1
|
Tian Y, Chen L, Liu X, Chang Y, Xia R, Zhang J, Kong Y, Gong Y, Li T, Wang G, Zhang Q. Colored Cellulose Nanoparticles with High Stability and Easily Modified Surface for Accurate and Sensitive Multiplex Lateral Flow Assay. ACS NANO 2025. [PMID: 39844662 DOI: 10.1021/acsnano.4c15340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Decentralized testing using multiplex lateral flow assays (mLFAs) to simultaneously detect multiple analytes can significantly enhance detection efficiency, reduce cost and time, and improve analytic accuracy. However, the challenges, including the monochromatic color of probe particles, interference between different test lines, and reduced specificity and sensitivity, severely hinder mLFAs from wide use. In this study, we prepared polydopamine (PDA)-coated dyed cellulose nanoparticles (dCNPs@P) with tunable colors as the probe for mLFAs. Cellulose nanoparticles (CNPs) were synthesized with uniform spheric shapes and tunable sizes. Dye molecules were loaded on CNPs via a mature industrial dyeing method. The PDA shell provided a reactive surface for facile receptor conjugation and protected the dye from leaking. dCNPs@P displayed a higher signal intensity than gold nanoparticles. They also had higher stability to tolerate salt and varied pH. The dCNP@P-based mLFAs were successfully applied to detect multiple mycotoxins in cereals and determine the levels of inflammatory biomarkers to differentiate between viral and bacterial infections. The tests represented high specificity and accuracy and were more sensitive than the tests using gold nanoparticles. The quantified detection was accessible by measuring the intensities of the colorimetric or photothermal signals. Overall, this study provides a practical system solution for mLFAs based on colored dCNPs@P.
Collapse
Affiliation(s)
- Yichen Tian
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Lei Chen
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Xiaodi Liu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Yuqing Chang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Ruicai Xia
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Jing Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P. R. China
| | - Yuele Kong
- Department of Laboratory Medicine, Changzheng Hospital, Naval Medical University, Shanghai 200003, P. R. China
| | - Yao Gong
- Department of Stomatology, Changzheng Hospital, Naval Medical University, Shanghai 200003, P. R. China
| | - Tao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P. R. China
| | - Guodong Wang
- Department of Stomatology, Changzheng Hospital, Naval Medical University, Shanghai 200003, P. R. China
| | - Qiang Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
2
|
Marchetti A, Marelli E, Bergamaschi G, Lahtinen P, Paananen A, Linder M, Pigliacelli C, Metrangolo P. Nanocellulose-short peptide self-assembly for improved mechanical strength and barrier performance. J Mater Chem B 2024; 12:9229-9237. [PMID: 39176991 PMCID: PMC11342157 DOI: 10.1039/d4tb01359j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
Cellulose nanofibers (CNF) are the most abundant renewable nanoscale fibers on Earth, and their use in the design of hybrid materials is ever more acclaimed, although it has been mostly limited, to date, to CNF derivatives obtained via covalent functionalization. Herein, we propose a noncovalent approach employing a set of short peptides - DFNKF, DF(I)NKF, and DF(F5)NKF - as supramolecular additives to engineer hybrid hydrogels and films based on unfunctionalized CNF. Even at minimal concentrations (from 0.1% to 0.01% w/w), these peptides demonstrate a remarkable ability to enhance CNF rheological properties, increasing both dynamic moduli by more than an order of magnitude. Upon vacuum filtration of the hydrogels, we obtained CNF-peptide films with tailored hydrophobicity and surface wettability, modulated according to the peptide content and halogen type. Notably, the presence of fluorine in the CNF-DF(F5)NKF film, despite being minimal, strongly enhances CNF water vapor barrier properties and reduces the film water uptake. Overall, this approach offers a modular, straightforward method to create fully bio-based CNF-peptide materials, where the inclusion of DFNKF derivatives allows for facile functionalization and material property modulation, opening their potential use in the design of packaging solutions and biomedical devices.
