1
|
Pazzi J, Subramaniam AB. Dynamics of giant vesicle assembly from thin lipid films. J Colloid Interface Sci 2024; 661:1033-1045. [PMID: 38335788 DOI: 10.1016/j.jcis.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
MOTIVATION Giant unilamellar vesicles (GUVs), cell-like synthetic micrometer size structures, assemble when thin lipid films are hydrated in aqueous solutions. Quantitative measurements of static yields and distribution of sizes of GUVs obtained from thin film hydration methods were recently reported. Dynamic data such as the time evolution of yields and distribution of sizes, however, is not known. Dynamic data can provide insights into the assembly pathway of GUVs and guidelines for choosing conditions to obtain populations with desired size distributions. APPROACH We develop the 'stopped-time' technique to characterize the time evolution of the distribution of sizes and molar yields of populations of free-floating GUVs. We additionally capture high resolution time-lapse images of surface-attached GUV buds on the lipid films. We systematically study the dynamics of assembly of GUVs from three widely used thin film hydration methods, PAPYRUS (Paper-Abetted amPhiphile hYdRation in aqUeous Solutions), gentle hydration, and electroformation. FINDINGS We find that the molar yield versus time curves of GUVs demonstrate a characteristic sigmoidal shape, with an initial yield, a transient, and then a steady state plateau for all three methods. The population of GUVs showed a right-skewed distribution of diameters. The variance of the distributions increased with time. The systems reached steady state within 120 min. We rationalize the dynamics using the thermodynamically motivated budding and merging (BNM) model. These results further the understanding of lipid dynamics and provide for the first-time practical parameters to tailor the production of GUVs of specific sizes for applications.
Collapse
Affiliation(s)
- Joseph Pazzi
- Department of Bioengineering, University of California, Merced, CA 95343, United States
| | - Anand Bala Subramaniam
- Department of Bioengineering, University of California, Merced, CA 95343, United States.
| |
Collapse
|
2
|
Xu X, Tang Q, Gao Y, Chen S, Yu Y, Qian H, McClements DJ, Cao C, Yuan B. Recent developments in the fabrication of food microparticles and nanoparticles using microfluidic systems. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 38520155 DOI: 10.1080/10408398.2024.2329967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Microfluidics is revolutionizing the production of microparticles and nanoparticles, offering precise control over dimensions and internal structure. This technology facilitates the creation of colloidal delivery systems capable of encapsulating and releasing nutraceuticals. Nutraceuticals, often derived from food-grade ingredients, can be used for developing functional foods. This review focuses on the principles and applications of microfluidic systems in crafting colloidal delivery systems for nutraceuticals. It explores the foundational principles behind the development of microfluidic devices for nutraceutical encapsulation and delivery. Additionally, it examines the prospects and challenges with using microfluidics for functional food development. Microfluidic systems can be employed to form emulsions, liposomes, microgels and microspheres, by manipulating minute volumes of fluids flowing within microchannels. This versatility can enhance the dispersibility, stability, and bioavailability of nutraceuticals. However, challenges as scaling up production, fabrication complexity, and microchannel clogging hinder the widespread application of microfluidic technologies. In conclusion, this review highlights the potential role of microfluidics in design and fabrication of nutraceutical delivery systems. At present, this technology is most suitable for exploring the role of specific delivery system features (such as particle size, composition and morphology) on the stability and bioavailability of nutraceuticals, rather than for large-scale production of nutraceutical delivery systems.
Collapse
Affiliation(s)
- Xiao Xu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, China
| | - Qi Tang
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yating Gao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Shaoqin Chen
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, China
| | - Yingying Yu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, China
| | - Hongliang Qian
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, China
| | | | - Chongjiang Cao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Biao Yuan
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Xu Q, Zhang Z, Lui PPY, Lu L, Li X, Zhang X. Preparation and biomedical applications of artificial cells. Mater Today Bio 2023; 23:100877. [PMID: 38075249 PMCID: PMC10701372 DOI: 10.1016/j.mtbio.2023.100877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 10/16/2024] Open
Abstract
Artificial cells have received much attention in recent years as cell mimics with typical biological functions that can be adapted for therapeutic and diagnostic applications, as well as having an unlimited supply. Although remarkable progress has been made to construct complex multifunctional artificial cells, there are still significant differences between artificial cells and natural cells. It is therefore important to understand the techniques and challenges for the fabrication of artificial cells and their applications for further technological advancement. The key concepts of top-down and bottom-up methods for preparing artificial cells are summarized, and the advantages and disadvantages of the bottom-up methods are compared and critically discussed in this review. Potential applications of artificial cells as drug carriers (microcapsules), as signaling regulators for coordinating cellular communication and as bioreactors for biomolecule fabrication, are further discussed. The challenges and future trends for the development of artificial cells simulating the real activities of natural cells are finally described.
Collapse
Affiliation(s)
- Qian Xu
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang, Liaoning, 110819, China
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Zeping Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Pauline Po Yee Lui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, 999077, Hong Kong
| | - Liang Lu
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaowu Li
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Xing Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
4
|
Kim H, Choi Y, Kim SY, Pahk KJ. Increased intracellular diffusivity of macromolecules within a mammalian cell by low-intensity pulsed ultrasound. ULTRASONICS SONOCHEMISTRY 2023; 100:106644. [PMID: 37844347 PMCID: PMC10587770 DOI: 10.1016/j.ultsonch.2023.106644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023]
Abstract
Whilst a number of studies have demonstrated that low-intensity pulsed ultrasound (LIPUS) is a promising therapeutic ultrasound technique that can be used for delivering mild mechanical stimuli to target tissue non-invasively, the underlying biophysical mechanisms still remain unclear. Most mechanism studies have focused explicitly on the effects of LIPUS on the cell membrane and mechanosensitive receptors. In the present study, we propose an additional mechanism by which LIPUS propagation through living cells may directly impact intracellular dynamics, particularly the diffusion transport of biomolecules. To support our hypothesis, human epithelial-like cells (SaOS-2 and HeLa) seeded on a confocal dish placed on a microscope stage were exposed to LIPUS with various exposure conditions (ultrasound frequencies of 0.5, 1 and 3 MHz, peak acoustic pressure of 200 and 400 kPa, a pulse repetition frequency of 1 kHz and a 20 % duty cycle), and the diffusivities of various sizes of biomolecules in the cytoplasm area were measured using fluorescence recovery after photobleaching (FRAP). Furthermore, giant unilamellar vesicles (GUVs) filled with macromolecules were used to examine the physical causal relationship between LIPUS and molecular diffusion changes. Nucleocytoplasmic transport coefficients were also measured by modified FRAP that bleaches the whole cell nuclear region. Extracellular signal-regulated kinases (ERK) activity (the phosphorylation dynamics) was monitored using fluorescence resonance energy transfer (FRET) microscopy. All the measurements were taken during, before and after the LIPUS exposure. Our experimental results clearly showed that the diffusion coefficients of macromolecules within the cell increased with acoustic pressure by 12.1 to 33.5 % during the sonication, and the increments were proportional to their molecular sizes regardless of the ultrasound frequency used. This observation in living cells was consistent with the GUVs exposed to the LIPUS, which indicated that the diffusivity increase was a passive physical response to the acoustic energy of LIPUS. Under the 1 MHz LIPUS exposure with 400 kPa, the passive nucleocytoplasmic transport of enhanced green fluorescent protein (EGFP) was accelerated by 21.4 %. With the same LIPUS exposure condition, both the diffusivity and phosphorylation of ERK induced by EGF treatment were significantly elevated simultaneously, which implied that LIPUS could also modify the kinase kinetics in the signal transduction process. Taken together, this study is the first attempt to uncover the physical link between LIPUS and the dynamics of intracellular macromolecules and related biological processes that LIPUS can possibly increase the diffusivity of intracellular macromolecules, leading to the changes in the basic cellular processes: passive nucleocytoplasmic transport and ERK. Our findings can provide a novel perspective that the mechanotransduction process that the intracellular region, in addition to the cell membrane, can convert the acoustic stimuli of LIPUS to biochemical signals.
