1
|
Feng J, Nie C, Xie E, Thongrom B, Reiter-Scherer V, Block S, Herrmann A, Quaas E, Sieben C, Haag R. Sulfated Polyglycerol-Modified Hydrogels for Binding HSV-1 and RSV. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37903283 DOI: 10.1021/acsami.3c09553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Heparan sulfate (HS) is a highly sulfated polysaccharide on the surface of mammalian cells and in the extracellular matrix and has been found to be important for virus binding and infection. In this work, we designed synthetic hydrogels with viral binding and deactivation activities through the postfunctionalization of an HS-mimicking polyelectrolyte and alkyl chains. Three polyglycerol-based hydrogels were prepared as substrates and postfunctionalized by sulfated linear polyglycerol (lPGS) via thiol-ene click reaction. The viral binding properties were studied using herpes simplex virus type 1 (HSV-1) and respiratory syncytial virus (RSV). The effect of hydrogel types and molecular weight (Mw) of conjugated lPGS on viral binding properties was also assessed, and promising binding activities were observed in all lPGS-functionalized samples. Further coupling of 11 carbons long alkyl chains to the hydrogel revealed virucidal properties caused by destruction of the viral envelope, as shown by atomic force microscopy (AFM) imaging.
Collapse
Affiliation(s)
- Jun Feng
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Chuanxiong Nie
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Enyu Xie
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig 38124, Germany
| | - Boonya Thongrom
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Valentin Reiter-Scherer
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Stephan Block
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Andreas Herrmann
- Institute of Chemistry and Biochemistry, SupraFAB, Freie Universität Berlin, Altensteinstr. 23a,14195 Berlin, Germany
| | - Elisa Quaas
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Christian Sieben
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig 38124, Germany
- Institute of Genetics, Technische Universität Braunschweig, Spielmannstr. 7, Braunschweig 38106, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
2
|
Okada N, Nakatsuka S, Kawasumi R, Gotoh H, Yasuda N, Hatakeyama T. Synthesis and Late-Stage Diversification of BN-Embedded Dibenzocorannulenes as Efficient Fluorescence Organic Light-Emitting Diode Emitters. Chemistry 2023; 29:e202202627. [PMID: 36260535 DOI: 10.1002/chem.202202627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 11/07/2022]
Abstract
We report the synthesis and late-stage diversification of a new class of hetero-buckybowl, BN-embedded dibenzocorannulenes (B2 N2 -DBCs). The synthesis is achieved via one-shot halogenative borylation, comprising the nitrogen-directed haloboration of alkyne and an intramolecular bora-Friedel-Crafts reaction, which provides BN-embedded dibenzocorannulene possessing two bromo substituents (B2 N2 -DBC-Br). B2 N2 -DBC-Br undergoes diversification via coupling reactions to provide a variety of arylated derivatives (B2 N2 -DBC-R), exhibiting strong blue fluorescence. An organic light-emitting diode (OLED) employing one of the derivatives as an emitter exhibited a high external quantum efficiency of 6.6 % and long operational lifetime of 907 h at an initial luminance of 1000 cd m-2 , indicating the significant potential for the development of efficient and stable hetero-buckybowl-based OLED materials.
Collapse
Affiliation(s)
- Naoya Okada
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Soichiro Nakatsuka
- Department of Chemistry, School of Science, Kyoto University Sakyo-ku, Kyoto, 606-8502, Japan
| | - Ryosuke Kawasumi
- SK JNC Japan, Co. Ltd., 5-1 Goi Kaigan, Ichihara, Chiba, 290-8551, Japan
| | - Hajime Gotoh
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Nobuhiro Yasuda
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Takuji Hatakeyama
- Department of Chemistry, School of Science, Kyoto University Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
3
|
Kise K, Ooi S, Saito H, Yorimitsu H, Osuka A, Tanaka T. Five‐Fold Symmetric Pentaindolo‐ and Pentakis(benzoindolo)Corannulenes: Unique Structural Dynamics Derived from the Combination of Helical and Bowl Inversions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Koki Kise
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Shota Ooi
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Hayate Saito
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Hideki Yorimitsu
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Atsuhiro Osuka
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Takayuki Tanaka
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
4
|
Kunioka N, Furukawa M, Hashimoto S, Tahara K. Synthesis, electronic properties, and self-assembly of an alkylated dibenzo(biscorannulene). Org Chem Front 2022. [DOI: 10.1039/d2qo00428c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and properties of a novel fully-conjugated biscorannulene derivative were reported. This biscorannulene derivative shows self-association in solution and adopts a stacked geometry in crystal.
