1
|
Sánchez-Yepes A, Santos A, Romero A, Lorenzo D. Sustainable application of surfactants in soil remediation: Selective pollutants adsorption and hydrogen peroxide-driven adsorbent regeneration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171847. [PMID: 38527535 DOI: 10.1016/j.scitotenv.2024.171847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/20/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
The uncontrolled disposal of the liquid lindane wastes have led to the formation of dense non-aqueous phase liquids (DNAPL), consisting of 28 chlorinated organic compounds (COCs), contaminating soil and groundwater. Surfactant-enhanced aquifer remediation is proposed as technology to treat these sites. However, the polluted emulsion generated must be manged on-site. In this work a two-step process is applied to treat emulsion composed of E-Mulse® 3 (4 g·L-1) as surfactant and a DNAPL (2 gCOCs·L-1). In the first, the COCs were selectively adsorbed in a granular activated carbon (GAC) column with Fe (II) previously adsorbed (10-20mg·g-1) onto the carbon surface, recovering an aqueous phase with surfactant for their reuse. In the second step, the spent GAC was regenerated with a 40 g·L-1 solution of hydrogen peroxide fed to the column at 2 mL·min-1 to promote the oxidation of the COCs adsorbed in the GAC. The kinetic and adsorption model in a multisolute (surfactant and DNAPL) system has been proposed. Five successive cycles of regeneration/adsorption have been successfully applied in the column process. About 50 % of the COCs were retained from the emulsion, and more than 70 % of the surfactant was recovered. The consumption of unproductive oxidants decreased with the number of regeneration cycles. The water effluent obtained after regeneration of GAC did not present chlorinated compounds desorbed and nontoxic by-products generated, such as short-chain acids.
Collapse
Affiliation(s)
- Andrés Sánchez-Yepes
- Chemical Engineering and Materials Department, Complutense University of Madrid, Spain
| | - Aurora Santos
- Chemical Engineering and Materials Department, Complutense University of Madrid, Spain
| | - Arturo Romero
- Chemical Engineering and Materials Department, Complutense University of Madrid, Spain
| | - David Lorenzo
- Chemical Engineering and Materials Department, Complutense University of Madrid, Spain.
| |
Collapse
|
2
|
Boussouga YA, Joseph J, Stryhanyuk H, Richnow HH, Schäfer AI. Adsorption of uranium (VI) complexes with polymer-based spherical activated carbon. WATER RESEARCH 2024; 249:120825. [PMID: 38118222 DOI: 10.1016/j.watres.2023.120825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/11/2023] [Accepted: 11/02/2023] [Indexed: 12/22/2023]
Abstract
Adsorption processes with carbon-based adsorbents have received substantial attention as a solution to remove uranium from drinking water. This study investigated uranium adsorption by a polymer-based spherical activated carbon (PBSAC) characterised by a uniformly smooth exterior and an extended surface of internal cavities accessible via mesopores. The static adsorption of uranium was investigated applying varying PBSAC properties and relevant solution chemistry. Spatial time-of-flight secondary ion mass spectrometry (ToF-SIMS) was employed to visualise the distribution of the different uranium species in the PBSAC. The isotherms and thermodynamics calculations revealed monolayer adsorption capacities of 28-667 mg/g and physical adsorption energies of 13-21 kJ/mol. Increasing the surface oxygen content of the PBSAC to 10 % enhanced the adsorption and reduced the equilibrium time to 2 h, while the WHO drinking water guideline of 30 µgU/L could be achieved for an initial concentration of 250 µgU/L. Uranium adsorption with PBSAC was favourable at the pH 6-8. At this pH range, uranyl carbonate complexes (UO2CO3(aq), UO2(CO3)22-, (UO2)2CO3(OH)3-) predominated in the solution, and the ToF-SIMS analysis revealed that the adsorption of these complexes occurred on the surface and inside the PBSAC due to intra-particle diffusion. For the uranyl cations (UO22+, UO2OH+) at pH 2-4, only shallow adsorption in the outermost PBSAC layers was observed. The work demonstrated the effective removal of uranium from contaminated natural water (67 µgU/L) and meeting both German (10 µgU/L) and WHO guideline concentrations. These findings also open opportunities to consider PBSAC in hybrid treatment technologies for uranium removal, for instance, from high-level radioactive waste.
