1
|
Neiva J, Benzarti Z, Carvalho S, Devesa S. Green Synthesis of CuO Nanoparticles-Structural, Morphological, and Dielectric Characterization. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5709. [PMID: 39685144 DOI: 10.3390/ma17235709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
This study investigates the structural, chemical, and morphological properties of CuO nanoparticles synthesized via a green synthesis route using Opuntia ficus-indica cladode extract, with a focus on the effects of stepwise versus direct calcination. Raman spectroscopy revealed the presence of CuO, Na2CO3, and Na2SO3, with the latter two being associated with elements inherited from the cactus extracts. XRD patterns confirmed the presence of crystalline CuO and Na2CO3 phases, with the low content of Na2SO3 inferred to be amorphous. Rietveld refinement estimated a CuO content of approximately 77% in the stepwise-calcined sample and 75% in the directly calcined sample, with lattice parameters closely aligning with reference values. SEM micrographs revealed a tendency for CuO nanoparticles to aggregate, likely due to high surface energy and interaction with the viscous plant extract used in the green synthesis. Crystallite size estimates, along with morphological observations, suggest that stepwise calcination enhances crystallinity and particle definition without altering the fundamental nanoparticle morphology. These findings highlight the influence of calcination method and natural extracts on the composition and morphology of green-synthesized CuO nanoparticles, offering insights into potential applications, namely in microelectronics, due to their promising dielectric properties.
Collapse
Affiliation(s)
- Joana Neiva
- CEMMPRE, ARISE, Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra, Portugal
| | - Zohra Benzarti
- CEMMPRE, ARISE, Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra, Portugal
- Laboratory of Multifunctional Materials and Applications (LaMMA), Department of Physics, Faculty of Sciences of Sfax, University of Sfax, Soukra Road km 3.5, B.P. 1171, Sfax 3000, Tunisia
| | - Sandra Carvalho
- CEMMPRE, ARISE, Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra, Portugal
| | - Susana Devesa
- CEMMPRE, ARISE, Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra, Portugal
| |
Collapse
|
2
|
Hao Y, Wang Y, Zhang L, Liu F, Jin Y, Long J, Chen S, Duan G, Yang H. Advances in antibacterial activity of zinc oxide nanoparticles against Staphylococcus aureus (Review). Biomed Rep 2024; 21:161. [PMID: 39268408 PMCID: PMC11391181 DOI: 10.3892/br.2024.1849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Nanoparticles (NPs) are one of the promising strategies to deal with bacterial infections. As the main subset of NPs, metal and metal oxide NPs show destructive power against bacteria by releasing metal ions, direct contact of cell membranes and antibiotic delivery. Recently, a number of researchers have focused on the antibacterial activity of zinc oxide nanoparticles (ZnO NPs) against Staphylococcus aureus (S. aureus). Currently, there is a lack of a comprehensive review on ZnO NPs against S. aureus. Therefore, in this review, the antibacterial activity against S. aureus of ZnO NPs made by various synthetic methods was summarized, particularly the green synthetic ZnO NPs. The synergistic antibacterial effect against S. aureus of ZnO NPs with antibiotics was also summarized. Furthermore, the present review also emphasized the enhanced activities against S. aureus of ZnO nanocomposites, nano-hybrids and functional ZnO NPs.
Collapse
Affiliation(s)
- Yuqing Hao
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yadong Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, Henan 450016, P.R. China
| | - Li Zhang
- Department of Infectious diseases, Xinyang Center for Disease Control and Prevention, Xinyang, Henan 464000, P.R. China
| | - Fang Liu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Jinzhao Long
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
3
|
Jaishi DR, Ojha I, Bhattarai G, Baraili R, Pathak I, Ojha DR, Shrestha DK, Sharma KR. Plant-mediated synthesis of zinc oxide (ZnO) nanoparticles using Alnus nepalensis D. Don for biological applications. Heliyon 2024; 10:e39255. [PMID: 39640779 PMCID: PMC11620262 DOI: 10.1016/j.heliyon.2024.e39255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 12/07/2024] Open
Abstract
An aqueous bark extract of A. nepalensis D. Don was utilized to prepare zinc oxide (ZnO) nanoparticles through a green method, which is more economical, eco-friendly, and effective for exploring several biological applications and toxicity assessments against brine shrimp nauplii. The prepared ZnO nanoparticles were characterized using several characterizing techniques. The surface morphology and the elemental composition of the prepared ZnO NPs was analyzed by field emission scanning electron microscopy (FE-SEM), and energy dispersive X-ray (EDX) analysis. The colour of the solution was changed from reddish-brown to white indicating the formation of ZnO NPs which shows UV-vis absorption at 361 nm. The various functional groups of the organic compounds present in plant extract act as reducing and stabilizing agents in the formation of nanoparticles. The involvement of these functionalities in the formation of nanoparticles is indicated by the shifts and changes in the IR spectra of both the plant extract and the ZnO nanoparticles. The size of the nanoparticles was determined to be 15.31 nm with XRD analysis while the FE-SEM revealed the average grain size of 67.29 nm with irregular shape. The elemental composition of ZnO NPs shows a greater atomic percentage of zinc compared to other elements (C, N, Ni, O, and Ag), with an intense peak of zinc observed at approximately 1 keV. The trace amount of silver is due to the impurities present in the reagent used in the experiment. The antioxidant property of ZnO nanoparticles was evaluated with an IC₅₀ of 53.02 ± 3.43 μg/mL. The ZnO nanoparticles exhibited significant antibacterial activity against Klebsiella pneumoniae and Escherichia coli, with zones of inhibition (ZOI) of 18 mm and 23 mm, respectively as compared to the positive control neomycin of ZOI 28 mm against K. pneumoniae. The potential antibacterial activity of the ZnO NPS was revealed as the MIC and MBC against K. pneumoniae of 0.39 mg/mL and 0.78 mg/mL, respectively. In addition, the prepared ZnO nanoparticles showed toxicity against brine shrimp nauplii of LC₅₀ 16.59 μg/mL. The results of this study impart that plant-assisted synthesized ZnO nanoparticles possess significant antibacterial properties that reduce oxidative stress in human cells, ultimately contributing to cancer prevention.
