1
|
Mommaerts K, Okawa S, Schmitt M, Kofanova O, Turner TR, Ben RN, Del Sol A, Mathieson W, Schwamborn JC, Acker JP, Betsou F. Ice recrystallization inhibitors enable efficient cryopreservation of induced pluripotent stem cells: A functional and transcriptomic analysis. Stem Cell Res 2024; 81:103583. [PMID: 39467374 DOI: 10.1016/j.scr.2024.103583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/28/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
The successful use of human induced pluripotent stem cells (iPSCs) for research or clinical applications requires the development of robust, efficient, and reproducible cryopreservation protocols. After cryopreservation, the survival rate of iPSCs is suboptimal and cell line-dependent. We assessed the use of ice recrystallization inhibitors (IRIs) for cryopreservation of human iPSCs. A toxicity screening study was performed to assess specific small-molecule carbohydrate-based IRIs and concentrations for further evaluation. Then, a cryopreservation study compared the cryoprotective efficiency of 15 mM IRIs in 5 % or 10 % DMSO-containing solutions and with CryoStor® CS10. Three iPSC lines were cryopreserved as single-cell suspensions in the cryopreservation solutions and post-thaw characteristics, including pluripotency and differential gene expression were assessed. We demonstrate the fitness-for-purpose of 15 mM IRI in 5 % DMSO as an efficient cryoprotective solution for iPSCs in terms of post-thaw recovery, viability, pluripotency, and transcriptomic changes. This mRNA sequencing dataset has the potential to be used for molecular mechanism analysis relating to cryopreservation. Use of IRIs can reduce DMSO concentrations and its associated toxicities, thereby improving the utility, effectiveness, and efficiency of cryopreservation.
Collapse
Affiliation(s)
- Kathleen Mommaerts
- Integrated Biobank of Luxembourg, Luxembourg Institute of Health, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 2 avenue de Université, L-4365 Esch-sur-Alzette, Luxembourg.
| | - Satoshi Okawa
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 2 avenue de Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Margaux Schmitt
- Integrated Biobank of Luxembourg, Luxembourg Institute of Health, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg
| | - Olga Kofanova
- Integrated Biobank of Luxembourg, Luxembourg Institute of Health, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg
| | | | - Robert N Ben
- PanTHERA CryoSolutions Inc., Edmonton, Alberta, Canada; Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada
| | - Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 2 avenue de Université, L-4365 Esch-sur-Alzette, Luxembourg; CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - William Mathieson
- Integrated Biobank of Luxembourg, Luxembourg Institute of Health, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 2 avenue de Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Jason P Acker
- PanTHERA CryoSolutions Inc., Edmonton, Alberta, Canada; Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Fay Betsou
- Integrated Biobank of Luxembourg, Luxembourg Institute of Health, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg
| |
Collapse
|
2
|
Warren MT, Biggs CI, Bissoyi A, Gibson MI, Sosso GC. Data-driven discovery of potent small molecule ice recrystallisation inhibitors. Nat Commun 2024; 15:8082. [PMID: 39278938 PMCID: PMC11402961 DOI: 10.1038/s41467-024-52266-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/27/2024] [Indexed: 09/18/2024] Open
Abstract
Controlling the formation and growth of ice is essential to successfully cryopreserve cells, tissues and biologics. Current efforts to identify materials capable of modulating ice growth are guided by iterative changes and human intuition, with a major focus on proteins and polymers. With limited data, the discovery pipeline is constrained by a poor understanding of the mechanisms and the underlying structure-activity relationships. In this work, this barrier is overcome by constructing machine learning models capable of predicting the ice recrystallisation inhibition activity of small molecules. We generate a new dataset via experimental measurements of ice growth, then harness predictive models combining state-of-the-art descriptors with domain-specific features derived from molecular simulations. The models accurately identify potent small molecule ice recrystallisation inhibitors within a commercial compound library. Identified hits can also mitigate cellular damage during transient warming events in cryopreserved red blood cells, demonstrating how data-driven approaches can be used to discover innovative cryoprotectants and enable next-generation cryopreservation solutions for the cold chain.
Collapse
Affiliation(s)
- Matthew T Warren
- Department of Chemistry, University of Warwick, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
- Institute of Cancer Research, London, UK
| | | | - Akalabya Bissoyi
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Coventry, UK.
- Warwick Medical School, University of Warwick, Coventry, UK.
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
- Department of Chemistry, University of Manchester, Manchester, UK.
| | | |
Collapse
|
3
|
Alasmar S, Huang J, Chopra K, Baumann E, Aylsworth A, Hewitt M, Sandhu JK, Tauskela JS, Ben RN, Jezierski A. Improved Cryopreservation of Human Induced Pluripotent Stem Cell (iPSC) and iPSC-derived Neurons Using Ice-Recrystallization Inhibitors. Stem Cells 2023; 41:1006-1021. [PMID: 37622655 PMCID: PMC10631806 DOI: 10.1093/stmcls/sxad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/30/2023] [Indexed: 08/26/2023]
Abstract
Human induced pluripotent stem cells (iPSCs) and iPSC-derived neurons (iPSC-Ns) represent a differentiated modality toward developing novel cell-based therapies for regenerative medicine. However, the successful application of iPSC-Ns in cell-replacement therapies relies on effective cryopreservation. In this study, we investigated the role of ice recrystallization inhibitors (IRIs) as novel cryoprotectants for iPSCs and terminally differentiated iPSC-Ns. We found that one class of IRIs, N-aryl-D-aldonamides (specifically 2FA), increased iPSC post-thaw viability and recovery with no adverse effect on iPSC pluripotency. While 2FA supplementation did not significantly improve iPSC-N cell post-thaw viability, we observed that 2FA cryopreserved iPSC-Ns re-established robust neuronal network activity and synaptic function much earlier compared to CS10 cryopreserved controls. The 2FA cryopreserved iPSC-Ns retained expression of key neuronal specific and terminally differentiated markers and displayed functional electrophysiological and neuropharmacological responses following treatment with neuroactive agonists and antagonists. We demonstrate how optimizing cryopreservation media formulations with IRIs represents a promising strategy to improve functional cryopreservation of iPSCs and post-mitotic iPSC-Ns, the latter of which have been challenging to achieve. Developing IRI enabling technologies to support an effective cryopreservation and an efficiently managed cryo-chain is fundamental to support the delivery of successful iPSC-derived therapies to the clinic.
