1
|
Almatroudi A. Unlocking the Potential of Silver Nanoparticles: From Synthesis to Versatile Bio-Applications. Pharmaceutics 2024; 16:1232. [PMID: 39339268 PMCID: PMC11435049 DOI: 10.3390/pharmaceutics16091232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Silver nanoparticles (AgNPs) are leading the way in nanotechnological innovation, combining the captivating properties of silver with the accuracy of nanoscale engineering, thus revolutionizing material science. Three main techniques arise within the alchemical domains of AgNP genesis: chemical, physical, and biological synthesis. Each possesses its distinct form of magic for controlling size, shape, and scalability-key factors necessary for achieving expertise in the practical application of nanoparticles. The story unravels, describing the careful coordination of chemical reduction, the environmentally sensitive charm of green synthesis utilizing plant extracts, and the precise accuracy of physical techniques. AgNPs are highly praised in the field of healthcare for their powerful antibacterial characteristics. These little warriors display a wide-ranging attack against bacteria, fungi, parasites, and viruses. Their critical significance in combating hospital-acquired and surgical site infections is highly praised, serving as a beacon of hope in the fight against the challenging problem of antibiotic resistance. In addition to their ability to kill bacteria, AgNPs are also known to promote tissue regeneration and facilitate wound healing. The field of cancer has also observed the adaptability of AgNPs. The review documents their role as innovative carriers of drugs, specifically designed to target cancer cells with accuracy, minimizing harm to healthy tissues. Additionally, it explores their potential as cancer therapy or anticancer agents capable of disrupting the growth of tumors. In the food business, AgNPs are utilized to enhance the durability of packing materials and coatings by infusing them with their bactericidal properties. This results in improved food safety measures and a significant increase in the duration that products can be stored, thereby tackling the crucial issue of food preservation. This academic analysis recognizes the many difficulties that come with the creation and incorporation of AgNPs. This statement pertains to the evaluation of environmental factors and the effort to enhance synthetic processes. The review predicts future academic pursuits, envisioning progress that will enhance the usefulness of AgNPs and increase their importance from being new to becoming essential within the realms of science and industry. Besides, AgNPs are not only a subject of scholarly interest but also a crucial component in the continuous effort to tackle some of the most urgent health and conservation concerns of contemporary society. This review aims to explore the complex process of AgNP synthesis and highlight their numerous uses, with a special focus on their growing importance in the healthcare and food business sectors. This review invites the scientific community to explore the extensive possibilities of AgNPs in order to fully understand and utilize their potential.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
2
|
Misra R, Hazra S, Saleem S, Nehru S. Drug-loaded polymer-coated silver nanoparticles for lung cancer theranostics. Med Oncol 2024; 41:132. [PMID: 38687401 DOI: 10.1007/s12032-024-02372-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 05/02/2024]
Abstract
Lung cancer is the leading cause of death in cancer across the globe. To minimize these deaths, the replacement of traditional chemotherapy with novel strategies is significant. We have developed a nanotheranostic approach using silver nanoparticles for imaging and treatment. Silver nanoparticles (AgNPs) are fabricated by chemical reduction method. The formulation of AgNPs was confirmed by different characterization techniques like stability test, UV-Visible spectroscopy, Confocal Raman Spectroscopy, and Energy-Dispersive X-ray analysis. Further, AgNPs are coated with poly lactic-co-glycolic acid (PLGA) and then loaded with paclitaxel (Pac). Then the drug-loaded PLGA-coated AgNPs were characterized for size and zeta potential measurement by zetasizer, surface morphology study by atomic force microscopy, Fourier transform infrared spectroscopy, and release kinetics study. The imaging and anticancer properties of these nanoformulations are investigated using lung cancer cell lines. The results proved that the particles are in the nanometer range with smooth surface morphology. Moreover, the drug-loaded NPs showed a sustained release of the drug for a longer period of time. Further the formulations showed imaging property with greater anticancer efficacy. Thus, the results suggest the effective use of these nanoformulation in both lung cancer imaging and treatment using a simple and efficient approach.
