1
|
Khan MA, Li MC, Lv K, Sun J, Liu C, Liu X, Shen H, Dai L, Lalji SM. Cellulose derivatives as environmentally-friendly additives in water-based drilling fluids: A review. Carbohydr Polym 2024; 342:122355. [PMID: 39048218 DOI: 10.1016/j.carbpol.2024.122355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 07/27/2024]
Abstract
The application of cellulose derivatives including carboxymethyl cellulose (CMC), polyanionic cellulose (PAC), hydroxyethyl cellulose (HEC), cellulose nanofibrils (CNFs), and cellulose nanocrystals (CNCs) has gained enormous interest, especially as environmentally friendly additives for water-based drilling fluids (WBDFs). This is due to their sustainable, biodegradable, and biocompatible nature. Furthermore, cellulose nanomaterials (CNMs), which include both CNFs and CNCs, possess unique properties such as nanoscale dimensions, a large surface area, as well as unique mechanical, thermal, and rheological performance that makes them stand out as compared to other additives used in WBDFs. The high surface hydration capacity, strong interaction with bentonite, and the presence of a complex network within the structure of CNMs enable them to act as efficient rheological modifiers in WBDFs. Moreover, the nano-size dimension and facilely tunable surface chemistry of CNMs make them suitable as effective fluid loss reducers as well as shale inhibitors as they have the ability to penetrate, absorb, and plug the nanopores within the exposed formation and prevent further penetration of water into the formation. This review provides an overview of recent progress in the application of cellulose derivatives, including CMC, PAC, HEC, CNFs, and CNCs, as additives in WBDFs. It begins with a discussion of the structure and synthesis of cellulose derivatives, followed by their specific application as rheological, fluid loss reducer, and shale inhibition additives in WBDFs. Finally, the challenges and future perspectives are outlined to guide further research and development in the effective utilization of cellulose derivatives as additives in WBDFs.
Collapse
Affiliation(s)
- Muhammad Arqam Khan
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Mei-Chun Li
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China
| | - Kaihe Lv
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China.
| | - Jinsheng Sun
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China
| | - Chaozheng Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinyue Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haokun Shen
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China
| | - Liyao Dai
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China
| | - Shaine Mohammadali Lalji
- Department of Petroleum Engineering, NED University of Engineering & Technology, University Road, Karachi 75270, Pakistan
| |
Collapse
|
2
|
Khan M, Lalji SM, Ali SI, Li MC, Burney M. Application of Hydrothermal Synthesized Titanium Dioxide-Doped Multiwalled Carbon Nanotubes on Filtration Properties-Response Surface Methodology Study. ACS OMEGA 2024; 9:34765-34776. [PMID: 39157147 PMCID: PMC11325490 DOI: 10.1021/acsomega.4c04177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024]
Abstract
The success of any drilling activity mainly depends on the characteristics of the drilling fluid. Therefore, a high-performance drilling fluid is substantial for any drilling operation. During overbalance drilling operations, the drilling mud invades the permeable formations and causes the loss of circulation, which is responsible for nonproductive time events. Hence, the filtration characteristics of the drilling mud are an imperative property. The purpose of this study is to evaluate the filtration characteristics of water-based mud systems in the presence of polyanionic cellulose (PAC) and multiwalled carbon nanotubes (MWCNTs)/TiO2 nanoparticles. The nanoparticles were synthesized by using the hydrothermal technique. For the first time, a composite of MWCNTs and TiO2 has been utilized as a fluid loss control additive in the petroleum sector, marking a significant development in the field. The filtration properties of water-based mud were assessed at two concentrations (0.35 g and 3.5 g). Furthermore, based on the two levels (concentrations) and two factors (particles), the novel application of the central composite response surface design of experiment (CCD) was implemented. The results showed that the predicted model from CCD was in good agreement with the filter press experimental result with R 2 = 0.8446. Furthermore, based on the ANOVA analysis, the concentration of MWCNTs/TiO2 nanoparticles was the most significant parameter with p-value < 0.05. In addition, 10 out of 13 experimental points fall under the ±10% error window, thus indicating a higher accuracy of the regression model. The 2D interactive plots further show that the concentration of PAC is insignificant and has no considerable influence on fluid loss control, which was also validated by p-value > 0.05. The performance of MWCNTs/TiO2 nanoparticles is superior to PAC because these nanodimension particles plug the pore-spacing and block the permeation channels on the filter paper. However, the PAC, because of its long molecular chain, entangles around the pore spaces and plugs the microsize pores, which eventually reduces the filtration loss volume up to some extent. By observing the synergistic interaction between MWCNTs/TiO2 nanoparticles and PAC, this study develops valuable insights that assist in improving the performance of drilling fluid and minimizes the wellbore instability issues in the oil and gas sector.