Collapse
Affiliation(s)
- Salma Alasmar
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Faculty of Science, Ottawa, ON, Canada
| | - Jez Huang
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Karishma Chopra
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Faculty of Science, Ottawa, ON, Canada
| | - Ewa Baumann
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Amy Aylsworth
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Melissa Hewitt
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Jagdeep K Sandhu
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, , Faculty of Medicine, Ottawa, ON, Canada
| | - Joseph S Tauskela
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Robert N Ben
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Faculty of Science, Ottawa, ON, Canada
| | - Anna Jezierski
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, , Faculty of Medicine, Ottawa, ON, Canada
| |
Collapse
|
4
|
William N, Mangan S, Ben RN, Acker JP. Engineered Compounds to Control Ice Nucleation and Recrystallization. Annu Rev Biomed Eng 2023; 25:333-362. [PMID: 37104651 DOI: 10.1146/annurev-bioeng-082222-015243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
One of the greatest concerns in the subzero storage of cells, tissues, and organs is the ability to control the nucleation or recrystallization of ice. In nature, evidence of these processes, which aid in sustaining internal temperatures below the physiologic freezing point for extended periods of time, is apparent in freeze-avoidant and freeze-tolerant organisms. After decades of studying these proteins, we now have easily accessible compounds and materials capable of recapitulating the mechanisms seen in nature for biopreser-vation applications. The output from this burgeoning area of research can interact synergistically with other novel developments in the field of cryobiology, making it an opportune time for a review on this topic.
Collapse
Affiliation(s)
- Nishaka William
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada;
| | - Sophia Mangan
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Rob N Ben
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Jason P Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada;
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Wang Z, Li M, Wu T. Ice recrystallization inhibition activity in bile salts. J Colloid Interface Sci 2023; 629:728-738. [PMID: 36193617 DOI: 10.1016/j.jcis.2022.09.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022]
Abstract
Ice recrystallization inhibitors are novel cryoprotective agents that can reduce the freezing damage of cells, tissues, and organs in cryopreservation. To date, potent ice recrystallization inhibition (IRI) activity has been found on antifreeze (glyco)proteins, polymers, nanomaterials, and a limited number of chemically synthesized small molecules. This paper reports a relatively potent IRI activity on a group of small biological molecules - bile salts. The IRI activity increased as the number of hydroxyl groups decreased in bile salts. Among sodium cholate (NaC), sodium deoxycholate (NaDC), sodium chenodeoxycholate (NaCC), and sodium lithocholate (NaLC), the least hydrophilic NaLC at a concentration of 25.0 mM entirely blocked the ice growth in phosphate-buffered saline (PBS) under test conditions. The IRI activity of bile salts was not related to viscosity or gelation. No IRI activity was found below the critical micelle concentration. The IRI activity was independent of liquid crystal formation. No ice shaping and thermal hysteresis were observed on any bile salts, but NaC and NaLC could increase the ice nucleation temperature. The findings add bile salts to the existing material list of ice recrystallization inhibitors.
Collapse
Affiliation(s)
- Zhihong Wang
- Department of Food Science, The University of Tennessee, Knoxville, 2510 River Drive, TN 37996, USA
| | - Min Li
- Department of Food Science, The University of Tennessee, Knoxville, 2510 River Drive, TN 37996, USA
| | - Tao Wu
- Department of Food Science, The University of Tennessee, Knoxville, 2510 River Drive, TN 37996, USA.
| |
Collapse
|
6
|
Baust JM, Snyder KK, Van Buskirk RG, Baust JG. Assessment of the Impact of Post-Thaw Stress Pathway Modulation on Cell Recovery following Cryopreservation in a Hematopoietic Progenitor Cell Model. Cells 2022; 11:cells11020278. [PMID: 35053394 PMCID: PMC8773610 DOI: 10.3390/cells11020278] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
The development and use of complex cell-based products in clinical and discovery science continues to grow at an unprecedented pace. To this end, cryopreservation plays a critical role, serving as an enabling process, providing on-demand access to biological material, facilitating large scale production, storage, and distribution of living materials. Despite serving a critical role and substantial improvements over the last several decades, cryopreservation often remains a bottleneck impacting numerous areas including cell therapy, tissue engineering, and tissue banking. Studies have illustrated the impact and benefit of controlling cryopreservation-induced delayed-onset cell death (CIDOCD) through various “front end” strategies, such as specialized media, new cryoprotective agents, and molecular control during cryopreservation. While proving highly successful, a substantial level of cell death and loss of cell function remains associated with cryopreservation. Recently, we focused on developing technologies (RevitalICE™) designed to reduce the impact of CIDOCD through buffering the cell stress response during the post-thaw recovery phase in an effort to improve the recovery of previously cryopreserved samples. In this study, we investigated the impact of modulating apoptotic caspase activation, oxidative stress, unfolded protein response, and free radical damage in the initial 24 h post-thaw on overall cell survival. Human hematopoietic progenitor cells in vitro cryopreserved in both traditional extracellular-type and intracellular-type cryopreservation freeze media were utilized as a model cell system to assess impact on survival. Our findings demonstrated that through the modulation of several of these pathways, improvements in cell recovery were obtained, regardless of the freeze media and dimethyl sulfoxide concentration utilized. Specifically, through the use of oxidative stress inhibitors, an average increase of 20% in overall viability was observed. Furthermore, the results demonstrated that by using the post-thaw recovery reagent on samples cryopreserved in intracellular-type media (Unisol™), improvements in overall cell survival approaching 80% of non-frozen controls were attained. While improvements in overall survival were obtained, an assessment on the impact of specific cell subpopulations and functionality remains to be completed. While work remains, these results represent an important step forward in the development of improved cryopreservation processes for use in discovery science, and commercial and clinical settings.
Collapse
Affiliation(s)
- John M. Baust
- CPSI Biotech, 2 Court St., Owego, NY 13827, USA; (K.K.S.); (R.G.V.B.)
- Correspondence: ; Tel.: +1-(607)-687-8701
| | - Kristi K. Snyder
- CPSI Biotech, 2 Court St., Owego, NY 13827, USA; (K.K.S.); (R.G.V.B.)
| | - Robert G. Van Buskirk
- CPSI Biotech, 2 Court St., Owego, NY 13827, USA; (K.K.S.); (R.G.V.B.)
