1
|
Barkale HV, Dey N. Membrane-Bound Bisindolyl-Based Chromogenic Probes: Analysis of Cyanogenic Glycosides in Agricultural Crops for Possible Remediation. ACS APPLIED BIO MATERIALS 2024. [PMID: 39656792 DOI: 10.1021/acsabm.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Cyanogenic glycosides are plant-derived, nitrogen-containing secondary metabolites that release toxic cyanide ions upon hydrolysis by glycosidic enzymes. Therefore, consuming food items enriched with such compounds without proper remediation can cause acute cyanide intoxication. Thus, in this work, we utilize cyanide-responsive oxidized bisindole-based chromogenic probes to detect cyanogenic glycosides, such as amygdalin and linamarin (LOD: 0.12 μM), in phospholipid membranes. The bilayer surface, owing to its distinct microenvironment, enhances both the sensitivity and specificity of the probes toward amygdalin. The chromogenic response (red to yellow) is influenced by the nature of the lipid membrane (order, polarity, and interfacial hydration) as well as the number of bis-indolyl units in the probe molecules. Semiquantitative analysis of food samples before and after cooking revealed that soaking in water at room temperature significantly reduces the cyanogenic glycoside content. The ability to directly detect cyanogenic glycosides in food samples without pretreatment is a notable aspect of this investigation.
Collapse
Affiliation(s)
- Harshal V Barkale
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana 500078, India
| | - Nilanjan Dey
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana 500078, India
| |
Collapse
|
2
|
Hanumesh, Amshumali MK, Prachi P, Yogendra K, Madhusudhana N, Vinay Kumar B. Investigation of bisindole-linked pyrimidine moieties: synthesis using strantium-aluminum supported strontium aluminate nanophosphors catalyst, DNA reactivity, and in silico molecular docking studies. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-18. [PMID: 38817089 DOI: 10.1080/15257770.2024.2358901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024]
Abstract
In this communication, an innovative and straightforward protocol for the one-pot catalytic synthesis of bis(indolyl)pyrimidine derivatives and their DNA binding abilities is presented. The synthesis involves the condensation of indole with diverse substituted pyrimidine-5-carbaldehydes, employing cost-effective and reusable Sr-Al supported nanophosphors, specifically strontium aluminate (SrAl2O4), as a catalyst. In particular, this method does not require the use of toxic solvents. The Sr-Al supported nanophosphorus catalyst exhibited sustained activity over multiple cycles and showed no significant decline while maintaining its strictly heterogeneous properties. The bis(indolyl)pyrimidine derivatives were extensively characterized using spectroscopic and analytical techniques. Furthermore, the interaction between these derivatives and CT-DNA was investigated by absorption spectroscopy, viscosity measurement, and in silico molecular docking studies. Photoinduced cleavage studies demonstrated the photonuclease activity of the compound against pUC19 DNA upon exposure to UV-visible radiation.
