1
|
Madlala NC, Khanyile N, Masenya A. Examining the Correlation between the Inorganic Nano-Fertilizer Physical Properties and Their Impact on Crop Performance and Nutrient Uptake Efficiency. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1263. [PMID: 39120369 PMCID: PMC11314324 DOI: 10.3390/nano14151263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
The physical properties of nano-fertilizers (NFs) are important in determining their performance, efficacy, and environmental interactions. Nano-fertilizers, due to their small size and high surface area-to-volume ratio, enhance plant metabolic reactions, resulting in higher crop yields. The properties of nano-fertilizers depend on the synthesis methods used. The nanoparticle's nutrient use efficiency (NUE) varies among plant species. This review aims to analyze the relationship between the physical properties of NF and their influence on crop performance and nutrient uptake efficiency. The review focuses on the physical properties of NFs, specifically their size, shape, crystallinity, and agglomeration. This review found that smaller particle-sized nanoparticles exhibit higher nutrient use efficiency than larger particles. Nano-fertilizer-coated additives gradually release nutrients, reducing the need for frequent application and addressing limitations associated with chemical fertilizer utilization. The shapes of nano-fertilizers have varying effects on the overall performance of plants. The crystalline structure of nanoparticles promotes a slow release of nutrients. Amorphous nano-fertilizers improve the NUE and, ultimately, crop yield. Agglomeration results in nanoparticles losing their nanoscale size, accumulating on the outer surface, and becoming unavailable to plants. Understanding the physical properties of nano-fertilizers is crucial for optimizing their performance in agricultural applications.
Collapse
Affiliation(s)
| | - Nokuthula Khanyile
- School of Chemical and Physical Sciences, University of Mpumalanga, Mbombela 1200, South Africa
| | - Absalom Masenya
- School of Agricultural Sciences, University of Mpumalanga, Mbombela 1200, South Africa (A.M.)
| |
Collapse
|
2
|
Saravana Kumari P, Ramkumar S, Seethalaxmi M, Rekha T, Abiyoga M, Baskar V, Sureshkumar S. Biofortification of crops with nutrients by the application of nanofertilizers for effective agriculture. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108772. [PMID: 38801788 DOI: 10.1016/j.plaphy.2024.108772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/26/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
The agricultural industry is rapidly accepting daily changes and updates, and expanding to meet the basic demands of humanity. The main objective of modern agricultural practices is high profits with minimal investment, without upsetting any other form of life or abiotic factors. According to this principle, nanofertilizers are recommended for use in agriculture and are classified in different ways based on their nutritive value, functional role in the environment, chemical composition, and form of application to ensure their persistent availability in the required quantities. These nanofertilizers meet the global crop nutrient requirement of 191.8 million metric tons along with multitudes of added value, and which are highly endorsed in the agricultural field compared to other chemical fertilizers, or their usage can be reduced to less than 50% by the use of nanofertilizers. In this review, we discuss different types of nanofertilizers, their effects on crop yield, stress tolerance, and their impact on the environment. Furthermore, the different types of nanofertilizer delivery, modes of action, and toxic impacts of nanofertilizers have been discussed. Although a large number of commercially successful effects of nanofertilizers have been demonstrated, the effects of biomagnification and cellular transformation are still disputed. The effect of the biomagnification of nanofertilizers remains unclear. A suitable strategy must be developed to easily recycle nanofertilizers. It is the need of the hour to accept the use of nanofertilizers in parallel to addressing this issue.