- Center for Translational Stem Cell and Tissue Engineering, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA;
- Department of Biological Sciences, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA
| | - John G. Baust
- Center for Translational Stem Cell and Tissue Engineering, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA;
- Department of Biological Sciences, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA
| |
Collapse
|
7
|
Marton HL, Styles KM, Kilbride P, Sagona AP, Gibson MI. Polymer-Mediated Cryopreservation of Bacteriophages. Biomacromolecules 2021; 22:5281-5289. [PMID: 34846863 PMCID: PMC8672357 DOI: 10.1021/acs.biomac.1c01187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/06/2021] [Indexed: 12/11/2022]
Abstract
Bacteriophages (phages, bacteria-specific viruses) have biotechnological and therapeutic potential. To apply phages as pure or heterogeneous mixtures, it is essential to have a robust mechanism for transport and storage, with different phages having very different stability profiles across storage conditions. For many biologics, cryopreservation is employed for long-term storage and cryoprotectants are essential to mitigate cold-induced damage. Here, we report that poly(ethylene glycol) can be used to protect phages from cold damage, functioning at just 10 mg·mL-1 (∼1 wt %) and outperforms glycerol in many cases, which is a currently used cryoprotectant. Protection is afforded at both -20 and -80 °C, the two most common temperatures for frozen storage in laboratory settings. Crucially, the concentration of the polymer required leads to frozen solutions at -20 °C, unlike 50% glycerol (which results in liquid solutions). Post-thaw recoveries close to 100% plaque-forming units were achieved even after 2 weeks of storage with this method and kill assays against their bacterial host confirmed the lytic function of the phages. Initial experiments with other hydrophilic polymers also showed cryoprotection, but at this stage, the exact mechanism of this protection cannot be concluded but does show that water-soluble polymers offer an alternative tool for phage storage. Ice recrystallization inhibiting polymers (poly(vinyl alcohol)) were found to provide no additional protection, in contrast to their ability to protect proteins and microorganisms which are damaged by recrystallization. PEG's low cost, solubility, well-established low toxicity/immunogenicity, and that it is fit for human consumption at the concentrations used make it ideal to help translate new approaches for phage therapy.
Collapse
Affiliation(s)
- Huba L. Marton
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Kathryn M. Styles
- School
of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K.
| | - Peter Kilbride
- Asymptote,
Cytiva, Chivers Way, Cambridge CB24 9BZ, U.K.
| | - Antonia P. Sagona
- School
of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K.
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Medical School, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
8
|
Investigating the Solubility and Activity of a Novel Class of Ice Recrystallization Inhibitors. Processes (Basel) 2021. [DOI: 10.3390/pr9101781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
O-aryl-β-d-glucosides and N-alkyl-d-gluconamides are two classes of effective ice recrystallization inhibitors (IRIs), however their solubilities limit their use in cryopreservation applications. Herein, we have synthesized and assessed phosphonate analogues of small-molecule IRIs as a method to improve their chemical and physical properties. Four sodium phosphonate compounds 4–7 were synthesized and exhibited high solubilities greater than 200 mM. Their IRI activity was evaluated using the splat cooling assay and only the sodium phosphonate derivatives of α-methyl-d-glucoside (5-Na) and N-octyl-d-gluconamide (7-Na) exhibited an IC50 value less than 30 mM. It was found that the addition of a polar sodium phosphonate group to the alkyl gluconamide (1) and aryl glucoside (2) structure decreased its IRI activity, indicating the importance of a delicate hydrophobic/hydrophilic balance within these compounds. The evaluation of various cation-phosphonate pairs was studied and revealed the IRI activity of ammonium and its ability to modulate the IRI activity of its paired anion. A preliminary cytotoxicity study was also performed in a HepG2 cell line and phosphonate analogues were found to have relatively low cytotoxicity. As such, we present phosphonate small-molecule carbohydrates as a biocompatible novel class of IRIs with high solubilities and moderate-to-high IRI activities.
Collapse
|
9
|
Ma Y, Gao L, Tian Y, Chen P, Yang J, Zhang L. Advanced biomaterials in cell preservation: Hypothermic preservation and cryopreservation. Acta Biomater 2021; 131:97-116. [PMID: 34242810 DOI: 10.1016/j.actbio.2021.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Cell-based medicine has made great advances in clinical diagnosis and therapy for various refractory diseases, inducing a growing demand for cell preservation as support technology. However, the bottleneck problems in cell preservation include low efficiency and poor biocompatibility of traditional protectants. In this review, cell preservation technologies are categorized according to storage conditions: hypothermic preservation at 1 °C~35 °C to maintain short-term cell viability that is useful in cell diagnosis and transport, while cryopreservation at -196 °C~-80 °C to maintain long-term cell viability that provides opportunities for therapeutic cell product storage. Firstly, the background and developmental history of the protectants used in the two preservation technologies are briefly introduced. Secondly, the progress in different cellular protection mechanisms for advanced biomaterials are discussed in two preservation technologies. In hypothermic preservation, the hypothermia-induced and extracellular matrix-loss injuries to cells are comprehensively summarized, as well as the recent biomaterials dependent on regulation of cellular ATP level, stabilization of cellular membrane, balance of antioxidant defense system, and supply of mimetic ECM to prolong cell longevity are provided. In cryopreservation, cellular injuries and advanced biomaterials that can protect cells from osmotic or ice injury, and alleviate oxidative stress to allow cell survival are concluded. Last, an insight into the perspectives and challenges of this technology is provided. We envision advanced biocompatible materials for highly efficient cell preservation as critical in future developments and trends to support cell-based medicine. STATEMENT OF SIGNIFICANCE: Cell preservation technologies present a critical role in cell-based applications, and more efficient biocompatible protectants are highly required. This review categorizes cell preservation technologies into hypothermic preservation and cryopreservation according to their storage conditions, and comprehensively reviews the recently advanced biomaterials related. The background, development, and cellular protective mechanisms of these two preservation technologies are respectively introduced and summarized. Moreover, the differences, connections, individual demands of these two technologies are also provided and discussed.
Collapse
Affiliation(s)
- Yiming Ma
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Lei Gao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Yunqing Tian
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Pengguang Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China.
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
10
|
Cryopreservation of NK and T Cells Without DMSO for Adoptive Cell-Based Immunotherapy. BioDrugs 2021; 35:529-545. [PMID: 34427899 DOI: 10.1007/s40259-021-00494-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
Dimethylsufoxide (DMSO) being universally used as a cryoprotectant in clinical adoptive cell-therapy settings to treat hematological malignancies and solid tumors is a growing concern, largely due to its broad toxicities. Its use has been associated with significant clinical side effects-cardiovascular, neurological, gastrointestinal, and allergic-in patients receiving infusions of cell-therapy products. DMSO has also been associated with altered expression of natural killer (NK) and T-cell markers and their in vivo function, not to mention difficulties in scaling up DMSO-based cryoprotectants, which introduce manufacturing challenges for autologous and allogeneic cellular therapies, including chimeric antigen receptor (CAR)-T and CAR-NK cell therapies. Interest in developing alternatives to DMSO has resulted in the evaluation of a variety of sugars, proteins, polymers, amino acids, and other small molecules and osmolytes as well as modalities to efficiently enable cellular uptake of these cryoprotectants. However, the DMSO-free cryopreservation of NK and T cells remains difficult. They represent heterogeneous cell populations that are sensitive to freezing and thawing. As a result, clinical use of cryopreserved cell-therapy products has not moved past the use of DMSO. Here, we present the state of the art in the development and use of cryopreservation options that do not contain DMSO toward clinical solutions to enable the global deployment of safer adoptively transferred cell-based therapies.