Collapse
Affiliation(s)
- Muhammad
Arqam Khan
- China
University of Petroleum (East China), Huangdao District, Qingdao
City, 266580 Shandong
Province, China
- Department
of Petroleum Engineering, NED University
of Engineering and Technology, Karachi 75270, Pakistan
| | - Shaine Mohammadali Lalji
- Department
of Petroleum Engineering, NED University
of Engineering and Technology, Karachi 75270, Pakistan
| | - Syed Imran Ali
- Department
of Petroleum Engineering, NED University
of Engineering and Technology, Karachi 75270, Pakistan
| | - Mei-Chun Li
- China
University of Petroleum (East China), Huangdao District, Qingdao
City, 266580 Shandong
Province, China
- State
Key Laboratory of Deep Oil and Gas, China
University of Petroleum (East China), Qingdao 266580, China
| | - Muneeb Burney
- MOL
Pakistan Oil and Gas Company Ltd. B.V. Islamabad 75400, Pakistan
| |
Collapse
|
3
|
Abdullah AH, Ridha S, Mohshim DF, Maoinser MA. An experimental investigation into the rheological behavior and filtration loss properties of water-based drilling fluid enhanced with a polyethyleneimine-grafted graphene oxide nanocomposite. RSC Adv 2024; 14:10431-10444. [PMID: 38572346 PMCID: PMC10988363 DOI: 10.1039/d3ra07874d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/05/2024] [Indexed: 04/05/2024] Open
Abstract
The modern oil and gas industry, driven by a surging global energy demand, faces the challenge of exploring deeper geological formations. Ensuring the robust performance of drilling fluids under harsh wellbore conditions is paramount, with elevated temperatures and salt contamination recognized as detrimental factors affecting the rheological and filtration loss properties of drilling fluids. We successfully synthesized a polyethyleneimine-grafted graphene oxide nanocomposite (PEI-GO), and its functional groups formation and thermal stability were verified through Fourier Transform Infrared Spectroscopy (FTIR) and Thermogravimetric Analysis (TGA). Our findings demonstrated a significant improvement in the plastic viscosity and yield point of the base drilling fluid with the addition of PEI-GO. The inclusion of 0.3 wt% PEI-GO outperformed the base drilling fluid at 160 °C, improving the yield point/plastic viscosity (YP/PV) value and reducing filtration loss volume by 42% and 67%, respectively. The Herschel-Bulkley model emerged as the superior choice for characterizing rheological behavior. PEI-GO exhibited compatibility with high-salt formations, maintaining satisfactory filtration volumes even when subjected to sodium chloride (NaCl) and calcium chloride (CaCl2) contamination concentrations of up to 20 and 10 wt%, respectively. The remarkable rheological and filtration properties of PEI-GO are attributed to its electrostatic interactions with clay particles through hydrogen and ionic bonding. These interactions lead to pore plugging in the filter cake, effectively preventing water infiltration and reducing filtration loss volume. This study emphasizes the potential of PEI-GO in water-based drilling fluids, particularly in high-temperature and salt-contaminated environments.
Collapse
Affiliation(s)
- Abdul Hazim Abdullah
- Department of Petroleum Engineering, Universiti Teknologi PETRONAS Seri Iskandar Perak 32610 Malaysia
| | - Syahrir Ridha
- Department of Petroleum Engineering, Universiti Teknologi PETRONAS Seri Iskandar Perak 32610 Malaysia
- Institute of Hydrocarbon Recovery, Universiti Teknologi PETRONAS Seri Iskandar Perak 32610 Malaysia
| | - Dzeti Farhah Mohshim
- Department of Petroleum Engineering, Universiti Teknologi PETRONAS Seri Iskandar Perak 32610 Malaysia
| | - Mohd Azuwan Maoinser
- Institute of Hydrocarbon Recovery, Universiti Teknologi PETRONAS Seri Iskandar Perak 32610 Malaysia
| |
Collapse
|
4
|
Taghdimi R, Kaffashi B, Rasaei MR, Dabiri MS, Hemmati-Sarapardeh A. Formulating a novel drilling mud using bio-polymers, nanoparticles, and SDS and investigating its rheological behavior, interfacial tension, and formation damage. Sci Rep 2023; 13:12080. [PMID: 37495735 PMCID: PMC10371997 DOI: 10.1038/s41598-023-39257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023] Open
Abstract
Formation damage is a well-known problem that occurs during the exploration and production phases of the upstream sector of the oil and gas industry. This study aimed to develop a new drilling mud formulation by utilizing eco-friendly bio-polymers, specifically Carboxymethyl Cellulose (CMC), along with nanostructured materials and a common surfactant, sodium dodecyl sulfate (SDS). The rheological properties of the drilling fluid and the impact of additives on its properties were investigated at the micromodel scale, using a flow rate of 20 mL/h. The polymer concentration and nano clay concentration were set at two levels: 0.5 wt% and 1 wt%, respectively, while the surfactant content was varied at three levels: 0.1 wt%, 0.4 wt%, and 0.8 wt%. The results of the interfacial tension (IFT) analysis demonstrated a significant decrease in the interfacial tension between oil and water with the increasing concentration of SDS. Furthermore, following the API standard, the rheological behavior of the drilling fluid, including the gel strength and thixotropic properties of the mud, was evaluated with respect to temperature changes, as this is crucial for ensuring the inherent rheological stability of the mud. The rheological analysis indicated that the viscosity of the mud formulation with nanoparticles experienced a reduction of up to 10 times with increasing shear rate, while other formulations exhibited a decline of 100 times. Notably, the rheological properties of the Agar specimen improved at 150 °F due to its complete solubility in water, whereas other formulations exhibited a greater drop in viscosity at this temperature. As the temperature increased, drilling fluid containing nanostructured materials exhibited higher viscosity.