Collapse
Affiliation(s)
- Dipak Raj Jaishi
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Indra Ojha
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Govinda Bhattarai
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Rabina Baraili
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Ishwor Pathak
- Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu, Nepal
| | - Dinesh Raj Ojha
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Deepak Kumar Shrestha
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
- Department of Chemistry, Butwal Multiple Campus, Tribhuvan University, Nepal
| | - Khaga Raj Sharma
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
4
|
Haroun AM, El-Sayed WM, Hassan RE. Quercetin and L-Arginine Ameliorated the Deleterious Effects of Copper Oxide Nanoparticles on the Liver of Mice Through Anti-inflammatory and Anti-apoptotic Pathways. Biol Trace Elem Res 2024; 202:3128-3140. [PMID: 37775700 DOI: 10.1007/s12011-023-03884-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
The widespread use and applications of copper oxide nanoparticles (CuO NPs) in daily life make human exposure to these particles inevitable. This study was carried out to investigate the deteriorations in hepatic and serum biochemical parameters induced by CuO NPs in adult male mice and the potential ameliorative effect of L-arginine and quercetin, either alone or in combination. Seventy adult male mice were equally allocated into seven groups: untreated group, L-arginine, quercetin, CuO NPs, arginine + CuO NPs, quercetin + CuO NPs, and quercetin + arginine + CuO NPs. Treating mice with CuO NPs resulted in bioaccumulation of copper in the liver and consequent liver injury as typified by elevation of serum ALT activity, reduction in the synthetic ability of the liver indicated by a decrease in the hepatic arginase activity, and serum total protein content. This copper accumulation increased oxidative stress, lipid peroxidation, inflammation, and apoptosis as manifested by elevation in malondialdehyde, nitric oxide, tumor necrosis factor-α, the expression level of caspase-3 and bax quantified by qPCR, and the activity of caspase-3, in addition to the reduction of superoxide dismutase activity. It also resulted in severe DNA fragmentation as assessed by Comet assay and significant pathological changes in the liver architecture. The study proved the efficiency of quercetin and L-arginine in mitigating CuO NPs-induced sub-chronic liver toxicity due to their antioxidant, anti-inflammatory, and anti-apoptotic properties; ability to inhibit DNA damage; and the potential as good metal chelators. The results of histopathological analysis confirmed the biochemical and molecular studies.
Collapse
Affiliation(s)
- Amina M Haroun
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| | - Rasha E Hassan
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| |
Collapse
|
5
|
Naiel B, Fawzy M, Mahmoud AED, Halmy MWA. Sustainable fabrication of dimorphic plant derived ZnO nanoparticles and exploration of their biomedical and environmental potentialities. Sci Rep 2024; 14:13459. [PMID: 38862646 PMCID: PMC11167042 DOI: 10.1038/s41598-024-63459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
Although, different plant species were utilized for the fabrication of polymorphic, hexagonal, spherical, and nanoflower ZnO NPs with various diameters, few studies succeeded in synthesizing small diameter ZnO nanorods from plant extract at ambient temperature. This work sought to pioneer the ZnO NPs fabrication from the aqueous extract of a Mediterranean salt marsh plant species Limoniastrum monopetalum (L.) Boiss. and assess the role of temperature in the fabrication process. Various techniques have been used to evaluate the quality and physicochemical characteristics of ZnO NPs. Ultraviolet-visible spectroscopy (UV-VIS) was used as the primary test for formation confirmation. TEM analysis confirmed the formation of two different shapes of ZnO NPs, nano-rods and near hexagonal NPs at varying reaction temperatures. The nano-rods were about 25.3 and 297.9 nm in diameter and in length, respectively while hexagonal NPs were about 29.3 nm. The UV-VIS absorption spectra of the two forms of ZnO NPs produced were 370 and 365 nm for nano-rods and hexagonal NPs, respectively. FT-IR analysis showed Zn-O stretching at 642 cm-1 and XRD confirmed the crystalline structure of the produced ZnO NPs. Thermogravimetric analysis; TGA was also used to confirm the thermal stability of ZnO NPs. The anti-tumor activities of the two prepared ZnO NPs forms were investigated by the MTT assay, which revealed an effective dose-dependent cytotoxic effect on A-431 cell lines. Both forms displayed considerable antioxidant potential, particularly the rod-shaped ZnO NPs, with an IC50 of 148.43 µg mL-1. The rod-shaped ZnO NPs were superior candidates for destroying skin cancer, with IC50 of 93.88 ± 1 µg mL-1 ZnO NPs. Thus, rod-shaped ZnO NPs are promising, highly biocompatible candidate for biological and biomedical applications. Furthermore, both shapes of phyto-synthesized NPs demonstrated effective antimicrobial activity against various pathogens. The outcomes highlight the potential of phyto-synthesized ZnO NPs as an eco-friendly alternative for water and wastewater disinfection.
Collapse
Affiliation(s)
- Bassant Naiel
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Manal Fawzy
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- National Egyptian Biotechnology Experts Network, National Egyptian Academy for Scientific Research and Technology, Cairo, Egypt
| | - Alaa El Din Mahmoud
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Marwa Waseem A Halmy
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- National Egyptian Biotechnology Experts Network, National Egyptian Academy for Scientific Research and Technology, Cairo, Egypt
| |
Collapse
|
6
|
Neal CJ, Kolanthai E, Wei F, Coathup M, Seal S. Surface Chemistry of Biologically Active Reducible Oxide Nanozymes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211261. [PMID: 37000888 DOI: 10.1002/adma.202211261] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Reducible metal oxide nanozymes (rNZs) are a subject of intense recent interest due to their catalytic nature, ease of synthesis, and complex surface character. Such materials contain surface sites which facilitate enzyme-mimetic reactions via substrate coordination and redox cycling. Further, these surface reactive sites are shown to be highly sensitive to stresses within the nanomaterial lattice, the physicochemical environment, and to processing conditions occurring as part of their syntheses. When administered in vivo, a complex protein corona binds to the surface, redefining its biological identity and subsequent interactions within the biological system. Catalytic activities of rNZs each deliver a differing impact on protein corona formation, its composition, and in turn, their recognition, and internalization by host cells. Improving the understanding of the precise principles that dominate rNZ surface-biomolecule adsorption raises the question of whether designer rNZs can be engineered to prevent corona formation, or indeed to produce "custom" protein coronas applied either in vitro, and preadministration, or formed immediately upon their exposure to body fluids. Here, fundamental surface chemistry processes and their implications in rNZ material performance are considered. In particular, material structures which inform component adsorption from the application environment, including substrates for enzyme-mimetic reactions are discussed.
