1
|
Sawyer TK, Aral E, Staros JV, Bobst CE, Garman SC. Human Saposin B Ligand Binding and Presentation to α-Galactosidase A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.584535. [PMID: 38617236 PMCID: PMC11014568 DOI: 10.1101/2024.04.04.584535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Sphingolipid activator protein B (saposin B; SapB) is an essential activator of globotriaosylceramide (Gb3) catabolism by α-galactosidase A. However, the manner by which SapB stimulates α-galactosidase A activity remains unknown. To uncover the molecular mechanism of SapB presenting Gb3 to α-galactosidase A, we subjected the fluorescent substrate globotriaosylceramide-nitrobenzoxidazole (Gb3-NBD) to a series of biochemical and structural assays involving SapB. First, we showed that SapB stably binds Gb3-NBD using a fluorescence equilibrium binding assay, isolates Gb3-NBD from micelles, and facilitates α-galactosidase A cleavage of Gb3-NBD in vitro. Second, we crystallized SapB in the presence of Gb3-NBD and validated the ligand-bound assembly. Third, we captured transient interactions between SapB and α-galactosidase A by chemical cross-linking. Finally, we determined the crystal structure of SapB bound to α-galactosidase A. These findings establish general principles for molecular recognition in saposin:hydrolase complexes and highlight the utility of NBD reporter lipids in saposin biochemistry and structural biology.
Collapse
Affiliation(s)
- Thomas K Sawyer
- Department of Biochemistry & Molecular Biology, Institute of Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Program in Molecular & Cellular Biology, Institute of Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Efecan Aral
- Department of Biochemistry & Molecular Biology, Institute of Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Program in Molecular & Cellular Biology, Institute of Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - James V Staros
- Department of Biochemistry & Molecular Biology, Institute of Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Cedric E Bobst
- Mass Spectrometry Core Facility, Institute of Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Scott C Garman
- Department of Biochemistry & Molecular Biology, Institute of Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Program in Molecular & Cellular Biology, Institute of Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
2
|
Guile MD, Jain A, Anderson KA, Clarke CF. New Insights on the Uptake and Trafficking of Coenzyme Q. Antioxidants (Basel) 2023; 12:1391. [PMID: 37507930 PMCID: PMC10376127 DOI: 10.3390/antiox12071391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Coenzyme Q (CoQ) is an essential lipid with many cellular functions, such as electron transport for cellular respiration, antioxidant protection, redox homeostasis, and ferroptosis suppression. Deficiencies in CoQ due to aging, genetic disease, or medication can be ameliorated by high-dose supplementation. As such, an understanding of the uptake and transport of CoQ may inform methods of clinical use and identify how to better treat deficiency. Here, we review what is known about the cellular uptake and intracellular distribution of CoQ from yeast, mammalian cell culture, and rodent models, as well as its absorption at the organism level. We discuss the use of these model organisms to probe the mechanisms of uptake and distribution. The literature indicates that CoQ uptake and distribution are multifaceted processes likely to have redundancies in its transport, utilizing the endomembrane system and newly identified proteins that function as lipid transporters. Impairment of the trafficking of either endogenous or exogenous CoQ exerts profound effects on metabolism and stress response. This review also highlights significant gaps in our knowledge of how CoQ is distributed within the cell and suggests future directions of research to better understand this process.