Collapse
Affiliation(s)
- Natsumi Kunioka
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Masazumi Furukawa
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Shingo Hashimoto
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Kazukuni Tahara
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| |
Collapse
|
5
|
Tanaka T, Kise K. Non-Planar Polycyclic Aromatic Molecules Including Heterole Units. HETEROCYCLES 2022. [DOI: 10.3987/rev-22-982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Kise K, Ooi S, Saito H, Yorimitsu H, Osuka A, Tanaka T. Five-Fold Symmetric Pentaindolo- and Pentakis(benzoindolo)Corannulenes: Unique Structural Dynamics Derived from the Combination of Helical and Bowl Inversions. Angew Chem Int Ed Engl 2021; 61:e202112589. [PMID: 34738305 DOI: 10.1002/anie.202112589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 01/13/2023]
Abstract
Peripherally π-extended corannulenes bearing quintuple azahelicene units, 10 and 11, were prepared and their dynamic behaviors were studied experimentally and theoretically. The fused corannulenes were synthesized from sym-pentabromocorannulene in three steps. X-Ray diffraction analysis for 10 displayed a conformer possessing a P(M) bowl chirality and a PPMPM (PMPMM) helical chirality, which was found to be the most stable conformer(s). Variable-temperature NMR measurements of 10 and 11 revealed that their structural isomers can be interconvertible in solution, depending on the steric congestion around the helical scaffolds. Automated search for conformers in the equilibrium and transition states by Artificial Force Induced Reaction (AFIR) method revealed their interconversion networks, including bowl-inversion and helical-inversion. This analysis indicated that the co-existing corannulene and azahelicene moieties influence the conformational dynamics, which leads to mitigation of the activation energy barriers for isomerization.
Collapse
Affiliation(s)
- Koki Kise
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shota Ooi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hayate Saito
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takayuki Tanaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
7
|
Sai Bhavani K, Anusha T, Stuparu MC, Brahman PK. Synthesis and characterization of palladium nanoparticles-corannulene nanocomposite: An anode electrocatalyst for direct oxidation of methanol in alkaline medium. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Stuparu MC. Corannulene: A Curved Polyarene Building Block for the Construction of Functional Materials. Acc Chem Res 2021; 54:2858-2870. [PMID: 34115472 DOI: 10.1021/acs.accounts.1c00207] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This Account describes a body of research in the design and synthesis of molecular materials prepared from corannulene. Corannulene (C20H10) is a molecular bowl of carbon that can be visualized as the hydrogen-terminated cap of buckminsterfullerene. Due to this structural resemblance, it is often referred to as a buckybowl. The bowl can invert, accept electrons, and form host-guest complexes. Due to these characteristics, corannulene presents a useful building block in materials chemistry.In macromolecular science, for example, assembly of amphiphilic copolymers carrying a hydrophobic corannulene block enables micelle formation in water. Such micellar nanostructures can host large amounts of fullerenes (C60 and C70) in their corannulene-rich core through complementarity of the curved π-surfaces. Covalent stabilization of the assembled structures then leads to the formation of robust water-soluble fullerene nanoparticles. Alternatively, use of corannulene in a polymer backbone allows for the preparation of electronic and redox-active materials. Finally, a corannulene core enables polymer chains to respond to solution temperature changes and form macroscopic fibrillar structures. In this way, the corannulene motif brings a variety of properties to the polymeric materials.In the design of non-fullerene electron acceptors, corannulene is emerging as a promising aromatic scaffold. In this regard, placement of sulfur atoms along the rim can cause an anodic shift in the molecular reduction potential. Oxidation of the sulfur atoms can further enhance this shift. Thus, a variation in the number, placement, and oxidation state of the sulfur atoms can create electron acceptors of tunable and high strengths. An advantage of this molecular design is that material solubility can also be tuned. For example, water-soluble electron acceptors can be created and are shown to improve the moisture resistance of perovskite solar cells.Host-guest complexation between corannulene and γ-cyclodextrin under flow conditions of a microfluidic chamber allows for the preparation of water-soluble nanoparticles. Due to an oligosaccharide-based sugarcoat, the nanoparticles are biocompatible while the corannulene component renders them active toward nonlinear absorption and emission properties. Together, these attributes allow the nanoparticles to be used as two-photon imaging probes in cancer cells.Finally, aromatic extension of the corannulene nucleus is seen as a potential route to nonplanar nanographenes. Typically, such endeavors rely upon gas-phase synthesis or metal-catalyzed coupling protocols. Recently, two new approaches have been established in this regard. Photochemically induced oxidative cyclization, the Mallory reaction, is shown to be a general method to access corannulenes with an extended π-framework. Alternatively, solid-state ball milling can achieve this goal in a highly efficient manner. These new protocols bring practicality and sustainability to the rapidly growing area of corannulene-based nanographenes.In essence, corannulene presents a unique building block in the construction of functional materials. In this Account, we trace our own efforts in the field and point toward the challenges and future prospects of this area of research.