Collapse
Affiliation(s)
- Hyojun Kim
- LAAS-CNRS, University of Toulouse, CNRS, Toulouse, France
| | - Yeonho Choi
- Department of Bioengineering, Korea University, Seoul, Republic of Korea
| | - So Yeon Kim
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| | - Ki Joo Pahk
- Department of Biomedical Engineering, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
5
|
Nair KS, Bajaj H. Advances in giant unilamellar vesicle preparation techniques and applications. Adv Colloid Interface Sci 2023; 318:102935. [PMID: 37320960 DOI: 10.1016/j.cis.2023.102935] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Giant unilamellar vesicles (GUVs) are versatile and promising cell-sized bio-membrane mimetic platforms. Their applications range from understanding and quantifying membrane biophysical processes to acting as elementary blocks in the bottom-up assembly of synthetic cells. Definite properties and requisite goals in GUVs are dictated by the preparation techniques critical to the success of their applications. Here, we review key advances in giant unilamellar vesicle preparation techniques and discuss their formation mechanisms. Developments in lipid hydration and emulsion techniques for GUV preparation are described. Novel microfluidic-based techniques involving lipid or surfactant-stabilized emulsions are outlined. GUV immobilization strategies are summarized, including gravity-based settling, covalent linking, and immobilization by microfluidic, electric, and magnetic barriers. Moreover, some of the key applications of GUVs as biomimetic and synthetic cell platforms during the last decade have been identified. Membrane interface processes like phase separation, membrane protein reconstitution, and membrane bending have been deciphered using GUVs. In addition, vesicles are also employed as building blocks to construct synthetic cells with defined cell-like functions comprising compartments, metabolic reactors, and abilities to grow and divide. We critically discuss the pros and cons of preparation technologies and the properties they confer to the GUVs and identify potential techniques for dedicated applications.
Collapse
Affiliation(s)
- Karthika S Nair
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| | - Harsha Bajaj
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India.
| |
Collapse
|
6
|
Lo CH, Zeng J. Application of polymersomes in membrane protein study and drug discovery: Progress, strategies, and perspectives. Bioeng Transl Med 2023; 8:e10350. [PMID: 36684106 PMCID: PMC9842050 DOI: 10.1002/btm2.10350] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 01/25/2023] Open
Abstract
Membrane proteins (MPs) play key roles in cellular signaling pathways and are responsible for intercellular and intracellular interactions. Dysfunctional MPs are directly related to the pathogenesis of various diseases, and they have been exploited as one of the most sought-after targets in the pharmaceutical industry. However, working with MPs is difficult given that their amphiphilic nature requires protection from biological membrane or membrane mimetics. Polymersomes are bilayered nano-vesicles made of self-assembled block copolymers that have been widely used as cell membrane mimetics for MP reconstitution and in engineering of artificial cells. This review highlights the prevailing trend in the application of polymersomes in MP study and drug discovery. We begin with a review on the techniques for synthesis and characterization of polymersomes as well as methods of MP insertion to form proteopolymersomes. Next, we review the structural and functional analysis of the different types of MPs reconstituted in polymersomes, including membrane transport proteins, MP complexes, and membrane receptors. We then summarize the factors affecting reconstitution efficiency and the quality of reconstituted MPs for structural and functional studies. Additionally, we discuss the potential in using proteopolymersomes as platforms for high-throughput screening (HTS) in drug discovery to identify modulators of MPs. We conclude by providing future perspectives and recommendations on advancing the study of MPs and drug development using proteopolymersomes.
Collapse
Affiliation(s)
- Chih Hung Lo
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Jialiu Zeng
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
- Department of Biomedical EngineeringBoston UniversityBostonMassachusettsUSA
- Department of ChemistryBoston UniversityBostonMassachusettsUSA
| |
Collapse
|
7
|
Siva S, Jin JO, Choi I, Kim M. Nanoliposome based biosensors for probing mycotoxins and their applications for food: A review. Biosens Bioelectron 2023; 219:114845. [PMID: 36327568 DOI: 10.1016/j.bios.2022.114845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/28/2022] [Accepted: 10/19/2022] [Indexed: 11/19/2022]
Abstract
Mycotoxins are the most common feed and food contaminants affecting animals and humans, respectively; continuous exposure causes tremendous health problems such as kidney disorders, infertility, immune suppression, liver inflammation, and cancer. Consequently, their control and quantification in food materials is crucial. Biosensors are potential tools for the rapid detection and quantification of mycotoxins with high sensitivity and selectivity. Nanoliposomes (NLs) are vesicular carriers formed by self-assembling phospholipids that surround the aqueous cores. Utilizing their biocompatibility, biodegradability, and high carrying capacity, researchers have employed NLs in biosensors for monitoring various targets in biological and food samples. The NLs are used for surface modification, signal marker delivery, and detection of toxins, bacteria, pesticides, and diseases. Here, we review marker-entrapped NLs used in the development of NL-based biosensors for mycotoxins. These biosensors are sensitive, selective, portable, and cost-effective analytical tools, and the resulting signal can be produced and/or amplified with or without destroying the NLs. In addition, this review emphasizes the benefits of the immunoliposome method in comparison with traditional detection approaches. We expect this review to serve as a valuable reference for researchers in this rapidly growing field. The insights provided may facilitate the rational design of next-generation NL-based biosensors.
