Punjab 140406, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University Chandigarh, Chandigarh 160014, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
7
|
Rzycki M, Drabik D. Multifaceted Activity of Fabimycin: Insights from Molecular Dynamics Studies on Bacterial Membrane Models. J Chem Inf Model 2024; 64:4204-4217. [PMID: 38733348 PMCID: PMC11134499 DOI: 10.1021/acs.jcim.4c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Membranes─cells' essential scaffolds─are valid molecular targets for substances with an antimicrobial effect. While certain substances, such as octenidine, have been developed to target membranes for antimicrobial purposes, the recently reported molecule, fabimycin (F2B)─a novel agent targeting drug-resistant Gram-negative bacteria─has not received adequate attention regarding its activity on membranes in the literature. The following study aims to investigate the effects of F2B on different bacterial membrane models, including simple planar bilayers and more complex bilayer systems that mimic the Escherichia coli shell equipped with double inner and outer bilayers. Our results show that F2B exhibited more pronounced interactions with bacterial membrane systems compared to the control PC system. Furthermore, we observed significant changes in local membrane property homeostasis in both the inner and outer membrane models, specifically in the case of lateral diffusion, membrane thickness, and membrane resilience (compressibility, tilt). Finally, our results showed that the effect of F2B differed in a complex system and a single membrane system. Our study provides new insights into the multifaceted activity of F2B, demonstrating its potential to disrupt bacterial membrane homeostasis, indicating that its activity extends the currently known mechanism of FabI enzyme inhibition. This disruption, coupled with the ability of F2B to penetrate the outer membrane layers, sheds new light on the behavior of this antimicrobial molecule. This highlights the importance of the interaction with the membrane, crucial in combating bacterial infections, particularly those caused by drug-resistant strains.
Collapse
Affiliation(s)
- Mateusz Rzycki
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| | - Dominik Drabik
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| |
Collapse
|
8
|
Podila N, Penddinti NK, Rudrapal M, Rakshit G, Konidala SK, Pulusu VS, Bhandare RR, Shaik AB. Design, synthesis, biological and computational screening of novel pyridine-based thiadiazole derivatives as prospective anti-inflammatory agents. Heliyon 2024; 10:e29390. [PMID: 38655368 PMCID: PMC11036016 DOI: 10.1016/j.heliyon.2024.e29390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/12/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
In this study, a novel series of pyridine-based thiadiazole derivatives (NTD1-NTD5) were synthesized as prospective anti-inflammatory agents by combining substituted carboxylic acid derivatives of 5-substituted-2-amino-1,3,4-thiadiazole with nicotinoyl isothiocyanate in the presence of acetone. The newly synthesized compounds were characterized by FTIR, 1H NMR, 13C NMR, and mass spectrometry. First, the compounds underwent rigorous in vivo testing for acute toxicity and anti-inflammatory activity and the results revealed that three compounds-NTD1, NTD2, and NTD3, displayed no acute toxicity and significant anti-inflammatory activity, surpassing the efficacy of the standard drug, diclofenac. Notably, NTD3, which featured benzoic acid substitution, emerged as the most potent anti-inflammatory agent among the screened compounds. To further validate these findings, an in silico docking study was carried out against COX-2 bound to diclofenac (PDB ID: 1pxx). The computational analysis demonstrated that NTD2, and NTD3, exhibited substantial binding affinity, with the lowest binding energies (-8.5 and -8.4, kcal/mol) compared to diclofenac (-8.4 kcal/mol). This alignment between in vivo and in silico data supported the robust anti-inflammatory potential of these derivatives. Moreover, molecular dynamics simulations were conducted, extending over 100 ns, to examine the dynamic interactions between the ligands and the target protein. The results solidified NTD3's position as a leading candidate, showing potent inhibitory activity through strong and sustained interactions, including stable hydrogen bond formations. This was further confirmed by RMSD values of 2-2.5 Å and 2-3Ǻ, reinforcing NTD3's potential as a useful anti-inflammatory agent. The drug likeness analysis of NTD3 through SwissADME indicated that most of the predicted parameters including Lipinski rule were within acceptable limits. While these findings are promising, further research is necessary to elucidate the precise relationships between the chemical structures and their activity, as well as to understand the mechanisms underlying their pharmacological effects. This study lays the foundation for the development of novel anti-inflammatory therapeutics, potentially offering improved efficacy and safety profiles.
Collapse
Affiliation(s)
- Naresh Podila
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur, 522213, Andhra Pradesh, India
| | | | - Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur, 522213, Andhra Pradesh, India
| | - Gourav Rakshit
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, India, Ranchi, 835215, Jharkhand, India
| | - Sathish Kumar Konidala
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur, 522213, Andhra Pradesh, India
| | - Veera Shakar Pulusu
- Ohio University, Department of Chemistry & Biochemistry, Athens, OH, USA, 45701
| | - Richie R. Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, P O Box 346, Ajman, United Arab Emirates
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, P O Box 346, Ajman, United Arab Emirates
| | - Afzal B. Shaik
- St. Mary's College of Pharmacy, St. Mary's Group of Institutions Guntur, Affiliated to Jawaharlal Nehru Technological University Kakinada, Chebrolu, Guntur, 522212, Andhra Pradesh, India
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| |
Collapse
|
9
|
Sabarees G, Velmurugan V, Gouthaman S, Solomon VR, Kandhasamy S. Fabrication of Quercetin-Functionalized Morpholine and Pyridine Motifs-Laden Silk Fibroin Nanofibers for Effective Wound Healing in Preclinical Study. Pharmaceutics 2024; 16:462. [PMID: 38675123 PMCID: PMC11054860 DOI: 10.3390/pharmaceutics16040462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Choosing suitable wound dressings is crucial for effective wound healing. Spun scaffolds with bioactive molecule functionalization are gaining attention as a promising approach to expedite tissue repair and regeneration. Here, we present the synthesis of novel multifunctional quercetin with morpholine and pyridine functional motifs (QFM) embedded in silk fibroin (SF)-spun fibers (SF-QFM) for preclinical skin repair therapies. The verification of the novel QFM structural arrangement was characterized using ATR-FTIR, NMR, and ESI-MS spectroscopy analysis. Extensive characterization of the spun SF-QFM fibrous mats revealed their excellent antibacterial and antioxidant properties, biocompatibility, biodegradability, and remarkable mechanical and controlled drug release capabilities. SF-QFM mats were studied for drug release in pH 7.4 PBS over 72 h. The QFM-controlled release is mainly driven by diffusion and follows Fickian's law. Significant QFM release (40%) occurred within the first 6 h, with a total release of 79% at the end of 72 h, which is considered beneficial in effectively reducing bacterial load and helping expedite the healing process. Interestingly, the SF-QFM-spun mat demonstrated significantly improved NIH 3T3 cell proliferation and migration compared to the pure SF mat, as evidenced by the complete migration of NIH 3T3 cells within 24 h in the scratch assay. Furthermore, the in vivo outcome of SF-QFM was demonstrated by the regeneration of fresh fibroblasts and the realignment of collagen fibers deposition at 9 days post-operation in a preclinical rat full-thickness skin defect model. Our findings collectively indicate that the SF-QFM electrospun nanofiber scaffolds hold significant capability as a cost-effective and efficient bioactive spun architecture for use in wound healing applications.
