1
|
Malik AQ, Jabeen T, Lokhande PE, Kumar D, Awasthi S, Pandey SK, Mubarak NM, Abnisa F. Molecularly imprinted Ag 2S quantum dots with high photocatalytic activity for dye removal: Experimental and DFT insights. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121889. [PMID: 39053374 DOI: 10.1016/j.jenvman.2024.121889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/09/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Molecular imprinted polymers (MIPs) were developed by carrying out the cocktail solution of Template ((Salata, 2004)-Gingerol), monomer, crosslinker, and Ag2S Quantum Dots (QDs) by ex-situ dissolved in an appropriate solvent, resulting in an efficient crosslinked polymer composite. Degradation of Alizarin red S (ARS) dye and yellowish sunset (SY) azo dye under visible light irradiation was reported first time by the introduction of prepared MIPs composite. In this research, the result shows efficient photocatalyt activity of Ag2S-MIPs composite for the degradation of AR and SY dye with degradation% (80%) and (84%) in the aqueous wastewater. The degradation efficiency of the Ag2S-MIPs composite and the Ag2S QD associated with non-imprinted polymers (NIPs) (i.e.Ag2S-NIPs composite) were calculated by using different parameters such as catalyst dose, pH value, optimum time and concentration variation and the observations are evocative. Moreover, the density functional theory (DFT) approach was also used to analyze the structural, stability/energetics, and electronic features of the organic-inorganic hybrid composites of the Ag2S QD with the MIPs based on (Salata, 2004)-gingerol extract. The proposed QD and MIPs (EGDMA and (Salata, 2004)-Gingerol) composite model has been detected to be the most stable because it shows the largest binding energy (BE) among the three chosen composite models. It was found out that imprinted polymers were superior in enhancing the degradation of dyes when compared to non imprinted polymers. Introducing MIPs into the valence band accelerates the catalysis properties to stabilize newly fashioned excitons that are basically generated as a result of light excitation in presence of Ag2S Quantum Dots (QDs) and molecular imprinted polymer (MIPs). Motivation behind this work is to address the challenges related to environmental pollution causing by organic dyes. These toxins are known to cause diverse symptoms (e.g., skin irritation, eye infection, respiratory disorders, and even cancer) once exposed through ingestion and inhalation. Through incorporation of Ag2S QD into MIP,the purpose of this research is to enhance the selectivity, specificity and photocatalytic activity for dyes and that work holds a potential towards environmental remediation by developing a cost effective and sustainable method for controlling pollution in water.
Collapse
Affiliation(s)
- Azad Qayoom Malik
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Tabinda Jabeen
- Department of Structural Chemistry and Spectroscopy, Universitat Leipzig, 04103, Leipzig, Germany
| | - Prasad Eknath Lokhande
- Advanced Physics Laboratory, Department of Physics, Savitribai Phule Pune University, Pune, India
| | - Deepak Kumar
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Shikha Awasthi
- Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur, 303007, Rajasthan, India.
| | - Sarvesh Kumar Pandey
- Department of Chemistry, Maulana Azad National Institute of Technology Bhopal, Bhopal, 462003, Madhya Pradesh, India.