Collapse
Affiliation(s)
- Subramanian Siva
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Jun-O Jin
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Inho Choi
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| |
Collapse
|
8
|
Doğan Güzel F, Kaur J, Zendeh Z. Cheap portable electroformed giant unilamellar vesicles preparation kit. J Liposome Res 2022:1-6. [DOI: 10.1080/08982104.2022.2149777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Fatma Doğan Güzel
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Jaspreet Kaur
- Department of Electrical and Electronic Engineering, Faculty of Engineering and Natural Sciences, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Zahra Zendeh
- Department of Translational Medicine, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| |
Collapse
|
9
|
Pramanik S, Steinkühler J, Dimova R, Spatz J, Lipowsky R. Binding of His-tagged fluorophores to lipid bilayers of giant vesicles. SOFT MATTER 2022; 18:6372-6383. [PMID: 35975692 DOI: 10.1039/d2sm00915c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
His-tagged molecules can be attached to lipid bilayers via certain anchor lipids, a method that has been widely used for the biofunctionalization of membranes and vesicles. To observe the membrane-bound molecules, it is useful to consider His-tagged molecules that are fluorescent as well. Here, we study two such molecules, green fluorescence protein (GFP) and green-fluorescent fluorescein isothiocyanate (FITC), both of which are tagged with a chain of six histidines (6H) that bind to the anchor lipids within the bilayers. The His-tag 6H is much smaller than the GFP molecule but somewhat larger than the FITC dye. The lipid bilayers form giant unilamellar vesicles (GUVs), the behavior of which can be directly observed in the optical microscope. We apply and compare three well-established preparation methods for GUVs: electroformation on platinum wire, polyvinyl alcohol (PVA) hydrogel swelling, and electroformation on indium tin oxide (ITO) glass. Microfluidics is used to expose the GUVs to a constant fluorophore concentration in the exterior solution. The brightness of membrane-bound 6H-GFP exceeds the brightness of membrane-bound 6H-FITC, in contrast to the quantum yields of the two fluorophores in solution. In fact, 6H-FITC is observed to be strongly quenched by the anchor lipids which bind the fluorophores via Ni2+ ions. For both 6H-GFP and 6H-FITC, the membrane fluorescence is measured as a function of the fluorophores' molar concentration. The theoretical analysis of these data leads to the equilibrium dissociation constants Kd = 37.5 nM for 6H-GFP and Kd = 18.5 nM for 6H-FITC. We also observe a strong pH-dependence of the membrane fluorescence.
Collapse
Affiliation(s)
- Shreya Pramanik
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| | - Jan Steinkühler
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| | - Joachim Spatz
- Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| |
Collapse
|
10
|
Carvalho BG, Ceccato BT, Michelon M, Han SW, de la Torre LG. Advanced Microfluidic Technologies for Lipid Nano-Microsystems from Synthesis to Biological Application. Pharmaceutics 2022; 14:141. [PMID: 35057037 PMCID: PMC8781930 DOI: 10.3390/pharmaceutics14010141] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Microfluidics is an emerging technology that can be employed as a powerful tool for designing lipid nano-microsized structures for biological applications. Those lipid structures can be used as carrying vehicles for a wide range of drugs and genetic materials. Microfluidic technology also allows the design of sustainable processes with less financial demand, while it can be scaled up using parallelization to increase production. From this perspective, this article reviews the recent advances in the synthesis of lipid-based nanostructures through microfluidics (liposomes, lipoplexes, lipid nanoparticles, core-shell nanoparticles, and biomimetic nanovesicles). Besides that, this review describes the recent microfluidic approaches to produce lipid micro-sized structures as giant unilamellar vesicles. New strategies are also described for the controlled release of the lipid payloads using microgels and droplet-based microfluidics. To address the importance of microfluidics for lipid-nanoparticle screening, an overview of how microfluidic systems can be used to mimic the cellular environment is also presented. Future trends and perspectives in designing novel nano and micro scales are also discussed herein.
Collapse
Affiliation(s)
- Bruna G. Carvalho
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, Brazil; (B.G.C.); (B.T.C.)
| | - Bruno T. Ceccato
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, Brazil; (B.G.C.); (B.T.C.)
| | - Mariano Michelon
- School of Chemical and Food Engineering, Federal University of Rio Grande (FURG), Rio Grande 96203-900, Brazil;
| | - Sang W. Han
- Center for Cell Therapy and Molecular, Department of Biophysics, Federal University of São Paulo (UNIFESP), São Paulo 04044-010, Brazil;
| | - Lucimara G. de la Torre
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, Brazil; (B.G.C.); (B.T.C.)
| |
Collapse
|
11
|
Priyanka Damera D, Nag A. Exploring the membrane fluidity of phenyl boronic acid functionalized polymersomes using the FRAP technique and their application in the pH-sensitive release of curcumin. NEW J CHEM 2022. [DOI: 10.1039/d2nj01330d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
FRAP study to examine alterations in the membrane fluidity of functionalized polymersomes and pH responsive targeted delivery of curcumin.
Collapse
Affiliation(s)
| | - Amit Nag
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Hyderabad, 500078, India
| |
Collapse
|
12
|
Song XC, Zhou ZH, Yu YL, Deng NN. Microfluidic production of liposomes through liquid-liquid phase separation in ternary droplets. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2118-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Bailey LF, Vavolil Prabhakaran J, Vishwapathi VK, Kulkarni CV. Electroformation of Particulate Emulsions Using Lamellar and Nonlamellar Lipid Self-Assemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14527-14539. [PMID: 34855404 DOI: 10.1021/acs.langmuir.1c02721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report on the development of an electroformation technique for the preparation of particulate (particle-based) emulsions. These oil-in-water (here, lipid phase acts as an "oil") emulsions were prepared using nonlamellar lipid phases. Such emulsion particles offer high hydrophobic volumes compared to conventional lipid particles based on lamellar phases (vesicles/liposomes). In addition, the tortuous internal nanostructure contributes through greater surface area per volume of lipid particles allowing an enhanced loading of payloads. The electroformation method makes use of a capacitor formed from two indium tin oxide coated conductive glass surfaces separated by a dielectric aqueous medium. This capacitor setup is enclosed in a custom-designed 3D-printed unit. Lipid molecules, deposited on conductive surfaces, self-assemble into a nanostructure in the presence of an aqueous medium, which when subjected to an alternating current electric field forms nano- and/or microparticles. Optical microscopy, dynamic light scattering, and small-angle X-ray scattering techniques were employed for micro- and nanostructural analyses of electroformed particles. With this method, it is possible to produce particulate emulsions at a very low (e.g., 0.0005 wt % or 0.5 mg/mL) lipid concentration. We demonstrate an applicability of the electroformation method for drug delivery by preparing lipid particles with curcumin, which is a highly important but water-insoluble medicinal compound. As the method employs gentle conditions, it is potentially noninvasive for the delivery of delicate biomolecules and certain drugs, which are prone to decomposition or denaturation due to the high thermomechanical energy input and/or nonaqueous solvents required for existing methods.
Collapse
Affiliation(s)
| | - Jayachandran Vavolil Prabhakaran
- Applied Biology Section, Department of Applied Sciences, University of Technology and Applied Sciences, P. O. Box 74, Al-Khuwair, 133 Muscat, Sultanate of Oman
| | | | | |
Collapse
|
14
|
Boban Z, Mardešić I, Subczynski WK, Raguz M. Giant Unilamellar Vesicle Electroformation: What to Use, What to Avoid, and How to Quantify the Results. MEMBRANES 2021; 11:membranes11110860. [PMID: 34832088 PMCID: PMC8622294 DOI: 10.3390/membranes11110860] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022]
Abstract
Since its inception more than thirty years ago, electroformation has become the most commonly used method for growing giant unilamellar vesicles (GUVs). Although the method seems quite straightforward at first, researchers must consider the interplay of a large number of parameters, different lipid compositions, and internal solutions in order to avoid artifactual results or reproducibility problems. These issues motivated us to write a short review of the most recent methodological developments and possible pitfalls. Additionally, since traditional manual analysis can lead to biased results, we have included a discussion on methods for automatic analysis of GUVs. Finally, we discuss possible improvements in the preparation of GUVs containing high cholesterol contents in order to avoid the formation of artifactual cholesterol crystals. We intend this review to be a reference for those trying to decide what parameters to use as well as an overview providing insight into problems not yet addressed or solved.