Collapse
Affiliation(s)
- P Saravana Kumari
- Department of Microbiology, RVS College of Arts and Science, Coimbatore, India
| | - S Ramkumar
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - M Seethalaxmi
- Department of Microbiology, RVS College of Arts and Science, Coimbatore, India; Department of Biotechnology, Surana College, Bangalore, India
| | - T Rekha
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India.
| | - M Abiyoga
- Department of Microbiology, RVS College of Arts and Science, Coimbatore, India
| | - V Baskar
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India.
| | - S Sureshkumar
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, 641021, India
| |
Collapse
|
3
|
Nguyen NN, Nguyen NT, Nguyen PT, Phan QN, Le TL, Do HDK. Current and emerging nanotechnology for sustainable development of agriculture: Implementation design strategy and application. Heliyon 2024; 10:e31503. [PMID: 38818209 PMCID: PMC11137568 DOI: 10.1016/j.heliyon.2024.e31503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Recently, agriculture systems have faced numerous challenges involving sustainable nutrient use efficiency and feeding, environmental pollution especially heavy metals (HMs), infection of harmful microorganisms, and maintenance of crop production quality during postharvesting and packaging. Nanotechnology and nanomaterials have emerged as powerful tools in agriculture applications that provide alternatives or support traditional methods. This review aims to address and highlight the current overarching issue and various implementation strategies of nanotechnology for sustainable agriculture development. In particular, the current progress of different nano-fertilizers (NFs) systems was analyzed to show their advances in enhancing the uptake and translocations in plants and improving nutrient bioavailability in soil. Also, the design strategy and application of nanotechnology for rapid detection of HMs and pathogenic diseases in plant crops were emphasized. The engineered nanomaterials have great potential for biosensors with high sensitivity and selectivity, high signal throughput, and reproducibility through various detection approaches such as Raman, colorimetric, biological, chemical, and electrical sensors. We obtain that the development of microfluidic and lab-on-a-chip (LoC) technologies offers the opportunity to create on-site portable and smart biodevices and chips for real-time monitoring of plant diseases. The last part of this work is a brief introduction to trends in nanotechnology for harvesting and packaging to provide insights into the overall applications of nanotechnology for crop production quality. This review provides the current advent of nanotechnology in agriculture, which is essential for further studies examining novel applications for sustainable agriculture.
Collapse
Affiliation(s)
- Nhat Nam Nguyen
- School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City, 87000, Viet Nam
| | - Ngoc Trai Nguyen
- School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City, 87000, Viet Nam
| | - Phuong Thuy Nguyen
- School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City, 87000, Viet Nam
| | - Quoc Nam Phan
- School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City, 87000, Viet Nam
| | - Truc Linh Le
- School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City, 87000, Viet Nam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City, Viet Nam
| |
Collapse
|
4
|
Raiesi Ardali T, Ma'mani L, Chorom M, Motamedi E, Fathi Gharebaba M. A biocompatible NPK +Fe+Zn slow release fertilizer: synthesis and its evaluation in tomato plant growth improvement. Sci Rep 2024; 14:4640. [PMID: 38409209 PMCID: PMC10897305 DOI: 10.1038/s41598-024-55152-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/20/2024] [Indexed: 02/28/2024] Open
Abstract
Slow-release fertilizers (SRFs) play an essential and necessary role in sustainable agriculture. Using slow-release and environment friendly fertilizers can increase the growth of plants and reduce the loss of nutrients. Considering the deficiency of iron (Fe) and zinc (Zn) in calcareous soils, a slow-release fertilizer was prepared based on the polymeric nanocomposite, which contains NPK, Fe, and Zn. Its potential was evaluated on tomato plant growth by conducting an experiment in a factorial completely randomized design with three replications. Two levels of salinity (2 and 5 ds m-1, two types of soil texture) clay loam and sandy loam) and five levels of fertilizers were examined in the experiment. To this, the graphene oxide-chitosan coated-humic acid@Fe3O4 nanoparticles (Fe3O4@HA@GO-Cs), and the graphene oxide-chitosan coated-ammonium zinc phosphate (AZP@GO-Cs) were used as Fe and Zn sources, respectively. Then, the optimal Fe and Zn fertilizers in the presence of urea, phosphorus, and potassium slow- release fertilizers (SRF) were investigated under greenhouse conditions. The results indicated that the best improvement in growth and nutrient uptake in plants was achieved by using the SRF. Notably, in the shoots of tomato plants, the nitrogen, phosphorus, potassium, Fe, and Zn concentration increased by 44, 66, 46, 75, and 74% compared to the control. The use of nanofertilizer can be an effective, biocompatible, and economical option to provide Fe and Zn demand in plants.