Collapse
Affiliation(s)
- Mihaiela C. Stuparu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21-Nanyang Link, 637371 Singapore
| |
Collapse
|
9
|
Khuntia H, Bhavani KS, Anusha T, Trinadh T, Stuparu MC, Brahman PK. Synthesis and characterization of corannulene-metal-organic framework support material for palladium catalyst: An excellent anode material for accelerated methanol oxidation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Kise K, Ooi S, Osuka A, Tanaka T. Five‐fold‐symmetric Pentabromo‐ and Pentaiodo‐corannulenes: Useful Precursors of Heteroatom‐substituted Corannulenes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Koki Kise
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Shota Ooi
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Atsuhiro Osuka
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Takayuki Tanaka
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
11
|
Barát V, Stuparu MC. Corannulene Chalcogenides. Chem Asian J 2020; 16:20-29. [PMID: 33085173 DOI: 10.1002/asia.202001140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/20/2020] [Indexed: 01/09/2023]
Abstract
The introduction of chalcogen atoms into a polycyclic aromatic hydrocarbon structure is an established method to tune material properties. In the context of corannulene (C20 H10 ), a fragment of fullerene C60 , such structural adjustments have given rise to an emerging class of functional and responsive molecular materials. In this minireview, our aim is to discuss the synthesis and properties of such chalcogen (sulfur, selenium, and tellurium) derivatives of corannulene.
Collapse
Affiliation(s)
- Viktor Barát
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore, 21-Nanyang Link, 637371, Singapore
| | - Mihaiela C Stuparu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore, 21-Nanyang Link, 637371, Singapore
| |
Collapse
|
12
|
Solel E, Pappo D, Reany O, Mejuch T, Gershoni-Poranne R, Botoshansky M, Stanger A, Keinan E. Flat corannulene: when a transition state becomes a stable molecule. Chem Sci 2020; 11:13015-13025. [PMID: 34094486 PMCID: PMC8163244 DOI: 10.1039/d0sc04566g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
Flat corannulene has been considered so far only as a transition state of the bowl-to-bowl inversion process. This study was driven by the prediction that substituents with strong steric repulsion could destabilize the bowl-shaped conformation of this molecule to such an extent that the highly unstable planar geometry would become an isolable molecule. To examine the substituents' effect on the corannulene bowl depth, optimized structures for the highly-congested decakis(t-butylsulfido)corannulene were calculated. The computations, performed with both the M06-2X/def2-TZVP and the B3LYP/def2-TZVP methods (the latter with and without Grimme's D3 dispersion correction), predict that this molecule can achieve two minimum structures: a flat carbon framework and a bowl-shaped structure, which are very close in energy. This rather unusual compound was easily synthesized from decachlorocorannulene under mild reaction conditions, and X-ray crystallographic studies gave similar results to the theoretical predictions. This compound crystallized in two different polymorphs, one exhibiting a completely flat corannulene core and the other having a bowl-shaped conformation.