Collapse
Affiliation(s)
- Craig J Neal
- Advanced Materials Processing and Analysis Center, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Fei Wei
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Melanie Coathup
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| |
Collapse
|
7
|
Ibne Shoukani H, Nisa S, Bibi Y, Zia M, Sajjad A, Ishfaq A, Ali H. Ciprofloxacin loaded PEG coated ZnO nanoparticles with enhanced antibacterial and wound healing effects. Sci Rep 2024; 14:4689. [PMID: 38409460 PMCID: PMC11322433 DOI: 10.1038/s41598-024-55306-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/22/2024] [Indexed: 02/28/2024] Open
Abstract
Antimicrobial resistance is a worldwide health problem that demands alternative antibacterial strategies. Modified nano-composites can be an effective strategy as compared to traditional medicine. The current study was designed to develop a biocompatible nano-drug delivery system with increased efficacy of current therapeutics for biomedical applications. Zinc oxide nanoparticles (ZnO-NPs) were synthesized by chemical and green methods by mediating with Moringa olifera root extract. The ZnO-NPs were further modified by drug conjugation and coating with PEG (CIP-PEG-ZnO-NPs) to enhance their therapeutic potential. PEGylated ZnO-ciprofloxacin nano-conjugates were characterized by Fourier Transform Infrared spectroscopy, X-ray diffractometry, and Scanning Electron Microscopy. During antibacterial screenings chemically and green synthesized CIP-PEG-ZnO-NPs revealed significant activity against clinically isolated Gram-positive and Gram-negative bacterial strains. The sustainable and prolonged release of antibiotics was noted from the CIP-PEG conjugated ZnO-NPs. The synthesized nanoparticles were found compatible with RBCs and Baby hamster kidney cell lines (BHK21) during hemolytic and MTT assays respectively. Based on initial findings a broad-spectrum nano-material was developed and tested for biomedical applications that eradicated Staphylococcus aureus from the infectious site and showed wound-healing effects during in vivo applications. ZnO-based nano-drug carrier can offer targeted drug delivery, and improved drug stability and efficacy resulting in better drug penetration.
Collapse
Affiliation(s)
| | - Sobia Nisa
- Department of Microbiology, The University of Haripur, Haripur, KPK, Pakistan.
| | - Yamin Bibi
- Department of Botany, Rawalpindi Women University, Rawalpindi, Pakistan
| | - Muhammad Zia
- Department of Biotechnology, Quaid-E-Azam University Islamabad, Islamabad, Pakistan
| | - Anila Sajjad
- Department of Biotechnology, Quaid-E-Azam University Islamabad, Islamabad, Pakistan
| | - Afsheen Ishfaq
- Department of Medicine, FRPMC/PAF Hospital Faisal, Karachi, Pakistan
| | - Hussain Ali
- National Institute of Health, Islamabad, Pakistan
| |
Collapse
|
8
|
Mejía-Méndez JL, Navarro-López DE, Sanchez-Martinez A, Ceballos-Sanchez O, Garcia-Amezquita LE, Tiwari N, Juarez-Moreno K, Sanchez-Ante G, López-Mena ER. Lanthanide-Doped ZnO Nanoparticles: Unraveling Their Role in Cytotoxicity, Antioxidant Capacity, and Nanotoxicology. Antioxidants (Basel) 2024; 13:213. [PMID: 38397812 PMCID: PMC10886043 DOI: 10.3390/antiox13020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This study used a sonochemical synthesis method to prepare (La, Sm)-doped ZnO nanoparticles (NPs). The effect of incorporating these lanthanide elements on the structural, optical, and morphological properties of ZnO-NPs was analyzed. The cytotoxicity and the reactive oxygen species (ROS) generation capacity of ZnO-NPs were evaluated against breast (MCF7) and colon (HT29) cancer cell lines. Their antioxidant activity was analyzed using a DPPH assay, and their toxicity towards Artemia salina nauplii was also evaluated. The results revealed that treatment with NPs resulted in the death of 10.559-42.546% and 18.230-38.643% of MCF7 and HT29 cells, respectively. This effect was attributed to the ability of NPs to downregulate ROS formation within the two cell lines in a dose-dependent manner. In the DPPH assay, treatment with (La, Sm)-doped ZnO-NPs inhibited the generation of free radicals at IC50 values ranging from 3.898 to 126.948 μg/mL. Against A. salina nauplii, the synthesized NPs did not cause death nor induce morphological changes at the tested concentrations. A series of machine learning (ML) models were used to predict the biological performance of (La, Sm)-doped ZnO-NPs. Among the designed ML models, the gradient boosting model resulted in the greatest mean absolute error (MAE) (MAE 9.027, R2 = 0.86). The data generated in this work provide innovative insights into the influence of La and Sm on the structural arrangement and chemical features of ZnO-NPs, together with their cytotoxicity, antioxidant activity, and in vivo toxicity.
Collapse
Affiliation(s)
- Jorge L. Mejía-Méndez
- Laboratory of Phytochemistry Research, Chemical Biological Sciences Department, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico;
| | - Diego E. Navarro-López
- Tecnologicode Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico;
| | - Araceli Sanchez-Martinez
- Departamento de Ingeniería de Proyectos, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Av. José Guadalupe Zuno # 48, Industrial Los Belenes, Zapopan 45157, Mexico; (A.S.-M.); (O.C.-S.)
| | - Oscar Ceballos-Sanchez
- Departamento de Ingeniería de Proyectos, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Av. José Guadalupe Zuno # 48, Industrial Los Belenes, Zapopan 45157, Mexico; (A.S.-M.); (O.C.-S.)