Collapse
Affiliation(s)
- Ranjita Misra
- Department of Biotechnology, Centre for Research in Pure and Applied Sciences, School of Sciences, Jain University, Bangalore, 560027, Karnataka, India.
| | - Subhenjit Hazra
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Suraiya Saleem
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, 600036, Tamil Nadu, India
| | - Sushmitha Nehru
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| |
Collapse
|
3
|
Szczyglewska P, Feliczak-Guzik A, Nowak I. Nanotechnology-General Aspects: A Chemical Reduction Approach to the Synthesis of Nanoparticles. Molecules 2023; 28:4932. [PMID: 37446593 PMCID: PMC10343226 DOI: 10.3390/molecules28134932] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The role of nanotechnology is increasingly important in our society. Through it, scientists are acquiring the ability to understand the structure and properties of materials and manipulate them at the scale of atoms and molecules. Nanomaterials are at the forefront of the rapidly growing field of nanotechnology. The synthesis of nanostructured materials, especially metallic nanoparticles, has attracted tremendous interest over the past decade due to their unique properties, making these materials excellent and indispensable in many areas of human activity. These special properties can be attributed to the small size and large specific surface area of nanoparticles, which are very different from those of bulk materials. Nanoparticles of different sizes and shapes are needed for many applications, so a variety of protocols are required to produce monodisperse nanoparticles with controlled morphology. The purpose of this review is firstly to introduce the reader to the basic aspects related to the field of nanotechnology and, secondly, to discuss metallic nanoparticles in greater detail. This article explains the basic concepts of nanotechnology, introduces methods for synthesizing nanoparticles, and describes their types, properties, and possible applications. Of many methods proposed for the synthesis of metal nanoparticles, a chemical reduction is usually preferred because it is easy to perform, cost-effective, efficient, and also allows control of the structural parameters through optimization of the synthesis conditions. Therefore, a chemical reduction method is discussed in more detail-each factor needed for the synthesis of nanoparticles by chemical reduction is described in detail, i.e., metal precursors, solvents, reducing agents, and stabilizers. The methods that are used to characterize nanomaterials are described. Finally, based on the available literature collection, it is shown how changing the synthesis parameters/methods affects the final characteristics of nanoparticles.
Collapse
Affiliation(s)
- Paulina Szczyglewska
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Agnieszka Feliczak-Guzik
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | | |
Collapse
|
4
|
Wan X, Li J, Li N, Zhang J, Gu Y, Chen G, Ju S. Preparation of Spherical Ultrafine Silver Particles Using Y-Type Microjet Reactor. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2217. [PMID: 36984097 PMCID: PMC10058681 DOI: 10.3390/ma16062217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/28/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Herein, micron-sized silver particles were prepared using the chemical reduction method by employing a Y-type microjet reactor, silver nitrate as the precursor, ascorbic acid as the reducing agent, and gelatin as the dispersion at room temperature (23 °C ± 2°C). Using a microjet reactor, the two reaction solutions collide and combine outside the reactor, thereby avoiding microchannel obstruction issues and facilitating a quicker and more convenient synthesis process. This study examined the effect of the jet flow rate and dispersion addition on the morphology and size of silver powder particles. Based on the results of this study, spherical and dendritic silver particles with a rough surface can be prepared by adjusting the flow rate of the reaction solution and gelatin concentration. The microjet flow rate of 75 mL/min and the injected gelatin amount of 1% of the silver nitrate mass produced spherical ultrafine silver particles with a size of 4.84 μm and a tap density of 5.22 g/cm3.
Collapse
Affiliation(s)
- Xiaoxi Wan
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
- Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming 650093, China
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming 650093, China
| | - Jun Li
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
- Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming 650093, China
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming 650093, China
| | - Na Li
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
- Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming 650093, China
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming 650093, China
| | - Jingxi Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
- Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming 650093, China
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming 650093, China
| | - Yongwan Gu
- Kunming Institute of Precious Metals, Kunming 650106, China
| | - Guo Chen
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Shaohua Ju
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
- Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming 650093, China
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming 650093, China
| |
Collapse
|
5
|
Anticancerous and antioxidant properties of fabricated silver nanoparticles involving bio-organic framework using medicinal plant Blumea lacera. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
6
|