Collapse
Affiliation(s)
- Ephrath Solel
- The Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City Haifa 3200001 Israel
| | - Doron Pappo
- Department of Chemistry, Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
| | - Ofer Reany
- Avinoam Adam Department of Natural Sciences, The Open University of Israel 1 University Road, P.O. Box 808 Ra'anana 4353701 Israel
| | - Tom Mejuch
- The Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City Haifa 3200001 Israel
| | - Renana Gershoni-Poranne
- The Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City Haifa 3200001 Israel
| | - Mark Botoshansky
- The Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City Haifa 3200001 Israel
| | - Amnon Stanger
- The Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City Haifa 3200001 Israel
| | - Ehud Keinan
- The Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City Haifa 3200001 Israel
| |
Collapse
|
13
|
Barát V, Stuparu MC. Selenium and Tellurium Derivatives of Corannulene: Serendipitous Discovery of a One-Dimensional Stereoregular Coordination Polymer Crystal Based on Te-O Backbone and Side-Chain Aromatic Array. Chemistry 2020; 26:15135-15139. [PMID: 32935415 DOI: 10.1002/chem.202003989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Indexed: 12/28/2022]
Abstract
Monobromo-, tetrabromo-, and pentachloro-corannulene are subjected to nucleophilic substitution reactions with tolyl selenide and phenyl telluride-based nucleophiles generated in situ from the corresponding dichalcogenides. In the case of selenium nucleophile, the reaction provides moderate yields (52-77 %) of the targeted corannulene selenoethers. A subsequent oxidation of the selenium atoms proceeds smoothly to furnish corannulene selenones in 81-93 % yield. In the case of tellurides, only monosubstitution of the corannulene scaffold could be achieved albeit with concomitant oxidation of the tellerium atom. Unexpectedly, this monotelluroxide derivative of corannulene (RR'Te=O, R=Ph, R'=corannulene) is observed to form a linear coordination polymer chain in the crystalline state. In this chain, Te-O constitutes the polymer backbone around which the aromatic groups (R and R') arrange as polymer side-chains. The polymer crystal is stabilized through intramolecular π-π stacking interactions of the side-chains and intermolecular hydrogen and halogen bonding interactions with the solvent (chloroform) molecules. Interestingly, each diad of the polymer chain is racemic. Therefore, in terms of stereoregularity, the polymer chain can be described as syndiotactic.
Collapse
Affiliation(s)
- Viktor Barát
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore, 21-Nanyang Link, 637371, Singapore, Singapore
| | - Mihaiela C Stuparu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore, 21-Nanyang Link, 637371, Singapore, Singapore.,School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| |
Collapse
|
14
|
Oh J, Hong J, Khan A. Ethylene glycol-rich thermosensitive poly(ß-hydroxyl amine)s. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1761259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Junki Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul, Korea
| | - Jeonghui Hong
- Department of Chemical and Biological Engineering, Korea University, Seoul, Korea
| | - Anzar Khan
- Department of Chemical and Biological Engineering, Korea University, Seoul, Korea
| |
Collapse
|
15
|
Xie F, Finney NS. Synthesis and optical properties of mono- and diaminocorannulenes. Chem Commun (Camb) 2020; 56:10525-10528. [DOI: 10.1039/d0cc03853a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple synthesis of aminocorannulenes leads to the discovery of surprising properties: tunable visible emission; solid-state fluorescence; water-soluble fluorescent corannulenes.
Collapse
Affiliation(s)
- Feifei Xie
- School of Pharmaceutical Sciences and Technology
- Health Sciences Platform
- Tianjin University
- Tianjin
- China
| | - Nathaniel S. Finney
- School of Pharmaceutical Sciences and Technology
- Health Sciences Platform
- Tianjin University
- Tianjin
- China
| |
Collapse
|
16
|
Blockhaus T, Klein-Heßling C, Zehetmaier PM, Zott FL, Jangra H, Karaghiosoff K, Sünkel K. Ferrocenes with a Persulfurated Cyclopentadienyl Ring: Synthesis, Structural Studies, and Optoelectronic Properties. Chemistry 2019; 25:12684-12688. [PMID: 31273837 PMCID: PMC6851660 DOI: 10.1002/chem.201903033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Indexed: 11/10/2022]
Abstract
Persulfurated arenes are a fascinating class of functional molecules with a wide range of potential applications. Ferrocenes are also a multifaceted class of aromatic compounds that can easily be finetuned for an enormous variety of desired properties. A combination of both substance classes might yield an even wider field of applications. Herein, we describe the synthesis of two ferrocenes with one persulfurated cyclopentadienyl ring [C5 (SR)5 ], with R=Me or Ph, together with their crystal structures, optical, and electrochemical properties. Both crystal structures show significant intramolecular sulfur-iron interactions as well as weak intermolecular sulfur- contacts. Cyclovoltammetry of the [C5 (SPh)5 ] compound shows a high oxidation potential of 651 mV vs. FcH/FcH+ .