Collapse
Affiliation(s)
- Ramin Taghdimi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Babak Kaffashi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Reza Rasaei
- Institute of Petroleum Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad-Saber Dabiri
- Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Abdolhossein Hemmati-Sarapardeh
- Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing, China.
| |
Collapse
|
5
|
Faisal RS, Salih NM, Kamal I, Préat A. X-ray Computed Tomography (CT) to Scan the Structure and Characterize the Mud Cake Incorporated with Various Magnetic NPs Concentration: An Application to Evaluate the Wellbore Stability and Formation Damage. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1843. [PMID: 37368274 DOI: 10.3390/nano13121843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
The X-ray computed tomography method has provided unrivalled data about the characterization and evolution of the internal/external structure of materials by analyzing CTN and non-destructive imaging approach. Applying this method on the appropriate drilling-fluid ingredients plays a significant role in generating proper mud cake quality to stabilize wellbore, and avoid formation damage and filtration loss by preventing drilling fluid invasion into the formation. In this study, smart-water drilling mud containing different concentrations of magnetite nanoparticles (MNPs) was used to assess the filtration loss properties and formation impairment. Conventional static filter press, non-destructive X-ray computed tomography (CT) scan images and high-resolution quantitative measurement of CT number method were used to estimate the filtrate volume and characterize the filter cake layers, hence evaluating the reservoir damage through hundreds of merged images. The CT scan data were combined with the HIPAX and Radiant viewer digital image processing. The variation in CT number of mud cake samples under different concentrations of MNPs and without MNPs concentration were analyzed, and hundreds of 3D images as a cross-sectional profile were used. This paper highlights the importance of MNPs property in terms of minimizing filtration volume and improving mud cake quality and thickness, and hence improving the wellbore stability. From the results, a notable reduction of filtrate drilling mud volume and mud cake thickness to 40.9% and 46.6%, respectively, were recorded for drilling fluids incorporated with 0.92 wt.% of MNPs. However, this study asserts that optimal MNPs should be implemented to guarantee the best filtration property. As confirmed from the results, increasing the MNPs concentration beyond the optimal value (up to 2 wt.%) increased the filtrate volume and mud cake thickness by 3.23 and 33.3%, respectively. CT scan profile images show two layers of mud cake produced from water-based drilling fluids possessing 0.92 wt.% MNPs. The latter concentration was found to be the optimal additive of MNPs as it caused a decrease in filtration volume, mud cake thickness, and pore spaces within the structure of the mud cake. Using the optimum MNPs, the CT number (CTN) shows a high CTN and density material, and uniform compacted thin mud cake structure (0.75 mm). The produced thin mud cake layer reveals the precipitation or exchange of elemental/mineral composition during fluid-solid interaction. These results confirm that MNPs could help in avoiding or reducing the formation damage, driving away drilling fluid from the formation, and improving borehole stability.
