1
|
Kispert S, Liguori M, Velikaneye C, Qiu C, Wang S, Zhang N, Gu H. Role of Staphylococcus aureus's Buoyant Density in the Development of Biofilm Associated Antibiotic Susceptibility. Microorganisms 2024; 12:759. [PMID: 38674703 PMCID: PMC11052065 DOI: 10.3390/microorganisms12040759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Biofilms are clusters of microorganisms that form at various interfaces, including those between air and liquid or liquid and solid. Due to their roles in enhancing wastewater treatment processes, and their unfortunate propensity to cause persistent human infections through lowering antibiotic susceptibility, understanding and managing bacterial biofilms is of paramount importance. A pivotal stage in biofilm development is the initial bacterial attachment to these interfaces. However, the determinants of bacterial cell choice in colonizing an interface first and heterogeneity in bacterial adhesion remain elusive. Our research has unveiled variations in the buoyant density of free-swimming Staphylococcus aureus cells, irrespective of their growth phase. Cells with a low cell buoyant density, characterized by fewer cell contents, exhibited lower susceptibility to antibiotic treatments (100 μg/mL vancomycin) and favored biofilm formation at air-liquid interfaces. In contrast, cells with higher cell buoyant density, which have richer cell contents, were more vulnerable to antibiotics and predominantly formed biofilms on liquid-solid interfaces when contained upright. Cells with low cell buoyant density were not able to revert to a more antibiotic sensitive and high cell buoyant density phenotype. In essence, S. aureus cells with higher cell buoyant density may be more inclined to adhere to upright substrates.
Collapse
Affiliation(s)
- Sarah Kispert
- Department of Chemistry and Chemical Engineering & Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT 06516, USA
| | - Madison Liguori
- Department of Chemistry and Chemical Engineering & Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT 06516, USA
| | - Cody Velikaneye
- Department of Chemistry and Chemical Engineering & Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT 06516, USA
| | - Chong Qiu
- Department of Chemistry and Chemical Engineering & Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT 06516, USA
| | - Shue Wang
- Department of Chemistry and Chemical Engineering & Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT 06516, USA
| | - Nan Zhang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Huan Gu
- Department of Chemistry and Chemical Engineering & Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT 06516, USA
| |
Collapse
|
2
|
Xi Z, Zhang R, Kiessling F, Lammers T, Pallares RM. Role of Surface Curvature in Gold Nanostar Properties and Applications. ACS Biomater Sci Eng 2024; 10:38-50. [PMID: 37249042 DOI: 10.1021/acsbiomaterials.3c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Gold nanostars (AuNSs) are nanoparticles with intricate three-dimensional structures and shape-dependent optoelectronic properties. For example, AuNSs uniquely display three distinct surface curvatures, i.e. neutral, positive, and negative, which provide different environments to adsorbed ligands. Hence, these curvatures are used to introduce different surface chemistries in nanoparticles. This review summarizes and discusses the role of surface curvature in AuNS properties and its impact on biomedical and chemical applications, including surface-enhanced Raman spectroscopy, contrast agent performance, and catalysis. We examine the main synthetic approaches to generate AuNSs, control their morphology, and discuss their benefits and drawbacks. We also describe the optical characteristics of AuNSs and discuss how these depend on nanoparticle morphology. Finally, we analyze how AuNS surface curvature endows them with properties distinctly different from those of other nanoparticles, such as strong electromagnetic fields at the tips and increased hydrophilic environments at the indentations, together making AuNSs uniquely useful for biosensing, imaging, and local chemical manipulation.
Collapse
Affiliation(s)
- Zhongqian Xi
- Biohybrid Nanomedical Materials Group, Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Rui Zhang
- Biohybrid Nanomedical Materials Group, Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Roger M Pallares
- Biohybrid Nanomedical Materials Group, Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| |
Collapse
|
3
|
Jia J, Metzkow N, Park SM, Wu YL, Sample AD, Diloknawarit B, Jung I, Odom TW. Spike Growth on Patterned Gold Nanoparticle Scaffolds. NANO LETTERS 2023. [PMID: 38048438 DOI: 10.1021/acs.nanolett.3c03778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
This work reports a scaffold-templated, bottom-up synthesis of 3D anisotropic nanofeatures on periodic arrays of gold nanoparticles (AuNPs). Our method relies on substrate-bound AuNPs as large seeds with hemispherical shapes and smooth surfaces after the thermal annealing of as-fabricated particles. Spiky features were grown by immersing the patterned AuNPs into a growth solution consisting of a gold salt and Good's buffer; the number and length of spikes could be tuned by changing the solution pH and buffer concentration. Intermediate structures that informed the growth mechanism were characterized as a function of time by correlating the optical properties and spike features. Large-area (cm2) spiky AuNP arrays exhibited surface-enhanced Raman spectroscopy enhancement that was associated with increased numbers of high-aspect-ratio spikes formed on the AuNP seeds.