| | - Luis Eduardo Garcia-Amezquita
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada No 2501, Monterrey 64849, Mexico;
| | - Naveen Tiwari
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela, Rúa Jenaro de La Fuente S/N, 15782 Santiago de Compostela, Spain
| | - Karla Juarez-Moreno
- Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, Mexico
| | - Gildardo Sanchez-Ante
- Tecnologicode Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico;
| | - Edgar R. López-Mena
- Tecnologicode Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico;
| |
Collapse
|
9
|
Joshi AA, Patil RH. Metal nanoparticles as inhibitors of enzymes and toxins of multidrug-resistant Staphylococcus aureus. INFECTIOUS MEDICINE 2023; 2:294-307. [PMID: 38205183 PMCID: PMC10774769 DOI: 10.1016/j.imj.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 01/12/2024]
Abstract
Staphylococcus aureus is an aerobic Gram-positive spherical bacterium known to cause a broad range of infections worldwide. It is a major cause of infective skin and soft infections and severe and life-threatening conditions, such as pneumonia, bloodstream infections, and endocarditis. The emergence of drug-resistant strains of S aureus, particularly methicillin-resistant S aureus (MRSA), has become a significant concern in the healthcare community. Antibiotic-resistant S aureus is commonly acquired in hospitals and long-term care facilities. It often affects patients with weakened immune systems, those undergoing invasive medical procedures, or those who have been hospitalized for extended periods. In the US, S aureus is known to cause potentially fatal illnesses, such as toxic shock syndrome (TSS) and acute-onset toxic shock syndrome (TSS), which are characterized by fever and hypotension. It develops resistance to antibiotics through several mechanisms, such as the production of enzymes that inactivate antibiotics, target site modification, efflux pumps, and plasmid-mediated resistance. Therefore, preventing the spread of drug-resistant S aureus is needed, and there is an urgent need to explore novel approaches in the development of anti-staphylococcal agents. This article reviews the principal infections caused by S aureus, major virulence factors, mechanisms of resistance development, and nanotechnology-based solutions for the control of drug-resistant S aureus.
Collapse
Affiliation(s)
- Amruta A. Joshi
- Department of Microbiology and Biotechnology, R. C. Patel Arts, Commerce and Science College, Shirpur, Maharashtra 425405, India
| | - Ravindra H. Patil
- Department of Microbiology and Biotechnology, R. C. Patel Arts, Commerce and Science College, Shirpur, Maharashtra 425405, India
| |
Collapse
|
10
|
Sajjad A, Ali H, Zia M. Fabrication and evaluation of vitamin doped Zno/AgNPs nanocomposite based wheat gluten films: a promising findings for burn wound treatment. Sci Rep 2023; 13:16072. [PMID: 37752271 PMCID: PMC10522583 DOI: 10.1038/s41598-023-43413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/23/2023] [Indexed: 09/28/2023] Open
Abstract
Burn wound treatment remains a significant issue in wound care management especially when multidrug resistant bacterial infection and accumulation are present. Delayed wound healing is mostly due to ineffectiveness of commercially available wound dressings that protects the wound but less efficient in healing perspective. Therefore, nano-based wound dressing might be efficient solution for wound healing management. The present study reports the fabrication and evaluation of zinc oxide (ZnO) or silver nanoparticles (Ag NPs) capped with vitamin A or E nanocomposite that were incorporated in wheat gluten (WG) films. The chemical structure, phase purity, and morphological features confirmed the successful coating of NPs by vitamins A and E and their interaction with WG during film casting. The maximum swelling response was observed by NPs vitamin composite WG films than control films while slow release of vitamins and NPs from films was observed up to 24 h. WG films either carrying ZnO or Ag NPs, and vitamin A or E demonstrated significant antioxidant and antibacterial potential. The NPs-vitamin composite loaded WG films showed wound contraction within 14 days during in vivo burn wound healing experiments on mice model. The rates of wound healing, re-epithelialization, collagen deposition with fibroblast regeneration, adipocytes, and hair follicle development were observed through visual and histopathological examination. The study reveals that vitamin A or E doped ZnO or Ag NPs fabricated in WG can be efficiently used against burn wounds due to their physiochemical and biological properties. Furthermore the biocompatible nature and biodegradable potential make the films more prone to mankind maneuver for initial protection and healing remedy.
Collapse
Affiliation(s)
- Anila Sajjad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Hussain Ali
- Veterinary Farms Management Sub-Division, National Institute of Health, Islamabad, Pakistan
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
11
|
Chan YB, Aminuzzaman M, Tey LH, Win YF, Watanabe A, Djearamame S, Akhtaruzzaman M. Impact of Diverse Parameters on the Physicochemical Characteristics of Green-Synthesized Zinc Oxide-Copper Oxide Nanocomposites Derived from an Aqueous Extract of Garcinia mangostana L. Leaf. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5421. [PMID: 37570124 PMCID: PMC10419950 DOI: 10.3390/ma16155421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023]
Abstract
Compared to conventional metal oxide nanoparticles, metal oxide nanocomposites have demonstrated significantly enhanced efficiency in various applications. In this study, we aimed to synthesize zinc oxide-copper oxide nanocomposites (ZnO-CuO NCs) using a green synthesis approach. The synthesis involved mixing 4 g of Zn(NO3)2·6H2O with different concentrations of mangosteen (G. mangostana) leaf extract (0.02, 0.03, 0.04 and 0.05 g/mL) and 2 or 4 g of Cu(NO3)2·3H2O, followed by calcination at temperatures of 300, 400 and 500 °C. The synthesized ZnO-CuO NCs were characterized using various techniques, including a UV-Visible spectrometer (UV-Vis), photoluminescence (PL) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, X-ray powder diffraction (XRD) analysis and Field Emission Scanning Electron Microscope (FE-SEM) with an Energy Dispersive X-ray (EDX) analyzer. Based on the results of this study, the optical, structural and morphological properties of ZnO-CuO NCs were found to be influenced by the concentration of the mangosteen leaf extract, the calcination temperature and the amount of Cu(NO3)2·3H2O used. Among the tested conditions, ZnO-CuO NCs derived from 0.05 g/mL of mangosteen leaf extract, 4 g of Zn(NO3)2·6H2O and 2 g of Cu(NO3)2·3H2O, calcinated at 500 °C exhibited the following characteristics: the lowest energy bandgap (2.57 eV), well-defined Zn-O and Cu-O bands, the smallest particle size of 39.10 nm with highest surface area-to-volume ratio and crystalline size of 18.17 nm. In conclusion, we successfully synthesized ZnO-CuO NCs using a green synthesis approach with mangosteen leaf extract. The properties of the nanocomposites were significantly influenced by the concentration of the plant extract, the calcination temperature and the amount of precursor used. These findings provide valuable insights for researchers seeking innovative methods for the production and utilization of nanocomposite materials.