Collapse
Affiliation(s)
- Zvonimir Boban
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (Z.B.); (I.M.)
- Doctoral Study of Biophysics, Faculty of Science, University of Split, 21000 Split, Croatia
| | - Ivan Mardešić
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (Z.B.); (I.M.)
- Doctoral Study of Biophysics, Faculty of Science, University of Split, 21000 Split, Croatia
| | | | - Marija Raguz
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (Z.B.); (I.M.)
- Correspondence: ; Tel.: +385-98-768-819
| |
Collapse
|
15
|
Gorain B, Al-Dhubiab BE, Nair A, Kesharwani P, Pandey M, Choudhury H. Multivesicular liposome: A lipid-based drug delivery system for efficient drug delivery. Curr Pharm Des 2021; 27:4404-4415. [PMID: 34459377 DOI: 10.2174/1381612827666210830095941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022]
Abstract
The advancement of delivery tools for therapeutic agents has brought several novel formulations with increased drug loading, sustained release, targeted delivery, and prolonged efficacy. Amongst the several novel delivery approaches, multivesicular liposome has gained potential interest because this delivery system possesses the above advantages. In addition, this multivesicular liposomal delivery prevents degradation of the entrapped drug within the physiological environment while administered. The special structure of the vesicles allowed successful entrapment of hydrophobic and hydrophilic therapeutic agents, including proteins and peptides. Furthermore, this novel formulation could maintain the desired drug concentration in the plasma for a prolonged period, which helps to reduce the dosing frequencies, improve bioavailability, and safety. This tool could also provide stability of the formulation, and finally gaining patient compliance. Several multivesicular liposomes received approval for clinical research, while others are at different stages of laboratory research. In this review, we have focused on the preparation of multivesicular liposomes along with their application in different ailments for the improvement of the performance of the entrapped drug. Moreover, the challenges of delivering multivesicular vesicles have also been emphasized. Overall, it could be inferred that multivesicular liposomal delivery is a novel platform of advanced drug delivery with improved efficacy and safety.
Collapse
Affiliation(s)
- Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Science, Taylor's University, Subang Jaya, Selangor. Malaysia
| | - Bandar E Al-Dhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa. Saudi Arabia
| | - Anroop Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa. Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi. India
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur. Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur. Malaysia
| |
Collapse
|
16
|
Jayaram AK, Pappa AM, Ghosh S, Manzer ZA, Traberg WC, Knowles TPJ, Daniel S, Owens RM. Biomembranes in bioelectronic sensing. Trends Biotechnol 2021; 40:107-123. [PMID: 34229865 DOI: 10.1016/j.tibtech.2021.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022]
Abstract
Cell membranes are integral to the functioning of the cell and are therefore key to drive fundamental understanding of biological processes for downstream applications. Here, we review the current state-of-the-art with respect to biomembrane systems and electronic substrates, with a view of how the field has evolved towards creating biomimetic conditions and improving detection sensitivity. Of particular interest are conducting polymers, a class of electroactive polymers, which have the potential to create the next step-change for bioelectronics devices. Lastly, we discuss the impact these types of devices could have for biomedical applications.
Collapse
Affiliation(s)
- A K Jayaram
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, UK; Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0JH, UK
| | - A M Pappa
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, UK
| | - S Ghosh
- RF Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY 14850, USA
| | - Z A Manzer
- RF Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY 14850, USA
| | - W C Traberg
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, UK
| | - T P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, UK; Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0JH, UK
| | - S Daniel
- RF Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY 14850, USA
| | - R M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, UK.
| |
Collapse
|
17
|
Jiang L, Wang Q, Lei J, Tao K, Huang J, Zhao S, Hu N, Yang J. Mechanism study of how lipid vesicle electroformation is suppressed by the presence of sodium chloride. Colloids Surf B Biointerfaces 2021; 206:111951. [PMID: 34243032 DOI: 10.1016/j.colsurfb.2021.111951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/09/2021] [Accepted: 06/26/2021] [Indexed: 10/21/2022]
Abstract
Giant lipid vesicles (GLVs) are usually adopted as models of cell membranes and electroformation is the most commonly used method for GLV formation. However, GLV electroformation are known to be suppressed by the presence of salt and the mechanism is not clear so far. In this paper, the lipid hydration and GLV electroformation were investigated as a function of the concentration of sodium chloride by depositing the lipids on the bottom substrates and top substrates. In addition, the electrohydrodynamic force generated by the electroosmotic flow (EOF) on the lipid phase was calculated with COMSOL Multiphysics. It was found that the mechanisms for the failure of GLV electroformation in salt solutions are: 1) the presence of sodium chloride decreases the membrane permeability to aqueous solution by accelerating the formation of well-packed membranes, suppressing the swelling and detachment of the lipid membranes; 2) the presence of sodium chloride decreased the electrohydrodynamic force by increasing the medium conductivity.
Collapse
Affiliation(s)
- Lihua Jiang
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing 400055, China
| | - Qiong Wang
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing 400055, China; Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China.
| | - Jincan Lei
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing 400055, China
| | - Ke Tao
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing 400055, China
| | - Jing Huang
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing 400055, China
| | - Shixian Zhao
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing 400055, China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Jun Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
18
|
Shimanouchi T, Hayashi T, Toramoto K, Fukuma S, Hayashi K, Yasuhara K, Kimura Y. Microfluidic and hydrothermal preparation of vesicles using sorbitan monolaurate/polyoxyethylene (20) sorbitan monolaurate (Span 20/Tween 20). Colloids Surf B Biointerfaces 2021; 205:111836. [PMID: 34058692 DOI: 10.1016/j.colsurfb.2021.111836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/01/2021] [Accepted: 05/08/2021] [Indexed: 11/18/2022]
Abstract
Here, we present a method for preparing vesicles by combining hydrothermal emulsification with solvent diffusion (SD). The sorbitan monolaurate/polyoxyethylene (20) sorbitan monolaurate (Span 20/Tween 20) system was used as the target lipid because these lipids are cheap and advantageous for the production scale. The water-in-oil (W/O) emulsion stabilized with lipids was formed under hydrothermal conditions (240 °C under 10 MPa), followed by mixing with water that included lipids to obtain a W/O-in-water (W/O/W) emulsion. The SD for the W/O/W emulsion as a subsequent process yielded vesicles. The optimal preparation conditions were 50:50 wt% Span 20/Tween 20 as a mixing ratio (final lipid concentration 12 mM), octanoic acid as an organic solvent, 240 °C for 4 min during the hydrothermal treatment, and 4 °C for 24 h in the SD process. The diameter of the vesicles obtained was at most 100 nm, which was comparable to that of the W/O/W emulsion before SD. This suggested that the W/O/W emulsion acted as a template for vesicle formation. The number density, diameter, and membrane properties of vesicles depend on the mixing ratio of the water/oil/lipid system. Specifically, the number density of vesicles was low relative to that of vesicles prepared by the conventional method.