Collapse
Affiliation(s)
- Jin Jia
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Nadia Metzkow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sang-Min Park
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yuhao Leo Wu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Alexander D Sample
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Bundit Diloknawarit
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Insub Jung
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Oliveira MJ, Dalot A, Fortunato E, Martins R, Byrne HJ, Franco R, Águas H. Microfluidic SERS devices: brightening the future of bioanalysis. DISCOVER MATERIALS 2022; 2:12. [PMID: 36536830 PMCID: PMC9751519 DOI: 10.1007/s43939-022-00033-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
A new avenue has opened up for applications of surface-enhanced Raman spectroscopy (SERS) in the biomedical field, mainly due to the striking advantages offered by SERS tags. SERS tags provide indirect identification of analytes with rich and highly specific spectral fingerprint information, high sensitivity, and outstanding multiplexing potential, making them very useful in in vitro and in vivo assays. The recent and innovative advances in nanomaterial science, novel Raman reporters, and emerging bioconjugation protocols have helped develop ultra-bright SERS tags as powerful tools for multiplex SERS-based detection and diagnosis applications. Nevertheless, to translate SERS platforms to real-world problems, some challenges, especially for clinical applications, must be addressed. This review presents the current understanding of the factors influencing the quality of SERS tags and the strategies commonly employed to improve not only spectral quality but the specificity and reproducibility of the interaction of the analyte with the target ligand. It further explores some of the most common approaches which have emerged for coupling SERS with microfluidic technologies, for biomedical applications. The importance of understanding microfluidic production and characterisation to yield excellent device quality while ensuring high throughput production are emphasised and explored, after which, the challenges and approaches developed to fulfil the potential that SERS-based microfluidics have to offer are described.
Collapse
Affiliation(s)
- Maria João Oliveira
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and, CEMOP/UNINOVA, Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Dalot
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and, CEMOP/UNINOVA, Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Elvira Fortunato
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and, CEMOP/UNINOVA, Caparica, Portugal
| | - Rodrigo Martins
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and, CEMOP/UNINOVA, Caparica, Portugal
| | - Hugh J. Byrne
- FOCAS Research Institute, Technological University Dublin, Camden Row, Dublin 8, Dublin, Ireland
| | - Ricardo Franco
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Hugo Águas
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and, CEMOP/UNINOVA, Caparica, Portugal
| |
Collapse
|
5
|
Le N, Boskovic TJM, Allard MM, Nick KE, Kwon SR, Perry CC. Gold Nanostar Characterization by Nanoparticle Tracking Analysis. ACS OMEGA 2022; 7:44677-44688. [PMID: 36530291 PMCID: PMC9753108 DOI: 10.1021/acsomega.2c03275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/06/2022] [Indexed: 06/17/2023]
Abstract
We demonstrate the application of nanoparticle tracking analysis (NTA) for the quantitative characterization of gold nanostars (GNSs). GNSs were synthesized by the seed-mediated growth method using triblock copolymer (TBP) gold nanoparticles (GNPs). These GNPs (≈ 10 nm) were synthesized from Au3+ (≈ 1 mM) in aqueous F127 (w/v 5%) containing the co-reductant ascorbic acid (≈ 2 mM). The GNS tip-to-core aspect ratio (AR) decreased when higher concentrations of GNPs were added to the growth solution. The AR dependency of GNSs on Au3+/Au(seed) concentration ratio implies that growth is partly under kinetic control. NTA measured GNS sizes, concentrations, and relative scattering intensities. Molar absorption coefficients ∼ 109-1010 M-1 cm-1 (ε400 nm) for each batch of GNSs were determined using the combination of extinction spectra and NTA concentrations for heterogeneous samples. NTA in combination with UV-vis was used to derive the linear relationships: (1) hydrodynamic size versus localized surface plasmon peak maxima; (2) ε400 nm versus localized surface plasmon peak maxima; (3) ε400 nm versus hydrodynamic size. NTA for quantitative characterization of anisotropic nanoparticles could lead to future applications, including heterogeneous colloidal catalysis.
Collapse
Affiliation(s)
- Natasha
T. Le
- Department
of Basic Sciences, School of Medicine, Loma
Linda University, 11085 Campus Street, Loma Linda, California92350, United States
| | - Timothy J. M. Boskovic
- Department
of Basic Sciences, School of Medicine, Loma
Linda University, 11085 Campus Street, Loma Linda, California92350, United States
| | - Marco M. Allard
- Department
of Chemistry and Biochemistry, College of Arts and Sciences, La Sierra University, 4500 Riverwalk Parkway, Riverside, California92505, United States
| | - Kevin E. Nick
- Department
of Basic Sciences, School of Medicine, Loma
Linda University, 11085 Campus Street, Loma Linda, California92350, United States
| | - So Ran Kwon
- School
of Dentistry, Loma Linda University, 11092 Anderson Street, Loma Linda, California92350, United States
| | - Christopher C. Perry
- Department
of Basic Sciences, School of Medicine, Loma
Linda University, 11085 Campus Street, Loma Linda, California92350, United States
| |
Collapse
|
6
|
Hu K, Qin L, Ren X, Guo Z, Wang S, Hu Y. Deoxyribonucleic acid-guided dual-mode electro-chemical/chemiluminescent platform for sensitive and selective examination of Pb2+. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Yin Y, Shen H. Common methods in mitochondrial research (Review). Int J Mol Med 2022; 50:126. [PMID: 36004457 PMCID: PMC9448300 DOI: 10.3892/ijmm.2022.5182] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/09/2022] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yiyuan Yin
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Haitao Shen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
8
|
Kim W, Bang A, Kim S, Lee GJ, Kim YH, Choi S. Adiponectin-targeted SERS immunoassay biosensing platform for early detection of gestational diabetes mellitus. Biosens Bioelectron 2022; 213:114488. [PMID: 35738214 DOI: 10.1016/j.bios.2022.114488] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/23/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
Abstract
The anisotropic gold nanotriangles (AuNTs) were synthesized by a fast seedless growth process. The high-yield monodispersed AuNT colloids were obtained through a purification process based on depletion-induced interactions. AuNTs were modulated with a localized surface plasmon resonance (LSPR) peak of 638 nm wavelength coherent with the Raman excitation light. However, from finite element computation results, the AuNT clusters showed better performance for the 785 nm laser source due to a red shift in their LSPR properties, hence it was selected for the surface-enhanced Raman scattering (SERS) immunoassay. A self-assembly strategy using a thiol group and ON-OFF strategy in the heat map was performed to ensure the stability of SERS immunoassay platform. The sandwich SERS immunoassay biosensor platform for adiponectin detection demonstrated a wide assay range (10-15-10-6 g/mL), good reliability (R2 = 0.994, clinically relevant range), femto-scale limit of detection (3.0 × 10-16 g/mL), and excellent selectivity without interference from other biomarkers. This showed the possibility of effectively detecting adiponectin levels in the biofluids of pregnant women. Therefore, our technology is the first to quantitatively detect adiponectin based on SERS technology for early detection of gestational diabetes mellitus and has the potential to be used as a clinical biosensor capable of diagnosing various obstetric diseases during early pregnancy.