Collapse
Affiliation(s)
- Youssef-Amine Boussouga
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany.
| | - James Joseph
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Hryhoriy Stryhanyuk
- Department of Isotope Biogeochemistry, ProVIS-Centre for Chemical Microscopy, Helmholtz, Center for Environmental Research (UFZ), Leipzig, Germany
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, ProVIS-Centre for Chemical Microscopy, Helmholtz, Center for Environmental Research (UFZ), Leipzig, Germany
| | - Andrea I Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| |
Collapse
|
3
|
Singh SK, Pahi S, Behera A, Patel RK. Lanthanum Cerate Microspheres for Efficient Fluoride Removal from Wastewater. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38287233 DOI: 10.1021/acs.langmuir.3c03365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The performance of lanthanum cerate microspheres (LCM) at removing fluoride was analyzed in batch experiments after they were synthesized via the hydrothermal strategy. The ball-shaped microsphere morphology of LCM is confirmed by SEM and TEM. The synthesized LCM adsorbent showed excellent adsorption capacity in the pH range 3.0-7.0, with the optimal pH range being 3.5-4.5. The Langmuir adsorption model was more appropriate than the Freundlich model for describing the adsorption isotherm. The LCM adsorbent exhibited a significantly higher Langmuir adsorption capacity of 104.83 mg/g at pH 4.0, surpassing that of any other reported adsorbent. We investigated the adsorption of fluoride under a variety of conditions, including the presence of distinct anions. Furthermore, testing the adsorbent in actual groundwater demonstrated its high effectiveness in removing fluoride. Different useful analytical techniques were used for measurements and to learn and deduce the adsorption mechanism.
Collapse
Affiliation(s)
- Satish Kumar Singh
- Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Souman Pahi
- Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Abhijit Behera
- Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Raj Kishore Patel
- Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| |
Collapse
|
4
|
Le Thi AP, Zhe L, Kobayashi T. Arsenic removal adsorbent using limonite-polyethersulfone composite fiber via continuous flow column process. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10973. [PMID: 38229448 DOI: 10.1002/wer.10973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024]
Abstract
This research introduces an enhanced limonite-based composite fiber adsorbent for arsenic (As) removal. The modification involves creating polyethersulfone (PES)-limonite composite fibers loaded with 60 wt% limonite powders, designed to be applicable in water flow environments. The fibers were prepared using a wet-spinning process based on phase inversion, with varying concentrations (10, 20, and 30 wt%) of PES in NMP solution. The composite fiber with 10 wt% NMP exhibited a porous structure and demonstrated efficient absorption of both As(III) and As(V). Adsorption followed the Langmuir model, with qm values of 1.5 mg/g for As(III) and 3.2 mg/g for As(V) at pH 6. In column experiments, As removal rates increased with contact time, attributed to decreased flow rates (1 mL/min). Moreover, increasing fiber column height led to enhanced removal rates, as indicated by the Adams-Bohart model. The mechanism for As(V) removal involved the formation of an inner-sphere complex through ion exchange between α-FeOOH and HAsO4 - and H2 AsO4 2- in an aqueous solution at pH 6.8. PRACTITIONER POINTS: Changing the polyethersulfone ratio in the composite leads to variations in the appearance of limonite within each composite fiber. Limonite composite fibers effectively remove As(III) and As(V) at neutral pH. The adsorption behavior follows Langmuir kinetic model, the qm of 1.5 mg/g for As(III) and 3.2 mg/g for As(V). Longer columns and contact times enhance arsenic (As) removal in practical water treatment systems. Adam-Bohart model aids in predicting breakthrough and saturation time in As adsorption column design.
Collapse
Affiliation(s)
- Anh Phuong Le Thi
- Department of Science and Technology Innovation, Nagaoka University of Technology, Nagaoka, Japan
| | - Li Zhe
- Department of Material Science and Technology, Nagaoka University of Technology, Nagaoka, Japan
| | - Takaomi Kobayashi
- Department of Science and Technology Innovation, Nagaoka University of Technology, Nagaoka, Japan
- Department of Material Science and Technology, Nagaoka University of Technology, Nagaoka, Japan
| |
Collapse
|
5
|
Luo L, Manda S, Park Y, Demir B, Sanchez J, Anantram MP, Oren EE, Gopinath A, Rolandi M. DNA nanopores as artificial membrane channels for bioprotonics. Nat Commun 2023; 14:5364. [PMID: 37666808 PMCID: PMC10477224 DOI: 10.1038/s41467-023-40870-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023] Open
Abstract
Biological membrane channels mediate information exchange between cells and facilitate molecular recognition. While tuning the shape and function of membrane channels for precision molecular sensing via de-novo routes is complex, an even more significant challenge is interfacing membrane channels with electronic devices for signal readout, which results in low efficiency of information transfer - one of the major barriers to the continued development of high-performance bioelectronic devices. To this end, we integrate membrane spanning DNA nanopores with bioprotonic contacts to create programmable, modular, and efficient artificial ion-channel interfaces. Here we show that cholesterol modified DNA nanopores spontaneously and with remarkable affinity span the lipid bilayer formed over the planar bio-protonic electrode surface and mediate proton transport across the bilayer. Using the ability to easily modify DNA nanostructures, we illustrate that this bioprotonic device can be programmed for electronic recognition of biomolecular signals such as presence of Streptavidin and the cardiac biomarker B-type natriuretic peptide, without modifying the biomolecules. We anticipate this robust interface will allow facile electronic measurement and quantification of biomolecules in a multiplexed manner.
