1
|
Kolipakala R, Basu S, Sarkar S, Biju BM, Salazar D, Reddy L, Pradeep P, Yuvapriya MK, Nath S, Gall R, Samprathi AH, Balaji H, Koundinya EAB, Shetye A, Nagarajan D. Fungal Peptidomelanin: A Novel Biopolymer for the Chelation of Heavy Metals. ACS OMEGA 2024; 9:36353-36370. [PMID: 39220543 PMCID: PMC11359623 DOI: 10.1021/acsomega.4c03704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Melanin is an amorphous, highly heterogeneous polymer found across all kingdoms of life. Although the properties of melanin can greatly vary, most forms are insoluble and strongly absorb light, appearing dark brown to black. Here, we describe a water-soluble form of melanin (peptidomelanin) secreted by the spores of Aspergillus niger (strain: melanoliber) during germination. Peptidomelanin is composed of an insoluble L-DOPA core polymer that is solubilized via short, copolymerized heterogeneous peptide chains forming a "corona" with a mean amino acid length of 2.6 ± 2.3. Based on in vitro experiments, we propose a biochemical copolymerization mechanism involving the hydroxylation of tyrosynylated peptides. Peptidomelanin is capable of chelating heavy metals such as lead, mercury, and uranium (as uranyl) in large quantities. Preliminary data indicates that peptidomelanin may have applications for the remediation of heavy metals in situ, including in agricultural settings.
Collapse
Affiliation(s)
| | - Suranjana Basu
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
| | - Senjuti Sarkar
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
| | - Beneta Merin Biju
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
| | - Daniela Salazar
- Ecology
and Genetics Research Unit, University of
Oulu, Oulu 90014, Finland
| | - Likhit Reddy
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
| | - Pushya Pradeep
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
| | - Muniraj Krishnaveni Yuvapriya
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore 560054, India
| | - Shrijita Nath
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
| | - Riley Gall
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
| | - Anish Hemanth Samprathi
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
- Department
of Biotechnology, Fergusson College (Autonomous), Pune 411004, India
| | - Harshitha Balaji
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
| | - Eeshaan A. B. Koundinya
- Department
of Biotechnology, Manipal Institute of Technology,
Manipal University, Manipal 576104, India
| | - Aparna Shetye
- Department
of Microbiology, St. Xavier’s College, Mumbai 400001, India
| | - Deepesh Nagarajan
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
- Department
of Microbiology, St. Xavier’s College, Mumbai 400001, India
| |
Collapse
|
2
|
Kambhu A, Satapanajaru T, Somsamak P, Pengthamkeerati P, Chokejaroenrat C, Muangkaew K, Nonthamit K. Green cleanup of styrene-contaminated soil by carbon-based nanoscale zero-valent iron and phytoremediation: Sunn hemp ( Crotalaria juncea), zinnia ( Zinnia violacea Cav.), and marigold ( Tagetes erecta L. ). Heliyon 2024; 10:e27499. [PMID: 38496887 PMCID: PMC10944241 DOI: 10.1016/j.heliyon.2024.e27499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
Accidental chemical spills can result in styrene-contaminated soil. Styrene negatively affects human health and the environment. The objective of this study was to remediate styrene-contaminated soil using a combination of activated carbon-based nanoscale zero-valent iron (nZVI-AC) and phytoremediation by sunn hemp (Crotalaria juncea), zinnia (Zinnia violacea Cav.) and marigolds (Tagetes erecta L.). The results showed that all three plant types could potentially increase the removal efficiency of styrene-contaminated soil. At 28 days, all three plants showed complete removal of styrene from the soil with 1 g/kg of nZVI-AC, activated carbon-based nZVI synthesized by tea leaves (Camellia sinensis) (T-nZVI-AC), or activated carbon-based nZVI synthesized by red Thai holy basil (Ocimum tenuiflorum L.) (B-nZVI-AC). However, styrene removal efficiencies of sunn hemp, zinnia, and marigold without carbon-based nZVI were 30%, 67%, and 56%, respectively. Statistical analysis (ANOVA) revealed that the removal efficiencies differed significantly from those of phytoremediation alone. With the same removal efficiency (100%), the biomass of sunn hemp in nano-phytoremediation treatments differed by approximately 55%, whereas the biomass of zinnia differed by >67%, compared with that of the control experiment. For marigold, the difference in biomass was only 30%. Styrene was adsorbed on surface of soil and AC and then further oxidized under air-water-nZVI environment, while phytovolatilization played an important role in transporting the remaining styrene from the contaminated soil to the air. Marigold was used as an alternative plant for the nano-phytoremediation of styrene-contaminated soil because of its sturdy nature, high biomass, tolerance to toxic effects, and ease of cultivation. Remediation of one cubic meter of styrene-contaminated soil by a combination of carbon-based nanoscale zero-valent iron and phytoremediation by marigolds emitted 0.0027 kgCO2/m3.