Collapse
Affiliation(s)
- Rasan Sarbast Faisal
- Department of Petroleum Engineering, Faculty of Engineering, Soran University, Soran 44008, Kurdistan Region, Iraq
| | - Namam M Salih
- Department of Petroleum Engineering, Faculty of Engineering, Soran University, Soran 44008, Kurdistan Region, Iraq
| | - Ibtisam Kamal
- Department of Chemical Engineering, Faculty of Engineering, Soran University, Soran 44008, Kurdistan Region, Iraq
| | - Alain Préat
- Research Group, Biogeochemistry & Modelling of the Earth System, Université Libre de Bruxelles, 1050 Brussels, Belgium
| |
Collapse
|
6
|
A Novel Cationic Polymer Surfactant for Regulation of the Rheological and Biocidal Properties of the Water-Based Drilling Muds. Polymers (Basel) 2023; 15:polym15020330. [PMID: 36679210 PMCID: PMC9861227 DOI: 10.3390/polym15020330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
The copolymer of N,N-diallyl-N,N-dimethylammonium chloride and N-[3-(Dimethylamino)propyl]methacrylamide (DADMAC-DMAPMA) was synthesized by radical polymerization reaction in an aqueous solution in the presence of the initiator ammonium persulfate (NH4)2S2O8. The molar compositions of the synthesized copolymers were determined using FTIR and 1H NMR-spectroscopy, elemental analysis, and conductometric titration. It was found that in the radical copolymerization reaction, the DMAPMA monomer was more active than the DADMAC monomer; for this reason, the resulting copolymers were always enriched in the DMAPMA monomers. The study of the influence of the DADMAC-DMAPMA copolymer on structure-formation in the bentonite suspension showed that this copolymer significantly increased the static shear stress (SSS) of the system. In this case, the structure-forming properties of the copolymer depended on the pH of the medium. The lower the pH level, the better the structure-formation was in the suspension in the presence of the copolymer. The study of antibacterial activity showed that the DADMAC-DMAPMA copolymer had a biocidal effect against sulfate-reducing bacteria (CRB) at a concentration of not less than 0.05 wt.% and can be used to inhibit the growth of this bacteria.
Collapse
|
7
|
Al Jaberi J, Bageri B, Elkatatny S, Solling T. Performance of Perlite as Viscosifier in Manganese Tetroxide Water Based-Drilling Fluid. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Combine effect of graphene oxide, pure-bore and sodium alginate on rheological and filtration properties and cutting carrying capacity of water-based drilling fluid. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Zamora-Ledezma C, Narváez-Muñoz C, Guerrero VH, Medina E, Meseguer-Olmo L. Nanofluid Formulations Based on Two-Dimensional Nanoparticles, Their Performance, and Potential Application as Water-Based Drilling Fluids. ACS OMEGA 2022; 7:20457-20476. [PMID: 35935292 PMCID: PMC9347972 DOI: 10.1021/acsomega.2c02082] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The development of sustainable, cost-efficient, and high-performance nanofluids is one of the current research topics within drilling applications. The inclusion of tailorable nanoparticles offers the possibility of formulating water-based fluids with enhanced properties, providing unprecedented opportunities in the energy, oil, gas, water, or infrastructure industries. In this work, the most recent and relevant findings related with the development of customizable nanofluids are discussed, focusing on those based on the incorporation of 2D (two-dimensional) nanoparticles and environmentally friendly precursors. The advantages and drawbacks of using 2D layered nanomaterials including but not limited to silicon nano-glass flakes, graphene, MoS2, disk-shaped Laponite nanoparticles, layered magnesium aluminum silicate nanoparticles, and nanolayered organo-montmorillonite are presented. The current formulation approaches are listed, as well as their physicochemical characterization: rheology, viscoelastic properties, and filtration properties (fluid losses). The most influential factors affecting the drilling fluid performance, such as the pH, temperature, ionic strength interaction, and pressure, are also debated. Finally, an overview about the simulation at the microscale of fluids flux in porous media is presented, aiming to illustrate the approaches that could be taken to supplement the experimental efforts to research the performance of drilling muds. The information discussed shows that the addition of 2D nanolayered structures to drilling fluids promotes a substantial improvement in the rheological, viscoelastic, and filtration properties, additionally contributing to cuttings removal, and wellbore stability and strengthening. This also offers a unique opportunity to modulate and improve the thermal and lubrication properties of the fluids, which is highly appealing during drilling operations.
Collapse
Affiliation(s)
- Camilo Zamora-Ledezma
- Tissue
Regeneration and Repair Group: Orthobiology, Biomaterials and Tissue
Engineering, UCAM-Universidad Católica
de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Christian Narváez-Muñoz
- Escola
Tècnica Superior d’Enginyers de Camins, Canals i Ports, Universitat Politècnica de Catalunya—Barcelonatech
(UPC), Jordi Girona 1, Campus Nord UPC, 08034 Barcelona, Spain
- Centre
Internacional de Mètodes Numérics en Enginyeria (CIMNE), Gran Capitán s/n, Campus Nord UPC, 08034 Barcelona, Spain
| | - Víctor H. Guerrero
- Departamento
de Materiales, Escuela Politécnica
Nacional, Quito, 170525, Ecuador
| | - Ernesto Medina
- Departamento
de Física, Colegio de Ciencias e Ingeniería, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 170901, Ecuador
| | - Luis Meseguer-Olmo
- Tissue
Regeneration and Repair Group: Orthobiology, Biomaterials and Tissue
Engineering, UCAM-Universidad Católica
de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| |
Collapse
|