Collapse
Affiliation(s)
- Michael D Guile
- Department of Chemistry & Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90059, USA
| | - Akash Jain
- Department of Chemistry & Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90059, USA
| | - Kyle A Anderson
- Department of Chemistry & Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90059, USA
| | - Catherine F Clarke
- Department of Chemistry & Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90059, USA
| |
Collapse
|
3
|
van Leent MMT, Beldman TJ, Toner YC, Lameijer MA, Rother N, Bekkering S, Teunissen AJP, Zhou X, van der Meel R, Malkus J, Nauta SA, Klein ED, Fay F, Sanchez-Gaytan BL, Pérez-Medina C, Kluza E, Ye YX, Wojtkiewicz G, Fisher EA, Swirski FK, Nahrendorf M, Zhang B, Li Y, Zhang B, Joosten LAB, Pasterkamp G, Boltjes A, Fayad ZA, Lutgens E, Netea MG, Riksen NP, Mulder WJM, Duivenvoorden R. Prosaposin mediates inflammation in atherosclerosis. Sci Transl Med 2021; 13:eabe1433. [PMID: 33692130 PMCID: PMC8209679 DOI: 10.1126/scitranslmed.abe1433] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/17/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
Macrophages play a central role in the pathogenesis of atherosclerosis. The inflammatory properties of these cells are dictated by their metabolism, of which the mechanistic target of rapamycin (mTOR) signaling pathway is a key regulator. Using myeloid cell-specific nanobiologics in apolipoprotein E-deficient (Apoe -/-) mice, we found that targeting the mTOR and ribosomal protein S6 kinase-1 (S6K1) signaling pathways rapidly diminished plaque macrophages' inflammatory activity. By investigating transcriptome modifications, we identified Psap, a gene encoding the lysosomal protein prosaposin, as closely related with mTOR signaling. Subsequent in vitro experiments revealed that Psap inhibition suppressed both glycolysis and oxidative phosphorylation. Transplantation of Psap -/- bone marrow to low-density lipoprotein receptor knockout (Ldlr -/-) mice led to a reduction in atherosclerosis development and plaque inflammation. Last, we confirmed the relationship between PSAP expression and inflammation in human carotid atherosclerotic plaques. Our findings provide mechanistic insights into the development of atherosclerosis and identify prosaposin as a potential therapeutic target.
Collapse
Affiliation(s)
- Mandy M T van Leent
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Experimetal Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, 1105 AZ Amsterdam, Netherlands
| | - Thijs J Beldman
- Experimetal Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, 1105 AZ Amsterdam, Netherlands
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Yohana C Toner
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marnix A Lameijer
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Experimetal Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, 1105 AZ Amsterdam, Netherlands
| | - Nils Rother
- Department of Nephrology and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Siroon Bekkering
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Abraham J P Teunissen
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Roy van der Meel
- Department of Chemical Biology, Eindhoven University of Technology, 5612 AZ Eindhoven, Netherlands
| | - Joost Malkus
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sheqouia A Nauta
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Emma D Klein
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Francois Fay
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institut Galien Paris-Saclay, Faculté de Pharmacie, CNRS, Université Paris-Saclay, 92 296 Châtenay-Malabry, France
| | - Brenda L Sanchez-Gaytan
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Chemistry Center, Science Institute, Meritorious Autonomous University of Puebla, Puebla 72570, Mexico
| | - Carlos Pérez-Medina
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Ewelina Kluza
- Department of Chemical Biology, Eindhoven University of Technology, 5612 AZ Eindhoven, Netherlands
| | - Yu-Xiang Ye
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
- Department of Diagnostic and Interventional Radiology, University Hospitals Tuebingen, 72076 Tuebingen, Germany
| | - Gregory Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Edward A Fisher
- Department of Medicine (Cardiology) and Cell Biology, Marc and Ruti Bell Program in Vascular Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Filip K Swirski
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yang Li
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
- Centre for Individualised Infection Medicine (CiiM) and TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Bowen Zhang
- Centre for Individualised Infection Medicine (CiiM) and TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
- Department of Medical Genetics, University of Medicine and Pharmacy, Iuliu Haţieganu, Cluj-Napoca 400000, Romania
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, Division Laboratories and Pharmacy, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Arjan Boltjes
- Central Diagnostics Laboratory, Division Laboratories and Pharmacy, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Zahi A Fayad
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Esther Lutgens
- Experimetal Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, 1105 AZ Amsterdam, Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, 80331 Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80539 Munich, Germany
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
- Department for Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, 53127 Bonn, Germany
| | - Niels P Riksen
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Willem J M Mulder
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
- Department of Chemical Biology, Eindhoven University of Technology, 5612 AZ Eindhoven, Netherlands
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Raphaël Duivenvoorden
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Department of Nephrology and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| |
Collapse
|