Collapse
Affiliation(s)
- Wansun Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ayoung Bang
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Soogeun Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Gi-Ja Lee
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yeon-Hee Kim
- Department of Obstetrics & Gynecology, Uijeongbu St Mary's Hospital, College of Medicine, The Catholic University of Korea, Gyeonggi-do, 11765, Republic of Korea.
| | - Samjin Choi
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
9
|
Molina NY, Pungsrisai T, O'Dell ZJ, Paranzino B, Willets KA. The Hidden Role of the Supporting Electrode for Creating Heterogeneity in Single Entity Electrochemistry. ChemElectroChem 2022. [DOI: 10.1002/celc.202200245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Natalia Y. Molina
- Department of Chemistry Temple University 1901N. 13th Street Philadelphia PA 19122 USA
| | - Tipsiri Pungsrisai
- Department of Chemistry Temple University 1901N. 13th Street Philadelphia PA 19122 USA
| | - Zachary J. O'Dell
- Department of Chemistry Temple University 1901N. 13th Street Philadelphia PA 19122 USA
| | - Bianca Paranzino
- Department of Chemistry Temple University 1901N. 13th Street Philadelphia PA 19122 USA
| | - Katherine A. Willets
- Department of Chemistry Temple University 1901N. 13th Street Philadelphia PA 19122 USA
| |
Collapse
|
10
|
Choo P, Arenas-Esteban D, Jung I, Chang WJ, Weiss EA, Bals S, Odom TW. Investigating Reaction Intermediates during the Seedless Growth of Gold Nanostars Using Electron Tomography. ACS NANO 2022; 16:4408-4414. [PMID: 35239309 DOI: 10.1021/acsnano.1c10669] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Good's buffers can act both as nucleating and shape-directing agents during the synthesis of anisotropic gold nanostars (AuNS). Although different Good's buffers can produce AuNS shapes with branches that are oriented along specific crystallographic directions, the mechanism is not fully understood. This paper reports how an analysis of the intermediate structures during AuNS synthesis from HEPES, EPPS, and MOPS Good's buffers can provide insight into the formation of seedless AuNS. Electron tomography of AuNS structures quenched at early times (minutes) was used to characterize the morphology of the incipient seeds, and later times were used to construct the growth maps. Through this approach, we identified how the crystallinity and shape of the first structures synthesized with different Good's buffers determine the final AuNS morphologies.
Collapse
Affiliation(s)
- Priscilla Choo
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Daniel Arenas-Esteban
- EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Insub Jung
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Woo Je Chang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Emily A Weiss
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sara Bals
- EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Andreiuk B, Nicolson F, Clark LM, Panikkanvalappil SR, Kenry, Rashidian M, Harmsen S, Kircher MF. Design and synthesis of gold nanostars-based SERS nanotags for bioimaging applications. Nanotheranostics 2022; 6:10-30. [PMID: 34976578 PMCID: PMC8671966 DOI: 10.7150/ntno.61244] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) nanotags hold a unique place among bioimaging contrast agents due to their fingerprint-like spectra, which provide one of the highest degrees of detection specificity. However, in order to achieve a sufficiently high signal intensity, targeting capabilities, and biocompatibility, all components of nanotags must be rationally designed and tailored to a specific application. Design parameters include fine-tuning the properties of the plasmonic core as well as optimizing the choice of Raman reporter molecule, surface coating, and targeting moieties for the intended application. This review introduces readers to the principles of SERS nanotag design and discusses both established and emerging protocols of their synthesis, with a specific focus on the construction of SERS nanotags in the context of bioimaging and theranostics.