Collapse
|
11
|
Chang T, Zhao G. Ice Inhibition for Cryopreservation: Materials, Strategies, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002425. [PMID: 33747720 PMCID: PMC7967093 DOI: 10.1002/advs.202002425] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/15/2020] [Indexed: 05/14/2023]
Abstract
Cryopreservation technology has developed into a fundamental and important supporting method for biomedical applications such as cell-based therapeutics, tissue engineering, assisted reproduction, and vaccine storage. The formation, growth, and recrystallization of ice crystals are the major limitations in cell/tissue/organ cryopreservation, and cause fatal cryoinjury to cryopreserved biological samples. Flourishing anti-icing materials and strategies can effectively regulate and suppress ice crystals, thus reducing ice damage and promoting cryopreservation efficiency. This review first describes the basic ice cryodamage mechanisms in the cryopreservation process. The recent development of chemical ice-inhibition molecules, including cryoprotectant, antifreeze protein, synthetic polymer, nanomaterial, and hydrogel, and their applications in cryopreservation are summarized. The advanced engineering strategies, including trehalose delivery, cell encapsulation, and bioinspired structure design for ice inhibition, are further discussed. Furthermore, external physical field technologies used for inhibiting ice crystals in both the cooling and thawing processes are systematically reviewed. Finally, the current challenges and future perspectives in the field of ice inhibition for high-efficiency cryopreservation are proposed.
Collapse
Affiliation(s)
- Tie Chang
- Department of Electronic Science and TechnologyUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Gang Zhao
- Department of Electronic Science and TechnologyUniversity of Science and Technology of ChinaHefeiAnhui230027China
| |
Collapse
|
12
|
Jahan S, Kaushal R, Pasha R, Pineault N. Current and Future Perspectives for the Cryopreservation of Cord Blood Stem Cells. Transfus Med Rev 2021; 35:95-102. [PMID: 33640254 DOI: 10.1016/j.tmrv.2021.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/29/2022]
Abstract
Hematopoietic stem cell (HSC) transplantation is a well-established procedure for the treatment of many blood related malignancies and disorders. Before transplantation, HSC are collected and cryopreserved until use. The method of cryopreservation should preserve both the number and function of HSC and downstream progenitors responsible for long- and short-term engraftment, respectively. This is especially critical for cord blood grafts, since the cell number associated with this stem cell source is often limiting. Loss of function in cryopreserved cells occurs following cryoinjuries due to osmotic shock, dehydration, solution effects and mechanical damage from ice recrystallization during freezing and thawing. However, cryoinjuries can be reduced by 2 mitigation strategies; the use of cryoprotectants (CPAs) and use of control rate cooling. Currently, slow cooling is the most common method used for the cryopreservation of HSC graft. Moreover, dimethyl-sulfoxide (DMSO) and dextran are popular intracellular and extracellular CPAs used for HSC grafts, respectively. Yet, DMSO is toxic to cells and can cause significant side effects in stem cells' recipients. However, new CPAs and strategies are emerging that may soon replace DMSO. The aim of this review is to summarise key concepts in cryobiology and recent advances in the field of HSC cryobiology. Other important issues that need to be considered are also discussed such as transient warming events and thawing of HSC grafts.
Collapse
Affiliation(s)
- Suria Jahan
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada; Biochemistry, Microbiology and Immunology department, University of Ottawa, Ottawa, Ontario, Canada
| | - Richa Kaushal
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada; Biochemistry, Microbiology and Immunology department, University of Ottawa, Ottawa, Ontario, Canada
| | - Roya Pasha
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada
| | - Nicolas Pineault
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada; Biochemistry, Microbiology and Immunology department, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
13
|
Zheng X, Liu J, Liu Z, Wang J. Bio-inspired Ice-controlling Materials for Cryopreservation of Cells and Tissues. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Ampaw AA, Sibthorpe A, Ben RN. Use of Ice Recrystallization Inhibition Assays to Screen for Compounds That Inhibit Ice Recrystallization. Methods Mol Biol 2021; 2180:271-283. [PMID: 32797415 DOI: 10.1007/978-1-0716-0783-1_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ice recrystallization inhibition assays are used to screen for compounds that possess the ability to inhibit ice recrystallization. The most common of these assays are the splat cooling assay (SCA) and sucrose sandwich assay (SSA). These two assays possess similarities; however, they vary in their sample size, cooling rate, and the solution used to dissolve the analyte. In this chapter, both assay methods are described in detail, and we perform a direct comparison of the assays by evaluating the IRI activity of an antifreeze protein (AFP I). IRI activity is quantified by using ImageJ software to analyze ice crystals, and a quantitative value describing the efficiency of the inhibitor is generated. This analysis emphasizes the importance of choosing the right assay to measure IRI activity.
Collapse
Affiliation(s)
- Anna A Ampaw
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - August Sibthorpe
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Robert N Ben
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
15
|
Electrosterically stabilized cellulose nanocrystals demonstrate ice recrystallization inhibition and cryoprotection activities. Int J Biol Macromol 2020; 165:2378-2386. [PMID: 33132127 DOI: 10.1016/j.ijbiomac.2020.10.143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/01/2020] [Accepted: 10/17/2020] [Indexed: 11/23/2022]
Abstract
Ice recrystallization inhibitors have emerged as novel cryoprotectants to improve cell viability for cryopreservation. Nanocelluloses were identified as new materials for ice recrystallization inhibition (IRI); however, conventional nanocelluloses aggregate and lose IRI activity at high ionic strengths, which limit their application as cryoprotectants. In this study, we synthesized a novel group of nanocelluloses - electrosterically stabilized cellulose nanocrystals (ECNCs), which remained dispersed and IRI-active at high ionic strengths. ECNCs improved the post-thaw viability of HCT-116 colorectal cancer cells in slow/fast freezing-slow thawing protocols in the presence of 1-20% v/v dimethyl sulfoxide (DMSO), as well as in slow/fast freezing-fast thawing protocols at reduced DMSO concentrations. The effectiveness in cryoprotection did not match the IRI activity in ECNCs, polyethylene glycol (PEG), and polyvinyl alcohol (PVA); and in ECNCs with different surface charge densities. Overall, ECNCs demonstrated IRI and cryoprotection activities, but the mechanism of cryoprotection remains unknown.