Collapse
Affiliation(s)
- Hanumesh
- Department of PG Studies and Research in Industrial Chemistry, Vijayanagara Sri Krishnadevaraya University, Bellary, 583105, India
| | - M K Amshumali
- Department of PG Studies and Research in Industrial Chemistry, Vijayanagara Sri Krishnadevaraya University, Bellary, 583105, India
| | - P Prachi
- Department of Biotechnology, Allied Health Science BLDE (Deemed to be University), Vijayapura, India
| | - K Yogendra
- Department of PG Studies and Research in Environmental Science, Kuvempu University, Shimoga, India
| | - N Madhusudhana
- Department of PG Studies and Research in Environmental Science, Kuvempu University, Shimoga, India
| | - B Vinay Kumar
- Department of Chemistry, BGS College of Engineering & Technology, Bengaluru, India
| |
Collapse
|
3
|
Teli P, Soni S, Teli S, Agarwal S. Unlocking Diversity: From Simple to Cutting-Edge Synthetic Methodologies of Bis(indolyl)methanes. Top Curr Chem (Cham) 2024; 382:8. [PMID: 38403746 DOI: 10.1007/s41061-024-00454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/31/2024] [Indexed: 02/27/2024]
Abstract
From a synthetic perspective, bis(indolyl)methanes have undergone extensive investigation over the past two to three decades owing to their remarkable pharmacological activities, encompassing anticancer, antimicrobial, antioxidant, and antiinflammatory properties. These highly desirable attributes have spurred significant interest within the scientific community, leading to the development of various synthetic strategies that are not only more efficient but also ecofriendly. This synthesis-based literature review delves into the advancements made in the past 5 years, focusing on the synthesis of symmetrical as well as unsymmetrical bis(indolyl)methanes. The review encompasses a wide array of methods, ranging from well-established techniques to more unconventional and innovative approaches. Furthermore, it highlights the exploration of various substrates, encompassing readily available chemicals such as indole, aldehydes/ketones, indolyl methanols, etc. as well as the use of some specific compounds as starting materials to achieve the synthesis of this invaluable molecule. By encapsulating the latest developments in this field, this review provides insights into the expanding horizons of bis(indolyl)methane synthesis.
Collapse
Affiliation(s)
- Pankaj Teli
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, Rajasthan, India
| | - Shivani Soni
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, Rajasthan, India
| | - Sunita Teli
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, Rajasthan, India
| | - Shikha Agarwal
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, Rajasthan, India.
| |
Collapse
|
4
|
Kolagkis PX, Galathri EM, Kokotos CG. Green and sustainable approaches for the Friedel-Crafts reaction between aldehydes and indoles. Beilstein J Org Chem 2024; 20:379-426. [PMID: 38410780 PMCID: PMC10896228 DOI: 10.3762/bjoc.20.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/07/2024] [Indexed: 02/28/2024] Open
Abstract
The synthesis of indoles and their derivatives, more specifically bis(indolyl)methanes (BIMs), has been an area of great interest in organic chemistry, since these compounds exhibit a range of interesting biological and pharmacological properties. BIMs are naturally found in cruciferous vegetables and have been shown to be effective antifungal, antibacterial, anti-inflammatory, and even anticancer agents. Traditionally, the synthesis of BIMs has been achieved upon the acidic condensation of an aldehyde with indole, utilizing a variety of protic or Lewis acids. However, due to the increased environmental awareness of our society, the focus has shifted towards the development of greener synthetic technologies, like photocatalysis, organocatalysis, the use of nanocatalysts, microwave irradiation, ball milling, continuous flow, and many more. Thus, in this review, we summarize the medicinal properties of BIMs and the developed BIM synthetic protocols, utilizing the reaction between aldehydes with indoles, while focusing on the more environmentally friendly methods developed over the years.
Collapse
Affiliation(s)
- Periklis X Kolagkis
- Laboratory of Organic Chemistry, Department of Organic Chemistry, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - Eirini M Galathri
- Laboratory of Organic Chemistry, Department of Organic Chemistry, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Organic Chemistry, National and Kapodistrian University of Athens, Athens, 15771, Greece
| |
Collapse
|
5
|
Gentile G, Morant-Giner M, Cardo L, Melchionna M, Fornasiero P, Prato M, Filippini G. DoE-Assisted Development of a 2H-MoS 2 -Catalyzed Approach for the Production of Indole Derivatives. CHEMSUSCHEM 2023; 16:e202300831. [PMID: 37486452 DOI: 10.1002/cssc.202300831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 07/25/2023]
Abstract
2H-MoS2 is an appealing semiconductor because of its Earth-abundant nature, cheapness, and low toxicity. This material has shown promising catalytic activity for various energy-related processes, but its use in catalysis for C-C bond forming reactions towards useful organic compounds is still largely unexplored. The lack of examples in organic synthesis is mainly due to the intrinsic difficulties of using bulk 2H-MoS2 (e. g., low surface area), which implies the reliance on high catalytic loadings for obtaining acceptable yields. This makes the optimization process more expensive and tedious. Here, we report the development of a 2H-MoS2 -mediated synthesis of valuable bis(indolyl)methane derivatives, using indoles and benzaldehydes as starting materials. Exploiting the Design of Experiments (DoE) method, we identified the critical parameters affecting the catalytic performance of commercial 2H-MoS2 powder and optimized the reaction conditions. Lastly, we demonstrated that the catalytic system has versatility and good tolerance towards functional group variations of the reagents.