Collapse
Affiliation(s)
- Tahereh Raiesi Ardali
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
- Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Leila Ma'mani
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Mostafa Chorom
- Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Elaheh Motamedi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Fathi Gharebaba
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, AREEO, Karaj, Iran
| |
Collapse
|
5
|
Mohammadi S, Jabbari F, Cidonio G, Babaeipour V. Revolutionizing agriculture: Harnessing nano-innovations for sustainable farming and environmental preservation. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105722. [PMID: 38225077 DOI: 10.1016/j.pestbp.2023.105722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 01/17/2024]
Abstract
The agricultural sector is currently confronted with a significant crisis stemming from the rapid changes in climate patterns, declining soil fertility, insufficient availability of essential macro and micronutrients, excessive reliance on chemical fertilizers and pesticides, and the presence of heavy metals in soil. These numerous challenges pose a considerable threat to the agriculture industry. Furthermore, the exponential growth of the global population has led to a substantial increase in food consumption, further straining agricultural systems worldwide. Nanotechnology holds great promise in revolutionizing the food and agriculture industry, decreasing the harmful effects of agricultural practices on the environment, and improving productivity. Nanomaterials such as inorganic, lipid, and polymeric nanoparticles have been developed for increasing productivity due to their unique properties. Various strategies can enhance product quality, such as the use of nano-clays, nano zeolites, and hydrogel-based materials to regulate water absorption and release, effectively mitigating water scarcity. The production of nanoparticles can be achieved through various methods, each of which has its own unique benefits and limitations. Among these methods, chemical synthesis is widely favored due to the impact that various factors such as concentration, particle size, and shape have on product quality and efficiency. This review provides a detailed examination of the roles of nanotechnology and nanoparticles in sustainable agriculture, including their synthetic methods, and presents an analysis of their associated advantages and disadvantages. To date, there are serious concerns and awareness about healthy agriculture and the production of healthy products, therefore the development of nanotech-enabled devices that act as preventive and early warning systems to identify health issues, offering remedial measures is necessary.
Collapse
Affiliation(s)
- Sajad Mohammadi
- Center for Life Nano & Neuro-Science (CLN(2)S), Italian Institute of Technology (IIT), 00161 Rome, Italy; Department of Basic and Applied Science for Engineering, Sapienza University of Rome, Italy
| | - Farzaneh Jabbari
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Tehran 14155-4777, Iran
| | - Gianluca Cidonio
- Center for Life Nano & Neuro-Science (CLN(2)S), Italian Institute of Technology (IIT), 00161 Rome, Italy
| | - Valiollah Babaeipour
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran 14155-4777, Iran.
| |
Collapse
|
6
|
Goyal V, Rani D, Ritika, Mehrotra S, Deng C, Wang Y. Unlocking the Potential of Nano-Enabled Precision Agriculture for Efficient and Sustainable Farming. PLANTS (BASEL, SWITZERLAND) 2023; 12:3744. [PMID: 37960100 PMCID: PMC10649170 DOI: 10.3390/plants12213744] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
Nanotechnology has attracted remarkable attention due to its unique features and potential uses in multiple domains. Nanotechnology is a novel strategy to boost production from agriculture along with superior efficiency, ecological security, biological safety, and monetary security. Modern farming processes increasingly rely on environmentally sustainable techniques, providing substitutes for conventional fertilizers and pesticides. The drawbacks inherent in traditional agriculture can be addressed with the implementation of nanotechnology. Nanotechnology can uplift the global economy, so it becomes essential to explore the application of nanoparticles in agriculture. In-depth descriptions of the microbial synthesis of nanoparticles, the site and mode of action of nanoparticles in living cells and plants, the synthesis of nano-fertilizers and their effects on nutrient enhancement, the alleviation of abiotic stresses and plant diseases, and the interplay of nanoparticles with the metabolic processes of both plants and microbes are featured in this review. The antimicrobial activity, ROS-induced toxicity to cells, genetic damage, and growth promotion of plants are among the most often described mechanisms of operation of nanoparticles. The size, shape, and dosage of nanoparticles determine their ability to respond. Nevertheless, the mode of action of nano-enabled agri-chemicals has not been fully elucidated. The information provided in our review paper serves as an essential viewpoint when assessing the constraints and potential applications of employing nanomaterials in place of traditional fertilizers.