Collapse
Affiliation(s)
- Le Luo
- Department of Electrical and Computer Engineering, Jack Baskin School of Engineering, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Swathi Manda
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yunjeong Park
- Department of Electrical and Computer Engineering, Jack Baskin School of Engineering, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Busra Demir
- Bionanodesign Laboratory, Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara, 06560, Turkey
- Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara, 06560, Turkey
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Jesse Sanchez
- Department of Electrical and Computer Engineering, Jack Baskin School of Engineering, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA
| | - M P Anantram
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Ersin Emre Oren
- Bionanodesign Laboratory, Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara, 06560, Turkey
- Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara, 06560, Turkey
| | - Ashwin Gopinath
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, Jack Baskin School of Engineering, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA.
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA.
- Institute for the Biology of Stem Cells, University of California Santa Cruz, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
6
|
Wang A, Hou J, Tao C, Miao L, Wu J, Xing B. Performance Enhancement of Biogenetic Sulfidated Zero-Valent Iron for Trichloroethylene Degradation: Role of Extracellular Polymeric Substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3323-3333. [PMID: 36729963 DOI: 10.1021/acs.est.2c07289] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chemical sulfidation has been considered as an effective strategy to improve the reactivity of zero-valent iron (S-ZVI). However, sulfidation is a widespread biogeochemical process in nature, which inspired us to explore the biogenetic sulfidation of ZVI (BS-ZVI) with sulfate-reducing bacteria (SRB). BS-ZVI could degrade 96.3% of trichloroethylene (TCE) to acetylene, ethene, ethane, and dichloroethene, comparable to S-ZVI (97.0%) with the same S/Fe ratio (i.e., 0.1). However, S-ZVI (0.21 d-1) exhibited a faster degradation rate than BS-ZVI (0.17 d-1) based on pseudo-first-order kinetic fitting due to extracellular polymeric substances (EPSs) excreted from SRB. Organic components of EPSs, including polysaccharides, humic acid-like substances, and proteins in BS-ZVI, were detected with 3D-EEM spectroscopy and FT-IR analysis. The hemiacetal groups and redox-activated protein in EPS did not affect TCE degradation, while the acetylation degree of EPS increased with the concentration of ZVI and S/Fe, thus inhibiting the TCE degradation. A low concentration of HA-like substances attached to BS-ZVI materials promoted electron transport. However, EPS formed a protective layer on the surface of BS-ZVI materials, reducing its TCE reaction rate. Overall, this study showed a comparable performance enhancement of ZVI toward TCE degradation through biogenetic sulfidation and provided a new alternative method for the sulfidation of ZVI.
Collapse
Affiliation(s)
- Anqi Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing210098, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing210098, China
| | - ChunMei Tao
- Lianyungang Water Conservancy Bureau (Director of Engineering Technology Center), 9 Lingzhou East Road, Haizhou District, Lianyungang22206, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing210098, China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing210098, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts01003, United States
| |
Collapse
|
7
|
Zakirov T, Varfolomeev M, Yuan C. Characterization of dynamic adsorption regimes in synthetic and natural porous structures using lattice Boltzmann simulations. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2022.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Şimşek S, Derin Y, Kaya S, Şenol ZM, Katin KP, Özer A, Tutar A. High-Performance Material for the Effective Removal of Uranyl Ion from Solution: Computationally Supported Experimental Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10098-10113. [PMID: 35946525 PMCID: PMC9404547 DOI: 10.1021/acs.langmuir.2c00978] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/29/2022] [Indexed: 05/19/2023]
Abstract
Adsorption is a widely used method for pollution removal and for the recovery of valuable species. In recent years, the use of metal-organic compounds among the adsorbents used in adsorption studies has increased. In this study, the performance of the water-insoluble Fe complex as a metal organic framework (MOF-Fe-Ta) of water-soluble tannic acid, which is not used as an adsorbent in uranium recovery and removal, was investigated. For the characterization of the new synthesized material, Fourier transform infrared, scanning electron microscopy, and X-ray diffraction analyses were performed. The changes in the adsorption process based on various parameters were investigated and discussed. The point of zero charges value of the adsorbent was found as 5.52. It was noticed that the adsorption increases as the pH increases. Analyzing the effect of concentration on adsorption, we determined which model explained the adsorption better. The monolayer capacity of the adsorbent determined in light of the Langmuir model was reported as 0.347 mol kg-1. The Freundlich constant, namely the β value obtained in the Freundlich model, which is a measure of surface heterogeneity, was found to be 0.434, and the EDR value, which was found from the Dubinin-Raduskevich model and accepted as a measure of adsorption energy, was 10.3 kJ mol-1. The adsorption was kinetically explained by the pseudo-second-order model and the adsorption rate constant was reported as 0.15 mol-1 kg min-1. The effect of temperature on adsorption was studied; it was emphasized that adsorption was energy consuming, that is, endothermic and ΔH was found as 7.56 kJ mol-1. The entropy of adsorption was positive as 69.3 J mol-1 K-1. As expected, the Gibbs energy of adsorption was negative (-13.1 kJ mol-1 at 25 °C), so adsorption was considered as a spontaneous process. Additionally, the power and mechanism of the interaction between studied adsorbent and adsorbate are explained through density functional theory computations. Computationally obtained data supported the experimental studies.