Collapse
Affiliation(s)
- Govindaraj Sabarees
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India;
| | - Vadivel Velmurugan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India;
| | - Siddan Gouthaman
- Organic Material Laboratory, Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India;
| | - Viswas Raja Solomon
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Gr. Hyderabad, Sangareddy 502294, India;
| | - Subramani Kandhasamy
- School of Mechanical and Electrical Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China
| |
Collapse
|
10
|
Suriya U, Mahalapbutr P, Geronikaki A, Kartsev V, Zubenko A, Divaeva L, Chekrisheva V, Petrou A, Oopkaew L, Somngam P, Choowongkomon K, Rungrotmongkol T. Discovery of furopyridine-based compounds as novel inhibitors of Janus kinase 2: In silico and in vitro studies. Int J Biol Macromol 2024; 260:129308. [PMID: 38218283 DOI: 10.1016/j.ijbiomac.2024.129308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
Janus kinase 2 (JAK2), one of the JAK isoforms participating in a JAK/STAT signaling cascade, has been considered a potential clinical target owing to its critical role in physiological processes involved in cell growth, survival, development, and differentiation of various cell types, especially immune and hematopoietic cells. Substantial studies have proven that the inhibition of this target could disrupt the JAK/STAT pathway and provide therapeutic outcomes for cancer, immune disorders, inflammation, and COVID-19. Herein, we performed docking-based virtual screening of 63 in-house furopyridine-based compounds and verified the first-round screened compounds by in vitro enzyme- and cell-based assays. By shedding light on the integration of both in silico and in vitro methods, we could elucidate two promising compounds. PD19 showed cytotoxic effects on human erythroblast cell lines (TF-1 and HEL) with IC50 values of 57.27 and 27.28 μM, respectively, while PD12 exhibited a cytotoxic effect on TF-1 with an IC50 value of 83.47 μM by suppressing JAK2/STAT5 autophosphorylation. In addition, all screened compounds were predicted to meet drug-like criteria based on Lipinski's rule of five, and none of the extreme toxicity features were found. Molecular dynamic simulations revealed that PD12 and PD19 could form stable complexes with JAK2 in an aqueous environment, and the van der Waals interactions were the main force driving the complex formation. Besides, all compounds sufficiently interacted with surrounding amino acids in all crucial regions, including glycine, catalytic, and activation loops. Altogether, PD12 and PD19 identified here could potentially be developed as novel therapeutic inhibitors disrupting the JAK/STAT pathway.
Collapse
Affiliation(s)
- Utid Suriya
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khan Kaen 40002, Thailand.
| | - Athina Geronikaki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | | | - Alexsander Zubenko
- North-Caucasian Zonal Research Veterinary Institute, 346406 Novocherkassk, Russia
| | - Liudmila Divaeva
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Victoria Chekrisheva
- North-Caucasian Zonal Research Veterinary Institute, 346406 Novocherkassk, Russia
| | - Anthi Petrou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Lipika Oopkaew
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Phitchakorn Somngam
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Chulalongkorn University, Bangkok 10330, Thailand; Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
11
|
Mahnashi MH, Rashid U, Almasoudi HH, Nahari MH, Ahmad I, Binshaya AS, Abdulaziz O, Alsuwat MA, Jan MS, Sadiq A. Modification of 4-(4-chlorothiophen-2-yl)thiazol-2-amine derivatives for the treatment of analgesia and inflammation: synthesis and in vitro, in vivo, and in silico studies. Front Pharmacol 2024; 15:1366695. [PMID: 38487174 PMCID: PMC10937574 DOI: 10.3389/fphar.2024.1366695] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/16/2024] [Indexed: 03/17/2024] Open
Abstract
Inflammation is a protective response to a variety of infectious agents. To develop a new anti-inflammatory drug, we explored a pharmacologically important thiazole scaffold in this study. In a multi-step synthetic approach, we synthesized seven new thiazole derivatives (5a-5g). Initially, we examined the in vitro anti-inflammatory potentials of our compounds using COX-1, COX-2, and 5-LOX enzyme assays. After in vitro confirmation, the potential compounds were subjected to in vivo analgesic and anti-inflammatory studies. The hot plate method was used for analgesia, and carrageenan-induced inflammation was also assayed. Overall, all our compounds proved to be potent inhibitors of COX-2 compared to celecoxib (IC50 0.05 μM), exhibiting IC50 values in the range of 0.76-9.01 μM .Compounds 5b, 5d, and 5e were dominant and selective COX-2 inhibitors with the lowest IC50 values and selectivity index (SI) values of 42, 112, and 124, respectively. Similarly, in the COX-1 assay, our compounds were relatively less potent but still encouraging. Standard aspirin exhibited an IC50 value of 15.32 μM. In the 5-LOX results, once again, compounds 5d and 5e were dominant with IC50 values of 23.08 and 38.46 μM, respectively. Standard zileuton exhibited an IC50 value of 11.00 μM. Based on the COX/LOX and SI potencies, the compounds 5d and 5e were subjected to in vivo analgesic and anti-inflammatory studies. Compounds 5d and 5e at concentrations of 5, 10, and 20 mg/kg body weight were significant in animal models. Furthermore, we explored the potential role of compounds 5d and 5e in various phlogistic agents. Similarly, both compounds 5d and 5e were also significantly potent in the anti-nociceptive assay. The molecular docking interactions of these two compounds with the target proteins of COX and LOX further strengthened their potential for use in COX/LOX pathway inhibitions.
Collapse
Affiliation(s)
- Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, Pharmacy School, Najran University, Najran, Saudi Arabia
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Hassan Hussain Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Mohammed H. Nahari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Imran Ahmad
- Faculty of Pharmacy, Bahauddin Zakaria University, Multan, Pakistan
| | - Abdulkarim S. Binshaya
- Department of Medical Laboratory Sciences, College of Applied medical sciences, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Osama Abdulaziz
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Al-Taif, Saudi Arabia
| | - Meshari A. Alsuwat
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Al-Taif, Saudi Arabia
| | | | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, Pakistan
| |
Collapse
|
12
|
Nguyen HT, Van KT, Pham-The H, Braire J, Thi PH, Nguyen TA, Nguyen Thi QG, Dang Thi TA, Le-Nhat-Thuy G, Le Thi TA, Ngoc DV, Nguyen Van T. Synthesis, molecular docking analysis and in vitro evaluation of new heterocyclic hybrids of 4-aza-podophyllotoxin as potent cytotoxic agents. RSC Adv 2024; 14:1838-1853. [PMID: 38192320 PMCID: PMC10772362 DOI: 10.1039/d3ra07396c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024] Open
Abstract
Two different synthetic approaches to novel heterocyclic hybrid compounds of 4-azapodophyllotoxin were investigated. The obtained products were characterized by infrared spectroscopy, nuclear magnetic resonance spectroscopy, and high-resolution mass spectrometry. MTT protocol was then performed to examine the cytotoxic activity of these products against KB, HepG2, A549, MCF7, and Hek-293 cell lines. The cytotoxic assessment indicated that all products displayed moderate to high cytotoxicity against all tested cancer cell lines. The most active compound 13k containing the 2-methoxypyridin-4-yl group exhibited selective cytotoxicity against KB, A549, and HepG2 cell lines with the IC50 values ranging from 0.23 to 0.27 μM, which were between 5- to 10-fold more potent than the positive control ellipticine. Compounds 13a (HetAr = thiophen-3-yl) and 13d (HetAr = 5-bromofuran-2-yl) displayed high cytotoxic selectivity for A549 and HepG2 cancer cell lines when compared to the other cancer cell lines and low toxicity to the normal Hek-293 cell line. Molecular docking study was conducted to evaluate the interaction of new synthesized compounds with the colchicine-binding-site of tubulin. Besides that, physicochemical and pharmacokinetic properties of the most active compounds 13h,k were predicted.