Collapse
|
16
|
Lautner L, Himmat S, Acker JP, Nagendran J. The efficacy of ice recrystallization inhibitors in rat lung cryopreservation using a low cost technique for ex vivo subnormothermic lung perfusion. Cryobiology 2020; 97:93-100. [PMID: 33031822 DOI: 10.1016/j.cryobiol.2020.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023]
Abstract
Although lung transplant remains the only option for patients with end-stage lung failure, short preservation times result in an inability to meet patient demand. Successful cryopreservation may ameliorate this problem; however, very little research has been performed on lung cryopreservation due to the inability to prevent ice nucleation or growth. Therefore, this research sought to characterize the efficacy of a small-molecule ice recrystallization inhibitor (IRI) for lung cryopreservation given its well-documented ability to control ice growth. Sprague-Dawley heart-lung blocks were perfused at room temperature using a syringe-pump. Cytotoxicity of the IRI was assessed through the subsequent perfusion with 0.4% (w/v) trypan blue followed by formalin-fixation. Ice control was assessed by freezing at a chamber rate of -5 °C/min to -20 °C and cryofixation using a low-temperature fixative. Post-thaw cell survival was determined by freezing at a chamber rate of -5 °C/min to -20 °C and thawing in a 37 °C water bath before formalin-fixation. In all cases, samples were paraffin-embedded, sliced, and stained with eosin. The IRI studied was found to be non-toxic, as cell membrane integrity following perfusion was not significantly different than controls (p = 0.9292). Alveolar ice grain size was significantly reduced by the addition of this IRI (p = 0.0096), and the addition of the IRI to DMSO significantly improved post-thaw cell membrane integrity when compared to controls treated with DMSO alone (p = 0.0034). The techniques described here provide a low-cost solution for rat ex vivo lung perfusion which demonstrated that the ice control and improved post-thaw cell survival afforded by IRI-use warrants further study.
Collapse
Affiliation(s)
- Larissa Lautner
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Sayed Himmat
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Jason P Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2R3, Canada; Centre for Innovation, Canadian Blood Services, 8249 114th Street, Edmonton, AB, T6G 2R8, Canada.
| | - Jayan Nagendran
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| |
Collapse
|
17
|
William N, Acker JP. Cryoprotectant-dependent control of intracellular ice recrystallization in hepatocytes using small molecule carbohydrate derivatives. Cryobiology 2020; 97:123-130. [PMID: 33007287 DOI: 10.1016/j.cryobiol.2020.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022]
Abstract
To promote the recovery of cells that undergo intracellular ice formation (IIF), it is imperative that the recrystallization of intracellular ice is minimized. Hepatocytes are more prone to IIF than most mammalian cells, and thus we assessed the ability of novel small molecule carbohydrate-based ice recrystallization inhibitors (IRIs) to permeate and function within hepatocytes. HepG2 monolayers were treated with N-(4-chlorophenyl)-d-gluconamide (IRI 1), N-(2-fluorophenyl)-d-gluconamide (IRI 2), or para-methoxyphenyl-β-D-glycoside (IRI 3) and fluorescent cryomicroscopy was used for real time visualization of intracellular ice recrystallization. Both IRI 2 and IRI 3 reduced rates of intracellular recrystallization, whereas IRI 1 did not. IRI 2 and IRI 3, however, demonstrated a marked reduction in efficiency in the presence of the most frequently used permeating cryoprotectants (CPAs): glycerol, propylene glycol (PG), dimethyl sulfoxide (DMSO), and ethylene glycol (EG). Nevertheless, IRI 3 reduced rates of intracellular recrystallization relative to CPA-only controls in the presence of glycerol, PG, and DMSO. Interestingly, IRI preparation in trehalose, a commonly used non-permeating CPA, did not impact the activity of IRI 3. However, trehalose did increase the activity of IRI 1 while decreasing that of IRI 2. While this study suggests that each of these compounds could prove relevant in hepatocyte cryopreservation protocols where IIF would be prominent, CPA-mediated modulation of intracellular IRI activity is apparent and warrants further investigation.
Collapse
Affiliation(s)
- Nishaka William
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| | - Jason P Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2R3, Canada; Centre for Innovation, Canadian Blood Services, 8249 114th Street, Edmonton, AB, T6G 2R8, Canada.
| |
Collapse
|
18
|
Waters L, Ben R, Acker JP, Padula MP, Marks DC, Johnson L. Characterizing the ability of an ice recrystallization inhibitor to improve platelet cryopreservation. Cryobiology 2020; 96:152-158. [PMID: 32707122 DOI: 10.1016/j.cryobiol.2020.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/30/2022]
Abstract
Improving aspects of platelet cryopreservation would help ease logistical challenges and potentially expand the utility of frozen platelets. Current cryopreservation procedures damage platelets, which may be caused by ice recrystallization. We hypothesized that the addition of a small molecule ice recrystallization inhibitor (IRI) to platelets prior to freezing may reduce cryopreservation-induced damage and/or improve the logistics of freezing and storage. Platelets were frozen using standard conditions of 5-6% dimethyl sulfoxide (Me2SO) or with supplementation of an IRI, N-(2-fluorophenyl)-d-gluconamide (2FA), prior to storage at -80 °C. Alternatively, platelets were frozen with 5-6% Me2SO at -30 °C or with 3% Me2SO at -80 °C with or without 2FA supplementation. Supplementation of platelets with 2FA improved platelet recovery following storage under standard conditions (p = 0.0017) and with 3% Me2SO (p = 0.0461) but not at -30 °C (p = 0.0835). 2FA supplementation was protective for GPVI expression under standard conditions (p = 0.0011) and with 3% Me2SO (p = 0.0042). Markers of platelet activation, such as phosphatidylserine externalization and microparticle release, were increased following storage at -30 °C or with 3% Me2SO, and 2FA showed no protective effect. Platelet function remained similar regardless of 2FA, although functionality was reduced following storage at -30 °C or with 3% Me2SO compared to standard cryopreserved platelets. While the addition of 2FA to platelets provided a small level of protection for some quality parameters, it was unable to prevent alterations to the majority of in vitro parameters. Therefore, it is unlikely that ice recrystallization is the major cause of cryopreservation-induced damage.