Collapse
Affiliation(s)
- Bohdan Andreiuk
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Fay Nicolson
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Louise M. Clark
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | | | - Kenry
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Stefan Harmsen
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Moritz F. Kircher
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Radiology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 022115, USA
| |
Collapse
|
12
|
Magnetic/flow controlled continuous size fractionation of magnetic nanoparticles using simulated moving bed chromatography. Talanta 2021; 240:123160. [PMID: 34954615 DOI: 10.1016/j.talanta.2021.123160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 11/23/2022]
Abstract
The use of magnetic nanoparticles shows a steadily increasing technical importance. Particularly in medical technology disciplines such as cancer treatment, the potential of these special particles is increasing rapidly. Magnetic nanoparticles are particles with a submicron size, and consist mostly of magnetite-containing composites. An important quality parameter of such particles is a particle size distribution as narrow as possible, which can only be obtained to a certain degree by synthesis. Apart from ultracentrifugation, there are so far only methods on an analytical scale to narrow the size distribution as a post-processing step. We present a method based on magnetic chromatography, by which high separation efficiencies at yields of up to 99.9% are achieved. The novel technique is based on a competition between the magnetic interaction of the nanoparticles and the separation matrix, as well as the hydrodynamic forces. Furthermore, the method is extended using a continuous mode, namely simulated moving bed chromatography, to obtain potent space-time yields of up to 2.94 g/(L*h). For those reasons, this novel continuous magnetic chromatography method offers high potential for large-scale refinement of magnetic nanoparticles while fulfilling sophisticated quality criteria for high-technology applications.
Collapse
|
13
|
Siegel AL, Baker GA. Bespoke nanostars: synthetic strategies, tactics, and uses of tailored branched gold nanoparticles. NANOSCALE ADVANCES 2021; 3:3980-4004. [PMID: 36132836 PMCID: PMC9417963 DOI: 10.1039/d0na01057j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/20/2021] [Indexed: 05/05/2023]
Abstract
Interest in branched colloidal gold nanosystems has gained increased traction due to the structures' outstanding optical and plasmonic properties, resulting in utilization in techniques such as surface-enhanced spectroscopy and bioimaging, as well as plasmon photocatalysis and photothermal therapy. The unique morphologies of nanostars, multipods, urchins, and other highly branched nanomaterials exhibit selective optical and crystallographic features accessible by alterations in the respective wet-chemical syntheses, opening a vast array of useful applications. Examination of discriminatory reaction conditions, such as seeded growth (e.g., single-crystalline vs. multiply twinned seeds), underpotential deposition of Ag(i), galvanic replacement, and the dual use of competing reducing and capping agents, is shown to reveal conditions necessary for the genesis of assorted branched nanoscale gold frameworks. By observing diverse approaches, including template-directed, microwave-mediated, and aggregation-based methods, among others, a schema of synthetic pathways can be constructed to provide a guiding roadmap for obtaining the full range of desired branched gold nanocrystals. This review presents a comprehensive summary of such advances and these nuances of the underlying procedures, as well as offering mechanistic insights into the directed nanoscale growth. We conclude the review by discussing various applications for these fascinating nanomaterials, particularly surface-enhanced Raman spectroscopy, photothermal and photodynamic therapy, catalysis, drug delivery, and biosensing.
Collapse
Affiliation(s)
- Asher L Siegel
- Department of Chemistry, University of Missouri-Columbia Columbia MO 65211 USA
| | - Gary A Baker
- Department of Chemistry, University of Missouri-Columbia Columbia MO 65211 USA
| |
Collapse
|
14
|
Wang YX, Li Y, Qiao SH, Kang J, Shen ZL, Zhang NN, An Z, Wang X, Liu K. Polymers via Reversible Addition-Fragmentation Chain Transfer Polymerization with High Thiol End-Group Fidelity for Effective Grafting-To Gold Nanoparticles. J Phys Chem Lett 2021; 12:4713-4721. [PMID: 33982560 DOI: 10.1021/acs.jpclett.1c01039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
End-group fidelity is the most important property for end-functional polymers. Compared to other controlled living polymerization methods, reversible addition-fragmentation chain transfer (RAFT) polymerization often yields polymers with a lower end-group fidelity, which greatly affects their applications. Herein, we report a staged-thermal-initiation RAFT polymerization for the synthesis of polymers with high thiol end-group fidelity and their high efficiencies for grafting to various gold nanoparticles (GNPs). We experimentally prove that the decrease of end-group fidelity with their molecular weight is caused by the gradual decomposition of the initiator rather than the degradation of chain-transfer agents. We show that the staged-thermal-initiation RAFT polymerization is more effective for synthesis of polymers with high thiol end-group fidelity. The grafting-to assays for various GNPs illustrate the positive correlation between the end-group fidelity of polymers and grafting-to efficiency. This work highlights the prospects for synthesis of high end-group fidelity polymers and their application in the preparation of nanoparticles-polymer hybrid materials.
Collapse
Affiliation(s)
- Yu-Xi Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Yang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Shi-Hui Qiao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Jing Kang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Zhi-Li Shen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Xiaosong Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Ontario N2L 3G1, Canada
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
15
|
Harder RA, Wijenayaka LA, Phan HT, Haes AJ. Tuning gold nanostar morphology for the SERS detection of uranyl. JOURNAL OF RAMAN SPECTROSCOPY : JRS 2021; 52:497-505. [PMID: 34177076 PMCID: PMC8225228 DOI: 10.1002/jrs.5994] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/02/2020] [Indexed: 05/04/2023]
Abstract
The impact of tunable morphologies and plasmonic properties of gold nanostars are evaluated for the surface enhanced Raman scattering (SERS) detection of uranyl. To do so, gold nanostars are synthesized with varying concentrations of the Good's buffer reagent, 2-[4-(2-hydroxyethyl)-1-piperazinyl]propanesulfonic acid (EPPS). EPPS plays three roles including as a reducing agent for nanostar nucleation and growth, as a nanostar-stabilizing agent for solution phase stability, and as a coordinating ligand for the capture of uranyl. The resulting nanostructures exhibit localized surface plasmon resonance (LSPR) spectra that contain two visible and one near-infrared plasmonic modes. All three optical features arise from synergistic coupling between the nanostar core and branches. The tunability of these optical resonances are correlated with nanostar morphology through careful transmission electron microscopy (TEM) analysis. As the EPPS concentration used during synthesis increases, both the length and aspect ratio of the branches increase. This causes the two lower energy extinction features to grow in magnitude and become ideal for the SERS detection of uranyl. Finally, uranyl binds to the gold nanostar surface directly and via sulfonate coordination. Changes in the uranyl signal are directly correlated to the plasmonic properties associated with the nanostar branches. Overall, this work highlights the synergistic importance of nanostar morphology and plasmonic properties for the SERS detection of small molecules.