Collapse
Affiliation(s)
- Vinod Goyal
- Department of Botany and Plant Physiology, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Dolly Rani
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Ritika
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Shweta Mehrotra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Chaoyi Deng
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA; (C.D.); (Y.W.)
| | - Yi Wang
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA; (C.D.); (Y.W.)
| |
Collapse
|
7
|
Gangwar J, Kadanthottu Sebastian J, Puthukulangara Jaison J, Kurian JT. Nano-technological interventions in crop production-a review. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:93-107. [PMID: 36733843 PMCID: PMC9886790 DOI: 10.1007/s12298-022-01274-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/21/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Agricultural industry is facing huge crisis due to fast changing climate, decreased soil fertility, macro and micronutrient insufficiency, misuse of chemical fertilizers and pesticides, and heavy metal presence in soil. With exponential increase in world's population, food consumption has increased significantly. Maintaining the production to consumption ratio is a significant challenge due to shortage caused by various issues faced by agricultural industry even with the improved agricultural practices. Recent scientific evidence suggests that nanotechnology can positively impact the agriculture sector by reducing the harmful effects of farming operations on human health and nature, as well as improving food productivity and security. Farmers are combining improved agricultural practices like usage of fertilizers, pesticides etc. with nano-based materials to improve the efficiency and productivity of crops. Nano technology is also playing a significant role improving animal health products, food packaging materials, and nanosensors for detecting pathogens, toxins, and heavy metals in soil among others. The nanobased materials have improved the productivity twice with half the resources being utilized. Nanoparticles that are currently in use include titanium dioxide, zinc oxide, silicon oxide, magnesium oxide, gold, and silver used for increasing soil fertility and plant growth. Crop growth, yield, and productivity are improved by controlled release nanofertilizers. In this review we elaborate on the recent developments in the agricultural sector by the usage of nanomaterial based composites which has significantly improved the agricultural sector especially how nanoparticles play an important role in plant growth and soil fertility, in controlling plant diseases by the use of nanopesticides, nanoinsecticides, nanofertilizers, Nanoherbicides, nanobionics, nanobiosensors. The review also highlights the mechanism of migration of nanoparticles in plants and most importantly the effects of nanoparticles in causing plant and soil toxicity.
Collapse
Affiliation(s)
- Jaya Gangwar
- Department of Life Sciences, Christ University, Bangalore, Karnataka 560029 India
| | | | | | - Jissa Theresa Kurian
- Department of Life Sciences, Christ University, Bangalore, Karnataka 560029 India
| |
Collapse
|
8
|
Guardiola-Márquez CE, Jacobo-Velázquez DA. Potential of enhancing anti-obesogenic agriceuticals by applying sustainable fertilizers during plant cultivation. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1034521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Overweight and obesity are two of the world's biggest health problems. They are associated with excessive fat accumulation resulting from an imbalance between energy consumed and energy expended. Conventional therapies for obesity commonly include synthetic drugs and surgical procedures that can lead to serious side effects. Therefore, developing effective, safe, and readily available new treatments to prevent and treat obesity is highly relevant. Many plant extracts have shown anti-obesogenic potential. These plant extracts are composed of different agriceuticals such as fibers, phenolic acids, flavonoids, anthocyanins, alkaloids, lignans, and proteins that can manage obesity by suppressing appetite, inhibiting digestive enzymes, reducing adipogenesis and lipogenesis, promoting lipolysis and thermogenesis, modulating gut microbiota and suppressing obesity-induced inflammation. These anti-obesogenic agriceuticals can be enhanced in plants during their cultivation by applying sustainable fertilization strategies, improving their capacity to fight the obesity pandemic. Biofertilization and nanofertilization are considered efficient, eco-friendly, and cost-effective strategies to enhance plant growth and development and increase the content of nutrients and bioactive compounds, representing an alternative to overproducing the anti-obesogenic agriceuticals of interest. However, further research is required to study the impact of anti-obesogenic plant species grown using these agricultural practices. This review presents the current scenario of overweight and obesity; recent research work describing different plant species with significant effects against obesity; and several reports exhibiting the potential of the biofertilization and nanofertilization practices to enhance the concentrations of bioactive molecules of anti-obesogenic plant species.