Collapse
Affiliation(s)
- Lauren Waters
- Research and Development, Australian Red Cross Lifeblood (formerly the Australian Red Cross Blood Service), Alexandria, NSW, Australia; School of Life Sciences and Proteomics Core Facility, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Robert Ben
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada; PanTHERA CryoSolutions Inc., Edmonton, Alberta, Canada
| | - Jason P Acker
- PanTHERA CryoSolutions Inc., Edmonton, Alberta, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Matthew P Padula
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Denese C Marks
- Research and Development, Australian Red Cross Lifeblood (formerly the Australian Red Cross Blood Service), Alexandria, NSW, Australia; Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Lacey Johnson
- Research and Development, Australian Red Cross Lifeblood (formerly the Australian Red Cross Blood Service), Alexandria, NSW, Australia.
| |
Collapse
|
19
|
Fayter A, Huband S, Gibson MI. X-ray diffraction to probe the kinetics of ice recrystallization inhibition. Analyst 2020; 145:3666-3677. [PMID: 32266881 DOI: 10.1039/c9an02141h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding the nucleation and growth of ice is crucial in fields ranging from infrastructure maintenance, to the environment, and to preserving biologics in the cold chain. Ice binding and antifreeze proteins are potent ice recrystallization inhibitors (IRI), and synthetic materials that mimic this function have emerged, which may find use in biotechnology. To evaluate IRI activity, optical microscopy tools are typically used to monitor ice grain size either by end-point measurements or as a function of time. However, these methods provide 2-dimensional information and image analysis is required to extract the data. Here we explore using wide angle X-ray scattering (WAXS/X-ray powder diffraction (XRD)) to interrogate 100's of ice crystals in 3-dimensions as a function of time. Due to the random organization of the ice crystals in the frozen sample, the number of orientations measured by XRD is proportional to the number of ice crystals, which can be measured as a function of time. This method was used to evaluate the activity for a panel of known IRI active compounds, and shows strong agreement with results obtained from cryo-microscopy, as well as being advantageous in that time-dependent ice growth is easily extracted. Diffraction analysis also confirmed, by comparing the obtained diffraction patterns of both ice binding and non-binding additives, that the observed hexagonal ice diffraction patterns obtained cannot be used to determine which crystal faces are being bound. This method may help in the discovery of new IRI active materials as well as enabling kinetic analysis of ice growth.
Collapse
Affiliation(s)
- Alice Fayter
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, UK.
| | - Steven Huband
- Department of Physics, University of Warwick, Gibbet Hill Road, CV4 7AL, UK
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, UK. and Warwick Medical School, University of Warwick, Gibbet Hill Road, CV4 7AL, UK
| |
Collapse
|
20
|
Weng L, Beauchesne PR. Dimethyl sulfoxide-free cryopreservation for cell therapy: A review. Cryobiology 2020; 94:9-17. [PMID: 32247742 DOI: 10.1016/j.cryobiol.2020.03.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/20/2022]
Abstract
Cell-based therapeutics promise to transform the treatment of a wide range of diseases including cancer, genetic and degenerative disorders, or severe injuries. Many of the commercial and clinical development of cell therapy products require cryopreservation and storage of cellular starting materials, intermediates and/or final products at cryogenic temperature. Dimethyl sulfoxide (Me2SO) has been the cryoprotectant of choice in most biobanking situations due to its exceptional performance in mitigating freezing-related damages. However, there is concern over the toxicity of Me2SO and its potential side effects after administration to patients. Therefore, there has been growing demand for robust Me2SO-free cryopreservation methods that can improve product safety and maintain potency and efficacy. This article provides an overview of the recent advances in Me2SO-free cryopreservation of cells having therapeutic potentials and discusses a number of key challenges and opportunities to motivate the continued innovation of cryopreservation for cell therapy.
Collapse
Affiliation(s)
- Lindong Weng
- Sana Biotechnology, Inc., Cambridge, MA, 02139, United States.
| | | |
Collapse
|
21
|
Jahan S, Adam MK, Manesia JK, Doxtator E, Ben RN, Pineault N. Inhibition of ice recrystallization during cryopreservation of cord blood grafts improves platelet engraftment. Transfusion 2020; 60:769-778. [PMID: 32187691 DOI: 10.1111/trf.15759] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/24/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Platelet engraftment following cord blood (CB) transplantation remains a significant hurdle to this day. The uncontrolled growth of ice, a process referred to as ice recrystallization, is one of several mechanisms that lead to cell loss and decreased potency during freezing and thawing. We hypothesized that reducing cell damage induced by ice recrystallization in CB units (CBUs) would reduce losses of stem and progenitor cells and therefore improve engraftment. We previously demonstrated that the ice recrystallization inhibitor (IRI) N-(2-fluorophenyl)-D-gluconamide (IRI 2) increases the postthaw recovery of CB progenitors. Herein, we set out to ascertain whether IRI 2 can enhance platelet and bone marrow engraftment activity of hematopoietic stem cells (HSCs) in cryopreserved CBUs using a serial transplantation model. STUDY DESIGN AND METHODS CBUs were processed following standard volume/red blood cell reduction procedure and portions frozen with dimethyl sulfoxide (DMSO) supplemented or not with IRI 2. Thawed CB samples were serially transplanted into immunodeficient mice. RESULTS Our results show that supplementation of DMSO with IRI 2 had several beneficial effects. Specifically, higher levels of human platelets were observed in the peripheral blood (p < 0.05; n = 4) upon transplant of CBUs preserved with the IRIs. In addition, human BM chimerism and the number of human CFU progenitors in the bone marrow were superior in IRI 2 recipients compared to DMSO recipients. Moreover, IRI 2 had no negative impact on the multilineage differentiation and self-renewal activities of HSCs. DISCUSSION Taken together, these results demonstrate that supplementation of a hematopoietic graft with IRI can improve the postthaw engraftment activities of HSCs.
Collapse
Affiliation(s)
- Suria Jahan
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Madeleine K Adam
- Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Javed K Manesia
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada
| | - Emily Doxtator
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada
| | - Robert N Ben
- Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Nicolas Pineault
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
22
|
Stubbs C, Bailey TL, Murray K, Gibson MI. Polyampholytes as Emerging Macromolecular Cryoprotectants. Biomacromolecules 2020; 21:7-17. [PMID: 31418266 PMCID: PMC6960013 DOI: 10.1021/acs.biomac.9b01053] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/15/2019] [Indexed: 11/29/2022]
Abstract
Cellular cryopreservation is a platform technology which underpins cell biology, biochemistry, biomaterials, diagnostics, and the cold chain for emerging cell-based therapies. This technique relies on effective methods for banking and shipping to avoid the need for continuous cell culture. The most common method to achieve cryopreservation is to use large volumes of organic solvent cryoprotective agents which can promote either a vitreous (ice free) phase or dehydrate and protect the cells. These methods are very successful but are not perfect: not all cell types can be cryopreserved and recovered, and the cells do not always retain their phenotype and function post-thaw. This Perspective will introduce polyampholytes as emerging macromolecular cryoprotective agents and demonstrate they have the potential to impact a range of fields from cell-based therapies to basic cell biology and may be able to improve, or replace, current solvent-based cryoprotective agents. Polyampholytes have been shown to be remarkable (mammalian cell) cryopreservation enhancers, but their mechanism of action is unclear, which may include membrane protection, solvent replacement, or a yet unknown protective mechanism, but it seems the modulation of ice growth (recrystallization) may only play a minor role in their function, unlike other macromolecular cryoprotectants. This Perspective will discuss their synthesis and summarize the state-of-the-art, including hypotheses of how they function, to introduce this exciting area of biomacromolecular science.