Collapse
Affiliation(s)
- Ha Thanh Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Ket Tran Van
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Military Technical Academy 236 Hoang Quoc Viet, Bac Tu Liem Hanoi Vietnam
| | - Hai Pham-The
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Julien Braire
- Université de Rennes 1 2 Av. du Professeur Léon Bernard 35042 Rennes France
| | - Phuong Hoang Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Tuan Anh Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Quynh Giang Nguyen Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Tuyet Anh Dang Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Giang Le-Nhat-Thuy
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Tu Anh Le Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Doan Vu Ngoc
- Military Technical Academy 236 Hoang Quoc Viet, Bac Tu Liem Hanoi Vietnam
| | - Tuyen Nguyen Van
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| |
Collapse
|
13
|
Shaker ME, Goma HAM, Alsalahat I, Elkanzi NAA, Azouz AA, Abdel-Bakky MS, Ghoneim MM, Hazem SH, El-Mesery ME, Farouk A, Alzarea SI, Alsahli TG, Alotaibi NH, Musa A, Abdelgawad MA, Bakr RB. Design and construction of novel pyridine-pyrimidine hybrids as selective COX-2 suppressors: anti-inflammatory potential, ulcerogenic profile, molecular modeling and ADME/Tox studies. J Biomol Struct Dyn 2023:1-14. [PMID: 38153371 DOI: 10.1080/07391102.2023.2293257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
NSAIDs represent a mainstay in pain and inflammation suppression, and their actions are mainly based on inhibiting COX-1 and COX-2 enzymes.Due to the adverse effects of these drugs, especially on the stomach and heart, scientists efforts have been directed to manufacture selective COX-2 without cardiovascular side effects and with minimal effects on the stomach. The cardiovascular side effects are thought to be related to the chemical composition rather than mechanism of action of these drugs.Novel pyridopyrimidines, 9a-j, were prepared and their chemical structures were confirmed by NMR, mass and IR Spectra, and elemental analysis. The effect of the 9a-j compounds on COX-1 and COX-2 was assessed and it was found that 2-hydrazino-5-(4-methoxyphenyl)-7-phenyl-3H-pyrido[2,3-d)pyrimidin-4-one (9d) was the most potent COX-2 inhibitor (IC50 = 0.54 uM) compared to celecoxib (IC50 = 1.11 uM) with selectivity indices of 6.56 and 5.12, respectively.The in vivo inhibition of paw edema of novel compounds 9a-j was measured using carrageenan-induced paw edema method, and that 2-hydrazino-5-(4-methoxyphenyl)-7-phenyl-3H-pyrido[2,3-d)pyrimidin-4-one (9d) showed the best inhibitory activity in comparison with the other compounds and celecoxib.The gastroprotective effect of the potent derivatives 9d, 9e, 9f, 9 g and 9h was investigated. 2-Hydrazino-5-(4-methoxyphenyl)-7-phenyl-3H-pyrido[2,3-d)pyrimidin-4-one (9d) and 7-(chlorophenyl)-hydrazino-5-(4-methoxyphenyl)-3H-pyrido[2,3-d)pyrimidin-4-one (9e) showed ulcer indices comparable to celecoxib (1 and 0.5 vs 0.5, respectively). Docking studies were carried out and they confirmed the mechanistic action of the designed compoundsCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohamed E Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Hesham A M Goma
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Izzeddin Alsalahat
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff, UK
| | - Nadia A A Elkanzi
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Amany A Azouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed Sadek Abdel-Bakky
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Sara H Hazem
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed E El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Amr Farouk
- Flavour and Aroma Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Tariq G Alsahli
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Nasser Hadal Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Rania B Bakr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
14
|
Metwally NH, Elgemeie GH, Fahmy FG. Synthesis and Biological Evaluation of Benzothiazolyl-pyridine Hybrids as New Antiviral Agents against H5N1 Bird Flu and SARS-COV-2 Viruses. ACS OMEGA 2023; 8:36636-36654. [PMID: 37841136 PMCID: PMC10568744 DOI: 10.1021/acsomega.3c01987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/18/2023] [Indexed: 10/17/2023]
Abstract
A novel series of benzothiazolyl-pyridine hybrids 8a-h and 14a-e were produced from the reaction of enamine derivative 4 with each of the arylcyanoacetamides 5a-h and cyanoacetohydrazides 9a-e. The new products were characterized by spectral techniques (IR, 1H NMR, 13C NMR, and MS). Biological evaluation of 8a-h and 14a-e in vitro against H5N1 and SARS-COV-2 viruses showed that several compounds had significant activity. Compounds 8f-h, which contain fluorine atoms, have better activity against H5N1 and anti-SARS-CoV-2 viruses than the other compounds included in this study. Compound 8h has a trifluoromethyl group at position-3 of the phenyl ring and exhibits a high activity against H5N1 virus with 93 and 60% inhibition at concentrations of 0.5 and 0.25 μmol/μL, respectively, among the tested compounds, and it also showed anti-SARS-CoV-2 virus with a half-maximum inhibition rate of 3.669 μM, among the remaining compounds. The mechanism of action of 8f-h, which is expected to be repurposed against COVID-19, was investigated. The results showed that the compounds have virucidal effects at different stages of the three mechanisms of action. Furthermore, compounds 8f-h were found to possess CoV-3CL protease inhibitory activities with IC50 values of 544.6, 868.2, and 240.6 μg/mL, respectively, compared to IC50 = 129.8 μg/mL of the standard drug lopinavir. Interestingly, compounds 8f-h also showed high inhibitory activity against the H5N1 virus as well as the SARS-CoV-2 virus. Moreover, compounds 8f-h fit admirably into the active site of the SARS-CoV-2 main protease (PDB ID: 6LU7) using the molecular docking Moe software 2015.10.
Collapse
Affiliation(s)
| | | | - Fatma Gomaa Fahmy
- Chemistry
Department, Faculty of Science, Cairo University, Cairo 12613, Egypt
| |
Collapse
|
15
|
Abd El-Karim SS, Mahmoud AH, Al-Mokaddem AK, Ibrahim NE, Alkahtani HM, Zen AA, Anwar MM. Development of a New Benzofuran-Pyrazole-Pyridine-Based Molecule for the Management of Osteoarthritis. Molecules 2023; 28:6814. [PMID: 37836657 PMCID: PMC10574112 DOI: 10.3390/molecules28196814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Osteoarthritis is a substantial burden for patients with the disease. The known medications for the disease target the mitigation of the disease's symptoms. So, drug development for the management of osteoarthritis represents an important challenge in the medical field. This work is based on the development of a new benzofuran-pyrazole-pyridine-based compound 8 with potential anti-inflammatory and anti-osteoarthritis properties. Microanalytical and spectral data confirmed the chemical structure of compound 8. The biological assays indicated that compound 8 produces multifunctional activity as an anti-osteoarthritic candidate via inhibition of pro-inflammatory mediators, including RANTES, CRP, COMP, CK, and LPO in OA rats. Histopathological and pharmacokinetic studies confirmed the safety profile of the latter molecule. Accordingly, compound 8 is considered a promising anti-osteoarthritis agent and deserves deeper investigation in future trials.
Collapse
Affiliation(s)
- Somaia S. Abd El-Karim
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), El Bohouth St., Dokki, Cairo 12622, Egypt;
| | - Ahlam H. Mahmoud
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), El Bohouth St., Dokki, Cairo 12622, Egypt;
| | - Asmaa K. Al-Mokaddem
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt;
| | - Noha E. Ibrahim
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre (NRC), El Bohouth St., Dokki, Cairo 12622, Egypt;
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Amer Alhaj Zen
- Chemistry & Forensics Department, Clifton Campus, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - Manal M. Anwar
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), El Bohouth St., Dokki, Cairo 12622, Egypt;
| |
Collapse
|
16
|
Taj MB, Raheel A, Alelwani W, Alnajeebi AM, Alnoman RB, Javed T. Mechanochemical Synthesis of Thiazolidinone-Triazoles Derivatives as Antidiabetic Agents: Pharmacokinetics, Molecular Docking, and In Vitro Antidiabetic Properties. RUSS J GEN CHEM+ 2023; 93:912-919. [PMID: 37252637 PMCID: PMC10209927 DOI: 10.1134/s1070363223040199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 05/31/2023]
Abstract
Mechanochemistry is an eco-friendly and solventless method. In the present study, the surface of a custom-made closed mortar and pestle is used as a catalyst to synthesize thiazolidinone-triazole derivatives successfully. The compounds were subjected to potential antidiabetic activity. The results showed that para-chloro-substituted derivative (9c) is most active with IC50 values of 10±1.56. All three compounds 9a-9c with a maximum of 20% inhibition for ALR1 represent superior selectivity toward the targeted ALR2 to act as a lead in the search for new antidiabetic agents.