Collapse
Affiliation(s)
- Yu Bin Chan
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia; (Y.B.C.); (Y.F.W.)
| | - Mohammod Aminuzzaman
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia; (Y.B.C.); (Y.F.W.)
- Centre for Photonics and Advanced Materials Research (CPAMR), Universiti Tunku Abdul Rahman (UTAR), Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Malaysia
| | - Lai-Hock Tey
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia; (Y.B.C.); (Y.F.W.)
| | - Yip Foo Win
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia; (Y.B.C.); (Y.F.W.)
| | - Akira Watanabe
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan;
| | - Sinouvassane Djearamame
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia;
| | - Md. Akhtaruzzaman
- Solar Energy Research Institute (SERI), Universiti Kebangsanan Malaysia (UKM), Bangi 43600, Malaysia;
| |
Collapse
|
12
|
Sajjad H, Sajjad A, Haya RT, Khan MM, Zia M. Copper oxide nanoparticles: In vitro and in vivo toxicity, mechanisms of action and factors influencing their toxicology. Comp Biochem Physiol C Toxicol Pharmacol 2023; 271:109682. [PMID: 37328134 DOI: 10.1016/j.cbpc.2023.109682] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/21/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) have received increasing interest due to their distinctive properties, including small particle size, high surface area, and reactivity. Due to these properties, their applications have been expanded rapidly in various areas such as biomedical properties, industrial catalysts, gas sensors, electronic materials, and environmental remediation. However, because of these widespread uses, there is now an increased risk of human exposure, which could lead to short- and long-term toxicity. This review addresses the underlying toxicity mechanisms of CuO NPs in cells which include reactive oxygen species generation, leaching of Cu ion, coordination effects, non-homeostasis effect, autophagy, and inflammation. In addition, different key factors responsible for toxicity, characterization, surface modification, dissolution, NPs dose, exposure pathways and environment are discussed to understand the toxicological impact of CuO NPs. In vitro and in vivo studies have shown that CuO NPs cause oxidative stress, cytotoxicity, genotoxicity, immunotoxicity, neurotoxicity, and inflammation in bacterial, algal, fish, rodents, and human cell lines. Therefore, to make CuO NPs a more suitable candidate for various applications, it is essential to address their potential toxic effects, and hence, more studies should be done on the long-term and chronic impacts of CuO NPs at different concentrations to assure the safe usage of CuO NPs.
Collapse
Affiliation(s)
- Humna Sajjad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Anila Sajjad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Rida Tul Haya
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
13
|
Junejo B, Solangi QA, Thani ASB, Palabiyik IM, Ghumro T, Bano N, Solangi AR, Taqvi SIH. Physical properties and pharmacological applications of Co 3O 4, CuO, NiO and ZnO nanoparticles. World J Microbiol Biotechnol 2023; 39:220. [PMID: 37269437 DOI: 10.1007/s11274-023-03657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023]
Abstract
Nano materials have found developing interest in biogenic approaches in the present times. In this study, metal oxide nanoparticles (NPs) such as cobalt oxide (Co3O4), copper oxide (CuO), nickel oxide (NiO) and zinc oxide (ZnO), were synthesized using a convenient and rapid method. The structural features of synthesized metal oxide NPs were studied using various microscopic and spectroscopic techniques like SEM, TEM, XRD, FTIR and EDX. The characterization results confirmed that the prepared NPs possess highly pure, unique and crystalline geometry with size ranging between 10 and 20 nm. The synthesized nanoparticles were successfully employed for pharmacological applications. Enzyme inhibition potential of NPs was evaluated against the urease and tyrosinase enzymes. The percent inhibition for the urease enzyme was observed as 80 to 90% by using Co3O4, CuO, NiO and ZnO NPs while ZnO NPs were found to have best anti-urease and anti-tyrosinase activities. Moreover, effective inhibition was observed in the case of ZnO NPs at IC50 values of 0.0833 and 0.1732 for urease and tyrosinase enzymes which were comparable to reference drugs thiourea and kojic acid. The lower the IC50 value, higher the free radical scavenging power. Antioxidant activity by DPPH free radical scavenging method was found moderately high for the synthesized metal oxide NPs while best results were obtained for Co3O4 and ZnO NPs as compared to the standard ascorbic acid. Antimicrobial potential was also evaluated via the disc diffusion and well diffusion methods. CuO NPs show a better zone of inhibition at 20 and 27 mm by using both methods. This study proves that the novel metal oxide NPs can compete with the standard materials used in the pharmacological studies nowadays.
Collapse
Affiliation(s)
- Bindia Junejo
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Qamar A Solangi
- Department of Biology, College of Science, University of Bahrain, 32038, Zallaq, Bahrain
| | - Ali Salman B Thani
- Department of Biology, College of Science, University of Bahrain, 32038, Zallaq, Bahrain
| | - Ismail Murat Palabiyik
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06100, Ankara, Turkey
| | - Tania Ghumro
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Nadia Bano
- Institute of Microbiology, Shah Abdul Latif University, Khairpur, Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan.