Collapse
|
9
|
Aguirre-Becerra H, Feregrino-Pérez AA, Esquivel K, Perez-Garcia CE, Vazquez-Hernandez MC, Mariana-Alvarado A. Nanomaterials as an alternative to increase plant resistance to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:1023636. [PMID: 36304397 PMCID: PMC9593029 DOI: 10.3389/fpls.2022.1023636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/20/2022] [Indexed: 05/03/2023]
Abstract
The efficient use of natural resources without negative repercussions to the environment has encouraged the incursion of nanotechnology to provide viable alternatives in diverse areas, including crop management. Agriculture faces challenges due to the combination of different abiotic stresses where nanotechnology can contribute with promising applications. In this context, several studies report that the application of nanoparticles and nanomaterials positively affects crop productivity through different strategies such as green synthesis of nanoparticles, plant targeted protection through the application of nanoherbicides and nanofungicides, precise and constant supply of nutrients through nanofertilizers, and tolerance to abiotic stress (e.g., low or high temperatures, drought, salinity, low or high light intensities, UV-B, metals in soil) by several mechanisms such as activation of the antioxidant enzyme system that alleviates oxidative stress. Thus, the present review focuses on the benefits of NPs against these type of stress and their possible action mechanisms derived from the interaction between nanoparticles and plants, and their potential application for improving agricultural practices.
Collapse
Affiliation(s)
- Humberto Aguirre-Becerra
- Cuerpo Académico de Bioingeniería Básica y Aplicada, Facultad de Ingeniería - Campus Amazcala, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Ana Angélica Feregrino-Pérez
- Cuerpo Académico de Bioingeniería Básica y Aplicada, Facultad de Ingeniería - Campus Amazcala, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Karen Esquivel
- Facultad de Ingeniería, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | | | - Ma. Cristina Vazquez-Hernandez
- Cuerpo Académico de Innovación en Bioprocesos Sustentables, Depto. De Ingenierías, Tecnológico Nacional de México en Roque, Guanajuato, Mexico
| | | |
Collapse
|
10
|
Arora S, Murmu G, Mukherjee K, Saha S, Maity D. A Comprehensive Overview of Nanotechnology in Sustainable Agriculture. J Biotechnol 2022; 355:21-41. [PMID: 35752390 DOI: 10.1016/j.jbiotec.2022.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
Plant nutrition is crucial in crop productivity and providing food security to the ever-expanding population. Application of chemical/biological fertilizers and pesticides are the mainstays for any agricultural economy. However, there are unintended consequences of using chemical fertilizers and pesticides. The environment and ecological balance are adversely affected by their usage. Biofertilizers and biopesticides counter some undesired environmental effects of chemical fertilizers/pesticides; inspite of some drawbacks associated with their use. The recent developments in nanotechnology offer promise towards sustainable agriculture. Sustainable agriculture involves addressing the concerns about agriculture as well as of the environment. This review briefs about important nanomaterials used in agriculture as nanofertilizers, nanopesticides, and a combination called nanobiofertilizers. Both nanofertilizers and nanopesticides enable slow and sustained release besides their eco-friendly environmental consequences. They can be tailored to specific needs to crop. Nanofertilizers also offer greater stress tolerance and, therefore, of considerable value in the era of climate change. Furthermore, nanofertilizers/nanopesticides are applied in minute amounts, reducing transportation costs associated and thus positively affecting the economy. Their uses extend beyond such as if nanoparticles (NPs) are used at high concentrations; they affect plant pathogens adversely. Polymer-based biodegradable nanofertilizers and nanopesticides offer various benefits. There is also a dark side to the use of nanomaterials in agriculture. Nanotechnology often involves the use of metal/metal oxide nanoparticles, which might get access to human bodies leading to their accumulation through bio-magnification. Although their effects on human health are not known, NPs may reach toxic concentrations in soil and runoff into rivers, and other water bodies with their removal to become a huge economic burden. Nevertheless, a risk-benefit analysis of nanoformulations must be ensured before their application in sustainable agriculture.