Collapse
Affiliation(s)
- Alessandro Marchetti
- Laboratory of Supramolecular and Bio-Nanomaterials (SBNLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131 Milano, Italy.
| | - Elisa Marelli
- Laboratory of Supramolecular and Bio-Nanomaterials (SBNLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131 Milano, Italy.
| | - Greta Bergamaschi
- Istituto di Scienze e Tecnologie Chimiche, National Research Council of Italy, Via M. Bianco 9, 20131 Milano, Italy
| | - Panu Lahtinen
- VTT-Technical Research Centre of Finland Ltd, Tekniikantie 21, 02150 Espoo, Finland
| | - Arja Paananen
- VTT-Technical Research Centre of Finland Ltd, Tekniikantie 21, 02150 Espoo, Finland
| | - Markus Linder
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Claudia Pigliacelli
- Laboratory of Supramolecular and Bio-Nanomaterials (SBNLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131 Milano, Italy.
| | - Pierangelo Metrangolo
- Laboratory of Supramolecular and Bio-Nanomaterials (SBNLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131 Milano, Italy.
| |
Collapse
|
3
|
Tamo AK. Nanocellulose-based hydrogels as versatile materials with interesting functional properties for tissue engineering applications. J Mater Chem B 2024; 12:7692-7759. [PMID: 38805188 DOI: 10.1039/d4tb00397g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tissue engineering has emerged as a remarkable field aiming to restore or replace damaged tissues through the use of biomimetic constructs. Among the diverse materials investigated for this purpose, nanocellulose-based hydrogels have garnered attention due to their intriguing biocompatibility, tunable mechanical properties, and sustainability. Over the past few years, numerous research works have been published focusing on the successful use of nanocellulose-based hydrogels as artificial extracellular matrices for regenerating various types of tissues. The review emphasizes the importance of tissue engineering, highlighting hydrogels as biomimetic scaffolds, and specifically focuses on the role of nanocellulose in composites that mimic the structures, properties, and functions of the native extracellular matrix for regenerating damaged tissues. It also summarizes the types of nanocellulose, as well as their structural, mechanical, and biological properties, and their contributions to enhancing the properties and characteristics of functional hydrogels for tissue engineering of skin, bone, cartilage, heart, nerves and blood vessels. Additionally, recent advancements in the application of nanocellulose-based hydrogels for tissue engineering have been evaluated and documented. The review also addresses the challenges encountered in their fabrication while exploring the potential future prospects of these hydrogel matrices for biomedical applications.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France
| |
Collapse
|
4
|
Keeratipinit K, Wijaranakul P, Wanmolee W, Hararak B. Preparation of High-Toughness Cellulose Nanofiber/Polylactic Acid Bionanocomposite Films via Gel-like Cellulose Nanofibers. ACS OMEGA 2024; 9:26159-26167. [PMID: 38911786 PMCID: PMC11190916 DOI: 10.1021/acsomega.4c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024]
Abstract
This study demonstrates a procedure for preparing gel-like cellulose nanofibers (CNFs) in polyethylene glycol (PEG) to toughen polylactic acid (PLA) nanocomposite films. A well-dispersed solution of CNFs in ethanol was produced from microcrystalline cellulose by using a high-pressure microfluidizer. The fiber diameter of CNFs was found to be in the range of 80-100 nm. Ethanol was replaced by PEG using a rotary evaporator to obtain gel-like CNFs/PEG. PLA/PEG/CNF films were prepared using the solvent casting method, with the CNF content varying from 0.15 to 5 phr. The effect of CNFs on the mechanical, morphological, and thermal properties of PLA nanocomposite films was investigated. The results demonstrate that the addition of CNFs improved Young's modulus and toughness of PLA/PEG films. In contrast, a slight decrease in mechanical properties was observed when the content of CNFs reached 0.83 phr. Considère's constructions are used to explain the neck phenomena and cold drawing of nanocomposite films. The crystallization and thermal stability of PLA nanocomposite films were enhanced, with a slight decrease in cold-crystalline temperature (T cc) and an increase in decomposition temperature (T d).