| | - Syed Iqleem H Taqvi
- Department of Chemistry, Government College University Hyderabad, Hyderabad, Sindh, Pakistan
| |
Collapse
|
14
|
Murali M, Thampy A, Anandan S, Aiyaz M, Shilpa N, Singh SB, Gowtham HG, Ramesh AM, Rahdar A, Kyzas GZ. Competent antioxidant and antiglycation properties of zinc oxide nanoparticles (ZnO-NPs) phyto-fabricated from aqueous leaf extract of Boerhaavia erecta L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:56731-56742. [PMID: 36929264 DOI: 10.1007/s11356-023-26331-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
During the present century, plant-based zinc oxide nanoparticles (ZnO-NPs) are exploited extensively for their vast biological properties due to their unique characteristic features and eco-friendly nature. Diabetes is one of the fast-growing human diseases/abnormalities worldwide, and the need for new/ novel antiglycation products is the need of the hour. The study deals with the phyto-fabrication of ZnO-NPs from Boerhaavia erecta, a medicinally important plant, and to evaluate their antioxidant and antiglycation ability in vitro. UV-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) were used to characterize the phyto-fabricated ZnO-NPs. The characterization of nanoparticles revealed that the particles showed an absorption peak at 362 nm and band gap energy of 3.2 eV, approximately 20.55 nm in size, with a ZnO elemental purity of 96.61%. The synthesized particles were found agglomerated when observed under SEM, and the FT-IR studies proved that the phyto-constituents of the extract involved during the different stages (reduction, capping, and stabilization) of nanoparticles synthesis. The antioxidant and metal chelating activities confirmed that ZnO-NPs could inhibit the free radicals generated, which was dose-dependent with an IC50 value between 1.81 and 1.94 mg mL-1, respectively. In addition, the phyto-fabricated nanoparticles blocked the formation of advanced glycation end products (AGEs) as noticed through inhibition of Amadori products, trapping of reactive dicarbonyl intermediate and breaking the cross-link of glycated protein. It was also noted that the phyto-fabricated ZnO-NPs significantly prevented the damage of red blood corpuscles (RBCs) induced by MGO. The present study's findings will provide an experimental basis for exploring ZnO-NPs in diabetes-related complications.
Collapse
Affiliation(s)
- Mahadevamurthy Murali
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysore, 570006, Karnataka, India
| | - Anjana Thampy
- Department of Clinical Nutrition and Dietetics, Sri Devaraj Urs Academy of Higher Education and Research, Kolar, 563101, Karnataka, India
| | - Satish Anandan
- Department of Clinical Nutrition and Dietetics, Sri Devaraj Urs Academy of Higher Education and Research, Kolar, 563101, Karnataka, India.
| | - Mohammed Aiyaz
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore, 570006, Karnataka, India
| | - Natarajamurthy Shilpa
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysore, 570006, Karnataka, India
| | - Sudarshana Brijesh Singh
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysore, 570006, Karnataka, India
| | | | - Abhilash Mavinakere Ramesh
- Department of Studies in Environmental Science, University of Mysore, Manasagangotri, Mysore, 570006, Karnataka, India
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol, 98613-35856, Iran
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, Kavala, Greece
| |
Collapse
|
15
|
Hanif S, Zia M. Glycine betaine capped ZnO NPs eliminate oxidative stress to coriander plants grown under NaCl presence. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107651. [PMID: 36989991 DOI: 10.1016/j.plaphy.2023.107651] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/21/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Salinity is one of the major abiotic stresses for sustainable agriculture. The use of mineral nutrients in form of nanoparticles can be a novel strategy to fight against abiotic stresses. An in vitro study has been conducted to investigate the effect of zinc oxide nanoparticles (ZnO NPs) capped with glycine betaine (ZnOBt) on coriander plants exposed to saline (NaCl) stress. SEM and XRD analysis revealed 14.73 nm and 17.34 nm size of ZnO and ZnOBt NPs, respectively with spherical to hexagonal structures. Coriander plant length and biomass increased by the application of ZnO and ZnOBt NPs. ZnOBt NPs depicted promising results at 100 mg/L where, shoot and root length increased up to 14 cm and 13 cm, respectively as compared to plants grown under saline stress. ZnOBt NPs also increased fresh and dry weight of shoots and roots as compared to other treatments. The results depict that ZnOBt NPs mitigated stress condition. This is evident from concentration of phenolic and flavonoid contents that decreased in both roots and shoots. Free radical scavenging activity, total antioxidant capacity and total reducing power also decreased in plants by ZnOBt NPs when applied with stress. The concentration of superoxide and peroxide dismutase also decreased by application of ZnOBt NPs to salt stress plants. Glycine betaine with ZnO NPs, in conclusion, can be an effective remedy for salinity-exposed plants. These nanoparticles can be encouraged as a viable technique to overcome the detrimental effects of saline stress on plants.
Collapse
Affiliation(s)
- Saad Hanif
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
16
|
Sajjad A, Rasheed F, Xiao X, Olsson RT, Capezza AJ, Zia M. Integration of Zinc Oxide Nanoparticles in Wheat Gluten Hydrolysates-Development of Multifunctional Films with Pliable Properties. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-023-02544-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
17
|
Fan J, Shang T, Duan P. Design of electrochemical sensor for 1,3-propanediol detection in presence of glycerol. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
18
|
Synthesis and morphological & biological characterization of Campsis radicans and Cascabela thevetia petals derived silver nanoparticles. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Green synthesis of zinc oxide nanoparticles using Sea Lavender (Limonium pruinosum L. Chaz.) extract: characterization, evaluation of anti-skin cancer, antimicrobial and antioxidant potentials. Sci Rep 2022; 12:20370. [PMID: 36437355 PMCID: PMC9701696 DOI: 10.1038/s41598-022-24805-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
In the present study, a green, sustainable, simple and low-cost method was adopted for the synthesis of ZnO NPs, for the first time, using the aqueous extract of sea lavender, Limonium pruinosum (L.) Chaz., as a reducing, capping, and stabilizing agent. The obtained ZnO NPs were characterized using ultraviolet-visible spectroscopy (UV-VIS), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The UV-Vis spectra of the green synthesized ZnO NPs showed a strong absorption peak at about 370 nm. Both electron microscopy and XRD confirmed the hexagonal/cubic crystalline structure of ZnO NPs with an average size ~ 41 nm. It is worth noting that the cytotoxic effect of the ZnO NPs on the investigated cancer cells is dose-dependent. The IC50 of skin cancer was obtained at 409.7 µg/ml ZnO NPs. Also, the phyto-synthesized nanoparticles exhibited potent antibacterial and antifungal activity particularly against Gram negative bacteria Escherichia coli (ATCC 8739) and the pathogenic fungus Candida albicans (ATCC 10221). Furthermore, they showed considerable antioxidant potential. Thus, making them a promising biocompatible candidate for pharmacological and therapeutic applications.