Collapse
Affiliation(s)
- Giuseppe Gentile
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Marc Morant-Giner
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
- Instituto de Ciencia Molecular (ICMol), Universitat de València, C/Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Lucia Cardo
- Centre for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain
| | - Michele Melchionna
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
- Istituto di Chimica dei Composti Organometallici - Consiglio Nazionale delle Richerche (ICCOM-CNR), via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
- Centre for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain
- Basque Foundation for Science Ikerbasque, Plaza Euskadi 5, 48013, Bilbao, Spain
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
| |
Collapse
|
6
|
Gogula S, Prasanna DV, Thumma V, Misra S, Lincoln CA, Reddy PM, Hu A, Subbareddy BV. Efficient Green Synthesis, Anticancer Activity, and Molecular Docking Studies of Indolemethanes Using a Bioglycerol-Based Carbon Sulfonic Acid Catalyst. ACS OMEGA 2023; 8:36401-36411. [PMID: 37810649 PMCID: PMC10552104 DOI: 10.1021/acsomega.3c05293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
Indolemethane derivatives are significant molecules in the study of N-heterocyclic chemistry. Herein, we designed and developed a highly efficient green synthesis of indolemethane compounds using a recyclable biodegradable glycerol-based carbon solid acid catalyst under solvent-free conditions at room temperature for 5 min with excellent yields. The synthesized compounds were subjected to cytotoxic activity against prostate (DU145), hepatocellular carcinoma (HepG2), and melanoma (B16) cell lines. The highest cytotoxicity effects were found with 1k (1.09 μM) and 1c (2.02 μM) against DU145, followed by 1a, 1d, 1f, 1n, and 1m between 5.10 and 8.18 μM concentrations. The anticancer activity is validated using molecular docking simulations, and comparing binding energies with the standard drug doxorubicin suggests that the title compounds are well fitted into the active site pocket of the target molecules..
Collapse
Affiliation(s)
- Sailam
Sri Gogula
- Department
of Chemistry, University College of Science, Osmania University, Hyderabad 500007, India
- Center
for Semiochemicals, CSIR-Indian Institute
of Chemical Technology, Hyderabad 500007, India
| | - Dasari Vijaya Prasanna
- Center
for Semiochemicals, CSIR-Indian Institute
of Chemical Technology, Hyderabad 500007, India
| | - Vishnu Thumma
- Department
of Science and Humanities, Matrusri Engineering
College, Hyderabad 500059, India
| | - Sunil Misra
- Department
of Applied Biology, CSIR-Indian Institute
of Chemical Technology, Hyderabad 500007, India
| | - Ch. Abraham Lincoln
- Department
of Chemistry, University College of Science, Osmania University, Hyderabad 500007, India
| | - P. Muralidhar Reddy
- Department
of Chemistry, University College of Science, Osmania University, Hyderabad 500007, India
| | - Anren Hu
- Department
of Laboratory Medicine and Biotechnology, College of Medicine, Tzu-Chi University, Hualien 97004, Taiwan
| | - B. V. Subbareddy
- Center
for Semiochemicals, CSIR-Indian Institute
of Chemical Technology, Hyderabad 500007, India
| |
Collapse
|
7
|
Study the crystal structure of 4,4′-(propane-1,3-diyl)dipiperidinium sulfate monohydrate and its hydrogen bond catalytic activity in the mechanochemical synthesis of BIMs. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Fahim H, Mihankhah P, Khaligh NG. Greener and scalable mechanosynthesis of bis(3-indolyl)methane as an example of versatile pharmaceutical scaffold: Is the mechanochemical technique a metal-free process? SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2158104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hoda Fahim
- Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Peyman Mihankhah
- Mechanical, Automotive & Materials Engineering, Faculty of Engineering, University of Windsor, Windsor, ON, Canada
| | - Nader Ghaffari Khaligh
- Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
- Nanotechnology and Catalysis Research Center, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Jat PK, Dabaria KK, Bai R, Yadav L, Badsara SS. Electrochemical Bisarylation of Carbonyls: A Direct Synthetic Strategy for Bis(indolyl)methane. J Org Chem 2022; 87:12975-12985. [DOI: 10.1021/acs.joc.2c01524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pooja Kumari Jat
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, JLN Marg, Jaipur, Rajasthan 302004, India
| | - Kamlesh Kumar Dabaria
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, JLN Marg, Jaipur, Rajasthan 302004, India
| | - Rekha Bai
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, JLN Marg, Jaipur, Rajasthan 302004, India
| | - Lalit Yadav
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, JLN Marg, Jaipur, Rajasthan 302004, India
| | - Satpal Singh Badsara
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, JLN Marg, Jaipur, Rajasthan 302004, India
| |
Collapse
|
10
|
Rawat V, Vigalok A, Sinha AK, Sachdeva G, Srivastava CM, Rao GK, Kumar A, Singh M, Rathi K, Verma VP, Yadav B, Pandey AK, Vats M. Synthesis of a Zirconium Complex of an N, O-type p- tert-Butylcalix[4]arene and Its Application in Some Multicomponent Reactions. ACS OMEGA 2022; 7:28471-28480. [PMID: 35990458 PMCID: PMC9386809 DOI: 10.1021/acsomega.2c03187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
The synthesis and characterization of a new octahedral Zr(IV) complex of oxygen-depleted N,O-type calixarene ligand comprising two distal-functionalized pyrazole rings have been reported. The cone shape and structure of the prepared complex were confirmed univocally by single-crystal X-ray diffraction and NMR studies. The Zr metal lies at 2.091 Å from the plane of the calixarene ring. This complex has been utilized as an efficient catalyst for the synthesis of Biginelli adducts, bis(indolyl)methanes, and coumarins. This complex (Cl2Zr-calixarene) showed superior activity for these multicomponent reactions in comparison to the corresponding Ti(IV) and Zn(II) analogues. Ferrocene-appended bis(indolyl)methane, prepared using this catalyst, was also evaluated for its anticancer activity against the A-172 cell line.
Collapse
Affiliation(s)
- Varun Rawat
- Amity
School of Applied Sciences, Amity University
Haryana, Gurugram 122413, India
- School
of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Arkadi Vigalok
- School
of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Anshu Kumar Sinha
- Amity
School of Applied Sciences, Amity University
Haryana, Gurugram 122413, India
| | - Garima Sachdeva
- Amity
School of Applied Sciences, Amity University
Haryana, Gurugram 122413, India
| | | | - Gyandshwar K. Rao
- Amity
School of Applied Sciences, Amity University
Haryana, Gurugram 122413, India
| | - Arun Kumar
- Department
of Chemistry, School of Physical Sciences, Doon University, Dehradun 248012, Uttarakhand, India
| | - Mandeep Singh
- Nuchem
Sciences, Saint-Laurent, Quebec H4R2N6, Canada
| | - Komal Rathi
- Department
of Chemistry, Banasthali University, Banasthali Newai 304002, Rajasthan, India
| | - Ved Prakash Verma
- Department
of Chemistry, Banasthali University, Banasthali Newai 304002, Rajasthan, India
| | - Bhupender Yadav
- Amity Institute
of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Amit Kumar Pandey
- Amity Institute
of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Monika Vats
- Amity
School of Applied Sciences, Amity University
Haryana, Gurugram 122413, India
| |
Collapse
|
11
|
Narsale BS, Gadhave AG, Raut KS, Thube DR. One Pot Approach of Novel Xanthan Perchloric Acid Catalyst in Synthesis of Bis(Indolyl)Methane Derivatives via Greener Perspective. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2108075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Bhausaheb S. Narsale
- Department of Chemistry and Research Center, New Arts, Commerce and Science College, Parner, India
| | - Anil G. Gadhave