Collapse
Affiliation(s)
- Kawin Keeratipinit
- National
Metal and Materials Technology Center, National
Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Pawarisa Wijaranakul
- National
Metal and Materials Technology Center, National
Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Wanwitoo Wanmolee
- Department
of Chemical Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Bongkot Hararak
- National
Metal and Materials Technology Center, National
Science and Technology Development Agency, Pathum Thani 12120, Thailand
| |
Collapse
|
5
|
Tikhomirov E, Franconetti A, Johansson M, Sandström C, Carlsson E, Andersson B, Hailer NP, Ferraz N, Palo-Nieto C. A Simple and Cost-Effective FeCl 3-Catalyzed Functionalization of Cellulose Nanofibrils: Toward Adhesive Nanocomposite Materials for Medical Implants. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30385-30395. [PMID: 38816917 PMCID: PMC11181277 DOI: 10.1021/acsami.4c04351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
In the present work, we explored Lewis acid catalysis, via FeCl3, for the heterogeneous surface functionalization of cellulose nanofibrils (CNFs). This approach, characterized by its simplicity and efficiency, facilitates the amidation of nonactivated carboxylic acids in carboxymethylated cellulose nanofibrils (c-CNF). Following the optimization of reaction conditions, we successfully introduced amine-containing polymers, such as polyethylenimine and Jeffamine, onto nanofibers. This introduction significantly enhanced the physicochemical properties of the CNF-based materials, resulting in improved characteristics such as adhesiveness and thermal stability. Reaction mechanistic investigations suggested that endocyclic oxygen of cellulose finely stabilizes the transition state required for further functionalization. Notably, a nanocomposite, containing CNF and a branched low molecular weight polyethylenimine (CNF-PEI 800), was synthesized using the catalytic reaction. The composite CNF-PEI 800 was thoroughly characterized having in mind its potential application as coating biomaterial for medical implants. The resulting CNF-PEI 800 hydrogel exhibits adhesive properties, which complement the established antibacterial qualities of polyethylenimine. Furthermore, CNF-PEI 800 demonstrates its ability to support the proliferation and differentiation of primary human osteoblasts over a period of 7 days.
Collapse
Affiliation(s)
- Evgenii Tikhomirov
- Nanotechnology
and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Uppsala 751 03, Sweden
| | - Antonio Franconetti
- Departamento
de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla 41012, Spain
| | - Mathias Johansson
- Department
of Molecular Sciences, Swedish University
of Agricultural Sciences, Uppsala 756 51, Sweden
| | - Corine Sandström
- Department
of Molecular Sciences, Swedish University
of Agricultural Sciences, Uppsala 756 51, Sweden
| | - Elin Carlsson
- Ortholab,
Department of Surgical Sciences—Orthopaedics, Uppsala University, Uppsala 751 85, Sweden
| | - Brittmarie Andersson
- Ortholab,
Department of Surgical Sciences—Orthopaedics, Uppsala University, Uppsala 751 85, Sweden
| | - Nils P Hailer
- Ortholab,
Department of Surgical Sciences—Orthopaedics, Uppsala University, Uppsala 751 85, Sweden
| | - Natalia Ferraz
- Nanotechnology
and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Uppsala 751 03, Sweden
| | - Carlos Palo-Nieto
- Nanotechnology
and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Uppsala 751 03, Sweden
- Ortholab,
Department of Surgical Sciences—Orthopaedics, Uppsala University, Uppsala 751 85, Sweden
| |
Collapse
|
6
|
Carvalho APAD, Értola R, Conte-Junior CA. Nanocellulose-based platforms as a multipurpose carrier for drug and bioactive compounds: From active packaging to transdermal and anticancer applications. Int J Pharm 2024; 652:123851. [PMID: 38272194 DOI: 10.1016/j.ijpharm.2024.123851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