Collapse
|
20
|
Ishwarya R, Tamilmani G, Jeyakumar R, Albeshr MF, Mahboob S, Shahid D, Riaz MN, Govindarajan M, Vaseeharan B. Synthesis of zinc oxide nanoparticles using Vigna mungo seed husk extract: An enhanced antibacterial and anticancer activity and eco-friendly bio-toxicity assessment on algae and zooplankton. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Chan YB, Selvanathan V, Tey LH, Akhtaruzzaman M, Anur FH, Djearamane S, Watanabe A, Aminuzzaman M. Effect of Calcination Temperature on Structural, Morphological and Optical Properties of Copper Oxide Nanostructures Derived from Garcinia mangostana L. Leaf Extract. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3589. [PMID: 36296778 PMCID: PMC9607417 DOI: 10.3390/nano12203589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Synthesis of copper oxide (CuO) nanostructures via biological approach has gained attention to reduce the harmful effects of chemical synthesis. The CuO nanostructures were synthesized through a green approach using the Garcinia mangostana L. leaf extract and copper (II) nitrate trihydrate as a precursor at varying calcination temperatures (200-600 °C). The effect of calcination temperatures on the structural, morphological and optical properties of CuO nanostructures was studied. The red shifting of the green-synthesized CuO nanoparticles' absorption peak was observed in UV-visible spectrum, and the optical energy bandgap was found to decrease from 3.41 eV to 3.19 eV as the calcination temperatures increased. The PL analysis shown that synthesized CuO NPs calcinated at 500 °C has the maximum charge carriers separation. A peak located at 504-536 cm-1 was shown in FTIR spectrum that indicated the presence of a copper-oxygen vibration band and become sharper and more intense when increasing the calcination temperature. The XRD studies revealed that the CuO nanoparticles' crystalline size was found to increase from 12.78 nm to 28.17 nm, and dislocation density decreased from 61.26 × 1014 cm-1 to 12.60 × 1014 cm-1, while micro strain decreased from 3.40 × 10-4 to 1.26 × 10-4. From the XPS measurement, only CuO single phase without impurities was detected for the green-mediated NPs calcinated at 500 °C. The morphologies of CuO nanostructures were examined using FESEM and became more spherical in shape at elevated calcination temperature. More or less spherical nanostructure of green-mediated CuO calcinated at 500 °C were also observed using TEM. The purity of the green-synthesized CuO nanoparticles was evaluated by EDX analysis, and results showed that increasing calcination temperature increases the purity of CuO nanoparticles.
Collapse
Affiliation(s)
- Yu Bin Chan
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, Kampar 31900, Perak, Malaysia
| | - Vidhya Selvanathan
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Lai-Hock Tey
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, Kampar 31900, Perak, Malaysia
| | - Md. Akhtaruzzaman
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Farah Hannan Anur
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Sinouvassane Djearamane
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, Kampar 31900, Perak, Malaysia
| | - Akira Watanabe
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan
| | - Mohammod Aminuzzaman
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, Kampar 31900, Perak, Malaysia
- Centre for Photonics and Advanced Materials Research (CPAMR), Universiti Tunku Abdul Rahman (UTAR), Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Selangor, Malaysia
| |
Collapse
|
22
|
Butt A, Ali JS, Sajjad A, Naz S, Zia M. Biogenic synthesis of cerium oxide nanoparticles using petals of Cassia glauca and evaluation of antimicrobial, enzyme inhibition, antioxidant, and nanozyme activities. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
23
|
Sajjad A, Bhatti SH, Zia M. Photo excitation of silver ions during the synthesis of silver nanoparticles modify physiological, chemical, and biological properties. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2126340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Anila Sajjad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
24
|
Fang Y, Wu W, Qin Y, Liu H, Lu K, Wang L, Zhang M. Recent development in antibacterial activity and application of nanozymes in food preservation. Crit Rev Food Sci Nutr 2022; 63:9330-9348. [PMID: 35452320 DOI: 10.1080/10408398.2022.2065660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nanozymes with excellent broad-spectrum antibacterial properties offers an alternative strategy for food preservation. This review comprehensively summarized the antibacterial mechanisms of nanozymes, including the generation of reactive oxygen species (ROS) and the destruction of biofilms. Besides, the primary factors (size, morphology, hybridization, light, etc.) regulating the antibacterial activity of different types of nanozymes were highlighted in detail, which provided effective guidance on how to design highly efficient antibacterial nanozymes. Moreover, this review presented elaborated viewpoints on the unique applications of nanozymes in food preservation, including the selection of nanozymes loading matrix, fabrication techniques of nanozymes-based antibacterial films/coatings, and the recent advances in the application of nanozymes-based antibacterial films/coatings in food preservation. In the end, the safety issues of nanozymes have also been mentioned. Overall, this review provided new avenues in the field of food preservation and displayed great prospects.