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam; Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Faisal Abnisa
- Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Rabigh, 21911, Saudi Arabia
| |
Collapse
|
2
|
Zulfiqar A, Akhter MS, Waqas M, Bhatti IA, Imran M, Shawky AM, Shaban M, Alotaibi HF, Mahal A, Ashour A, Duan M, S Alshomrany A, Khera RA. Engineering of the Central Core on DBD-Based Materials with Improved Power-Conversion Efficiency by Using the DFT Approach. ACS OMEGA 2024; 9:29205-29225. [PMID: 39005764 PMCID: PMC11238312 DOI: 10.1021/acsomega.3c09215] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/27/2024] [Accepted: 02/20/2024] [Indexed: 07/16/2024]
Abstract
Developing proficient organic solar cells with improved optoelectronic properties is still a matter of concern. In the current study, with an aspiration to boost the optoelectronic properties and proficiency of organic solar cells, seven new small-molecule acceptors (Db1-Db7) are presented by altering the central core of the reference molecule (DBD-4F). The optoelectronic aspects of DBD-4F and Db1-Db7 molecules were explored using the density functional theory (DFT) approach, and solvent-state calculations were assessed utilizing TD-SCF simulations. It was noted that improvement in photovoltaic features was achieved by designing these molecules. The results revealed a bathochromic shift in absorption maxima (λmax) of designed molecules reaching up to 776 nm compared to 736 nm of DBD-4F. Similarly, a narrow band gap, low excitation energy, and reduced binding energy were also observed in newly developed molecules in comparison with the pre-existing DBD-4F molecule. Performance improvement can be indicated by the high light-harvesting efficiency (LHE) of designed molecules (ranging from 0.9992 to 0.9996 eV) compared to the reference having a 0.9991 eV LHE. Db4 and Db5 exhibited surprisingly improved open-circuit voltage (V OC) values up to 1.64 and 1.67 eV and a fill factor of 0.9198 and 0.9210, respectively. Consequently, these newly designed molecules can be considered in the future for practical use in manufacturing OSCs with improved optoelectronic and photovoltaic attributes.
Collapse
Affiliation(s)
- Aamna Zulfiqar
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Salim Akhter
- Department of Chemistry, College of Science, University of Bahrain, Sakhir 32028, Bahrain
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ijaz Ahmad Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Imran
- Chemistry Department, College of Science, King Khalid University (KKU), P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mohamed Shaban
- Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint AbdulRahman University, Riyadh 11671, Saudi Arabia
| | - Ahmed Mahal
- Department of Medical Biochemical Analysis, College of Health Technology, Cihan University-Erbil, Erbil 44001, Kurdistan Region, Iraq
| | - Adel Ashour
- Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Meitao Duan
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, P. R. China
- Research Center for Sustained and Controlled Release Agents, Xiamen Medical College, Xiamen 361023, P. R. China
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen 361023, P. R. China
| | - Ali S Alshomrany
- Department of Physics, College of Sciences, Umm Al-Qura University, Al Taif HWY, Mecca 24381, Saudi Arabia
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| |
Collapse
|
3
|
Pandey SK, Arunan E, Das R, Roy A, Mishra AK. Recent advances in in silico design and characterization of superalkali-based materials and their potential applications: A review. Front Chem 2022; 10:1019166. [PMID: 36419589 PMCID: PMC9676666 DOI: 10.3389/fchem.2022.1019166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/13/2022] [Indexed: 06/21/2024] Open
Abstract
In the advancement of novel materials, chemistry plays a vital role in developing the realm where we survive. Superalkalis are a group of clusters/molecules having lower ionization potentials (IPs) than that of the cesium atom (3.89 eV) and thus, show excellent reducing properties. However, the chemical industry and material science both heavily rely on such reducing substances; an in silico approach-based design and characterization of superalkalis have been the focus of ongoing studies in this area along with their potential applications. However, although superalkalis have been substantially sophisticated materials over the past couple of decades, there is still room for enumeration of the recent progress going on in various interesting species using computational experiments. In this review, the recent developments in designing/modeling and characterization (theoretically) of a variety of superalkali-based materials have been summarized along with their potential applications. Theoretically acquired properties of some novel superalkali cations (Li3 +) and C6Li6 species, etc. for capturing and storing CO2/N2 molecules have been unveiled in this report. Additionally, this report unravels the first-order polarizability-based nonlinear optical (NLO) response features of numerous computationally designed novel superalkali-based materials, for instance, fullerene-like mixed-superalkali-doped B12N12 and B12P12 nanoclusters with good UV transparency and mixed-valent superalkali-based CaN3Ca (a high-sensitivity alkali-earth-based aromatic multi-state NLO molecular switch, and lead-founded halide perovskites designed by incorporating superalkalis, supersalts, and so on) which can indeed be used as a new kind of electronic nanodevice used in designing hi-tech NLO materials. Understanding the mere interactions of alkalides in the gas and liquid phases and the potential to influence how such systems can be extended and applied in the future are also highlighted in this survey. In addition to offering an overview of this research area, it is expected that this review will also provide new insights into the possibility of expanding both the experimental synthesis and the practical use of superalkalis and their related species. Superalkalis present the intriguing possibility of acting as cutting-edge construction blocks of nanomaterials with highly modifiable features that may be utilized for a wide-ranging prospective application.