Collapse
Affiliation(s)
- M. B. Taj
- Institute of Chemistry, Islamia University Bahawalpur, 63100 Bahawalpur, Pakistan
| | - A. Raheel
- Department of Chemistry, Quaid-e-Azam University, 44000 Islamabad, Pakistan
| | - W. Alelwani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - A. M. Alnajeebi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - R. B. Alnoman
- Faculty of Science, Chemistry Department, Taibah University, Yanbu Branch, Yanbu, Saudi Arabia
| | - T. Javed
- Department of Chemistry, University of Sahiwal, 57000 Sahiwal, Pakistan
| |
Collapse
|
17
|
Islam MB, Islam MI, Nath N, Emran TB, Rahman MR, Sharma R, Matin MM. Recent Advances in Pyridine Scaffold: Focus on Chemistry, Synthesis, and Antibacterial Activities. BIOMED RESEARCH INTERNATIONAL 2023; 2023:9967591. [PMID: 37250749 PMCID: PMC10212683 DOI: 10.1155/2023/9967591] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/06/2023] [Accepted: 04/29/2023] [Indexed: 05/31/2023]
Abstract
Multidrug-resistant (MDR) pathogens have created a fatal problem for human health and antimicrobial treatment. Among the currently available antibiotics, many are inactive against MDR pathogens. In this context, heterocyclic compounds/drugs play a vital role. Thus, it is very much essential to explore new research to combat the issue. Of the available nitrogen-bearing heterocyclic compounds/drugs, pyridine derivatives are of special interest due to their solubility. Encouragingly, some of the newly synthesized pyridine compounds/drugs are found to inhibit multidrug-resistant S. aureus (MRSA). Pyridine scaffold bearing poor basicity generally improves water solubility in pharmaceutically potential molecules and has led to the discovery of numerous broad-spectrum therapeutic agents. Keeping these in mind, we have reviewed the chemistry, recent synthetic techniques, and bacterial preventative activity of pyridine derivatives since 2015. This will facilitate the development of pyridine-based novel antibiotic/drug design in the near future as a versatile scaffold with limited side effects for the next-generation therapeutics.
Collapse
Affiliation(s)
- Md. Badrul Islam
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Hathazari, Chittagong 4331, Bangladesh
| | - Md. Inshaful Islam
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Hathazari, Chittagong 4331, Bangladesh
| | - Nikhil Nath
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Rezaur Rahman
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, Kota Samarahan 94300, Malaysia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh, India
| | - Mohammed Mahbubul Matin
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Hathazari, Chittagong 4331, Bangladesh
| |
Collapse
|
18
|
Eletmany MR, Aziz Albalawi M, Alharbi RA, Elamary RB, Harb AEFA, Selim MA, Sayed Abdelgeliel A, Hassan EA, Abdellah IM. Novel arylazo nicotinate derivatives as effective antibacterial agents: Green synthesis, molecular modeling, and structure-activity relationship studies. JOURNAL OF SAUDI CHEMICAL SOCIETY 2023; 27:101647. [DOI: 10.1016/j.jscs.2023.101647] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
19
|
Bharath kumar M, Hariprasad V, Joshi SD, Jayaprakash GK, L. P, Pani AS, Babu DD, Naik P. Bis(azolyl)pyridine‐2,6‐dicarboxamide Derivatives: Synthesis, Bioassay Analysis and Molecular Docking Studies. ChemistrySelect 2023. [DOI: 10.1002/slct.202204927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
20
|
Synthesis of pyridine and furan based arylated ketones through palladium catalyst with DFT study of their static and frequency dependent NLO response. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
21
|
Kavaliauskas P, Grybaitė B, Vaickelionienė R, Sapijanskaitė-Banevič B, Anusevičius K, Kriaučiūnaitė A, Smailienė G, Petraitis V, Petraitienė R, Naing E, Garcia A, Mickevičius V. Synthesis and Development of N-2,5-Dimethylphenylthioureido Acid Derivatives as Scaffolds for New Antimicrobial Candidates Targeting Multidrug-Resistant Gram-Positive Pathogens. Antibiotics (Basel) 2023; 12:antibiotics12020220. [PMID: 36830130 PMCID: PMC9952208 DOI: 10.3390/antibiotics12020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
The growing antimicrobial resistance to last-line antimicrobials among Gram-positive pathogens remains a major healthcare emergency worldwide. Therefore, the search for new small molecules targeting multidrug-resistant pathogens remains of great importance. In this paper, we report the synthesis and in vitro antimicrobial activity characterisation of novel thiazole derivatives using representative Gram-negative and Gram-positive strains, including tedizolid/linezolid-resistant S. aureus, as well as emerging fungal pathogens. The 4-substituted thiazoles 3h, and 3j with naphthoquinone-fused thiazole derivative 7 with excellent activity against methicillin and tedizolid/linezolid-resistant S. aureus. Moreover, compounds 3h, 3j and 7 showed favourable activity against vancomycin-resistant E. faecium. Compounds 9f and 14f showed broad-spectrum antifungal activity against drug-resistant Candida strains, while ester 8f showed good activity against Candida auris which was greater than fluconazole. Collectively, these data demonstrate that N-2,5-dimethylphenylthioureido acid derivatives could be further explored as novel scaffolds for the development of antimicrobial candidates targeting Gram-positive bacteria and drug-resistant pathogenic fungi.
Collapse
Affiliation(s)
- Povilas Kavaliauskas
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
- Institute for Genome Sciences, School of Medicine, University of Maryland, 655 W. Baltimore Street, Baltimore, MD 21201, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birštono Str. 38A, LT-59116 Prienai, Lithuania
| | - Birutė Grybaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
| | - Rita Vaickelionienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
| | | | - Kazimieras Anusevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-646-21841
| | - Agnė Kriaučiūnaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
| | - Gabrielė Smailienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
| | - Vidmantas Petraitis
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birštono Str. 38A, LT-59116 Prienai, Lithuania
| | - Rūta Petraitienė
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birštono Str. 38A, LT-59116 Prienai, Lithuania
| | - Ethan Naing
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
| | - Andrew Garcia
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
| |
Collapse
|
22
|
Sangu KG, Dasugari varakala S, Krishna EV, Akhir A, Saxena D, Ahmad MN, Chopra S, Misra S, Sriram D, Rode HB. Synthesis and Bio‐evaluation of GR135486X Derivatives as Potent Anti‐Tubercular Agents. ChemistrySelect 2023. [DOI: 10.1002/slct.202204186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Komal G. Sangu
- Department of Organic Synthesis and Process Chemistry CSIR – Indian Institute of Chemical Technology Tarnaka Hyderabad 500 007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh-201 002 India
| | - Saiprasad Dasugari varakala
- Department of Pharmacy Birla Institute of Technology & Science-Pilani, Hyderabad Campus,Jawahar Nagar, Shameerpet mandal, R.R. District Hyderabad 500 078 India
| | - Eruva Vamshi Krishna
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh-201 002 India
- Department of Applied Biology CSIR-Indian Institute of Chemical Technology, Tarnaka Hyderabad 500 007 India
| | - Abdul Akhir
- Department of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute Sitapur Road, Janakipuram Extension Lucknow 226 031 Uttar Pradesh India
| | - Deepanshi Saxena
- Department of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute Sitapur Road, Janakipuram Extension Lucknow 226 031 Uttar Pradesh India
| | - Mohammad Naiyaz Ahmad
- Department of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute Sitapur Road, Janakipuram Extension Lucknow 226 031 Uttar Pradesh India
| | - Sidharth Chopra
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh-201 002 India
- Department of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute Sitapur Road, Janakipuram Extension Lucknow 226 031 Uttar Pradesh India
| | - Sunil Misra
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh-201 002 India
- Department of Applied Biology CSIR-Indian Institute of Chemical Technology, Tarnaka Hyderabad 500 007 India
| | - Dharmarajan Sriram
- Department of Pharmacy Birla Institute of Technology & Science-Pilani, Hyderabad Campus,Jawahar Nagar, Shameerpet mandal, R.R. District Hyderabad 500 078 India
| | - Haridas B. Rode
- Department of Organic Synthesis and Process Chemistry CSIR – Indian Institute of Chemical Technology Tarnaka Hyderabad 500 007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh-201 002 India
| |
Collapse
|
23
|
Chandini K, Al-Ostoot FH, Lohith T, Al-Gunaid MQ, Al-Maswari BM, Sridhar M, Khanum SA. Synthesis, structure elucidation, Hirshfeld surface analysis, energy frameworks and DFT studies of novel ethyl 2-(5-methyl-2-oxopyridin-N-yl)acetate (OPA). J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Haroun M, Petrou A, Tratrat C, Kolokotroni A, Fesatidou M, Zagaliotis P, Gavalas A, Venugopala KN, Sreeharsha N, Nair AB, Elsewedy HS, Geronikaki A. Discovery of 5-Methylthiazole-Thiazolidinone Conjugates as Potential Anti-Inflammatory Agents: Molecular Target Identification and In Silico Studies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238137. [PMID: 36500230 PMCID: PMC9737349 DOI: 10.3390/molecules27238137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
A series of previously synthesized 5-benzyliden-2-(5-methylthiazole-2-ylimino)thiazoli- din-4-one were evaluated for their anti-inflammatory activity on the basis of PASS predictive outcomes. The predictive compounds were found to demonstrate moderate to good anti-inflammatory activity, and some of them displayed better activity than indomethacin used as the reference drug. Structure-activity relationships revealed that the activity of compounds depends not only on the nature of the substituent but also on its position in the benzene ring. The most active compounds were selected to investigate their possible mechanism of action. COX and LOX activity were determined and found that the title compounds were active only to COX-1 enzymes with an inhibitory effect superior to the reference drug naproxen. As for LOX inhibitory activity, the derivatives failed to show remarkable LOX inhibition. Therefore, COX-1 has been identified as the main molecular target for the anti-inflammatory activity of our compounds. The docking study against COX-1 active site revealed that the residue Arg 120 was found to be responsible for activity. In summary, the 5-thiazol-based thiazolidinone derivatives have been identified as a novel class of selective COX-1 inhibitors.