Collapse
Affiliation(s)
- Christopher Stubbs
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Trisha L. Bailey
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Kathryn Murray
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- Warwick
Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
23
|
Poisson JS, Acker JP, Briard JG, Meyer JE, Ben RN. Modulating Intracellular Ice Growth with Cell-Permeating Small-Molecule Ice Recrystallization Inhibitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7452-7458. [PMID: 30119611 DOI: 10.1021/acs.langmuir.8b02126] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ice formation remains central to our understanding of the effects of low temperatures on the biological response of cells and tissues. The formation of ice inside of cells and the net increase in crystal size due to recrystallization during thawing is associated with a loss of cell viability during cryopreservation. Because small-molecule ice recrystallization inhibitors (IRIs) can control the growth of extracellular ice, we sought to investigate the ability of two aryl-glycoside-based IRIs to permeate into cells and control intracellular ice recrystallization. An interrupted graded freezing technique was used to evaluate the IRI permeation into human red blood cells (RBCs) and mitigate cell damage during freezing and thawing. The effect of IRIs on the intracellular growth of ice crystals in human umbilical vein endothelial cells (HUVECs) was visualized in real time under different thawing conditions using fluorescence cryomicroscopy. Adding an aryl glycoside to 15% glycerol significantly increased post-thaw RBC integrity by up to 55% during slow cooling compared with the 15%-glycerol-only control group. The characteristics of the cryobiological behavior of the RBCs subjected to the interrupted graded freezing suggest that the aryl-glycoside-based IRI is internalized into the RBCs. HUVECs treated with the IRIs were shown to retain a large number of small ice crystals during warming to high subzero temperatures and demonstrated a significant inhibition of intracellular ice recrystallization. Under slow thawing conditions, the aryl glycoside IRI p-bromophenyl-β-d-glucoside was shown to be most effective at inhibiting intracellular ice recrystallization. We demonstrate that IRIs are capable of internalizing into cells, altering the cryobiological response of cells to slow and rapid freezing and controlling intracellular ice recrystallization during freezing. We conclude that IRIs have tremendous potential as cryoprotectants for the preservation of cells and tissues at high subzero temperatures.
Collapse
Affiliation(s)
- Jessica S Poisson
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | - Jason P Acker
- Canadian Blood Services , Centre for Innovation , Edmonton , Alberta T6G 2R8 , Canada
- Department of Laboratory Medicine and Pathology , University of Alberta , Edmonton , Alberta T6G 2R3 , Canada
| | - Jennie G Briard
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | - Julia E Meyer
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | - Robert N Ben
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| |
Collapse
|
24
|
Taylor MJ, Weegman BP, Baicu SC, Giwa SE. New Approaches to Cryopreservation of Cells, Tissues, and Organs. Transfus Med Hemother 2019; 46:197-215. [PMID: 31244588 PMCID: PMC6558330 DOI: 10.1159/000499453] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/11/2022] Open
Abstract
In this concept article, we outline a variety of new approaches that have been conceived to address some of the remaining challenges for developing improved methods of biopreservation. This recognizes a true renaissance and variety of complimentary, high-potential approaches leveraging inspiration by nature, nanotechnology, the thermodynamics of pressure, and several other key fields. Development of an organ and tissue supply chain that can meet the healthcare demands of the 21st century means overcoming twin challenges of (1) having enough of these lifesaving resources and (2) having the means to store and transport them for a variety of applications. Each has distinct but overlapping logistical limitations affecting transplantation, regenerative medicine, and drug discovery, with challenges shared among major areas of biomedicine including tissue engineering, trauma care, transfusion medicine, and biomedical research. There are several approaches to biopreservation, the optimum choice of which is dictated by the nature and complexity of the tissue and the required length of storage. Short-term hypothermic storage at temperatures a few degrees above the freezing point has provided the basis for nearly all methods of preserving tissues and solid organs that, to date, have proved refractory to cryopreservation techniques successfully developed for single-cell systems. In essence, these short-term techniques have been based on designing solutions for cellular protection against the effects of warm and cold ischemia and basically rely upon the protective effects of reduced temperatures brought about by Arrhenius kinetics of chemical reactions. However, further optimization of such preservation strategies is now seen to be restricted. Long-term preservation calls for much lower temperatures and requires the tissue to withstand the rigors of heat and mass transfer during protocols designed to optimize cooling and warming in the presence of cryoprotective agents. It is now accepted that with current methods of cryopreservation, uncontrolled ice formation in structured tissues and organs at subzero temperatures is the single most critical factor that severely restricts the extent to which tissues can survive procedures involving freezing and thawing. In recent years, this major problem has been effectively circumvented in some tissues by using ice-free cryopreservation techniques based upon vitrification. Nevertheless, despite these promising advances there remain several recognized hurdles to be overcome before deep-subzero cryopreservation, either by classic freezing and thawing or by vitrification, can provide the much-needed means for biobanking complex tissues and organs for extended periods of weeks, months, or even years. In many cases, the approaches outlined here, including new underexplored paradigms of high-subzero preservation, are novel and inspired by mechanisms of freeze tolerance, or freeze avoidance, in nature. Others apply new bioengineering techniques such as nanotechnology, isochoric pressure preservation, and non-Newtonian fluids to circumvent currently intractable problems in cryopreservation.
Collapse
Affiliation(s)
- Michael J. Taylor
- Sylvatica Biotech, Inc., North Charleston, South Carolina, USA
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | | | - Simona C. Baicu
- Sylvatica Biotech, Inc., North Charleston, South Carolina, USA
| | | |
Collapse
|
25
|
Zhao J, Johnson MA, Fisher R, Burke NAD, Stöver HDH. Synthetic Polyampholytes as Macromolecular Cryoprotective Agents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1807-1817. [PMID: 30134094 DOI: 10.1021/acs.langmuir.8b01602] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A series of polyampholytes based on different molar ratios on N, N-dimethylaminopropyl methacrylamide (DMAPMA), acrylic acid (AA), and optionally, N- tert-butylacrylamide ( t-BuAAm), were prepared by free radical copolymerization, and tested as DMSO-free cryoprotective agents for 3T3 fibroblast cells by using a standard freeze-rethaw protocol. Polybetaines prepared by reaction of DMAPMA homo and copolymers with 1,3-propane sultone were used as additional controls. Results showed strong effects of copolymer composition, molecular weight, polymer and NaCl concentrations, on post-thaw cell viability. Binary (DMAPMA/AA) copolymers showed best post-thaw cell viability of 70% at a 30/70 mol % ratio of DMAPMA/AA, which increased to 90% upon introduction of 9 mol % t-BuAAm while maintaining the 30/70 mol % cation/anion ratio. The use of acrylamide linkages in DMAPMA ensures absence of hydrolytic loss of cationic side chains. These polyampholytes were found to decrease ice crystal size and to form a polymer-rich, ice-free layer around cells, reducing damage from intercellular ice crystals during both freezing and thawing steps. These polyampholytes also dehydrate cells during freezing, which helps protect cells from intracellular ice damage. While cell viability immediately after thawing was high, subsequent culturing revealed poor attachment and long-term viability, which is attributed to residual cell damage from intracellular ice formation. Addition of 2 wt % DMSO or 1% BSA to the polymer-based freeze medium was found to mitigate this damage and result in post-thaw viabilities matching those achieved with 10 wt % DMSO.