Collapse
Affiliation(s)
- Smriti Arora
- Department of Biotechnology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Gajiram Murmu
- Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Koel Mukherjee
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Sumit Saha
- Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Dipak Maity
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
11
|
Rahman MH, Hasan MN, Amin R, Setu MAA, Akter S, Nigar S, Khan MZH, Khan MZH. Mixed Nanocomposite Fertilizers Influencing Endophytic Symbiosis and Nutritional and Antioxidant Properties of Oryza sativa as a Sustainable Alternative for Commercial Fertilizers. ACS OMEGA 2022; 7:6787-6794. [PMID: 35252673 PMCID: PMC8892907 DOI: 10.1021/acsomega.1c06395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the comparative effects of mixed nanocomposite (MNC) fertilizers as an alternative to commercial fertilizers (CFs) on endophytic symbiosis and nutritional properties of rice grains. We synthesized MNC fertilizers with different concentrations and characterized them by using scanning electron microscopy and Fourier transform infrared spectroscopy. The CF was applied as per the method followed by local farmers; however, for MNC fertilizers both foliar and soil applications were done. Comparative analysis of growth and development, rice-endophyte symbiosis, and nutritional properties of rice grains was conducted. The panicles per hill, length of panicles, grain per panicles, 1000-grain weight, and dry matter of rice plants treated with MNC fertilizers were found to be not statistically (p > 0.05) different compared to those of CF. However, growth parameters were significantly (p < 0.05) higher in MNC fertilizer-treated crops than in CF-treated crops. Several predominant endophytes such as Penicillium spp., Aspergillus fumigatus, Rhizopus spp., and Fusarium spp. that could have significant effects on the enhancement of growth and nutritional properties of rice grains were identified in rice plants treated with MNC fertilizers at different concentrations. Contrarily, stem-associated Cercospora spp. was found in the CF-treated field and fission yeast was observed in the blank-treated field. In addition, the contents of proteins, fibers, carbohydrates, energy-yielding components, vitamin A, and minerals were significantly increased in rice plants treated with MNC fertilizers. Thus, we would like to conclude that MNC fertilizers could be one of the most potential alternatives to CFs for achieving better rice-endophyte symbiosis as well as nutritional improvements in rice grains for sustainable production.
Collapse
Affiliation(s)
- Md. Hafizur Rahman
- Department
of Chemical Engineering, Jashore University
of Science and Technology, Jashore 7408, Bangladesh
- Laboratory
of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Nazmul Hasan
- Department
of Chemical Engineering, Jashore University
of Science and Technology, Jashore 7408, Bangladesh
- Laboratory
of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Ruhul Amin
- Department
of Microbiology, Jashore University of Science
and Technology, Jashore 7408, Bangladesh
| | - Md. Ali Ahasan Setu
- Department
of Microbiology, Jashore University of Science
and Technology, Jashore 7408, Bangladesh
| | - Selina Akter
- Department
of Microbiology, Jashore University of Science
and Technology, Jashore 7408, Bangladesh
| | - Shireen Nigar
- Department
of Nutrition and Food Technology, Jashore
University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Zakir Hossain Khan
- Department
of Soil, Water and Environment, Faculty of Biological Science, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md. Zaved Hossain Khan
- Department
of Chemical Engineering, Jashore University
of Science and Technology, Jashore 7408, Bangladesh
- Laboratory
of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|