Collapse
Affiliation(s)
- Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: (M.H.); (A.G.); Tel.: +966-550909890 (M.H.); +30-2310-997-616 (A.G.)
| | - Anthi Petrou
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Aggeliki Kolokotroni
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Fesatidou
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Panagiotis Zagaliotis
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10065, USA
| | - Antonis Gavalas
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Heba Sadek Elsewedy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
| | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: (M.H.); (A.G.); Tel.: +966-550909890 (M.H.); +30-2310-997-616 (A.G.)
| |
Collapse
|
25
|
Molecular and Electronic Structures, Spectra, Electrochemistry and Anti‐bacterial Efficacy of Novel Heterocyclic Hydrazones of Phenanthrenequinone and Their Nickel(II) Complexes. ChemistrySelect 2022. [DOI: 10.1002/slct.202202151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Identification of Small Molecule Inhibitors against Mycobacteria in Activated Macrophages. Molecules 2022; 27:molecules27185824. [PMID: 36144572 PMCID: PMC9504936 DOI: 10.3390/molecules27185824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Mycobacterial pathogens are intrinsically resistant to many available antibiotics, making treatment extremely challenging, especially in immunocompromised individuals and patients with underlying and chronic lung conditions. Even with lengthy therapy and the use of a combination of antibiotics, clinical success for non-tuberculous mycobacteria (NTM) is achieved in fewer than half of the cases. The need for novel antibiotics that are effective against NTM is urgent. To identify such new compounds, a whole cell high-throughput screen (HTS) was performed in this study. Compounds from the Chembridge DIVERSet library were tested for their ability to inhibit intracellular survival of M. avium subsp. hominissuis (MAH) expressing dtTomato protein, using fluorescence as a readout. Fifty-eight compounds were identified to significantly inhibit fluorescent readings of MAH. In subsequent assays, it was found that treatment of MAH-infected THP-1 macrophages with 27 of 58 hit compounds led to a significant reduction in intracellular viable bacteria, while 19 compounds decreased M. abscessus subsp. abscessus (Mab) survival rates within phagocytic cells. In addition, the hit compounds were tested in M. tuberculosis H37Ra (Mtb) and 14 compounds were found to exhibit activity in activated THP-1 cells. While the majority of compounds displayed inhibitory activity against both replicating (extracellular) and non-replicating (intracellular) forms of bacteria, a set of compounds appeared to be effective exclusively against intracellular bacteria. The efficacy of these compounds was examined in combination with current antibiotics and survival of both NTM and Mtb were evaluated within phagocytic cells. In time-kill dynamic studies, it was found that co-treatment promoted increased bacterial clearance when compared with the antibiotic or compound group alone. This study describes promising anti-NTM and anti-Mtb compounds with potential novel mechanisms of action that target intracellular bacteria in activated macrophages.
Collapse
|
27
|
Rana J, Chaudhary RP. Synthesis, prototropic tautomerism studies of indenocarbothioamides and their conversion to biologically active indenothiazole derivatives. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121194. [PMID: 35378492 DOI: 10.1016/j.saa.2022.121194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Indenocarbothioamides 2, obtained from reaction of indane-1,3-dione with aryl isothiocyanates, on condensation with 3-chloropentane-2,4-dione and chloroacetyl chloride furnished 1,3-indanedione coupled thiazole and thiazolidin-5-one derivatives, respectively. The structure of the obtained products was assigned on the basis of spectral data (IR, NMR and Mass). Prototropic tautomerism studies of carbothioamides 2 were carried out in solution (1H NMR, 13C NMR and UV-vis), gas phase (Mass) and solid state (IR and X-ray). X-ray diffraction studies of carbothioamide 2a have revealed the existence of enolic form in the solid state. DFT studies of various possible tautomeric forms in gas phase as well as in solution state corroborated by the experimental results. Antibacterial studies of indenothiazole and indenothiazolidin-5-one derivatives have been reported.
Collapse
Affiliation(s)
- Jasneet Rana
- Department of Chemistry, Sant Longowal Institute of Engineering & Technology, Longowal (Sangrur), Punjab 148106, India
| | - R P Chaudhary
- Department of Chemistry, Sant Longowal Institute of Engineering & Technology, Longowal (Sangrur), Punjab 148106, India.
| |
Collapse
|
28
|
Rani P, Kiran, Chahal S, Priyanka, Kataria R, Kumar P, Kumar S, Sindhu J. Unravelling the thermodynamics and binding interactions of bovine serum albumin (BSA) with thiazole based carbohydrazide: Multi-spectroscopic, DFT and molecular dynamics approach. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
29
|
Arshad MF, Alam A, Alshammari AA, Alhazza MB, Alzimam IM, Alam MA, Mustafa G, Ansari MS, Alotaibi AM, Alotaibi AA, Kumar S, Asdaq SMB, Imran M, Deb PK, Venugopala KN, Jomah S. Thiazole: A Versatile Standalone Moiety Contributing to the Development of Various Drugs and Biologically Active Agents. Molecules 2022; 27:molecules27133994. [PMID: 35807236 PMCID: PMC9268695 DOI: 10.3390/molecules27133994] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 12/10/2022] Open
Abstract
For many decades, the thiazole moiety has been an important heterocycle in the world of chemistry. The thiazole ring consists of sulfur and nitrogen in such a fashion that the pi (π) electrons are free to move from one bond to other bonds rendering aromatic ring properties. On account of its aromaticity, the ring has many reactive positions where donor–acceptor, nucleophilic, oxidation reactions, etc., may take place. Molecules containing a thiazole ring, when entering physiological systems, behave unpredictably and reset the system differently. These molecules may activate/stop the biochemical pathways and enzymes or stimulate/block the receptors in the biological systems. Therefore, medicinal chemists have been focusing their efforts on thiazole-bearing compounds in order to develop novel therapeutic agents for a variety of pathological conditions. This review attempts to inform the readers on three major classes of thiazole-bearing molecules: Thiazoles as treatment drugs, thiazoles in clinical trials, and thiazoles in preclinical and developmental stages. A compilation of preclinical and developmental thiazole-bearing molecules is presented, focusing on their brief synthetic description and preclinical studies relating to structure-based activity analysis. The authors expect that the current review may succeed in drawing the attention of medicinal chemists to finding new leads, which may later be translated into new drugs.