- Department of Chemistry, Research Center, P.V.P. College, Pravaranagar, India
| | - Ketan S. Raut
- Department of Chemistry and Research Center, New Arts, Commerce and Science College, Parner, India
| | - Dilip R. Thube
- Department of Chemistry and Research Center, New Arts, Commerce and Science College, Parner, India
| |
Collapse
|
12
|
Paul P, Karar M, Mondal B, Roy UK, Ghosh A, Majumdar T, Mallick A. Controlled tuning of radiative-nonradiative transition via solvent perturbation: Franck-Condon emission vs. aggregation caused quenching. Phys Chem Chem Phys 2022; 24:18245-18254. [PMID: 35876115 DOI: 10.1039/d2cp02305a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic molecules with tunable fluorescence quantum yield are attractive for opto-electronic applications. A fluorophore with tunable fluorescence quantum yield should be a better choice for a variety of applications that demand fluorophores with different quantum yields. Here organic emitters with a continuous bell-shaped fluorescence yield profile would be promising in view of sustainability and reusability; however, fluorophores with these properties are rarely reported. A bis-indole derivative, 3,3'-bisindolyl(phenyl)methane (BIPM), was synthesised and found to undergo a unique 'rise-and-fall' profile in fluorescence yield with a compositional change of the 1,4-dioxane (DiOx)-H2O solvent system. A predominant interplay of two contrasting factors, (a) polarity and proticity induced emission enhancement and (b) aggregation caused fluorescence quenching, on either side of a crossover solvent composition (∼50% fW), resulted in a continuous bell-patterned fluorescence yield profile. Interestingly, these two factors could be observed individually or simultaneously by adjusting the H2O fraction. Detailed spectroscopic, electron microscopic and computational studies have been performed to substantiate the photophysics behind the solvent regulated modulation of fluorescence quantum yield.
Collapse
Affiliation(s)
- Provakar Paul
- Department of Chemistry, University of Kalyani, Nadia, West Bengal, 741235, India
| | - Monaj Karar
- Department of Chemistry, University of Kalyani, Nadia, West Bengal, 741235, India
| | - Bibhas Mondal
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| | - Ujjal Kanti Roy
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| | - Ashutosh Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Kolkata, Mohanpur, West Bengal, 741246, India
| | - Tapas Majumdar
- Department of Chemistry, University of Kalyani, Nadia, West Bengal, 741235, India
| | - Arabinda Mallick
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| |
Collapse
|
13
|
Hote BS, Siddiqui TAJ, Pisal PM, Mandawad GG. Green Approach of Solvent- and Catalyst Free Synthesis of Bis(indolyl)methanes under Visible Light Irradiation. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2020.1804414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Baliram S. Hote
- Department of Chemistry, Maharashtra Udayagiri Mahavidyalaya Udgir, Udgir, Maharashtra, India
| | - Tabbasum A. J. Siddiqui
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| | - Parshuram M. Pisal
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| | - Gajanan G. Mandawad
- Department of Chemistry, Maharashtra Udayagiri Mahavidyalaya Udgir, Udgir, Maharashtra, India
| |
Collapse
|
14
|
Zheng Z, Zha D, Cui P, Ye C, Jin L, Han B. Preparation of Tetrasubstituted Bis(3-indolyl)methanes from Indoles and Acetophenes Using 1,3-Dibromo-5,5-dimehtylhydantoin as an Efficient Catalyst. LETT ORG CHEM 2022. [DOI: 10.2174/1570178619666220111122536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
A new process that could efficiently prepare tetrasubstituted bis(3-indolyl)methanes from various indoles and acetophenones with 1,3-Dibromo-5,5-dimehtylhydantoin(DBDMH) as a catalyst was reported. The effects of catalysts, solvents, and reaction temperature were investigated. Under the optimal condition, most of the tetrasubstituted bis(3-indolyl)methanes were obtained in 90–99% yields.