Collapse
Affiliation(s)
- Rachel A. Harder
- University of Iowa, Department of Chemistry, Iowa City, Iowa USA
| | - Lahiru A. Wijenayaka
- University of Iowa, Department of Chemistry, Iowa City, Iowa USA
- Current Address: Department of Chemistry, The Open University of Sri Lanka, Nawala, 11222, Sri Lanka
| | - Hoa T. Phan
- University of Iowa, Department of Chemistry, Iowa City, Iowa USA
| | - Amanda J. Haes
- University of Iowa, Department of Chemistry, Iowa City, Iowa USA
| |
Collapse
|
16
|
Díaz SA, Choo P, Oh E, Susumu K, Klein WP, Walper SA, Hastman DA, Odom TW, Medintz IL. Gold Nanoparticle Templating Increases the Catalytic Rate of an Amylase, Maltase, and Glucokinase Multienzyme Cascade through Substrate Channeling Independent of Surface Curvature. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03602] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sebastián A. Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C., 20375, United States
| | - Priscilla Choo
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Eunkeu Oh
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- Jacobs Corporation, Hanover, Maryland 21076, United States
| | - William P. Klein
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C., 20375, United States
| | - Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C., 20375, United States
| | - David A. Hastman
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C., 20375, United States
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, Maryland 20742, United States
| | - Teri W. Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C., 20375, United States
| |
Collapse
|
17
|
Hu J, Liu T, Choo P, Wang S, Reese T, Sample AD, Odom TW. Single-Nanoparticle Orientation Sensing by Deep Learning. ACS CENTRAL SCIENCE 2020; 6:2339-2346. [PMID: 33376795 PMCID: PMC7760486 DOI: 10.1021/acscentsci.0c01252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 06/12/2023]
Abstract
This paper describes a computational imaging platform to determine the orientation of anisotropic optical probes under differential interference contrast (DIC) microscopy. We established a deep-learning model based on data sets of DIC images collected from metal nanoparticle optical probes at different orientations. This model predicted the in-plane angle of gold nanorods with an error below 20°, the inherent limit of the DIC method. Using low-symmetry gold nanostars as optical probes, we demonstrated the detection of in-plane particle orientation in the full 0-360° range. We also showed that orientation predictions of the same particle were consistent even with variations in the imaging background. Finally, the deep-learning model was extended to enable simultaneous prediction of in-plane and out-of-plane rotation angles for a multibranched nanostar by concurrent analysis of DIC images measured at multiple wavelengths.
Collapse
Affiliation(s)
- Jingtian Hu
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Tingting Liu
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Priscilla Choo
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Shengjie Wang
- Paul
G. Allen Center for Computer
Science & Engineering, University of
Washington, Seattle, Washington 98195, United States
| | - Thaddeus Reese
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Alexander D. Sample
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W. Odom
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| |
Collapse
|
18
|
Ortiz-Castillo JE, Gallo-Villanueva RC, Madou MJ, Perez-Gonzalez VH. Anisotropic gold nanoparticles: A survey of recent synthetic methodologies. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213489] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Demille TB, Hughes RA, Dominique N, Olson JE, Rouvimov S, Camden JP, Neretina S. Large-area periodic arrays of gold nanostars derived from HEPES-, DMF-, and ascorbic-acid-driven syntheses. NANOSCALE 2020; 12:16489-16500. [PMID: 32790810 DOI: 10.1039/d0nr04141f] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With arms radiating from a central core, gold nanostars represent a unique and fascinating class of nanomaterials from which extraordinary plasmonic properties are derived. Despite their relevance to sensing applications, methods for fabricating homogeneous populations of nanostars on large-area planar surfaces in truly periodic arrays is lacking. Herein, the fabrication of nanostar arrays is demonstrated through the formation of hexagonal patterns of near-hemispherical gold seeds and their subsequent exposure to a liquid-state chemical environment that is conducive to colloidal nanostar formation. Three different colloidal nanostar protocols were targeted where HEPES, DMF, and ascorbic acid represent a key reagent in their respective redox chemistries. Only the DMF-driven synthesis proved readily adaptable to the substrate-based platform but nanostar-like structures emerged from the other protocols when synthetic controls such as reaction kinetics, the addition of Ag+ ions, and pH adjustments were applied. Because the nanostars were derived from near-hemispherical seeds, they acquired a unique geometry that resembles a conventional nanostar that has been truncated near its midsection. Simulations of plasmonic properties of this geometry reveal that such structures can exhibit maximum near-field intensities that are as much as seven-times greater than the standard nanostar geometry, a finding that is corroborated by surface-enhanced Raman scattering (SERS) measurements showing large enhancement factors. The study adds nanostars to the library of nanostructure geometries that are amenable to large-area periodic arrays and provides a potential pathway for the nanofabrication of SERS substrates with even greater enhancements.
