1
|
Zuber J, Lopes Cascabulho P, Gemini Piperni S, Farias Corrêa do
Amaral RJ, Vogt C, Carre V, Hertzog J, Kontturi E, Trubetskaya A. Fast, Easy, and Reproducible Fingerprint Methods for Endotoxin Characterization in Nanocellulose and Alginate-Based Hydrogel Scaffolds. Biomacromolecules 2024; 25:6762-6772. [PMID: 39262301 PMCID: PMC11480981 DOI: 10.1021/acs.biomac.4c00989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Nanocellulose- and alginate-based hydrogels have been suggested as potential wound-healing materials, but their utilization is limited by the Food and Drug Administration (FDA) requirements regarding endotoxin levels. Cytotoxicity and the presence of endotoxin were assessed after gel sterilization using an autoclave and UV treatment. A new fingerprinting method was developed to characterize the compounds detected in cellulose nanocrystal (CNC)- and cellulose-nanofiber (CNF)-based hydrogels using both positive- and negative-ion mode electrospray ionization Fourier transform ion cyclotron resonance mass spectroscopy (ESI FT-ICR MS). These biobased hydrogels were used as scaffolds for the cultivation and growth of human dermal fibroblasts to test their biocompatibility. A resazurin-based assay was preferred over all other biocompatibility methodologies since it allowed for the evaluation of viability over time in the same sample without causing cell lysis. The CNF dispersion of 6 EU mL-1 was slightly above the limits, and it did not affect the cell viability, whereas CNC hydrogels induced a reduction of metabolic activity by the fibroblasts. The chemical structure of the detected endotoxins did not contain phosphates, but it encompassed hydrophobic sulfonate groups, requiring the development of new high-pressure sterilization methods for the use of cellulose hydrogels in medicine.
Collapse
Affiliation(s)
- Jan Zuber
- Department
of Analytical Chemistry, TU Freiberg, Leipziger Street 29, 09599 Freiberg, Germany
| | - Paula Lopes Cascabulho
- Faculty
of Medicine, Federal University of Rio de
Janeiro, Avenida Carlos Chagas Filho 373, 21941-853 Rio de Janeiro, Brazil
- Laboratory
of Cellular Proliferation and Differentiation, Institute of Biomedical
Sciences, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941 Rio de Janeiro, Brazil
- Laboratory
of Biomineralization, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941 Rio de Janeiro, Brazil
| | - Sara Gemini Piperni
- Laboratory
of Biotechnology, Bioengineering and Nanostructured Biomaterials,
Institute of Biomedical Sciences, Federal
University of Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941 Rio de Janeiro, Brazil
| | - Ronaldo José Farias Corrêa do
Amaral
- Faculty
of Medicine, Federal University of Rio de
Janeiro, Avenida Carlos Chagas Filho 373, 21941-853 Rio de Janeiro, Brazil
- Laboratory
of Cellular Proliferation and Differentiation, Institute of Biomedical
Sciences, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941 Rio de Janeiro, Brazil
- Laboratory
of Biomineralization, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941 Rio de Janeiro, Brazil
| | - Carla Vogt
- Department
of Analytical Chemistry, TU Freiberg, Leipziger Street 29, 09599 Freiberg, Germany
| | - Vincent Carre
- Université
de Lorraine, LCP-A2MC, 1 Boulevard Arago, 57000 Metz, France
| | - Jasmine Hertzog
- Université
de Lorraine, LCP-A2MC, 1 Boulevard Arago, 57000 Metz, France
| | - Eero Kontturi
- Department
of Bioproducts and Biosystems, Aalto University, Vuorimiehentie 1, 02150 Espoo, Finland
| | - Anna Trubetskaya
- Department
of Biosciences, Nord University, Kongensgate 42, 7713 Steinkjer, Norway
- Department
of Engineering, University of Limerick, Castletroy, Co. Limerick V94T9PX, Ireland
| |
Collapse
|
2
|