Collapse
Affiliation(s)
- Zubiao Zheng
- Department of Chemistry, Huangshan University, AnHui 245041, China
- Department of Chemistry, Huangshan University, AnHui 245041, China
| | - Daoxin Zha
- Department of Chemistry, Huangshan University, AnHui 245041, China
- Huangshan Jinshimu Plastic Technology Co., LTD, Anhui 245041, China
| | - Peng Cui
- Department of Chemistry, Huangshan University, AnHui 245041, China
| | - Caixia Ye
- Department of Chemistry, Huangshan University, AnHui 245041, China
- Huangshan Jinshimu Plastic Technology Co., LTD, Anhui 245041, China
| | - Lei Jin
- Department of Chemistry, Huangshan University, AnHui 245041, China
- Huangshan Jinshimu Plastic Technology Co., LTD, Anhui 245041, China
| | - Bingbing Han
- Department of Chemistry, Huangshan University, AnHui 245041, China
| |
Collapse
|
15
|
Indurthi HK, Das S, Kumar A, Sharma DK. K2S2O8-glucose mediated oxidative coupling of alcohols with indoles for synthesis of Bis(indolyl)methanes in water. NEW J CHEM 2022. [DOI: 10.1039/d2nj02525f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of inexpensive K2S2O8 in water at room temperature for synthesis of bis(indolyl)methanes (BIMs) from simple indoles and alcohols is reported. The key step involves the conversion of alcohols...
Collapse
|
16
|
Dey N. Metal-Ion-Responsive Chromogenic Probe for Rapid, On-Location Detection of Foodborne Bacterial Pathogens in Contaminated Food Items. ACS APPLIED BIO MATERIALS 2021; 4:6893-6902. [PMID: 35006989 DOI: 10.1021/acsabm.1c00600] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An amphiphilic chromogenic probe based on an oxidized di(indolyl)arylmethane backbone has been utilized for visual detection of both Cu2+ (detection limit = 8.5 ppb) and Hg2+ (detection limit = 10.2 ppb) ions via mutually independent sensing pathways. The Cu2+ ion binds to the carboxylate ends (donor site) and induces a color change from orange to yellow in the aqueous medium, while coordinating Hg2+ at the bisindolyl moiety (acceptor site) can result in the formation of a red-colored solution. Interestingly, by selecting the proper excitation channel, we can specifically excite either the monomer species or nanoaggregates. The addition of Hg2+ enhances the monomer fluorescence, while Cu2+ induces quenching. However, in both cases, metal-ion coordination triggers dissociation of a preformed self-assembled structure. Further, the in-situ-formed Cu(II) complex was utilized for rapid, on-location detection of food-borne pathogens, such as Escherichia coli (E. coli) in contaminated food items and water (detection limit = 52 CFU·mL-1). E. coli induces reduction of Cu2+ to Cu+ and transforms the yellow-colored solution into an orange-colored solution. Finally, low-cost, reusable paper strips were designed as an eco-friendly, sustainable strategy to detect bacterial pathogens.