Collapse
Affiliation(s)
- Trevor B Demille
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Peng L, Chan H, Choo P, Odom TW, Sankaranarayanan SKRS, Ma X. Creation of Single-Photon Emitters in WSe 2 Monolayers Using Nanometer-Sized Gold Tips. NANO LETTERS 2020; 20:5866-5872. [PMID: 32644800 DOI: 10.1021/acs.nanolett.0c01789] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Due to their tunable bandgaps and strong spin-valley locking, transition metal dichalcogenides constitute a unique platform for hosting single-photon emitters. Here, we present a versatile approach for creating bright single-photon emitters in WSe2 monolayers by the deposition of gold nanostars. Our molecular dynamics simulations reveal that the formation of the quantum emitters is likely caused by the highly localized strain fields created by the sharp tips of the gold nanostars. The surface plasmon modes supported by the gold nanostars can change the local electromagnetic fields in the vicinity of the quantum emitters, leading to their enhanced emission intensities. Moreover, by correlating the emission energies and intensities of the quantum emitters, we are able to associate them with two types of strain fields and derive the existence of a low-lying dark state in their electronic structures. Our findings are highly relevant for the development and understanding of single-photon emitters in transition metal dichalcogenide materials.
Collapse
Affiliation(s)
- Lintao Peng
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Henry Chan
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Priscilla Choo
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Subramanian K R S Sankaranarayanan
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois 60607, United States
| | - Xuedan Ma
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
21
|
Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, Bazan GC, Bell SEJ, Boisen A, Brolo AG, Choo J, Cialla-May D, Deckert V, Fabris L, Faulds K, García de Abajo FJ, Goodacre R, Graham D, Haes AJ, Haynes CL, Huck C, Itoh T, Käll M, Kneipp J, Kotov NA, Kuang H, Le Ru EC, Lee HK, Li JF, Ling XY, Maier SA, Mayerhöfer T, Moskovits M, Murakoshi K, Nam JM, Nie S, Ozaki Y, Pastoriza-Santos I, Perez-Juste J, Popp J, Pucci A, Reich S, Ren B, Schatz GC, Shegai T, Schlücker S, Tay LL, Thomas KG, Tian ZQ, Van Duyne RP, Vo-Dinh T, Wang Y, Willets KA, Xu C, Xu H, Xu Y, Yamamoto YS, Zhao B, Liz-Marzán LM. Present and Future of Surface-Enhanced Raman Scattering. ACS NANO 2020; 14:28-117. [PMID: 31478375 PMCID: PMC6990571 DOI: 10.1021/acsnano.9b04224] [Citation(s) in RCA: 1441] [Impact Index Per Article: 360.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/03/2019] [Indexed: 04/14/2023]
Abstract
The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.
Collapse
Affiliation(s)
- Judith Langer
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
| | | | - Javier Aizpurua
- Materials
Physics Center (CSIC-UPV/EHU), and Donostia
International Physics Center, Paseo Manuel de Lardizabal 5, Donostia-San
Sebastián 20018, Spain
| | - Ramon A. Alvarez-Puebla
- Departamento
de Química Física e Inorgánica and EMaS, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Baptiste Auguié
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Guillermo C. Bazan
- Department
of Materials and Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106-9510, United States
| | - Steven E. J. Bell
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Anja Boisen
- Department
of Micro- and Nanotechnology, The Danish National Research Foundation
and Villum Foundation’s Center for Intelligent Drug Delivery
and Sensing Using Microcontainers and Nanomechanics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Alexandre G. Brolo
- Department
of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3 V6, Canada
- Center
for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Jaebum Choo
- Department
of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Dana Cialla-May
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Volker Deckert
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Laura Fabris
- Department
of Materials Science and Engineering, Rutgers
University, 607 Taylor Road, Piscataway New Jersey 08854, United States
| | - Karen Faulds
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - F. Javier García de Abajo
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
- The Barcelona
Institute of Science and Technology, Institut
de Ciencies Fotoniques, Castelldefels (Barcelona) 08860, Spain
| | - Royston Goodacre
- Department
of Biochemistry, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Duncan Graham
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Amanda J. Haes
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Christy L. Haynes
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christian Huck
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Tamitake Itoh
- Nano-Bioanalysis
Research Group, Health Research Institute, National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan
| | - Mikael Käll
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Janina Kneipp
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Str. 2, Berlin-Adlershof 12489, Germany
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hua Kuang
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Eric C. Le Ru
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Hiang Kwee Lee
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Jian-Feng Li
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Yi Ling
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Stefan A. Maier
- Chair in
Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich 80539, Germany
| | - Thomas Mayerhöfer
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Martin Moskovits
- Department
of Chemistry & Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Kei Murakoshi
- Department
of Chemistry, Faculty of Science, Hokkaido
University, North 10 West 8, Kita-ku, Sapporo,
Hokkaido 060-0810, Japan
| | - Jwa-Min Nam
- Department
of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Yukihiro Ozaki
- Department
of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | | | - Jorge Perez-Juste