Shi C, Liu Z, Yu B, Zhang Y, Yang H, Han Y, Wang B, Liu Z, Zhang H. Emergence of nanoplastics in the aquatic environment and possible impacts on aquatic organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167404. [PMID: 37769717 DOI: 10.1016/j.scitotenv.2023.167404] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Plastic production on a global scale is instrumental in advancing modern society. However, plastic can be broken down by mechanical and chemical forces of humans and nature, and knowledge of the fate and effects of plastic, especially nanoplastics, in the aquatic environment remains poor. We provide an overview of current knowledge on the environmental occurrence and toxicity of nanoplastics, and suggestions for future research. There are nanoplastics present in seas, rivers, and nature reserves from Asia, Europe, Antarctica, and the Arctic Ocean at levels of 0.3-488 microgram per liter. Once in the aquatic environment, nanoplastics accumulate in plankton, nekton, benthos through ingestion and adherence, with multiple toxic results including inhibited growth, reproductive abnormalities, oxidative stress, and immune system dysfunction. Further investigations should focus on chemical analysis methods for nanoplastics, effect and mechanism of nanoplastics at environmental relevant concentrations in aquatic organisms, as well as the mechanism of the Trojan horse effect of nanoplastics.
Collapse
Affiliation(s)
- Chaoli Shi
- Hangzhou Normal University, Hangzhou 311121, China
| | - Zhiqun Liu
- Hangzhou Normal University, Hangzhou 311121, China
| | - Bingzhi Yu
- Hangzhou Normal University, Hangzhou 311121, China
| | - Yinan Zhang
- Hangzhou Normal University, Hangzhou 311121, China
| | - Hongmei Yang
- Hangzhou Normal University, Hangzhou 311121, China
| | - Yu Han
- Hangzhou Normal University, Hangzhou 311121, China
| | - Binhao Wang
- Hangzhou Normal University, Hangzhou 311121, China
| | - Zhiquan Liu
- Hangzhou Normal University, Hangzhou 311121, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai 200233, China.
| | - Hangjun Zhang
- Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Internation Urbanology Research Center, Hangzhou 311121, China
| |
Collapse
|
3
|
Zhu R, Qin F, Zheng X, Fang S, Ding J, Wang D, Liang L. Single-molecule lipopolysaccharides identification and the interplay with biomolecules via nanopore readout. Biosens Bioelectron 2023; 240:115641. [PMID: 37657310 DOI: 10.1016/j.bios.2023.115641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Lipopolysaccharides (LPS) are the major constituent on the cell envelope of all gram-negative bacteria. They are ubiquitous in air, and are toxic inflammatory stimulators for urinary disorders and sepsis. The reported optical, thermal, and electrochemical sensors via the intermolecular interplay of LPS with proteins and aptamers are generally complicated methods. We demonstrate the single-molecule nanopore approach for LPS identification in distinct bacteria as well as the serotypes discrimination. With a 4 nm nanopore, we achieve a detection limit of 10 ng/mL. Both the antibiotic polymyxin B (PMB) and DNA aptamer display specific binding to LPS. The identification of LPS in both human serum and tap water show good performance with nanopore platforms. Our work shows a highly-sensitive and easy-to-handle scheme for clinical and environmental biomarkers determination and provides a promising screening tool for early warning of contamination in water and medical supplies.
Collapse
Affiliation(s)
- Rui Zhu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China; Chongqing Jiaotong University, Chongqing, 400014, PR China
| | - Fupeng Qin
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China
| | - Xinchuan Zheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China
| | - Shaoxi Fang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China
| | - Jianjun Ding
- Southwest University, Chongqing, 400715, PR China
| | - Deqiang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China.
| | - Liyuan Liang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China.
| |
Collapse
|
4
|
Effect of TBC of raw milk and thermal treatment intensity on endotoxin contents of milk products. Food Res Int 2022; 152:110816. [DOI: 10.1016/j.foodres.2021.110816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/24/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022]
|