Collapse
Affiliation(s)
- Ann Kambhu
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok, 10900 Thailand
| | - Tunlawit Satapanajaru
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok, 10900 Thailand
| | - Piyapawn Somsamak
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok, 10900 Thailand
| | - Patthra Pengthamkeerati
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok, 10900 Thailand
| | - Chanat Chokejaroenrat
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok, 10900 Thailand
| | - Kanitchanok Muangkaew
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok, 10900 Thailand
| | - Kanthika Nonthamit
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok, 10900 Thailand
| |
Collapse
|
3
|
Danish S, Hasnain Z, Dawar K, Fahad S, Shah AN, Salmen SH, Ansari MJ. Enhancing maize resilience to drought stress: the synergistic impact of deashed biochar and carboxymethyl cellulose amendment. BMC PLANT BIOLOGY 2024; 24:139. [PMID: 38413916 PMCID: PMC10898060 DOI: 10.1186/s12870-024-04843-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
Drought stress poses a significant challenge to maize production, leading to substantial harm to crop growth and yield due to the induction of oxidative stress. Deashed biochar (DAB) in combination with carboxymethyl cellulose (CMC) presents an effective approach for addressing this problem. DAB improves soil structure by increasing porosity and water retention and enhancing plant nutrient utilization efficiency. The CMC provides advantages to plants by enhancing soil water retention, improving soil structure, and increasing moisture availability to the plant roots. The present study was conducted to investigate the effects of DAB and CMC amendments on maize under field capacity (70 FC) and drought stress. Six different treatments were implemented in this study, namely 0 DAB + 0CMC, 25 CMC, 0.5 DAB, 0.5 DAB + 25 CMC, 1 DAB, and 1 DAB + 25 CMC, each with six replications, and they were arranged according to a completely randomized design. Results showed that 1 DAB + 25 CMC caused significant enhancement in maize shoot fresh weight (24.53%), shoot dry weight (38.47%), shoot length (32.23%), root fresh weight (19.03%), root dry weight (87.50%) and root length (69.80%) over control under drought stress. A substantial increase in maize chlorophyll a (40.26%), chlorophyll b (26.92%), total chlorophyll (30.56%), photosynthetic rate (21.35%), transpiration rate (32.61%), and stomatal conductance (91.57%) under drought stress showed the efficiency of 1 DAB + 25 CMC treatment compared to the control. The enhancement in N, P, and K concentrations in both the root and shoot validated the effectiveness of the performance of the 1 DAB + 25 CMC treatment when compared to the control group under drought stress. In conclusion, it is recommended that the application of 1 DAB + 25 CMC serves as a beneficial amendment for alleviating drought stress in maize.
Collapse
Affiliation(s)
- Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Zuhair Hasnain
- Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Khadim Dawar
- Department of Soil and Environmental Science, the University of Agriculture Peshawar, Peshawar, Pakistan
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology Rahim Yar Khan, Rahim Yar Khan, Punjab, 64200, Pakistan
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, 244001, India
| |
Collapse
|
4
|
Younis U, Danish S, Datta R, Alahmadi TA, Ansari MJ. Sustainable remediation of chromium-contaminated soils: boosting radish growth with deashed biochar and strigolactone. BMC PLANT BIOLOGY 2024; 24:115. [PMID: 38365582 PMCID: PMC10870680 DOI: 10.1186/s12870-024-04791-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/01/2024] [Indexed: 02/18/2024]
Abstract
Chromium (Cr) stress significantly hinders crop production by disrupting nutrient uptake, impairing plant growth, and contaminating soil, posing a substantial threat to agricultural sustainability. The use of deashed biochar (DAB) and strigolactone can be an effective solution to mitigate this issue. Deashed biochar enhances crop production by improving soil structure, water retention, and nutrient availability while mitigating the bioavailability of toxic substances. Strigolactone boosts plant growth by stimulating root growth, branching, shoot formation, and overall plant physiology. Nevertheless, the scientific rationale behind their collective use as an amendment to counter Cr stress remains to be substantiated. Therefore, in this study, a blend of DAB and strigolactone was employed as additives in radish cultivation, both in the absence of Cr stress and under the influence of 200Cr stress. Four treatments, i.e., 0, 20µM Strigolactone, DAB, and 20µM Strigolactone + DAB, were applied in four replications following a completely randomized design. Results demonstrate that 20µM Strigolactone + DAB produced significant improvement in radish shoot length (27.29%), root length (45.60%), plant fresh weight (33.25%), and plant dry weight (78.91%), compared to the control under Cr stress. Significant enrichment in radish chlorophyll a (20.41%), chlorophyll b (58.53%), and total chlorophyll (31.54%) over the control under Cr stress, prove the efficacy of 20µM Strigolactone + DAB treatment. In conclusion, 20µM Strigolactone + DAB is the recommended amendment for mitigating Cr stress in radish. Farmers should consider using Strigolactone + DAB amendments to combat Cr stress and enhance radish growth, contributing to a more resilient agricultural ecosystem.
Collapse
Affiliation(s)
- Uzma Younis
- Botany Department, The Islamia University of Bahawalpur, Sub Campus Rahim Yar Khan, Rahim Yar Khan, Punjab, Pakistan
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, Brno, 61300, Czech Republic.
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, 11461, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, India
| |
Collapse
|
5
|
Wang B, Huang D, Weng Z. Recent Advances in Polymer-Based Biosensors for Food Safety Detection. Polymers (Basel) 2023; 15:3253. [PMID: 37571147 PMCID: PMC10422505 DOI: 10.3390/polym15153253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The excessive use of pesticides and drugs, coupled with environmental pollution, has resulted in the persistence of contaminants on food. These pollutants tend to accumulate in humans through the food chain, posing a significant threat to human health. Therefore, it is crucial to develop rapid, low-cost, portable, and on-site biosensors for detecting food contaminants. Among various biosensors, polymer-based biosensors have emerged as promising probes for detection of food contaminants in recent years, due to their various functions such as target binding, enrichment, and simple signal reading. This paper aims to discuss the characteristics of five types of food pollutants-heavy metals, pesticide residues, pathogenic bacteria, allergens, and antibiotics-and their adverse effects on human health. Additionally, this paper focuses on the principle of polymer-based biosensors and their latest applications in detecting these five types of food contaminants in actual food samples. Furthermore, this review briefly examines the future prospects and challenges of biosensors for food safety detection. The insights provided in this review will facilitate the development of biosensors for food safety detection.
Collapse
Affiliation(s)
- Binhui Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China;
| | - Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China;
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China;
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|