Collapse
Affiliation(s)
- Mohammed F. Arshad
- Department of Research and Scientific Communications, Isthmus Research and Publishing House, U-13, Near Badi Masjid, Pulpehlad Pur, New Delhi 110044, India;
- Correspondence: (M.F.A.); or (S.M.B.A.); (M.I.)
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Abdullah Ayed Alshammari
- Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; (A.A.A.); (M.B.A.); (I.M.A.)
| | - Mohammed Bader Alhazza
- Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; (A.A.A.); (M.B.A.); (I.M.A.)
| | - Ibrahim Mohammed Alzimam
- Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; (A.A.A.); (M.B.A.); (I.M.A.)
| | - Md Anish Alam
- Department of Research and Scientific Communications, Isthmus Research and Publishing House, U-13, Near Badi Masjid, Pulpehlad Pur, New Delhi 110044, India;
| | - Gulam Mustafa
- Department of Pharmaceutical Sciences, College of Pharmacy (Al-Dawadmi Campus), Shaqra University, Riyadh 11961, Saudi Arabia;
| | - Md Salahuddin Ansari
- Department of Pharmacy Practice, College of Pharmacy (Al-Dawadmi Campus), Shaqra University, Riyadh 11961, Saudi Arabia;
| | - Abdulelah M. Alotaibi
- Internee, College of Pharmacy (Al-Dawadmi Campus), Shaqra University, Riyadh 11961, Saudi Arabia; (A.M.A.); (A.A.A.)
| | - Abdullah A. Alotaibi
- Internee, College of Pharmacy (Al-Dawadmi Campus), Shaqra University, Riyadh 11961, Saudi Arabia; (A.M.A.); (A.A.A.)
| | - Suresh Kumar
- Drug Regulatory Affair, Department, Pharma Beistand, New Delhi 110017, India;
| | - Syed Mohammed Basheeruddin Asdaq
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Dariyah 13713, Saudi Arabia
- Correspondence: (M.F.A.); or (S.M.B.A.); (M.I.)
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
- Correspondence: (M.F.A.); or (S.M.B.A.); (M.I.)
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan;
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Shahamah Jomah
- Pharmacy Department, Dr. Sulaiman Al-Habib Medical Group, Riyadh 11372, Saudi Arabia;
| |
Collapse
|
30
|
Haroun M, Petrou A, Tratrat C, Kositsi K, Gavalas A, Geronikaki A, Venugopala KN, Harsha NS. Discovery of benzothiazole-based thiazolidinones as potential anti-inflammatory agents: anti-inflammatory activity, soybean lipoxygenase inhibition effect and molecular docking studies. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:485-497. [PMID: 35703013 DOI: 10.1080/1062936x.2022.2084772] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Despite the greatest achievement in the development of anti-inflammatory agents in the last two decades, the current clinical drugs suffer from a variety of complications in community settings and hospital. There is still an urgent need to design novel molecules with better safety profile and with different molecular targets from those in current clinical use. The aim of this research was to discover a series of benzothiazole-based thiazolidinones with lipoxygenase (LOX) inhibitory activity as a mechanism of anti-inflammatory action. Carrageenan-induced mouse foot paw oedema assay was carried out to determine the anti-inflammatory activity, while LOX inhibition was examined through the conversion of sodium linoleate to 13-hydroperoxylinoleic acid. Molecular docking studies were performed using AutoDock 4.2 software. The anti-inflammatory activity of the title compounds was determined in a range of 18.4%-69.57%, where compound #3 was found to be the most potent (69.57%) and also to be more active than the reference drug indomethacin (47%). Moreover, compound #3 showed the highest LOX inhibitory activity with IC50 of 13 μM being less potent to that of the reference NDGA (IC50 = 1.3 μM). Compound #3 has been identified as lead compound for further modification in an attempt to improve anti-inflammatory and LOX inhibitory activities.
Collapse
Affiliation(s)
- M Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - A Petrou
- School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - C Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - K Kositsi
- School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A Gavalas
- School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - K N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - N S Harsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Bangalore, India
| |
Collapse
|
31
|
Nanostructured Na2CaP2O7: A New and Efficient Catalyst for One-Pot Synthesis of 2-Amino-3-Cyanopyridine Derivatives and Evaluation of Their Antibacterial Activity. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A facile and novel synthesis of thirteen 2-amino-3-cyanopyridine derivatives 5(a–m) by a one-pot multicomponent reactions (MCRs) is described for the first time, starting from aromatic aldehydes, malononitrile, methyl ketones, or cyclohexanone and ammonium acetate in the presence of the nanostructured diphosphate Na2CaP2O7 (DIPH) at 80 °C under solvent-free conditions. These compounds were brought into existence in a short period with good to outstanding yields (84–94%). The diphosphate Na2CaP2O7 was synthesized and characterized by different techniques (FT-IR, XRD, SEM, and TEM) and used as an efficient, environmentally friendly, easy-to-handle, harmless, secure, and reusable catalyst. Our study was strengthened by combining five new pyrido[2,3-d]pyrimidine derivatives 6(b, c, g, h, j) by intermolecular cyclization of 2-amino-3-cyanopyridines 5(b, c, g, h, j) with formamide. The synthesized products were characterized by FT-IR, 1H NMR, and 13C NMR and by comparing measured melting points with known values reported in the literature. Gas chromatography/mass spectrometry was used to characterize the newly synthesized products and evaluate their purity. The operating conditions were optimized using a model reaction in which the catalyst amount, temperature, time, and solvent effect were evaluated. Antibacterial activity was tested against approved Gram-positive and Gram-negative strains for previously mentioned compounds.
Collapse
|
32
|
Bhushan D. Varpe, Shailaja B. Jadhav. Schiff Base of Isatin with 2-Thiopheneethylamine and Its Mannich Bases: Synthesis, Docking, and In Vitro Anti-Inflammatory and Antitubercular Activity. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Pyridine Compounds with Antimicrobial and Antiviral Activities. Int J Mol Sci 2022; 23:ijms23105659. [PMID: 35628466 PMCID: PMC9147400 DOI: 10.3390/ijms23105659] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023] Open
Abstract
In the context of the new life-threatening COVID-19 pandemic caused by the SARS-CoV-2 virus, finding new antiviral and antimicrobial compounds is a priority in current research. Pyridine is a privileged nucleus among heterocycles; its compounds have been noted for their therapeutic properties, such as antimicrobial, antiviral, antitumor, analgesic, anticonvulsant, anti-inflammatory, antioxidant, anti-Alzheimer’s, anti-ulcer or antidiabetic. It is known that a pyridine compound, which also contains a heterocycle, has improved therapeutic properties. The singular presence of the pyridine nucleus, or its one together with one or more heterocycles, as well as a simple hydrocarbon linker, or grafted with organic groups, gives the key molecule a certain geometry, which determines an interaction with a specific protein, and defines the antimicrobial and antiviral selectivity for the target molecule. Moreover, an important role of pyridine in medicinal chemistry is to improve water solubility due to its poor basicity. In this article, we aim to review the methods of synthesis of pyridine compounds, their antimicrobial and antiviral activities, the correlation of pharmaceutical properties with various groups present in molecules as well as the binding mode from Molecular Docking Studies.