The nanocellulose has unique characteristics, such as biocompatibility, good mechanical strength, and low cytotoxicity. The nanocellulose crystalline portion is responsible for good mechanical resistance, while the amorphous portion is responsible for flexibility. Such features make it a promising candidate for multiple applications related to the modulation of substance release: targeted cancer therapy, transdermal drug delivery, and controlled-release packaging materials. Thus, in this study, we discussed nanocellulose as a multipurpose material for drug delivery and bioactive compound carriers in controlled delivery systems with varied applications in pharmaceutic fields. Herein, we focus on understanding key factors such as i) polymer-drug interactions and surface modification strategies in controlled release rates, ii) therapeutic efficacy, and iii) biocompatibility aspects. The tunable chemistry surface plays a fundamental approach limiting the quick release of active substances in drug delivery systems. Several works on a pre-clinical stage of investigation were overviewed, reporting robust evidence on nanocellulose to design bioactive compounds/drug delivery carriers based on stimuli-responsive drug release and controlled delivery systems for higher efficiency in cancer therapies, purposing target therapy and reduced side effects. Nanocellulose was also identified as a solid candidate material in active packaging for pharmaceutical products. Cellulose nanocrystals and bacterial cellulose demonstrated strong potential to overcome the challenge of controlled release profile and open novel insights in advanced active packaging materials for pharmaceutics with controlled release of antioxidant and antimicrobial substances. Moreover, the concept overview in this work might be extended in active food packaging technologies to flavor-releasing/absorbing systems or antimicrobial/antioxidant carriers for extending the shelf life of foods.
Collapse
Affiliation(s)
- Anna Paula Azevedo de Carvalho
- Research Support Group on Nanomaterials, Polymers, and Interaction with Biosystems (BioNano), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941598, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ 20020-000, Brazil; Graduate Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941909, Brazil.
| | - Raphael Értola
- Research Support Group on Nanomaterials, Polymers, and Interaction with Biosystems (BioNano), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941598, Brazil
| | - Carlos Adam Conte-Junior
- Research Support Group on Nanomaterials, Polymers, and Interaction with Biosystems (BioNano), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941598, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ 20020-000, Brazil; Graduate Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941909, Brazil
| |
Collapse
|
7
|
Lee S, Ahn G, Shin WR, Choi JW, Kim YH, Ahn JY. Synergistic outcomes of Chlorella-bacterial cellulose based hydrogel as an ethylene scavenger. Carbohydr Polym 2023; 321:121256. [PMID: 37739491 DOI: 10.1016/j.carbpol.2023.121256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 09/24/2023]
Abstract
Increasing the freshness of vegetables requires the elimination of ethylene, which can be done through chemical methods. However, the development of eco-friendly approaches is required for environmental reasons. Chlorella vulgaris (C. vulgaris) was selected as a new biological material for demonstrating an excellent performance in ethylene removal. To support C. vulgaris, bacterial cellulose (BC) produced by Gluconacetobacter hansenii (G. hansenii) was chosen due to its high water content and biodegradability. To increase BC productivity, UV-induced mutant G. hansenii was isolated, and they produced high yields of BC (9.80 ± 0.52 g/L). Furthermore, comparative transcriptome analysis revealed metabolic flux changes toward UDP-glucose accumulation and enhanced BC production. BC-based hydrogels (BC hydrogels) were successfully prepared using a 2.4 % carboxymethyl cellulose (CMC) and 1 % agar mixture. We used Chlorella-BC hydrogels as an ethylene scavenger, which reduced 90 % of ethylene even when the immobilized C. vulgaris was preserved for 14 days at room temperature without media supplementation. We demonstrated for the first time the potential of BC hydrogels to integrate C. vulgaris as a sustainable ethylene absorber for green food packaging and biomass technology.
Collapse
Affiliation(s)
- SeonHyung Lee
- School of Biological Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Gna Ahn
- School of Biological Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea; Center for Ecology and Environmental Toxicology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Woo-Ri Shin
- School of Biological Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea; Department of Bioengineering, University of Pennsylvania, 210 S 33rd St., Philadelphia, PA 19104, USA
| | - Jae-Won Choi
- Department of Biopharmaceutical Sciences, Cheongju University, Cheongju 28160, Republic of Korea.