Collapse
Affiliation(s)
- Toshinori Shimanouchi
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushimanaka, Okayama, Okayama, 700-8530, Japan
| | - Tetsuya Hayashi
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushimanaka, Okayama, Okayama, 700-8530, Japan
| | - Kazuki Toramoto
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushimanaka, Okayama, Okayama, 700-8530, Japan
| | - Saki Fukuma
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushimanaka, Okayama, Okayama, 700-8530, Japan
| | - Keita Hayashi
- Department of Chemical Engineering, Nara National College of Technology, 22 Yada-cho, Yamatokohriyama, Nara, 639-1080, Japan
| | - Kazuma Yasuhara
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Yukitaka Kimura
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushimanaka, Okayama, Okayama, 700-8530, Japan.
| |
Collapse
|
19
|
Wang X, Du H, Wang Z, Mu W, Han X. Versatile Phospholipid Assemblies for Functional Synthetic Cells and Artificial Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002635. [PMID: 32830387 DOI: 10.1002/adma.202002635] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/09/2020] [Indexed: 06/11/2023]
Abstract
The bottom-up construction of a synthetic cell from nonliving building blocks capable of mimicking cellular properties and behaviors helps to understand the particular biophysical properties and working mechanisms of a cell. A synthetic cell built in this way possesses defined chemical composition and structure. Since phospholipids are native biomembrane components, their assemblies are widely used to mimic cellular structures. Here, recent developments in the formation of versatile phospholipid assemblies are described, together with the applications of these assemblies for functional membranes (protein reconstituted giant unilamellar vesicles), spherical and nonspherical protoorganelles, and functional synthetic cells, as well as the high-order hierarchical structures of artificial tissues. Their biomedical applications are also briefly summarized. Finally, the challenges and future directions in the field of synthetic cells and artificial tissues based on phospholipid assemblies are proposed.
Collapse
Affiliation(s)
- Xuejing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Hang Du
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Marine Antifouling Engineering Technology Center of Shangdong Province, Harbin Institute of Technology, Weihai, 264209, China
| | - Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Wei Mu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
20
|
Prathyusha KR, Pagonabarraga I, Kumar PBS. Modification of lipid membrane compressibility induced by an electric field. Phys Rev E 2021; 102:062413. [PMID: 33466026 DOI: 10.1103/physreve.102.062413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 10/20/2020] [Indexed: 11/07/2022]
Abstract
Changes in membrane deformation and compressibility, induced by an external electric field, are investigated using coarse-grained martini force field simulations in a salt-free environment. We observe changes in the area of the membrane above a critical electric field. Below this value, the membrane compressibility modulus is found to decrease monotonically. For higher electric fields, the membrane projected area remains constant while the net interfacial area increases, with the corresponding compressibility moduli, show the opposite behavior. We find that the mechanical parameters, surface tension and bending modulus, of a freely floating membrane in the absence of explicit ions, are unaffected by the presence of the electric field. We believe these results have a bearing on our understanding of the electroformation of uncharged lipids in a salt-free environment.
Collapse
Affiliation(s)
- K R Prathyusha
- Department of Physics, Indian Institute of Technology Madras, Chennai, India
| | - Ignacio Pagonabarraga
- CECAM, Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale de Laussane (EPFL), Batochime, Avenue Forel 2, 1015 Lausanne, Switzerland.,Departament de Física de la Matèria Condensada, Universitat de Barcelona, C. Martí Franquès 1, 08028 8 Barcelona, Spain.,University of Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028 10 Barcelona, Spain
| | - P B Sunil Kumar
- Department of Physics, Indian Institute of Technology Madras, Chennai, India.,Indian Institute of Technology Palakkad, Ahalia Integrated Campus, Kozhippara, Palakkad - 678557, Kerala, India
| |
Collapse
|
21
|
Fuhrer A, Farnoud AM. Characterization of Lipid Order and Domain Formation in Model Membranes Using Fluorescence Microscopy and Spectroscopy. Methods Mol Biol 2021; 2187:271-282. [PMID: 32770512 DOI: 10.1007/978-1-0716-0814-2_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Fluorescence-based techniques have been an integral factor in the study of cellular and model membranes. Fluorescence studies carried out on model membranes have provided valuable structural information and have helped reveal mechanistic detail regarding the formation and properties of ordered lipid domains, commonly known as lipid rafts. This chapter focuses on four techniques, based on fluorescence spectroscopy or microscopy, which are commonly used to analyze lipid rafts. The techniques described in this chapter may be used in a variety of ways and in combination with other techniques to provide valuable information regarding lipid order and domain formation, especially in model membranes.
Collapse
Affiliation(s)
- Andrew Fuhrer
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, Athens, OH, USA
| | - Amir M Farnoud
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, Athens, OH, USA. .,Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, USA.
| |
Collapse
|
22
|
Pazzi J, Subramaniam AB. Nanoscale Curvature Promotes High Yield Spontaneous Formation of Cell-Mimetic Giant Vesicles on Nanocellulose Paper. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56549-56561. [PMID: 33284582 DOI: 10.1021/acsami.0c14485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To date, techniques for the assembly of phospholipid films into cell-like giant unilamellar vesicles (GUVs) use planar surfaces and require the application of electric fields or dissolved molecules to obtain adequate yields. Here, we present the use of nanocellulose paper, which are surfaces composed of entangled cylindrical nanofibers, to promote the facile and high yield assembly of GUVs. Use of nanocellulose paper results in up to a 100 000-fold reduction in costs while increasing yields compared to extant surface-assisted assembly techniques. Quantitative measurements of yields and the distributions of sizes using large data set confocal microscopy illuminates the mechanism of assembly. We present a thermodynamic "budding and merging", BNM, model that offers a unified explanation for the differences in the yields and sizes of GUVs obtained from surfaces of varying geometry and chemistry. The BNM model considers the change in free energy due to budding by balancing the elastic, adhesion, and edge energies of a section of a surface-attached membrane that transitions into a surface-attached spherical bud. The model reveals that the formation of GUVs is spontaneous on hydrophilic surfaces consisting of entangled cylindrical nanofibers with dimensions similar to nanocellulose fibers. This work advances understanding of the effects of surface properties on the assembly of GUVs. It also addresses practical barriers that currently impede the promising use of GUVs as vehicles for the delivery of drugs, for the manufacturing of synthetic cells, and for the assembly of artificial tissues at scale.
Collapse
Affiliation(s)
- Joseph Pazzi
- Department of Bioengineering, University of California, Merced, Merced, California 95343, United States
| | - Anand Bala Subramaniam
- Department of Bioengineering, University of California, Merced, Merced, California 95343, United States
| |
Collapse
|
23
|
|
24
|
Leggio L, Arrabito G, Ferrara V, Vivarelli S, Paternò G, Marchetti B, Pignataro B, Iraci N. Mastering the Tools: Natural versus Artificial Vesicles in Nanomedicine. Adv Healthc Mater 2020; 9:e2000731. [PMID: 32864899 DOI: 10.1002/adhm.202000731] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Naturally occurring extracellular vesicles and artificially made vesicles represent important tools in nanomedicine for the efficient delivery of biomolecules and drugs. Since its first appearance in the literature 50 years ago, the research on vesicles is progressing at a fast pace, with the main goal of developing carriers able to protect cargoes from degradation, as well as to deliver them in a time- and space-controlled fashion. While natural occurring vesicles have the advantage of being fully compatible with their host, artificial vesicles can be easily synthetized and functionalized according to the target to reach. Research is striving to merge the advantages of natural and artificial vesicles, in order to provide a new generation of highly performing vesicles, which would improve the therapeutic index of transported molecules. This progress report summarizes current manufacturing techniques used to produce both natural and artificial vesicles, exploring the promises and pitfalls of the different production processes. Finally, pros and cons of natural versus artificial vesicles are discussed and compared, with special regard toward the current applications of both kinds of vesicles in the healthcare field.