Collapse
Affiliation(s)
- Selçuk Şimşek
- Faculty
of Science, Department of Chemistry, Sivas
Cumhuriyet University, 58140 Sivas, Turkey
- Selçuk
Şimşek.
| | - Yavuz Derin
- Department
of Chemistry, Sakarya University, 54050 Sakarya, Turkey
| | - Savaş Kaya
- Health
Services Vocational School, Department of Pharmacy, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Savaş Kaya.
| | - Zeynep Mine Şenol
- Zara
Vocational School, Department of Food Technology, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Konstantin P. Katin
- Institute
of Nanoengineering in Electronics, Spintronics and Photonics, National Research Nuclear University “MEPhI”, Kashirskoe Shosse 31, Moscow 115409, Russia
| | - Ali Özer
- Engineering
Faculty, Metallurgical and Materials Engineering Department, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Ahmet Tutar
- Department
of Chemistry, Sakarya University, 54050 Sakarya, Turkey
| |
Collapse
|
9
|
A Review of the Dynamic Mathematical Modeling of Heavy Metal Removal with the Biosorption Process. Processes (Basel) 2022. [DOI: 10.3390/pr10061154] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biosorption has great potential in removing toxic effluents from wastewater, especially heavy metal ions such as cobalt, lead, copper, mercury, cadmium, nickel and other ions. Mathematically modeling of biosorption process is essential for the economical and robust design of equipment employing the bioadsorption process. However, biosorption is a complex physicochemical process involving various transport and equilibrium processes, such as absorption, adsorption, ion exchange and surface and interfacial phenomena. The biosorption process becomes even more complex in cases of multicomponent systems and needs an extensive parametric analysis to develop a mathematical model in order to quantify metal ion recovery and the performance of the process. The biosorption process involves various process parameters, such as concentration, contact time, pH, charge, porosity, pore size, available sites, velocity and coefficients, related to activity, diffusion and dispersion. In this review paper, we describe the fundamental physical and chemical processes involved in the biosorption of heavy metals on various types of commonly employed biosorbents. The most common steady state and dynamic mathematical models to describe biosorption in batch and fixed-bed columns are summarized. Mathematical modeling of dynamic process models results in highly coupled partial differential equations. Approximate methods to study the sensitivity analysis of important parameters are suggested.
Collapse
|
10
|
Xu J, Zeng G, Lin Q, Gu Y, Wang X, Feng Z, Sengupta A. Application of 3D magnetic nanocomposites: MXene-supported Fe 3O 4@CS nanospheres for highly efficient adsorption and separation of dyes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153544. [PMID: 35104515 DOI: 10.1016/j.scitotenv.2022.153544] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Due to the presence of several hydroxyl and amino groups on the surface, chitosan (CS) has been reported to be a potential candidate to solve the pollution caused by dyes in different industrial wastewater. However, it is associated with the recycling issues. Nano-Fe3O4 has the advantages of easy magnetic separation and surface functionalization, which can improve the efficiency as well as selectivity of separation. However, its tendency for agglomeration can reduce the adsorption capacity. MXene can provide suitable support for both CS and Fe3O4 to construct new MXene@Fe3O4@CS composites. In this study, MXene@Fe3O4@CSmagnetic nanosphere was synthesized by ultrasonic self-assembly to remove Congo red (CR). Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Fourier Transform Infrared (FT-IR) spectroscopy were employed to characterize the nanocomposites. According to the batch experiments, the adsorption kinetics were found to predominantly follow quasi-secondary rate kinetics. The adsorption followed Langmuir isotherm model. The adsorption process was found to be endothermic, entropy-driven, and thermodynamically spontaneous process. The adsorption capacity for CR was estimated as 620.22 mg·g-1.