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Ji-Young Ahn
- School of Biological Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea; Center for Ecology and Environmental Toxicology, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
8
|
Soliman AIA, Díaz Baca JA, Fatehi P. One-pot synthesis of magnetic cellulose nanocrystal and its post-functionalization for doxycycline adsorption. Carbohydr Polym 2023; 308:120619. [PMID: 36813331 DOI: 10.1016/j.carbpol.2023.120619] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/29/2023]
Abstract
The composite of magnetite (Fe3O4) and cellulose nanocrystal (CNC) is considered a potential adsorbent for water treatment and environmental remediation. In the current study, a one-pot hydrothermal procedure was utilized for magnetic cellulose nanocrystal (MCNC) development from microcrystalline cellulose (MCC) in the presence of ferric chloride, ferrous chloride, urea, and hydrochloric acid. The x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), and Fourier-transform infrared spectroscopy analysis confirmed the presence of CNC and Fe3O4, while transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis verified their respective sizes (< 400 nm and ≤ 20 nm) in the generated composite. To have an efficient adsorption activity for doxycycline hyclate (DOX), the produced MCNC was post-treated using chloroacetic acid (CAA), chlorosulfonic acid (CSA), or iodobenzene (IB). The introduction of carboxylate, sulfonate, and phenyl groups in the post-treatment was confirmed by FTIR and XPS analysis. Such post treatments decreased the crystallinity index and thermal stability of the samples but improved their DOX adsorption capacity. The adsorption analysis at different pHs revealed the increase in the adsorption capacity by reducing the basicity of the medium due to decreasing electrostatic repulsions and inducing strong attractions.
Collapse
Affiliation(s)
- Ahmed I A Soliman
- Biorefining Research Institute and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B5E1, Canada; Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Jonathan A Díaz Baca
- Biorefining Research Institute and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B5E1, Canada
| | - Pedram Fatehi
- Biorefining Research Institute and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B5E1, Canada.
| |
Collapse
|
9
|
Liu Y, Wei Y, He Y, Qian Y, Wang C, Chen G. Large-Scale Preparation of Carboxylated Cellulose Nanocrystals and Their Application for Stabilizing Pickering Emulsions. ACS OMEGA 2023; 8:15114-15123. [PMID: 37151532 PMCID: PMC10157680 DOI: 10.1021/acsomega.2c08239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/06/2023] [Indexed: 05/09/2023]
Abstract
Cellulose nanocrystals (CNCs) with varied unique properties have been widely used in emulsions, nanocomposites, and membranes. However, conventional CNCs for industrial use were usually prepared through acid hydrolysis or heat-controlled methods with sulfuric acid. This most commonly used acid method generally suffers from low yields, poor thermal stability, and potential environmental pollution. Herein, we developed a high-efficiency and large-scale preparation strategy to produce carboxylated cellulose nanocrystals (Car-CNCs) via carboxymethylation-enhanced ammonium persulfate (APS) oxidation. After carboxymethylation, the wood fibers could form unique "balloon-like" structures with abundant exposed hydroxy groups, which facilitated exfoliating fibril bundles into individual nanocrystals during the APS oxidation process. The production process under controlled temperature, time period, and APS concentrations was optimized and the resultant Car-CNCs exhibited a typical structure with narrow diameter distributions. In particular, the final Car-CNCs exhibited excellent thermal stability (≈346.6 °C) and reached a maximum yield of 60.6%, superior to that of sulfated cellulose nanocrystals (Sul-CNCs) prepared by conventional acid hydrolysis. More importantly, compared to the common APS oxidation, our two-step collaborative process shortened the oxidation time from more than 16 h to only 30 min. Therefore, our high-efficiency method may pave the way for the up-scaled production of carboxylated nanocrystals. More importantly, Car-CNCs show potential for stabilizing Pickering emulsions that can withstand changeable environments, including heating, storage, and centrifugation, which is better than the conventional Sul-CNC-based emulsions.