Collapse
Affiliation(s)
- Loredana Leggio
- Department of Biomedical and Biotechnological Sciences University of Catania Torre Biologica, Via S. Sofia 97 Catania 95125 Italy
| | - Giuseppe Arrabito
- Department of Physics and Chemistry – Emilio Segrè University of Palermo Building 17, Viale delle Scienze Palermo 90128 Italy
| | - Vittorio Ferrara
- Department of Chemical Sciences University of Catania Viale Andrea Doria 6 Catania 95125 Italy
| | - Silvia Vivarelli
- Department of Biomedical and Biotechnological Sciences University of Catania Torre Biologica, Via S. Sofia 97 Catania 95125 Italy
| | - Greta Paternò
- Department of Biomedical and Biotechnological Sciences University of Catania Torre Biologica, Via S. Sofia 97 Catania 95125 Italy
| | - Bianca Marchetti
- Department of Biomedical and Biotechnological Sciences University of Catania Torre Biologica, Via S. Sofia 97 Catania 95125 Italy
- Neuropharmacology Section OASI Institute for Research and Care on Mental Retardation and Brain Aging Troina 94018 Italy
| | - Bruno Pignataro
- Department of Physics and Chemistry – Emilio Segrè University of Palermo Building 17, Viale delle Scienze Palermo 90128 Italy
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences University of Catania Torre Biologica, Via S. Sofia 97 Catania 95125 Italy
| |
Collapse
|
25
|
Behuria HG, Biswal BK, Sahu SK. Electroformation of liposomes and phytosomes using copper electrode. J Liposome Res 2020; 31:255-266. [PMID: 32703044 DOI: 10.1080/08982104.2020.1800729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A novel method for electroformation of liposomes and phytosomes using copper electrode is described. Liposomes made at 2 V and 10 Hz AC field from L-α-egg-phosphatidylcholine (egg-PC), K. pneumoniae phosphatidylethanolamine, K. pneumoniae polar lipids and E. coli polar lipids on copper electrode were (777.9 ± 118.4), (370.2 ± 100.5), (825.3 ± 21.54), and (281.3 ± 42.3) nm in diameter, respectively. Giant vesicles were formed at 30 V and 10 Hz AC field from polar lipids of K. pneumoniae and E. coli were (106 ± 29.7) and (86 ± 24.3) µm in diameter, respectively. All liposomes were unilamellar as indicated by their unilamellar indices of 50 ± 2, had surface charge comparable to vesicles made from lipid(s) with similar composition and exhibited only 1-2 mol% of oxidized lipids. Cu concentration in the liposomal samples was <1.5 ppm for large unilamellar vesicles (LUVs) and ˂5 ppm for giant unilamellar vesicles (GUVs). The vesicles were stable for >15 d without loss of their size, charge, or unilamellarity. The method was successfully applied to prepare phytosomes from egg-PC and a phytochemical fraction of Dimorphocalyx glabellus, a medicinal plant with anti-diuretic properties. Phytosomes formed were 1000-1500 nm in diameter and exhibited altered fluorescence and absorbance properties compared to the unencapsulated phytochemical. Phytosomes with phytochemical: egg-PC ratio from 0.15 to 1.5 had encapsulation efficiency ranging 90-30%, respectively, and was stable for 1 month. Our method is easy, inexpensive and convenient that will prove to be useful for preparation of liposomes and phytosomes.
Collapse
Affiliation(s)
- Himadri Gourav Behuria
- Department of Biotechnology, Laboratory of Molecular Membrane Biology, North Orissa University, Baripada, India
| | - Bijesh Kumar Biswal
- Department of Life Science, National Institute of Technology, Rourkela, India
| | - Santosh Kumar Sahu
- Department of Biotechnology, Laboratory of Molecular Membrane Biology, North Orissa University, Baripada, India
| |
Collapse
|
26
|
Behuria HG, Sahu SK. An Anti-microbial Terpenoid Fraction from Gymnema sylvestre Induces Flip-flop of Fluorescent-Phospholipid Analogs in Model Membrane. Appl Biochem Biotechnol 2020; 192:1331-1345. [PMID: 32743703 DOI: 10.1007/s12010-020-03399-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/16/2020] [Indexed: 12/25/2022]
Abstract
Therapeutic potential of Gymnema sylvestre on diverse cell types is predominantly due to a variety of terpenoids and their derivatives. However, their bioavailability becomes limited due to poor solubility and lower lipophilic properties, provoking the search for novel membranotropic terpenoids and their mechanism of action. A terpenoid fraction purified from Gymnema sylvestre exhibited broad spectrum antimicrobial activity against both Gram positive and Gram negative bacteria with IC50 ˂ 0.1 mg/ml. Evaluation of its membranotropic effect in vitro on reconstituted model membrane revealed that the fraction induced flip-flop of fluorescent phospholipid analogs across the lipid bilayer. The terpenoid-induced lipid flipping was biphasic with a fast linear phase (rate constant (k1) = 3 to 5 S-1) and a second slow exponential phase (rate constant (k2) = (4 to 9) × 10-3 S-1). The lipid-flippase activity of the terpenoid fraction showed concentration and incubation-dependent cooperativity, indicating their lipophilic nature and membrane-destabilizing activity that facilitated lipid translocation. For the first time, our study reveals the flippase activity of a terpenoid fraction of Gymnema sylvestre that could be further explored for their membrane-mediated pharmacological properties. Graphical Abstract.
Collapse
Affiliation(s)
- Himadri Gourav Behuria
- Department of Biotechnology, North Orissa University, Mayurbhanj, Baripada, Odisha, 757003, India
| | - Santosh Kumar Sahu
- Department of Biotechnology, North Orissa University, Mayurbhanj, Baripada, Odisha, 757003, India.
| |
Collapse
|
27
|
Pereno V, Lei J, Carugo D, Stride E. Microstreaming inside Model Cells Induced by Ultrasound and Microbubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6388-6398. [PMID: 32407094 DOI: 10.1021/acs.langmuir.0c00536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Studies on the bioeffects produced by ultrasound and microbubbles have focused primarily on transport in bulk tissue, drug uptake by individual cells, and disruption of biological membranes. Relatively little is known about the physical perturbations and fluid dynamics of the intracellular environment during ultrasound exposure. To investigate this, a custom acoustofluidic chamber was designed to expose model cells, in the form of giant unilamellar vesicles, to ultrasound and microbubbles. The motion of fluorescent tracer beads within the lumen of the vesicles was tracked during exposure to laminar flow (∼1 mm s-1), ultrasound (1 MHz, ∼150 kPa, 60 s), and phospholipid-coated microbubbles, alone and in combination. To decouple the effects of fluid flow and ultrasound exposure, the system was also modeled numerically by using boundary-driven streaming field equations. Both the experimental and numerical results indicate that all conditions produced internal streaming within the vesicles. Ultrasound alone produced an average bead velocity of 6.5 ± 1.3 μm/s, which increased to 8.5 ± 3.8 μm/s in the presence of microbubbles compared to 12 ± 0.12 μm/s under laminar flow. Further research on intracellular forces in mammalian cells and the associated biological effects in vitro and in vivo are required to fully determine the implications for safety and/or therapy.