Collapse
Affiliation(s)
- J Zhao
- Department of Chemistry and Chemical Biology , McMaster University , Hamilton , Ontario L8S 4M1 , Canada
| | - M A Johnson
- Department of Chemistry and Chemical Biology , McMaster University , Hamilton , Ontario L8S 4M1 , Canada
| | - R Fisher
- Department of Chemistry and Chemical Biology , McMaster University , Hamilton , Ontario L8S 4M1 , Canada
| | - N A D Burke
- Department of Chemistry and Chemical Biology , McMaster University , Hamilton , Ontario L8S 4M1 , Canada
| | - H D H Stöver
- Department of Chemistry and Chemical Biology , McMaster University , Hamilton , Ontario L8S 4M1 , Canada
| |
Collapse
|
26
|
Designing the next generation of cryoprotectants - From proteins to small molecules. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24086] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
27
|
Sumii Y, Hibino H, Saidalimu I, Kawahara H, Shibata N. Design and synthesis of galactose-conjugated fluorinated and non-fluorinated proline oligomers: towards antifreeze molecules. Chem Commun (Camb) 2018; 54:9749-9752. [PMID: 30102305 DOI: 10.1039/c8cc05588b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Galactose-conjugated fluorinated and non-fluorinated proline oligomers that exhibit an α-helical structure with hydrophilic and lipophilic parts were designed as potential antifreeze molecules. These galactose-proline oligomers were synthesized and their physical properties were evaluated. Interestingly, the non-fluorinated galactose-proline oligomers showed in contrast to the fluorinated analogues weak antifreeze activity. The difference in antifreeze activity should be attributed to the fluorine gauche effect, which should induce a conformation in fluorinated prolines that is different from that of natural proline. The results obtained in this study thus suggest that the 3D conformation of the galactose-conjugated fluorinated and non-fluorinated proline oligomers is very important for their anti-freezing properties.
Collapse
Affiliation(s)
- Yuji Sumii
- Department of Life Science and Applied Chemistry, Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-5888, Japan.
| | | | | | | | | |
Collapse
|
28
|
Huang H, Zhao G, Zhang Y, Xu J, Toth TL, He X. Predehydration and Ice Seeding in the Presence of Trehalose Enable Cell Cryopreservation. ACS Biomater Sci Eng 2017; 3:1758-1768. [PMID: 28824959 PMCID: PMC5558192 DOI: 10.1021/acsbiomaterials.7b00201] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/11/2017] [Indexed: 12/15/2022]
Abstract
Conventional approaches for cell cryopreservation require the use of toxic membrane-penetrating cryoprotective agents (pCPA), which limits the clinical application of cryopreserved cells. Here, we show intentionally induced ice formation at a high subzero temperature (> -10 °C) during cryopreservation, which is often referred to as ice seeding, could result in significant cell injury in the absence of any pCPA. This issue can be mitigated by predehydrating cells using extracellular trehalose to their minimal volume with minimized osmotically active water before ice seeding. We further observe that ice seeding can minimize the interfacial free energy that drives the devastating ice recrystallization-induced cell injury during warming cryopreserved samples. Indeed, by combining predehydration using extracellular trehalose with ice seeding at high subzero temperatures, high cell viability or recovery is achieved for fibroblasts, adult stem cells, and red blood cells after cryopreservation without using any pCPA. The pCPA-free technology developed in this study may greatly facilitate the long-term storage and ready availability of living cells, tissues, and organs that are of high demand by modern cell-based medicine.
Collapse
Affiliation(s)
- Haishui Huang
- Department
of Biomedical Engineering, The Ohio State
University, 1080 Carmack Road, Columbus, Ohio 43210, United
States
- Department
of Mechanical Engineering, The Ohio State
University, 201 W 19th
Avenue, Columbus, Ohio 43210, United States
| | - Gang Zhao
- Centre
for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230027, China
| | - Yuntian Zhang
- Department
of Biomedical Engineering, The Ohio State
University, 1080 Carmack Road, Columbus, Ohio 43210, United
States
- Centre
for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230027, China
| | - Jiangsheng Xu
- Department
of Biomedical Engineering, The Ohio State
University, 1080 Carmack Road, Columbus, Ohio 43210, United
States
- Davis
Heart and Lung Research Institute, The Ohio
State University, 473
W 12th Avenue, Columbus, Ohio 43210, United
States
- Comprehensive
Cancer Center, The Ohio State University, 460 W 12th Avenue, Columbus, Ohio 43210, United States
| | - Thomas L. Toth
- Vincent Department
of Obstetrics and Gynecology, Vincent Reproductive Medicine and IVF, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, United States
- Department
of Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Xiaoming He
- Department
of Biomedical Engineering, The Ohio State
University, 1080 Carmack Road, Columbus, Ohio 43210, United
States
- Davis
Heart and Lung Research Institute, The Ohio
State University, 473
W 12th Avenue, Columbus, Ohio 43210, United
States
- Comprehensive
Cancer Center, The Ohio State University, 460 W 12th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
29
|
Hodgkinson KM, Kiernan J, Shih AW, Solh Z, Sheffield WP, Pineault N. Intersecting Worlds of Transfusion and Transplantation Medicine: An International Symposium Organized by the Canadian Blood Services Centre for Innovation. Transfus Med Rev 2017; 31:183-192. [DOI: 10.1016/j.tmrv.2017.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 01/28/2023]
|
30
|
Pasha R, Elmoazzen H, Pineault N. Development and testing of a stepwise thaw and dilute protocol for cryopreserved umbilical cord blood units. Transfusion 2017; 57:1744-1754. [DOI: 10.1111/trf.14136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Roya Pasha
- Canadian Blood Services, Centre for Innovation
| | - Heidi Elmoazzen
- Cord Blood Bank and Stem Cell Manufacturing; Canadian Blood Services
| | - Nicolas Pineault
- Canadian Blood Services, Centre for Innovation
- Department of Biochemistry, Microbiology and Immunology Department; University of Ottawa; Ottawa Ontario Canada
| |
Collapse
|