- Departamento
de Química Física and CINBIO, University of Vigo, Vigo 36310, Spain
| | - Juergen Popp
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Annemarie Pucci
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Stephanie Reich
- Department
of Physics, Freie Universität Berlin, Berlin 14195, Germany
| | - Bin Ren
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - George C. Schatz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Timur Shegai
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Sebastian Schlücker
- Physical
Chemistry I, Department of Chemistry and Center for Nanointegration
Duisburg-Essen, University of Duisburg-Essen, Essen 45141, Germany
| | - Li-Lin Tay
- National
Research Council Canada, Metrology Research
Centre, Ottawa K1A0R6, Canada
| | - K. George Thomas
- School
of Chemistry, Indian Institute of Science
Education and Research Thiruvananthapuram, Vithura Thiruvananthapuram 695551, India
| | - Zhong-Qun Tian
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Richard P. Van Duyne
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Tuan Vo-Dinh
- Fitzpatrick
Institute for Photonics, Department of Biomedical Engineering, and
Department of Chemistry, Duke University, 101 Science Drive, Box 90281, Durham, North Carolina 27708, United States
| | - Yue Wang
- Department
of Chemistry, College of Sciences, Northeastern
University, Shenyang 110819, China
| | - Katherine A. Willets
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Chuanlai Xu
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Hongxing Xu
- School
of Physics and Technology and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yikai Xu
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Yuko S. Yamamoto
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Bing Zhao
- State Key
Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
22
|
Plüisch CS, Bössenecker B, Dobler L, Wittemann A. Zonal rotor centrifugation revisited: new horizons in sorting nanoparticles. RSC Adv 2019; 9:27549-27559. [PMID: 35529214 PMCID: PMC9070787 DOI: 10.1039/c9ra05140f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022] Open
Abstract
Density gradient centrifugation is an effective method for the isolation and purification of small particles. Hollow rotors capable of hosting density gradients replace the need for centrifuge tubes and therefore allow separations at large scales. So far, zonal rotors have been used for biological separations ranging from the purification of whole cells down to serum proteins. We demonstrate that the high-resolution separation method opens up exciting perspectives apart from biology, namely in sorting mixtures of synthetic nanoparticles. Loading and unloading, while the rotor is spinning, avoids perturbations during acceleration and deceleration periods, and thus makes a vital contribution to sorting accuracy. Nowadays one can synthesize nanoscale particles in a wide variety of compositions and shapes. A prominent example for this are “colloidal molecules” or, generally speaking, defined assemblies of nanoparticles that can appear in varying aggregation numbers. Fractionation of such multimodal colloids plays an essential role with regard to their organization into hierarchical organized superstructures such as films, mesocrystals and metamaterials. Zonal rotor centrifugation was found to be a scalable method of getting “colloidal molecules” properly sorted. It allows access to pure fractions of particle monomers, dimers, and trimers, just as well as to fractions that are essentially rich in particle tetramers. Separations were evaluated by differential centrifugal sedimentation, which provides high-resolution size distributions of the collected nanoparticle fractions. The performance achieved in relation to resolution, zone widths, sorting efficiencies and recovery rates clearly demonstrate that zonal rotor centrifugation provides an excellent solution to the fractionation of nanoparticle mixtures. Hollow bowl-shaped rotors allow for efficient fractionation of nanoparticle mixtures at large scale.![]()
Collapse
Affiliation(s)
- Claudia Simone Plüisch
- Colloid Chemistry, Department of Chemistry, University of Konstanz Universitaetsstrasse 10 D-78464 Konstanz Germany
| | - Brigitte Bössenecker
- Particle Analysis Center, Department of Chemistry, University of Konstanz Universitaetsstrasse 10 D-78464 Konstanz Germany
| | - Lukas Dobler
- Colloid Chemistry, Department of Chemistry, University of Konstanz Universitaetsstrasse 10 D-78464 Konstanz Germany
| | - Alexander Wittemann
- Colloid Chemistry, Department of Chemistry, University of Konstanz Universitaetsstrasse 10 D-78464 Konstanz Germany
| |
Collapse
|
23
|
Chang YX, Zhang NN, Xing YC, Zhang Q, Oh A, Gao HM, Zhu Y, Baik H, Kim B, Yang Y, Chang WS, Sun T, Zhang J, Lu ZY, Lee K, Link S, Liu K. Gold Nanotetrapods with Unique Topological Structure and Ultranarrow Plasmonic Band as Multifunctional Therapeutic Agents. J Phys Chem Lett 2019; 10:4505-4510. [PMID: 31310141 DOI: 10.1021/acs.jpclett.9b01589] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Owing to their excellent surface plasmonic properties, Au nanobranches have drawn increasing attention in various bioapplications, such as contrast agents for photoacoustic imaging, nanomedicines for photothermal therapy, and carriers for drug delivery. The monodispersity and plasmonic bandwidth of Au nanobranches are of great importance for the efficacy of those bioapplications. However, it is still a challenge to accurately synthesize size- and shape-controlled Au nanobranches. Here we report a facile seed-mediated growth method to synthesize monodisperse Au nanotetrapods (NTPs) with tunable and ultranarrow plasmonic bands. The NTPs have a novel D2d symmetry with four arms elongated in four ⟨110⟩ directions. The growth mechanism of NTPs relies on the delicate kinetic control of deposition and diffusion rates of adatoms. Upon laser irradiation, the PEGylated NTPs possess remarkable photothermal conversion efficiencies and photoacoustic imaging properties. The NTPs can be applied as a multifunctional theranostic agent for both photoacoustic imaging and image-guided photothermal therapy.