Collapse
Affiliation(s)
- Jie Xu
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, Sichuan 610059, PR China; College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, PR China
| | - Guangyong Zeng
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, Sichuan 610059, PR China; College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, PR China.
| | - Qingquan Lin
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, PR China
| | - Yi Gu
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, PR China
| | - Xuelian Wang
- Evaluation and Utilization of Strategic Rare Metals and Rare Earth Resource Key Laboratory of Sichuan Province, Chengdu, Sichuan 610081, PR China
| | - Zhenhua Feng
- Evaluation and Utilization of Strategic Rare Metals and Rare Earth Resource Key Laboratory of Sichuan Province, Chengdu, Sichuan 610081, PR China
| | - Arijit Sengupta
- Radiochemistry Division, Bhabha Atomic Research Center, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| |
Collapse
|
11
|
Extraction of Antioxidants from Grape and Apple Pomace: Solvent Selection and Process Kinetics. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polyphenols have become a research target due to their antioxidant, anti-inflammatory and antimicrobial activity. Obtention via extraction from natural sources includes the revalorization of food wastes such as grape pomace (GP) or apple pomace (AP). In this work, GP and AP were submitted to a liquid–solid extraction using different solvents of industrial interest. Process kinetics were studied measuring the total phenolic content (TPC) and antioxidant capacity (AC), while the extraction liquor composition was analyzed employing chromatographic methods. Extraction processes using water-solvent mixtures stood out as the better options, with a particular preference for water 30%–ethanol 70% (v/v) at 90 °C, a mixture that quickly extracts up to 68.46 mg GAE/gds (Gallic Acid Equivalent per gram dry solid) and 122.67 TEAC/gds (TROLOX equivalent antioxidant capacity per gram dry solid) in case of GP, while ethylene water 10%–ethylene glycol 90% (v/v) at 70 °C allows to reach 27.19 mg GAE/gds and 27.45 TEAC/gds, in the case of AP. These extraction processes can be well-described by a second-order kinetic model that includes a solubility-related parameter for the first and fast-washing and two parameters for the slow mass transfer controlled second extraction phase. AP liquors were found to be rich in quercetin with different sugar moieties and GP extracts highlighted flavonols, cinnamic acids, and anthocyanins. Therefore, using identical extraction conditions for AP and GP and a comparative kinetic analysis of TPC and AC results for the first time, we concluded that ethanol/water mixtures are adequate solvents for polyphenols extraction due to their high efficiency and environmentally benign nature.
Collapse
|
12
|
Monoethanolamine adsorption on oxide surfaces. J Colloid Interface Sci 2022; 614:75-83. [DOI: 10.1016/j.jcis.2022.01.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/04/2022] [Accepted: 01/09/2022] [Indexed: 11/17/2022]
|
13
|
Li Q, Zhao S, Wang Y. Mechanism of Oxytetracycline Removal by Coconut Shell Biochar Loaded with Nano-Zero-Valent Iron. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13107. [PMID: 34948716 PMCID: PMC8702161 DOI: 10.3390/ijerph182413107] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022]
Abstract
In this paper, coconut shell biochar (BC), pickling biochar (HBC), and nano-zero-valent iron-loaded biochar (nZVI-HBC) were prepared; these were used to remove oxytetracycline (OTC), and the removal mechanism and degradation product were analyzed. These biochars were characterized using SEM, XRD, FTIR, and XPS. The effects of biochar addition amount, pH, ion type, and ion concentration on OTC adsorption were studied by a batch adsorption experiment. Under the optimal conditions, the equilibrium adsorption capacity of nZVI-HBC to OTC was 196.70 mg·g-1. The adsorption process can be described by Langmuir isothermal adsorption equations, conforming to the pseudo-second-order dynamics model, indicating that adsorption is dominated by single-molecule chemical adsorption, and a spontaneous process of increasing heat absorption entropy. Mass spectrometry showed that the OTC removal process of nZVI-HBC included not only adsorption but also degradation. These results provide a practical and potentially valuable material for the removal of OTC.
Collapse
Affiliation(s)
- Qi Li
- College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China; (S.Z.); (Y.W.)
| | | | | |
Collapse
|