Collapse
Affiliation(s)
- Tobias Blockhaus
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 9, 81377, Munich, Germany
| | - Christian Klein-Heßling
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 9, 81377, Munich, Germany
| | - Peter M Zehetmaier
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 9, 81377, Munich, Germany
| | - Fabian L Zott
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 9, 81377, Munich, Germany
| | - Harish Jangra
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 9, 81377, Munich, Germany
| | - Konstantin Karaghiosoff
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 9, 81377, Munich, Germany
| | - Karlheinz Sünkel
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 9, 81377, Munich, Germany
| |
Collapse
|
17
|
Rogachev AY, Liu S, Xu Q, Li J, Zhou Z, Spisak SN, Wei Z, Petrukhina MA. Placing Metal in the Bowl: Does Rim Alkylation Matter? Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00837] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrey Yu. Rogachev
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Shuyang Liu
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Qi Xu
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Jingbai Li
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Zheng Zhou
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Sarah N. Spisak
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Zheng Wei
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Marina A. Petrukhina
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
18
|
Rajeshkumar V, Neelamegam C, Anandan S. A one-pot metal-free protocol for the synthesis of chalcogenated furans from 1,4-enediones and thiols. Org Biomol Chem 2019; 17:982-991. [DOI: 10.1039/c8ob03051k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition-metal-free synthesis of chalcogenated furans through the sequential thiol-Michael/Paal–Knorr reaction of 1,4-enediones in the presence of a catalytic amount of p-toluene sulfonic acid has been developed.
Collapse
Affiliation(s)
| | | | - Sambandam Anandan
- Department of Chemistry
- National Institute of Technology
- Tiruchirappalli
- India
| |
Collapse
|
19
|
Haupt A, Lentz D. Corannulenes with Electron-Withdrawing Substituents: Synthetic Approaches and Resulting Structural and Electronic Properties. Chemistry 2018; 25:3440-3454. [PMID: 30238526 DOI: 10.1002/chem.201803927] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Indexed: 11/10/2022]
Abstract
Corannulene is a multifaceted polyaromatic compound. It has many interesting properties; for example, it has a bowl-shaped molecular structure that, in addition, undergoes a dynamic inversion process. It has attracted much attention within the last decades. This is not only due to its structural properties but also its electronic properties and its various potential applications to materials chemistry. Here, synthetic approaches towards corannulene derivatives with electron-withdrawing substituents are summarized. This includes both selective and unselective methods. Further, the electrochemical properties, that is, the reduction potentials, are analyzed and compared. As a main conclusion, one can state that the electron affinity depends roughly linearly on the number of substituents. Finally, the structural behavior of the substituted buckybowls in the solid state is highlighted. This also allows a general statement about the influence of the electronic and steric nature of substituents on the molecular structures and the solid-state packing of the corannulene derivatives.
Collapse
Affiliation(s)
- Axel Haupt
- Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie, Fabeckstrasse 34-36, D-14195, Berlin, Germany
| | - Dieter Lentz
- Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie, Fabeckstrasse 34-36, D-14195, Berlin, Germany
| |
Collapse
|
20
|
Saha M, Bao YH, Zhou C. A Diindole-fused Corannulene Imide Derivative: Synthesis and Properties. CHEM LETT 2018. [DOI: 10.1246/cl.180680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mithu Saha
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yue-Hua Bao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Cen Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
21
|
Nestoros E, Stuparu MC. Corannulene: a molecular bowl of carbon with multifaceted properties and diverse applications. Chem Commun (Camb) 2018; 54:6503-6519. [DOI: 10.1039/c8cc02179a] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The chemistry, properties and applications of corannulene are discussed.
Collapse
Affiliation(s)
- Eleni Nestoros
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences, and School of Materials Science and Engineering
- Nanyang Technological University
- 637371-Singapore
- Singapore
| | - Mihaiela C. Stuparu
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences, and School of Materials Science and Engineering
- Nanyang Technological University
- 637371-Singapore
- Singapore
| |
Collapse
|