Collapse
Affiliation(s)
- Nilanjan Dey
- Department of Chemistry, BITS-Pilani, Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India.,Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
17
|
Hassani Bagheri F, Khabazzadeh H, Fayazi M. Copper-catalyzed N-arylation of bis(indolyl)methanes: the first approach for the synthesis of unsymmetrical N-aryl bis(indolyl)methanes by C–N cross-coupling reaction. CR CHIM 2021. [DOI: 10.5802/crchim.111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Sadiq Z, Ghani A, Shujaat S, Hussain EA, Alissa SA, Iqbal M. SiO2-KHSO4 catalyst based rapid synthesis of structurally modified bis(3-indolyl)methanes via N-substituted indole. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Mitra B, Ghosh P. Humic acid: A Biodegradable Organocatalyst for Solvent‐free Synthesis of Bis(indolyl)methanes, Bis(pyrazolyl)methanes, Bis‐coumarins and Bis‐lawsones. ChemistrySelect 2021. [DOI: 10.1002/slct.202004245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bijeta Mitra
- Department of Chemistry University of North Bengal Dist. Darjeeling West Bengal India
| | - Pranab Ghosh
- Department of Chemistry University of North Bengal Dist. Darjeeling West Bengal India
| |
Collapse
|
20
|
Indurthi HK, Virdi R, Koli P, Nageswara Rao D, Sharma DK. Seralite SRC-120 resin catalyzed synthesis of bis(indolyl)methanes using indoles and low/high boiling point carbonyl compounds under solvent free conditions. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1849724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Harish K. Indurthi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi, India
| | - Reena Virdi
- Overseas Healthcare Pvt Ltd, Phillaur, India
| | - Papita Koli
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi, India
| | - Desaboini Nageswara Rao
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Deepak K Sharma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi, India
| |
Collapse
|
21
|
Bayindir S, Lee KS, Saracoglu N, Parquette JR. The impact of metal coordination on the assembly of bis(indolyl)methane-naphthalene-diimide amphiphiles. Dalton Trans 2020; 49:13685-13692. [PMID: 32996499 DOI: 10.1039/d0dt02732d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The self-assembly and coordination of amphiphiles comprised of naphthalenediimide (NDI) and bis(indolyl)methane (BIM) chromophores were investigated as a function of pH and metal. As observed by TEM, SEM and AFM imaging, the self-assembly of NDI-BIM 1 produced irregular nanostructures at neutral pH in CH3CN-H2O (1 : 1); whereas, well-defined nanotubes were observed at pH 2. Conversely, Fmoc-protected, NDI-BIM 2 formed nanotubes at neutral pH and nonspecific aggregates at pH 2. Upon coordination of Cu2+ ions to the bis(indoyl)methane moiety, a reorganization from nanotubes to vesicular structures was observed.
Collapse
Affiliation(s)
- Sinan Bayindir
- Department of Chemistry, Faculty of Sciences and Arts, Bingöl University, Bingöl, 12000, Turkey
| | - Kwang Soo Lee
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave., Columbus, Ohio 43210, USA.
| | - Nurullah Saracoglu
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, 25240, Turkey.
| | - Jon R Parquette
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave., Columbus, Ohio 43210, USA.
| |
Collapse
|
22
|
Koli P, Reena, Indurthi HK, Sharma DK. Anticancer Activity of 3,3′‐Diindolylmethane and the Molecular Mechanism Involved in Various Cancer Cell Lines. ChemistrySelect 2020. [DOI: 10.1002/slct.202003137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Papita Koli
- Department of Pharmaceutical Engg. and Tech. Indian Institute of Technology-Banaras Hindu University Varanasi, Uttar Pradesh India
| | - Reena
- Overseas Healthcare Pvt. Ltd. Phillaur, Punjab India
| | - Harish K. Indurthi
- Department of Pharmaceutical Engg. and Tech. Indian Institute of Technology-Banaras Hindu University Varanasi, Uttar Pradesh India
| | - Deepak K. Sharma
- Department of Pharmaceutical Engg. and Tech. Indian Institute of Technology-Banaras Hindu University Varanasi, Uttar Pradesh India
| |
Collapse
|
23
|
Boroujeni KP, Shahrokh M, Kiani K, Farokhnia A, Kazemi R, Kheiri F. Synthesis and Catalytic Application of Bimetallic and
Trimetallic Magnetic Nanoalloys for the Preparation of