Gangwar C, Yaseen B, Kumar I, Nayak R, Sarkar J, Baker A, Kumar A, Ojha H, Kumar Singh N, Mohan Naik R. Nano palladium/palladium oxide formulation using Ricinus communis plant leaves for antioxidant and cytotoxic activities. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Yaseen B, Gangwar C, Nayak R, Kumar S, Sarkar J, Banerjee M, Mohan Naik R. Gabapentin loaded silver nanoparticles (GBP@AgNPs) for its promising biomedical application as a nanodrug: Anticancer and Antimicrobial activities. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Hu D, Gao T, Kong X, Ma N, Fu J, Meng L, Duan X, Hu CY, Chen W, Feng Z, Latif S. Ginger (Zingiber officinale) extract mediated green synthesis of silver nanoparticles and evaluation of their antioxidant activity and potential catalytic reduction activities with Direct Blue 15 or Direct Orange 26. PLoS One 2022; 17:e0271408. [PMID: 36006900 PMCID: PMC9409512 DOI: 10.1371/journal.pone.0271408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
The green synthesis of silver nanoparticles (AgNPs) using a water extract of Ginger (Zingiber officinale) root by microwave irradiation and its antibacterial activities have been reported. However, AgNPs prepared from different parts of ginger root water or ethanol extract by ultrasound synthesis and their antioxidant activity and whether the biogenic could be used to catalyze the reduction of hazardous dye are unknown. This study concentrated on the facile green synthesis of AgNPs prepared from different parts (unpeeled ginger, peeled ginger, and ginger peel) of ginger root water or ethanol extract by the ultrasound-assisted method. We studied their antioxidant activity and catalytic degradation of hazardous dye Direct Orange 26 (DO26) and Direct Blue 15 (DB15). The surface plasmon resonance (SPR) peak of AgNPs was at 428-443 nm. The biogenic AgNPs were approximately 2 nm in size with a regular spherical shape identified from TEM analysis. The ethanol extracts of dried unpeeled ginger and peeled ginger, fresh peeled ginger and ginger peel. The Z. officinale AgNPs synthesized by dried unpeeled ginger ethanol extract showed the best antioxidant activity. Their scavenging activities were significantly better than BHT (p <0.05). The different parts of ginger extracts showed no catalytic degradation activities of DB15 and DO26. Still, the synthesized Z. officinale AgNPs exhibited good catalytic degradation activities, while their ability to catalytic degradation to DB15 was better than DO26. In the additive ratio of 3 mL DB15, 0.1 mL NaBH4 and 0.1 mL AgNPs, the degradation rates of DB15 (or DO26) at 15 min, 30 min and 60 min were only 1.8% (0.9%), 2.8% (1.4%) and 3.5% (1.6%) in the absence of AgNPs. When adding Z. officinale AgNPs prepared from dried ginger peel ethanol extract or fresh ginger peel water extract, the degradation rates of DB15 sharply increased to 97% and 93% after 30 min, respectively. In conclusion, ginger extract has good antioxidant properties. Z. officinale AgNPs biosynthesis from ginger extract exhibit excellent catalytic degradation activities, especially for the ginger peel extract. They have application value in the treatment of textile effluents and provide a new idea and method for the comprehensive development and utilization of ginger resources.
Collapse
Affiliation(s)
- Daihua Hu
- School of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong, Shaanxi, China
| | - Tingting Gao
- School of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Xingang Kong
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xian, Shaanxi, China
| | - Na Ma
- School of Physics and Telecommunication Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Jinhong Fu
- School of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Lina Meng
- School of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Xiaolong Duan
- School of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Ching Yuan Hu
- School of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Wang Chen
- School of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Zili Feng
- School of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Salman Latif
- Department of Chemistry, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| |
Collapse
|
9
|
Gangwar C, Yaseen B, Nayak R, Praveen S, Kumar Singh N, Sarkar J, Banerjee M, Mohan Naik R. Silver nanoparticles fabricated by tannic acid for their antimicrobial and anticancerous activity. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Kumar I, Nayak R, Chaudhary LB, Pandey VN, Mishra SK, Singh NK, Srivastava A, Prasad S, Naik RM. Fabrication of α-Fe 2O 3 Nanostructures: Synthesis, Characterization, and Their Promising Application in the Treatment of Carcinoma A549 Lung Cancer Cells. ACS OMEGA 2022; 7:21882-21890. [PMID: 35785292 PMCID: PMC9245107 DOI: 10.1021/acsomega.2c02083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
In the present work, iron nanoparticles were synthesized in the α-Fe2O3 phase with the reduction of potassium hexachloroferrate(III) by using l-ascorbic acid as a reducing agent in the presence of an amphiphilic non-ionic polyethylene glycol surfactant in an aqueous solution. The synthesized α-Fe2O3 NPs were characterized by powder X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, atomic force microscopy, dynamic light scattering, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and ultraviolet-visible spectrophotometry. The powder X-ray diffraction analysis result confirmed the formation of α-Fe2O3 NPs, and the average crystallite size was found to be 45 nm. The other morphological studies suggested that α-Fe2O3 NPs were predominantly spherical in shape with a diameter ranges from 40 to 60 nm. The dynamic light scattering analysis revealed the zeta potential of α-Fe2O3 NPs as -28 ± 18 mV at maximum stability. The ultraviolet-visible spectrophotometry analysis shows an absorption peak at 394 nm, which is attributed to their surface plasmon vibration. The cytotoxicity test of synthesized α-Fe2O3 NPs was investigated against human carcinoma A549 lung cancer cells, and the biological adaptability exhibited by α-Fe2O3 NPs has opened a pathway to biomedical applications in the drug delivery system. Our investigation confirmed that l-ascorbic acid-coated α-Fe2O3 NPs with calculated IC50 ≤ 30 μg/mL are the best suited as an anticancer agent, showing the promising application in the treatment of carcinoma A549 lung cancer cells.