Collapse
Affiliation(s)
- Valerio Pereno
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, U.K
| | - Junjun Lei
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Dario Carugo
- Faculty of Engineering and Physical Sciences and Institute for Life Sciences, Department of Mechanical Engineering, University of Southampton, Southampton SO17 1BJ, U.K
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, U.K
| |
Collapse
|
28
|
Morshed A, Karawdeniya BI, Bandara Y, Kim MJ, Dutta P. Mechanical characterization of vesicles and cells: A review. Electrophoresis 2020; 41:449-470. [PMID: 31967658 PMCID: PMC7567447 DOI: 10.1002/elps.201900362] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/05/2019] [Accepted: 12/08/2019] [Indexed: 12/30/2022]
Abstract
Vesicles perform many essential functions in all living organisms. They respond like a transducer to mechanical stress in converting the applied force into mechanical and biological responses. At the same time, both biochemical and biophysical signals influence the vesicular response in bearing mechanical loads. In recent years, liposomes, artificial lipid vesicles, have gained substantial attention from the pharmaceutical industry as a prospective drug carrier which can also serve as an artificial cell-mimetic system. The ability of these vesicles to enter through pores of even smaller size makes them ideal candidates for therapeutic agents to reach the infected sites effectively. Engineering of vesicles with desired mechanical properties that can encapsulate drugs and release as required is the prime challenge in this field. This requirement has led to the modifications of the composition of the bilayer membrane by adding cholesterol, sphingomyelin, etc. In this article, we review the manufacturing and characterization techniques of various artificial/synthetic vesicles. We particularly focus on the electric field-driven characterization techniques to determine different properties of vesicle and its membranes, such as bending rigidity, viscosity, capacitance, conductance, etc., which are indicators of their content and mobility. Similarities and differences between artificial vesicles, natural vesicles, and cells are highlighted throughout the manuscript since most of these artificial vesicles are intended for cell mimetic functions.
Collapse
Affiliation(s)
- Adnan Morshed
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| | - Buddini Iroshika Karawdeniya
- Department of Mechanical Engineering, Lyle School of Engineering, Southern Methodist University, Dallas, Texas, USA
| | - Y.M.NuwanD.Y. Bandara
- Department of Mechanical Engineering, Lyle School of Engineering, Southern Methodist University, Dallas, Texas, USA
| | - Min Jun Kim
- Department of Mechanical Engineering, Lyle School of Engineering, Southern Methodist University, Dallas, Texas, USA
| | - Prashanta Dutta
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| |
Collapse
|
29
|
Has C, Sunthar P. A comprehensive review on recent preparation techniques of liposomes. J Liposome Res 2019; 30:336-365. [DOI: 10.1080/08982104.2019.1668010] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- C. Has
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - P. Sunthar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
30
|
Affiliation(s)
- Kilian Vogele
- Physik-DepartmentTechnische Universitat Munchen, TU München Garching Germany
| | - Tobias Pirzer
- Physik-DepartmentTechnische Universitat Munchen, TU München Garching Germany
| | - Friedrich C. Simmel
- Physik-DepartmentTechnische Universitat Munchen, TU München Garching Germany
| |
Collapse
|
31
|
Girish V, Pazzi J, Li A, Subramaniam AB. Fabrics of Diverse Chemistries Promote the Formation of Giant Vesicles from Phospholipids and Amphiphilic Block Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9264-9273. [PMID: 31276413 DOI: 10.1021/acs.langmuir.9b01621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Giant vesicles composed of phospholipids and amphiphilic block copolymers are useful for biomimetic drug delivery, for biophysical experiments, and for creating synthetic cells. Here, we report that large numbers of giant unilamellar vesicles (GUVs) can be formed on a broad range of fabrics composed of entangled cylindrical fibers. We show that fabrics woven from fibers of silk, wool, rayon, nylon, polyester, and fiberglass promote the formation of GUVs and giant polymer vesicles (polymersomes) in aqueous solutions. The result extends significantly previous reports on the formation of GUVs on cellulose paper and cotton fabric. Giant vesicles formed on all the fabrics from lipids with various headgroup charges, chains lengths, and chain saturations. Giant vesicles could be formed from multicomponent lipid mixtures, from extracts of plasma membranes, and from amphiphilic diblock and triblock copolymers, in both low ionic strength and high ionic strength solutions. Intriguingly, statistical characterization using a model lipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine, revealed that the majority of the fabrics yielded similar average counts of vesicles. Additionally, the vesicle populations obtained from the different fabrics had similar distributions of sizes. Fabrics are ubiquitous in society in consumer, technical, and biomedical applications. The discovery herein that biomimetic GUVs grow on fabrics opens promising new avenues in vesicle-based smart materials design.
Collapse
Affiliation(s)
- Vaishnavi Girish
- Department of Bioengineering , University of California, Merced , Merced , California 95343 , United States
| | - Joseph Pazzi
- Department of Bioengineering , University of California, Merced , Merced , California 95343 , United States
| | - Alexander Li
- Department of Bioengineering , University of California, Merced , Merced , California 95343 , United States
| | - Anand Bala Subramaniam
- Department of Bioengineering , University of California, Merced , Merced , California 95343 , United States
| |
Collapse
|
32
|
Pazzi J, Xu M, Subramaniam AB. Size Distributions and Yields of Giant Vesicles Assembled on Cellulose Papers and Cotton Fabric. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7798-7804. [PMID: 30444125 DOI: 10.1021/acs.langmuir.8b03076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lamellar phospholipid stacks on cellulose paper vesiculate to form cell-like giant unilamellar vesicles (GUVs) in aqueous solutions. The sizes and yields of the GUVs that result and their relationship to the properties of the cellulose fibers are unknown. Here, we report the characteristics of GUVs produced on four different cellulose substrates, three disordered porous media consisting of randomly entangled cellulose fibers (high-purity cellulose filter papers of different effective porosities), and an ordered network of weaved cellulose fibers (cotton fabric). Large numbers of GUVs formed on all four substrates. This result demonstrates for the first time that GUVs form on cotton fabric. Despite differences in the effective porosities and the configuration of the cellulose fibers, all four substrates yielded populations of GUVs with similar distribution of diameters. The distribution of diameters of the GUVs had a single well-defined peak and a right tail. Ninety-eight percent of the GUVs had diameters less than the average diameter of the cellulose fibers (∼20 micrometers). Cotton fabric produced the highest yield of GUVs with the lowest sample-to-sample variation. Moreover, cotton fabric is reusable. Fabric used sequentially produced similar crops of GUVs at each cycle. At the end of the sequence, there was no apparent change in the cellulose fibers. Cellulose fibers thus promote the vesiculation of lamellar phospholipid stacks in aqueous solutions.