Collapse
|
34
|
Aboelnaga A, Mansour E, Fahim AM, Elsayed GH. Synthesis, anti-proliferative activity, gene expression, docking and DFT investigation of novel pyrazol-1-yl-thiazol-4(5H)-one derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131945] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Synthesis, Spectral, Crystal structure, Hirshfeld surface, Computational analysis, and Antimicrobial studies of Ethyl-(E)-4-(2-(2-arylidenehydrazinyl)-2-oxoethyl)piperazine-1-carboxylates. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132082] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Mor S, Khatri M. Synthesis, antimicrobial evaluation, α-amylase inhibitory ability and molecular docking studies of 3-alkyl-1-(4-(aryl/heteroaryl)thiazol-2-yl)indeno[1,2-c]pyrazol-4(1H)-ones. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
37
|
Alkyl 2-(2-(arylidene)alkylhydrazinyl)thiazole-4-carboxylates: Synthesis, acetyl cholinesterase inhibition and docking studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
4-(Indol-3-yl)thiazole-2-amines and 4-ιndol-3-yl)thiazole Acylamines as Νovel Antimicrobial Agents: Synthesis, In Silico and In Vitro Evaluation. Pharmaceuticals (Basel) 2021; 14:ph14111096. [PMID: 34832877 PMCID: PMC8624152 DOI: 10.3390/ph14111096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 01/26/2023] Open
Abstract
This manuscript deals with the synthesis and computational and experimental evaluation of the antimicrobial activity of twenty-nine 4-(indol-3-yl)thiazole-2-amines and 4-ιndol-3-yl)thiazole acylamines. An evaluation of antibacterial activity against Gram (+) and Gram (-) bacteria revealed that the MIC of indole derivatives is in the range of 0.06-1.88 mg/mL, while among fourteen methylindole derivatives, only six were active, with an MIC in the range of of 0.47-1.88 mg/mL. S. aureus appeared to be the most resistant strain, while S. Typhimurium was the most sensitive. Compound 5x was the most promising, with an MIC in the range of 0.06-0.12 mg/mL, followed by 5d and 5m. An evaluation of these three compounds against resistant strains, namely MRSA P. aeruginosa and E. coli, revealed that they were more potent against MRSA than ampicillin. Furthermore, compounds 5m and 5x were superior inhibitors of biofilm formation, compared to ampicillin and streptomycin, in terms Compounds 5d, 5m, and 5x interact with streptomycin in additive manner. The antifungal activity of some compounds exceeded or was equipotent to those of the reference antifungal agents bifonazole and ketoconazole. The most potent antifungal agent was found to be compound 5g. Drug likeness scores of compounds was in a range of -0.63 to 0.29, which is moderate to good. According to docking studies, E. coli MurB inhibition is probably responsible for the antibacterial activity of compounds, whereas CYP51 inhibition was implicated in antifungal activity. Compounds appeared to be non-toxic, according to the cytotoxicity assessment in MRC-5 cells.
Collapse
|
39
|
Shafiei M, Toreyhi H, Firoozpour L, Akbarzadeh T, Amini M, Hosseinzadeh E, Hashemzadeh M, Peyton L, Lotfali E, Foroumadi A. Design, Synthesis, and In Vitro and In Vivo Evaluation of Novel Fluconazole-Based Compounds with Promising Antifungal Activities. ACS OMEGA 2021; 6:24981-25001. [PMID: 34604679 PMCID: PMC8482776 DOI: 10.1021/acsomega.1c04016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 05/30/2023]
Abstract
Demand has arisen for developing new azole antifungal agents with the growth of the resistant rate of infective fungal species to current azole antifungals in recent years. Accordingly, the present study reports the synthesis of novel fluconazole (FLC) analogues bearing urea functionality that led to discovering new azole agents with promising antifungal activities. In particular, compounds 8b and 8c displayed broad-spectrum activity and superior in vitro antifungal capabilities compared to the standard drug FLC against sensitive and resistant Candida albicans (C. albicans). The highly active compounds 8b and 8c had potent antibiofilm properties against FLC-resistant C. albicans species. Additionally, these compounds exhibited very low toxicity for three mammalian cell lines and human red blood cells. Time-kill studies revealed that our synthesized compounds displayed a fungicidal mechanism toward fungal growth. Furthermore, a density functional theory (DFT) calculation, additional docking, and independent gradient model (IGM) studies were performed to analyze their structure-activity relationship (SAR) and to assess the molecular interactions in the related target protein. Finally, in vivo results represented a significant reduction in the tissue fungal burden and improvements in the survival rate in a mice model of systemic candidiasis along with in vitro and in silico studies, demonstrating the therapeutic efficiency of compounds 8b and 8c as novel leads for candidiasis drug discovery.
Collapse
Affiliation(s)
- Mohammad Shafiei
- Department
of Medicinal Chemistry, Faculty of Pharmacy, and Drug Design &
Development Research Center, The Institute of Pharmaceutical Sciences
(TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Hossein Toreyhi
- Student
Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Loghman Firoozpour
- Department
of Medicinal Chemistry, Faculty of Pharmacy, and Drug Design &
Development Research Center, The Institute of Pharmaceutical Sciences
(TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Tahmineh Akbarzadeh
- Department
of Medicinal Chemistry, Faculty of Pharmacy, and Drug Design &
Development Research Center, The Institute of Pharmaceutical Sciences
(TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mohsen Amini
- Department
of Medicinal Chemistry, Faculty of Pharmacy, and Drug Design &
Development Research Center, The Institute of Pharmaceutical Sciences
(TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Elaheh Hosseinzadeh
- Department
of Chemistry, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Mehrnoosh Hashemzadeh
- University
of Arizona College of Medicine Phoenix and Pima college, Tucson, Arizona 85750, United States
| | - Lee Peyton
- Department
of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905-0001, United States
| | - Ensieh Lotfali
- Department
of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Alireza Foroumadi
- Department
of Medicinal Chemistry, Faculty of Pharmacy, and Drug Design &
Development Research Center, The Institute of Pharmaceutical Sciences
(TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| |
Collapse
|
40
|
Abeed AAO, El-Emary TI, Alharthi S. Efficient synthetic access to novel indolo[2,3-b]quinoxaline-based heterocycles. Curr Org Synth 2021; 19:177-185. [PMID: 34370643 DOI: 10.2174/1570179418666210809144906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND This paper showed the synthetic capability of the indolo[2,3-b]quinoxaline nucleus to be provided as an excellent precursor for the synthesis of various heterocyclic compounds. These synthetic routes proceed via the formation of 3-(6H-indolo[2,3-b]quinoxalin-6-yl)propane hydrazide (2). The carbohydrazide 2 and its reactions with different reagents give five and six-membered rings, such as 1,3,4-thiadiazole, 1,3,4-oxadiazole, 1,2,4-triazole, and 1,2,4-triazine. METHODS All chemicals used in the current study were of analytical grade. Melting points were determined using an APP Digital ST 15 melting point apparatus and were uncorrected. FT-IR spectra were recorded on a Pye-Unicam SP3-100 and Shimadzu-408 spectrophotometers in KBr pellets and given in (cm-1) KBr. The NMR spectra were detected by a Bruker AV-400 spectrometer (400 MHz for 1H, 100 MHz for 13C and 40.55 MHz for 15N), Institute of Organic Chemistry, Karlsruhe, Germany. Chemical shifts were expressed as δ (ppm) with TMS as an internal reference. Mass spectrometry was provided on a Varian MAT 312 instrument in EI mode (70 eV). RESULTS The target compounds were obtained, and their structures were completely elucidated by various spectral and elemental analyses (Ft-IR, 1H-NMR, 13C-NMR, and mass spectrometry). CONCLUSION The current work showed a view of the reactivity of the carbohydrazide group. The carbohydrazide 2 was obtained from the hydrazinolysis of carboethoxy compound 1 and exploited as a key intermediate to synthesize heterocyclic compounds with different rings.