Collapse
Affiliation(s)
- Yi-Xin Chang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , China
| | - Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , China
| | - Yu-Chen Xing
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , China
| | | | - Aram Oh
- Department of Chemistry and Research Institute for Natural Sciences , Korea University , Seoul 02841 , Republic of Korea
| | - Hui-Min Gao
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , China
| | - Yun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , China
| | - Hionsuck Baik
- Korea Basic Science Institute (KBSI) , Seoul 02841 , Republic of Korea
| | - Byeongyoon Kim
- Department of Chemistry and Research Institute for Natural Sciences , Korea University , Seoul 02841 , Republic of Korea
| | - Yang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , China
| | - Wei-Shun Chang
- Department of Chemistry and Biochemistry , University of Massachusetts Dartmouth , 285 Old Westport Road , North Dartmouth , Massachusetts 02747 , United States
| | - Tianmeng Sun
- The First Bethune Hospital and Institute of Immunology , Jilin University , Changchun 130021 , China
| | - Junhu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , China
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , China
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences , Korea University , Seoul 02841 , Republic of Korea
| | | | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , China
- State Key Laboratory of Applied Optics , Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences , Changchun 130012 , China
| |
Collapse
|
24
|
Oliveira-Silva R, Sousa-Jerónimo M, Botequim D, Silva NJO, Prazeres DMF, Paulo PMR. Density Gradient Selection of Colloidal Silver Nanotriangles for Assembling Dye-Particle Plasmophores. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E893. [PMID: 31216629 PMCID: PMC6631754 DOI: 10.3390/nano9060893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022]
Abstract
A simple method based on sucrose density gradient centrifugation is proposed here for the fractionation of colloidal silver nanotriangles. This method afforded particle fractions with surface plasmon resonances, spanning from red to infrared spectral ranges that could be used to tune optical properties for plasmonic applications. This feature was exemplified by selecting silver nanotriangle samples with spectral overlap with Atto-655 dye's absorption and emission in order to assemble dye-particle plasmophores. The emission brightness of an individual plasmophore, as characterized by fluorescence correlation spectroscopy, is at least 1000-fold more intense than that of a single Atto-655 dye label, which renders them as promising platforms for the development of fluorescence-based nanosensors.
Collapse
Affiliation(s)
- Rui Oliveira-Silva
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
- Departamento de Física and CICECO, Aveiro Institute of Materials, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Mariana Sousa-Jerónimo
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| | - David Botequim
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| | - Nuno J O Silva
- Departamento de Física and CICECO, Aveiro Institute of Materials, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Duarte M F Prazeres
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| | - Pedro M R Paulo
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| |
Collapse
|
25
|
Eller MJ, Chandra K, Coughlin EE, Odom TW, Schweikert EA. Label Free Particle-by-Particle Quantification of DNA Loading on Sorted Gold Nanostars. Anal Chem 2019; 91:5566-5572. [PMID: 30932475 PMCID: PMC6896788 DOI: 10.1021/acs.analchem.8b03715] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This paper describes a label free technique for determining ligand loading on metal nanoparticles using a variant of secondary ion mass spectrometry. Au4004+ clusters bombard DNA-functionalized anisotropic gold nanostars and isotropic nanospheres with similar surface areas to determine ligand density. For each projectile impact, co-localized molecules within the emission area of a single impact (diameter of 10-15 nm) were examined for each particle. Individual nanoparticle analysis allows for determination of the relationship between particle geometry and DNA loading. We found that branched particles exhibited increased ligand density versus nanospheres and determined that positive and neutral curvature could facilitate additional loading. This methodology can be applied to optimize loading for any ligand-core interaction independent of nanoparticle core, ligand, or attachment chemistry.
Collapse
Affiliation(s)
- Michael J. Eller
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Kavita Chandra
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Emma E. Coughlin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W. Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Emile A. Schweikert
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
26
|
Choo P, Hryn AJ, Culver KS, Bhowmik D, Hu J, Odom TW. Wavelength-Dependent Differential Interference Contrast Inversion of Anisotropic Gold Nanoparticles. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2018; 122:27024-27031. [PMID: 30627302 PMCID: PMC6322844 DOI: 10.1021/acs.jpcc.8b08995] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Gold nanorods are promising nanoparticle-orientation sensors because they exhibit wavelength and angle-dependent optical patterns in their differential interference contrast (DIC) microscopy images. In this paper, we report a finite-difference time-domain method to simulate DIC images using nanorods as model probes. First, we created a DIC image library of nanorods as a function of imaging wavelength and rotation angle that showed good agreement with experimental results. Second, we used this simulation tool to explain why the patterns inverted from bright to dark when the imaging wavelength increased from below to above the plasmon resonance of the nanorod. We found that this intensity inversion resulted from reversal in electric field direction depending on wavelength relative to the nanorod plasmon resonance. Finally, we showed that this DIC contrast inversion is a general phenomenon by measuring and simulating DIC images from gold nanorods of different sizes and gold nanostars.
Collapse
Affiliation(s)
- Priscilla Choo
- Department of Chemistry, Northwestern University, Evanston, IL, 60208
| | - Alexander J. Hryn
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, 60208
| | - Kayla S. Culver
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, 60208
| | - Debanjan Bhowmik
- Department of Chemistry, Northwestern University, Evanston, IL, 60208
| | - Jingtian Hu
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, 60208
| | - Teri W. Odom
- Department of Chemistry, Northwestern University, Evanston, IL, 60208
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, 60208
| |
Collapse
|