Collapse
Affiliation(s)
- Joseph Pazzi
- Department of Bioengineering , University of California, Merced , Merced , California 95343 , United States
| | - Melissa Xu
- Department of Bioengineering , University of California, Merced , Merced , California 95343 , United States
| | - Anand Bala Subramaniam
- Department of Bioengineering , University of California, Merced , Merced , California 95343 , United States
| |
Collapse
|
33
|
dos Santos JL, Mendanha SA, Vieira SL, Gonçalves C. Portable Proportional-Integral-Derivative controlled chambers for giant unilamellar vesicles electroformation. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab1a1b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Dimova R. Giant Vesicles and Their Use in Assays for Assessing Membrane Phase State, Curvature, Mechanics, and Electrical Properties. Annu Rev Biophys 2019; 48:93-119. [DOI: 10.1146/annurev-biophys-052118-115342] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Giant unilamellar vesicles represent a promising and extremely useful model biomembrane system for systematic measurements of mechanical, thermodynamic, electrical, and rheological properties of lipid bilayers as a function of membrane composition, surrounding media, and temperature. The most important advantage of giant vesicles over other model membrane systems is that the membrane responses to external factors such as ions, (macro)molecules, hydrodynamic flows, or electromagnetic fields can be directly observed under the microscope. Here, we briefly review approaches for giant vesicle preparation and describe several assays used for deducing the membrane phase state and measuring a number of material properties, with further emphasis on membrane reshaping and curvature.
Collapse
Affiliation(s)
- Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| |
Collapse
|
35
|
Supramaniam P, Ces O, Salehi-Reyhani A. Microfluidics for Artificial Life: Techniques for Bottom-Up Synthetic Biology. MICROMACHINES 2019; 10:E299. [PMID: 31052344 PMCID: PMC6562628 DOI: 10.3390/mi10050299] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 01/08/2023]
Abstract
Synthetic biology is a rapidly growing multidisciplinary branch of science that exploits the advancement of molecular and cellular biology. Conventional modification of pre-existing cells is referred to as the top-down approach. Bottom-up synthetic biology is an emerging complementary branch that seeks to construct artificial cells from natural or synthetic components. One of the aims in bottom-up synthetic biology is to construct or mimic the complex pathways present in living cells. The recent, and rapidly growing, application of microfluidics in the field is driven by the central tenet of the bottom-up approach-the pursuit of controllably generating artificial cells with precisely defined parameters, in terms of molecular and geometrical composition. In this review we survey conventional methods of artificial cell synthesis and their limitations. We proceed to show how microfluidic approaches have been pivotal in overcoming these limitations and ushering in a new generation of complexity that may be imbued in artificial cells and the milieu of applications that result.
Collapse
Affiliation(s)
- Pashiini Supramaniam
- Department of Chemistry, White City Campus, Imperial College London, London SW7 2AZ, UK.
| | - Oscar Ces
- Department of Chemistry, White City Campus, Imperial College London, London SW7 2AZ, UK.
- FabriCELL, Imperial College London, London SW7 2AZ, UK.
| | - Ali Salehi-Reyhani
- FabriCELL, Imperial College London, London SW7 2AZ, UK.
- Department of Chemistry, King's College London, Britannia House, London SE1 1DB, UK.
| |
Collapse
|
36
|
Rideau E, Wurm FR, Landfester K. Self‐Assembly of Giant Unilamellar Vesicles by Film Hydration Methodologies. ACTA ACUST UNITED AC 2019; 3:e1800324. [DOI: 10.1002/adbi.201800324] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/01/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Emeline Rideau
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Frederik R. Wurm
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | | |
Collapse
|
37
|
Membrane Mechanical Properties Regulate the Effect of Strain on Spontaneous Electrophysiology in Human iPSC-Derived Neurons. Neuroscience 2019; 404:165-174. [PMID: 30817953 DOI: 10.1016/j.neuroscience.2019.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 12/16/2022]
Abstract
Peripheral nerves contain neuron fibers vital for movement and sensation and are subject to continuous elongation and compression during everyday movement. At supraphysiological strains conduction blocks occur, resulting in permanent or temporary loss of function. The mechanisms underpinning these alterations in electrophysiological activity remain unclear; however, there is evidence that both ion channels and network synapses may be affected through cell membrane transmitted strain. The aim of this work was to quantify the changes in spontaneous activity resulting from application of uniaxial strain in a human iPS-derived motor neuron culture model, and to investigate the role of cell membrane mechanical properties during cell straining. Increasing strain in a custom-built cell-stretching device caused a linear decrease in spontaneous activity, and no immediate recovery of activity was observed after strain release. Imaging neuronal membranes with c-Laurdan showed changes to the lipid order in neural membranes during deformation with a decrease in lipid packing. Neural cell membrane stiffness can be modulated by increasing cholesterol content, resulting in reduced stretch-induced decrease of membrane lipid packing and in a reduced decrease in spontaneous activity caused by mechanical strain. Together these results indicate that the mechanism whereby cell injury causes impaired transmission of neural impulses may be governed by the mechanical state of the cell membrane, and contribute to establishing a direct relationship between neural uniaxial straining and loss of spontaneous neural activity.
Collapse
|
38
|
Wang Z, Wu C, Fan T, Han X, Wang Q, Lei J, Yang J. Electroformation and collection of giant liposomes on an integrated microchip. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
39
|
Wang X, Liu J, Wang P, deMello A, Feng L, Zhu X, Wen W, Kodzius R, Gong X. Synthesis of Biomaterials Utilizing Microfluidic Technology. Genes (Basel) 2018; 9:E283. [PMID: 29874840 PMCID: PMC6027171 DOI: 10.3390/genes9060283] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 12/16/2022] Open
Abstract
Recently, microfluidic technologies have attracted an enormous amount of interest as potential new tools for a large range of applications including materials synthesis, chemical and biological detection, drug delivery and screening, point-of-care diagnostics, and in-the-field analysis. Their ability to handle extremely small volumes of fluids is accompanied by additional benefits, most notably, rapid and efficient mass and heat transfer. In addition, reactions performed within microfluidic systems are highly controlled, meaning that many advanced materials, with uniform and bespoke properties, can be synthesized in a direct and rapid manner. In this review, we discuss the utility of microfluidic systems in the synthesis of materials for a variety of biological applications. Such materials include microparticles or microcapsules for drug delivery, nanoscale materials for medicine or cellular assays, and micro- or nanofibers for tissue engineering.
Collapse
Affiliation(s)
- Xiaohong Wang
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| | - Jinfeng Liu
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| | - Peizhou Wang
- Advanced Placement of Chemistry Program, International Department, Huzhou New Century Foreign Language School, Huzhou 313100, China.
| | | | - Lingyan Feng
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| | - Xiaoli Zhu
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Weijia Wen
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| | - Rimantas Kodzius
- Mathematics and Natural Sciences Department, the American University of Iraq, Sulaimani, Sulaymaniyah 46001, Iraq.
- Faculty of Medicine, Ludwig Maximilian University of Munich (LMU), 80539 Munich, Germany.
- Faculty of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany.
| | - Xiuqing Gong
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| |
Collapse
|