Collapse
Affiliation(s)
- Ahmed Abdou O Abeed
- Departmentof Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Talaat I El-Emary
- Departmentof Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Sarah Alharthi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099 Taif, 21944, Saudi Arabia
| |
Collapse
|
41
|
Amr AE, Elsayed EA, Al-Sayady AI. Synthesis and Antimicrobial Activity of Novel N3,N5-Bis[1-({1-[2-((E)-benzylidene)hydrazinyl]-1-oxo-3-phenylpropan-2-yl}amino)-3-methyl-1-oxobutan-2-yl]pyridine-3,5-dicarboxamides. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221060177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Biernasiuk A, Banasiewicz A, Masłyk M, Martyna A, Janeczko M, Baranowska-Łączkowska A, Malm A, Łączkowski KZ. Synthesis and Physicochemical Characterization of Novel Dicyclopropyl-Thiazole Compounds as Nontoxic and Promising Antifungals. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3500. [PMID: 34201678 PMCID: PMC8269541 DOI: 10.3390/ma14133500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/24/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022]
Abstract
There is a need to search for new antifungals, especially for the treatment of the invasive Candida infections, caused mainly by C. albicans. These infections are steadily increasing at an alarming rate, mostly among immunocompromised patients. The newly synthesized compounds (3a-3k) were characterized by physicochemical parameters and investigated for antimicrobial activity using the microdilution broth method to estimate minimal inhibitory concentration (MIC). Additionally, their antibiofilm activity and mode of action together with the effect on the membrane permeability in C. albicans were investigated. Biofilm biomass and its metabolic activity were quantitatively measured using crystal violet (CV) staining and tetrazolium salt (XTT) reduction assay. The cytotoxic effect on normal human lung fibroblasts and haemolytic effect were also evaluated. The results showed differential activity of the compounds against yeasts (MIC = 0.24-500 µg/mL) and bacteria (MIC = 125-1000 µg/mL). Most compounds possessed strong antifungal activity (MIC = 0.24-7.81 µg/mL). The compounds 3b, 3c and 3e, showed no inhibitory (at 1/2 × MIC) and eradication (at 8 × MIC) effect on C. albicans biofilm. Only slight decrease in the biofilm metabolic activity was observed for compound 3b. Moreover, the studied compounds increased the permeability of the membrane/cell wall of C. albicans and their mode of action may be related to action within the fungal cell wall structure and/or within the cell membrane. It is worth noting that the compounds had no cytotoxicity effect on pulmonary fibroblasts and erythrocytes at concentrations showing anticandidal activity. The present studies in vitro confirm that these derivatives appear to be a very promising group of antifungals for further preclinical studies.
Collapse
Affiliation(s)
- Anna Biernasiuk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Anna Banasiewicz
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland; (A.B.); (K.Z.Ł.)
| | - Maciej Masłyk
- Department of Molecular Biology, Faculty of Science and Health, The John Paul II Catholic University of Lublin, Konstantynów 1i, 20-708 Lublin, Poland; (M.M.); (A.M.); (M.J.)
| | - Aleksandra Martyna
- Department of Molecular Biology, Faculty of Science and Health, The John Paul II Catholic University of Lublin, Konstantynów 1i, 20-708 Lublin, Poland; (M.M.); (A.M.); (M.J.)
| | - Monika Janeczko
- Department of Molecular Biology, Faculty of Science and Health, The John Paul II Catholic University of Lublin, Konstantynów 1i, 20-708 Lublin, Poland; (M.M.); (A.M.); (M.J.)
| | | | - Anna Malm
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Krzysztof Z. Łączkowski
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland; (A.B.); (K.Z.Ł.)
| |
Collapse
|
43
|
Petrou A, Fesatidou M, Geronikaki A. Thiazole Ring-A Biologically Active Scaffold. Molecules 2021; 26:3166. [PMID: 34070661 PMCID: PMC8198555 DOI: 10.3390/molecules26113166] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Thiazole is a good pharmacophore nucleus due to its various pharmaceutical applications. Its derivatives have a wide range of biological activities such as antioxidant, analgesic, and antimicrobial including antibacterial, antifungal, antimalarial, anticancer, antiallergic, antihypertensive, anti-inflammatory, and antipsychotic. Indeed, the thiazole scaffold is contained in more than 18 FDA-approved drugs as well as in numerous experimental drugs. OBJECTIVE To summarize recent literature on the biological activities of thiazole ring-containing compounds Methods: A literature survey regarding the topics from the year 2015 up to now was carried out. Older publications were not included, since they were previously analyzed in available peer reviews. RESULTS Nearly 124 research articles were found, critically analyzed, and arranged regarding the synthesis and biological activities of thiazoles derivatives in the last 5 years.
Collapse
Affiliation(s)
| | | | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (M.F.)
| |
Collapse
|
44
|
Sanad SMH, Mekky AEM, El-Reedy AAM. Tandem synthesis and antibacterial screening of novel thieno[2,3- b]thiophene-linked bis(thiazole) hybrids. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1918170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | - Ahmed E. M. Mekky
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed A. M. El-Reedy
- Basic Science Department, Faculty of Oral and Dental Medicine, Nahda University, Beni-Suef, Egypt
| |
Collapse
|
45
|
New Substituted 5-Benzylideno-2-Adamantylthiazol[3,2-b][1,2,4]Triazol-6(5 H)ones as Possible Anti-Inflammatory Agents. Molecules 2021; 26:molecules26030659. [PMID: 33513963 PMCID: PMC7866232 DOI: 10.3390/molecules26030659] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023] Open
Abstract
Background: Inflammation is a complex response to noxious stimuli promoted by the release of chemical mediators from the damaged cells. Metabolic products of arachidonic acid, produced by the action of cyclooxygenase and lipoxygenase, play important roles in this process. Several non-steroidal anti-inflammatory drugs act as cyclooxygenase inhibitors. However, almost all of them have undesired side effects. Methods: Prediction of the anti-inflammatory action of the compounds was performed using PASS Program. The anti-inflammatory activity was evaluated by the carrageenan paw edema test. COX and LOX inhibitory actions were tested using ovine COX-1, human recombinant COX-2 and soybean LOX-1, respectively. Docking analysis was performed using Autodock. Results: All designed derivatives had good prediction results according to PASS and were synthesized and experimentally evaluated. The compounds exhibited in vivo anti-inflammatory action with eleven being equal or better than indomethacin. Although, some of them had no or low inhibitory effect on COX-1/2 or LOX, certain compounds exhibited COX-1 inhibition much higher than naproxen and COX-2 inhibition, well explained by Docking analysis. Conclusions: A number of compounds with good anti-inflammatory action were obtained. Although, some exhibited remarkable COX inhibitory action this activity did not follow the anti-inflammatory results, indicating the implication of other mechanisms.
Collapse
|
46
|
Ahmed MN, Arif M, Andleeb H, Ali Shah SW, Arshad I, Tahir MN, Rocha M, Gil DM. Interplay of weak noncovalent interactions in alkoxybenzylidene derivatives of benzohydrazide and acetohydrazide: a combined experimental and theoretical investigation and lipoxygenase inhibition (LOX) studies. CrystEngComm 2021. [DOI: 10.1039/d0ce01402h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three hydrazide-based Schiff bases have been synthesized and characterized by IR, UV-vis and X-ray diffraction methods. A detail analysis of intermolecular interactions has been performed by Hirshfeld surface analysis and DFT calculations.
Collapse
Affiliation(s)
- Muhammad Naeem Ahmed
- Department of Chemistry
- The University of Azad Jammu & Kashmir
- Muzaffarabad 13100
- Pakistan
| | - Muneeba Arif
- Department of Chemistry
- The University of Azad Jammu & Kashmir
- Muzaffarabad 13100
- Pakistan
| | - Hina Andleeb
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
- Sulaiman Bin Abdullah Aba Al-Khail – Centre for Interdisciplinary Research in Basic Science (SA-CIRBS)
| | | | - Ifzan Arshad
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| | | | - Mariana Rocha
- INBIOFAL (CONICET – UNT)
- Instituto de Química Orgánica – Cátedra de Química Orgánica I
- Facultad de Bioquímica
- Química y Farmacia
- Universidad Nacional de Tucumán
| | - Diego M. Gil
- INBIOFAL (CONICET – UNT)
- Instituto de Química Orgánica – Cátedra de Química Orgánica I
- Facultad de Bioquímica
- Química y Farmacia
- Universidad Nacional de Tucumán
| |
Collapse
|