Collapse
Affiliation(s)
- Yikang Liu
- State
Key Laboratory of Pulp and Paper Engineering, College of Light Industry
and Engineering, South China University
of Technology, Guangzhou 510640, China
- Guangdong
Engineering Technology Research and Development Center of Specialty
Paper and Paper-Based Functional Materials, South China University of Technology, Guangzhou 510640, China
| | - Yuan Wei
- State
Key Laboratory of Pulp and Paper Engineering, College of Light Industry
and Engineering, South China University
of Technology, Guangzhou 510640, China
- Guangdong
Engineering Technology Research and Development Center of Specialty
Paper and Paper-Based Functional Materials, South China University of Technology, Guangzhou 510640, China
| | - Yingying He
- State
Key Laboratory of Pulp and Paper Engineering, College of Light Industry
and Engineering, South China University
of Technology, Guangzhou 510640, China
- Guangdong
Engineering Technology Research and Development Center of Specialty
Paper and Paper-Based Functional Materials, South China University of Technology, Guangzhou 510640, China
| | - Yangyang Qian
- State
Key Laboratory of Pulp and Paper Engineering, College of Light Industry
and Engineering, South China University
of Technology, Guangzhou 510640, China
- Guangdong
Engineering Technology Research and Development Center of Specialty
Paper and Paper-Based Functional Materials, South China University of Technology, Guangzhou 510640, China
- College
of Tea (Pu’er), West Yunnan University
of Applied Sciences, Pu’er 665000, China
| | - Chunyu Wang
- State
Key Laboratory of Pulp and Paper Engineering, College of Light Industry
and Engineering, South China University
of Technology, Guangzhou 510640, China
- Guangdong
Engineering Technology Research and Development Center of Specialty
Paper and Paper-Based Functional Materials, South China University of Technology, Guangzhou 510640, China
| | - Gang Chen
- State
Key Laboratory of Pulp and Paper Engineering, College of Light Industry
and Engineering, South China University
of Technology, Guangzhou 510640, China
- Guangdong
Engineering Technology Research and Development Center of Specialty
Paper and Paper-Based Functional Materials, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
10
|
Novel halochromic hydrazonal chromophore immobilized into rice-straw based cellulose aerogel for vapochromic detection of ammonia. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
Kono H, Tsujisaki H, Tajima K. Reinforcing Poly(methyl methacrylate) with Bacterial Cellulose Nanofibers Chemically Modified with Methacryolyl Groups. NANOMATERIALS 2022; 12:nano12030537. [PMID: 35159882 PMCID: PMC8838691 DOI: 10.3390/nano12030537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 11/30/2022]
Abstract
Nanofibrillated bacterial cellulose (NFBC), a type of cellulose nanofiber biosynthesized by Gluconacetobacter sp., has extremely long (i.e., high-aspect-ratio) fibers that are expected to be useful as nanofillers for fiber-reinforced composite resins. In this study, we investigated a composite of NFBC and poly(methyl methacrylate) (PMMA), a highly transparent resin, with the aim of improving the mechanical properties of the latter. The abundant hydroxyl groups on the NFBC surface were silylated using 3-(methacryloyloxy)propyltrimethoxysilane (MPTMS), a silane coupling agent bearing a methacryloyl group as the organic functional group. The surface-modified NFBC was homogeneously dispersed in chloroform, mixed with neat PMMA, and converted into PMMA composites using a simple solvent-casting method. The tensile strength and Young’s modulus of the composite increased by factors of 1.6 and 1.8, respectively, when only 0.10 wt% of the surface-modified NFBC was added, without sacrificing the maximum elongation rate. In addition, the composite maintained the high transparency of PMMA, highlighting that the addition of MPTMS-modified NFBC easily reinforce PMMA. Furthermore, interactions involving the organic functional groups of MPTMS were found to be very important for reinforcing PMMA.
Collapse
Affiliation(s)
- Hiroyuki Kono
- Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Tomakomai 059-1275, Japan
- Correspondence: ; Tel.: +81-144-67-8036
| | - Haruto Tsujisaki
- Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Tomakomai 059-1275, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan;
| | - Kenji Tajima
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan;
| |
Collapse
|