Collapse
Affiliation(s)
- Yan Fang
- College of Life Science & Technology, Xinjiang University, Urumqi, China
- The Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, China
| | - Wanfeng Wu
- College of Life Science & Technology, Xinjiang University, Urumqi, China
- The Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, China
| | - Yanan Qin
- College of Life Science & Technology, Xinjiang University, Urumqi, China
- The Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, China
| | - Haoqiang Liu
- College of Life Science & Technology, Xinjiang University, Urumqi, China
- The Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, China
| | - Kang Lu
- College of Life Science & Technology, Xinjiang University, Urumqi, China
- The Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, China
| | - Liang Wang
- College of Life Science & Technology, Xinjiang University, Urumqi, China
- The Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, China
| | - Minwei Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi, China
- The Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, China
| |
Collapse
|
25
|
Zhang X, Chen X, Zhao Y. Nanozymes: Versatile Platforms for Cancer Diagnosis and Therapy. NANO-MICRO LETTERS 2022; 14:95. [PMID: 35384520 PMCID: PMC8986955 DOI: 10.1007/s40820-022-00828-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/17/2022] [Indexed: 05/08/2023]
Abstract
Natural enzymes usually suffer from high production cost, ease of denaturation and inactivation, and low yield, making them difficult to be broadly applicable. As an emerging type of artificial enzyme, nanozymes that combine the characteristics of nanomaterials and enzymes are promising alternatives. On the one hand, nanozymes have high enzyme-like catalytic activities to regulate biochemical reactions. On the other hand, nanozymes also inherit the properties of nanomaterials, which can ameliorate the shortcomings of natural enzymes and serve as versatile platforms for diverse applications. In this review, various nanozymes that mimic the catalytic activity of different enzymes are introduced. The achievements of nanozymes in different cancer diagnosis and treatment technologies are summarized by highlighting the advantages of nanozymes in these applications. Finally, future research directions in this rapidly developing field are outlooked.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xiaokai Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
26
|
Jampilek J, Kralova K. Advances in Nanostructures for Antimicrobial Therapy. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2388. [PMID: 35407720 PMCID: PMC8999898 DOI: 10.3390/ma15072388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Microbial infections caused by a variety of drug-resistant microorganisms are more common, but there are fewer and fewer approved new antimicrobial chemotherapeutics for systemic administration capable of acting against these resistant infectious pathogens. Formulation innovations of existing drugs are gaining prominence, while the application of nanotechnologies is a useful alternative for improving/increasing the effect of existing antimicrobial drugs. Nanomaterials represent one of the possible strategies to address this unfortunate situation. This review aims to summarize the most current results of nanoformulations of antibiotics and antibacterial active nanomaterials. Nanoformulations of antimicrobial peptides, synergistic combinations of antimicrobial-active agents with nitric oxide donors or combinations of small organic molecules or polymers with metals, metal oxides or metalloids are discussed as well. The mechanisms of actions of selected nanoformulations, including systems with magnetic, photothermal or photodynamic effects, are briefly described.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
27
|
Huang W, Xu Y, Sun Y. Functionalized Graphene Fiber Modified With MOF-Derived Rime-Like Hierarchical Nanozyme for Electrochemical Biosensing of H 2O 2 in Cancer Cells. Front Chem 2022; 10:873187. [PMID: 35392421 PMCID: PMC8980740 DOI: 10.3389/fchem.2022.873187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
The rational design and construction of high-performance flexible electrochemical sensors based on hierarchical nanostructure functionalized microelectrode systems are of vital importance for sensitive in situ and real-time detection of biomolecules released from living cells. Herein, we report a novel and facile strategy to synthesize a new kind of high-performance microelectrode functionalized by dual nanozyme composed of rime-like Cu2(OH)3NO3 wrapped ZnO nanorods assembly [Cu2(OH)3NO3@ZnO], and explore its practical application in electrochemical detection of hydrogen peroxide (H2O2) released from living cells. Benefiting from the merits of the unique hierarchical nanohybrid structure and high catalytic activities, the resultant Cu2(OH)3NO3@ZnO-modified AGF microelectrode shows remarkable electrochemical sensing performance towards H2O2 with a low detection limit of 1 μM and a high sensitivity of 272 μA cm-2 mM-1, as well as good anti-interference capability, long-term stability, and reproducibility. These properties enabled the proposed microelectrode-based electrochemical platform to be applied for in situ amperometric tracking of H2O2 released from different types of human colon cells, thus demonstrating its great prospect as a sensitive cancer cell detection probe for the early diagnosis and management of various cancer diseases.
Collapse
Affiliation(s)
- Wei Huang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, China
| | - Yun Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, China
| | - Yimin Sun
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
28
|
Li J, Li X, Liang D, Zhang X, Lin Q, Hao L. Preparation and Antibacterial Performances of Electrocatalytic Zinc Oxide Nanoparticles with Diverse Morphologies. J Biomed Nanotechnol 2021; 17:1824-1829. [PMID: 34688327 DOI: 10.1166/jbn.2021.3144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study exploits the potential of zinc oxide nanoparticles (ZnO-NPs) with diverse morphologies as catalysts and antibacterial agent. Spherical ZnO-NPs, rod-shaped ZnO-NPs and flower-shaped ZnO-NPs were prepared by microemulsion method, solvent heat method and hydrothermal method, respectively. The structural characterizations of samples were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. XRD results revealed the formation of spherical ZnO-NPs, rod-shaped ZnO-NPs and flower-shaped ZnO-NPs were all wurtzite crystal structure. SEM results showed that spherical ZnO-NPs had an average particle size of 30-40 nm, rod-shaped ZnO-NPs were about 500 nm long and 100 nm wide with obvious hexagonal crystals. Flower-shaped ZnO-NPs had a three-dimensional appearance with obvious petals. Results of electrochemical HER (Hydrogen evolution reaction) experiments revealed that spherical ZnO-NPs exhibited the highest electrocatalytic activity at the lowest potential voltage due to their largest specific surface area. The antibacterial property of ZnO-NPs samples were studied by the optical density method and disc diffusion method. All samples had antibacterial effects against E. coli. and flower-shaped ZnO-NPs showed the best antibacterial activity due to the largest surface area in comparison with spherical ZnO-NPs and rod-shaped ZnO-NPs, which promised the maximum Zn2+ release as bactericide mechanism that registered in the case of different ZnO-NPs morphologies.
Collapse
Affiliation(s)
- Junlin Li
- Nanjing Key Laboratory of Optometric Materials and Technology, School of Materials and Engineering, Jinling Institute of Technology, Nanjing, 211169, Jiangsu, P. R. China
| | - Xiangfei Li
- Nanjing Key Laboratory of Optometric Materials and Technology, School of Materials and Engineering, Jinling Institute of Technology, Nanjing, 211169, Jiangsu, P. R. China
| | - Dong Liang
- Nanjing Key Laboratory of Optometric Materials and Technology, School of Materials and Engineering, Jinling Institute of Technology, Nanjing, 211169, Jiangsu, P. R. China
| | - Xiaojuan Zhang
- Nanjing Key Laboratory of Optometric Materials and Technology, School of Materials and Engineering, Jinling Institute of Technology, Nanjing, 211169, Jiangsu, P. R. China
| | - Qing Lin
- Nanjing Key Laboratory of Optometric Materials and Technology, School of Materials and Engineering, Jinling Institute of Technology, Nanjing, 211169, Jiangsu, P. R. China
| | - Lingyun Hao
- Nanjing Key Laboratory of Optometric Materials and Technology, School of Materials and Engineering, Jinling Institute of Technology, Nanjing, 211169, Jiangsu, P. R. China
| |
Collapse
|