Collapse
Affiliation(s)
- Indresh Kumar
- Department
of Chemistry, University of Lucknow, Lucknow 226007, U.P., India
| | - Rashmi Nayak
- Plant
Diversity Systematics and Herbarium Division, CSIR-National Botanical Research Institute, Lucknow 226001, U.P., India
| | - Lal Babu Chaudhary
- Plant
Diversity Systematics and Herbarium Division, CSIR-National Botanical Research Institute, Lucknow 226001, U.P., India
| | - Vashist Narayan Pandey
- Experimental
Botany and Nutraceutical Laboratory, Department of Botany, DDU Gorakhpur University, Gorakhpur 273009, U.P., India
| | - Sheo K. Mishra
- Department
of Physics, Indira Gandhi National Tribal
University, Amarkantak 484887, M.P., India
| | | | | | - Surendra Prasad
- School of
Biological and Chemical Sciences, Faculty of Science, Technology and
Environment, University of the South Pacific, Suva, Fiji
| | - Radhey Mohan Naik
- Department
of Chemistry, University of Lucknow, Lucknow 226007, U.P., India
| |
Collapse
|
11
|
Kumar I, Gangwar C, Yaseen B, Pandey PK, Mishra SK, Naik RM. Kinetic and Mechanistic Studies of the Formation of Silver Nanoparticles by Nicotinamide as a Reducing Agent. ACS OMEGA 2022; 7:13778-13788. [PMID: 35559139 PMCID: PMC9088940 DOI: 10.1021/acsomega.2c00046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/01/2022] [Indexed: 05/11/2023]
Abstract
Here, in the present study, silver nanoparticles (SNPs) in the size range 6-10 nm have been synthesized by a chemical reduction method using nicotinamide (NTA), an anti-inflammatory agent, and cetyltrimethylammonium bromide (CTAB), a good stabilizing agent, to preparing the nanoparticles in the 6-10 nm size range. Kinetic studies on the formation of SNPs have been performed spectrophotometrically at 410 nm (strong plasmon band) in aqueous medium as a function of [AgNO3], [NTA], [NaOH], and [CTAB]. The plot of ln(A ∞ - A t ) versus time exhibited a straight line and the pseudo-first-order rate constants of different variables were calculated from its slope. On the basis of experimental findings, a plausible mechanism was proposed for the formation of SNPs colloid. From the mechanism, it is proved that the reduction of silver ions proceeded through the formation of silver oxide in colloidal form by their reaction with hydroxide ions and NTA after performing their function and readily undergo hydrolysis to form nicotinic acid as a hydrolysis product with the release of ammonia gas. The preliminary characterization of the SNPs was carried out by using a UV-visible spectrophotometer. The detailed characterization of SNPs was also carried out using other experimental techniques such as Fourier transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and powder X-ray diffraction (PXRD). SNPs show a remarkable catalytic activity of up to 90% for the reduction of the cationic dye methylene blue.
Collapse
Affiliation(s)
- Indresh Kumar
- Department
of Chemistry, Lucknow University, Lucknow 226007, Uttar Pradesh, India
| | - Chinky Gangwar
- Department
of Chemistry, Lucknow University, Lucknow 226007, Uttar Pradesh, India
| | - Bushra Yaseen
- Department
of Chemistry, Lucknow University, Lucknow 226007, Uttar Pradesh, India
| | - Pradeep Kumar Pandey
- Department
of Chemistry, Lucknow University, Lucknow 226007, Uttar Pradesh, India
| | - Sheo K. Mishra
- Department
of Physics, Indira Gandhi National Tribal
University, Amarkantak 484887, Madhya Pradesh, India
| | - Radhey Mohan Naik
- Department
of Chemistry, Lucknow University, Lucknow 226007, Uttar Pradesh, India
- Email for R.M.N.:
| |
Collapse
|