Collapse
Affiliation(s)
- Sarvesh Kumar Pandey
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bengaluru, Bengaluru, Karnataka, India
| | - Elangannan Arunan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bengaluru, Bengaluru, Karnataka, India
| | - Ratnesh Das
- Department of Chemistry, Dr. Harisingh Gour University (A Central University), Sagar, Madhya Pradesh, India
| | - Atish Roy
- Department of Chemistry, Dr. Harisingh Gour University (A Central University), Sagar, Madhya Pradesh, India
| | - Arunesh Kumar Mishra
- Department of Chemistry, Dr. Harisingh Gour University (A Central University), Sagar, Madhya Pradesh, India
| |
Collapse
|
4
|
Pandey SK. Novel and Polynuclear K- and Na-Based Superalkali Hydroxides as Superbases Better Than Li-Related Species and Their Enhanced Properties: An Ab Initio Exploration. ACS OMEGA 2021; 6:31077-31092. [PMID: 34841150 PMCID: PMC8613824 DOI: 10.1021/acsomega.1c04395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/08/2021] [Indexed: 05/07/2023]
Abstract
Hydroxides of superalkalis (particularly, K- and Na-related species) are shown for the first time to function as superbases. A new small series of hydroxides (XM n+1OH) is designed based on superalkali species (XM n+1) where M (K and Na) is alkali metal atoms, n is the maximal formal valence of the central atom X (F, O, and N), and n ≥ 1. To probe whether such fascinating polynuclear superalkali hydroxides (SAHs), especially the K- and Na-associated moieties are as basic as the representative alkali metal hydroxides (KOH, NaOH, and LiOH) as well as similar Li-based SAHs, a comprehensive computational exploration (in the gas phase) has been reported using the framework of an ab initio method. The ab initio calculations reveal that both the K- and Na-related SAHs consisting of larger gas-phase proton affinity (PA) and gas-phase basicity (GB) values demonstrate stronger basic character compared to the LiOH and Li-based SAHs. However, the available SAHs act as strong bases as well as superbases; among the proposed K- and Na-based SAHs, remarkably, the OK3OH moiety having the highest PA (1168.4 kJ/mol) and GB (1146.9 kJ/mol) values shows the evidence of the strongest basicity (i.e., superbase/hyperbase), which exceed enough (ΔPA: 142.1 kJ/mol and ΔGB: 146.9 kJ/mol) the IUPAC-defined superbasicity threshold values (PA: 1026.3 kJ/mol and GB: 1000 kJ/mol) of 1,8-bis(dimethylamino)naphthalene (DMAN). Furthermore, theoretical signatures have been predicted via the electronic structure calculation approach in probing the dissociation energy, ionization potential, electron affinity, HOMO-LUMO gap, and chemical hardness as well as the NCI plot and QTAIM tools are used for the bonding feature analysis and such parameters are well linked with the basicity analyzing parameters. In this study, the ab initio-based computational experiments provide some new insights into the basicity features and understanding of the structural and electronic features of a small series of designed K- and Na-related SAHs. Design and synthesis of such theoretically examined SAHs may pave alternative routes for the experimentally rewarding applications.
Collapse
Affiliation(s)
- Sarvesh Kumar Pandey
- Department of Inorganic and
Physical Chemistry, Indian Institute of
Science Bangalore, Bangalore560 012, India
| |
Collapse
|