Bis(indolyl)methanes. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020100255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Hasanpour B, Jafarpour M, Eskandari A, Rezaeifard A. A Star‐Shaped Triazine‐Based Vitamin B
5
Copper(II) Nanocatalyst for Tandem Aerobic Synthesis of Bis(indolyl)methanes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Benyamin Hasanpour
- Catalysis Research Laboratory Department of Chemistry Faculty of Science University of Birjand 97179‐414 Birjand Iran
| | - Maasoumeh Jafarpour
- Catalysis Research Laboratory Department of Chemistry Faculty of Science University of Birjand 97179‐414 Birjand Iran
| | - Ameneh Eskandari
- Catalysis Research Laboratory Department of Chemistry Faculty of Science University of Birjand 97179‐414 Birjand Iran
| | - Abdolreza Rezaeifard
- Catalysis Research Laboratory Department of Chemistry Faculty of Science University of Birjand 97179‐414 Birjand Iran
| |
Collapse
|
25
|
Konwar D, Bora U. Free Radical Triggered Convenient Synthesis of Bis(indolyl)methane with Potassium Peroxodisulfate as Catalyst. ChemistrySelect 2020. [DOI: 10.1002/slct.202001776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dipika Konwar
- Department of Chemical Sciences Tezpur University Napaam, Tezpur, Assam India, Pin 784028
| | - Utpal Bora
- Department of Chemical Sciences Tezpur University Napaam, Tezpur, Assam India, Pin 784028
| |
Collapse
|
26
|
Singh A, Kaur G, Banerjee B. Recent Developments on the Synthesis of Biologically Significant bis/tris(indolyl)methanes under Various Reaction Conditions: A Review. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200228092752] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bis(indolyl)methane skeleton is the main building block of many naturally occurring bioactive compounds. Bis(indolyl)methanes are found to possess a wide range of pharmaceuitical efficacies. These important scaffolds are being used as anti-cancer, antioxidant, anti-bacterial, anti-inflammatory, and anti-proliferative agents. In this review, we summarized the latest developments on the synthesis of various bis/tris(indolyl)methane derivatives from the reactions of two equivalents of indoles and one equivalent of aldehydes or indole-3-carbaldehydes under various reaction conditions. More than hundred different catalysts were employed for these transformations which include various metal catalysts, ionic liquids, organocatalysts, surfactants, homogeneous, heterogeneous catalysts etc.
Collapse
Affiliation(s)
- Arvind Singh
- Department of Chemistry, Indus International University, Village and Post Office Bathu, District Una, Himachal Pradesh, 174301, India
| | - Gurpreet Kaur
- Department of Chemistry, Indus International University, Village and Post Office Bathu, District Una, Himachal Pradesh, 174301, India
| | - Bubun Banerjee
- Department of Chemistry, Indus International University, Village and Post Office Bathu, District Una, Himachal Pradesh, 174301, India
| |
Collapse
|
27
|
Rivas-Loaiza JA, Reyes-Escobedo CE, Lopez Y, Rojas-Lima S, García-Merinos JP, López-Ruiz H. (Thio)urea-catalyzed Friedel-Crafts Reaction: Synthesis of Bis(indolyl)- methanes. LETT ORG CHEM 2019. [DOI: 10.2174/1570178616666190222150915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:Bis(indolyl)methane derivatives (BIMs) were synthesized in moderate to good yields by (thio)urea catalyzed electrophilic substitution of indole (2) with various aldehydes 1. Reactions were performed under conventional and microwave (MW) heating, either using 1,2-dichloroetane as solvent or without solvent. The procedure using microwave heating was also applied to the synthesis of the natural products vibrindole A (3n), arsindoline A (3i), arundine (3o) and tris(1H-indol-3-yl)methane (3j). Additionally, the synthesis of streptindole was carried out via intermediate 3g. This methodology is well suited for the synthesis of bis(indolyl)methanes: it offers good yields of products, low sensitivity to moisture and oxygen, high tolerance to different functional groups on the aldehydes such as alkynes and trimethylsilane, and simplicity in operation
Collapse
Affiliation(s)
- Juan A. Rivas-Loaiza
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030 Morelia, Michoacán, Mexico
| | - Carlos E. Reyes-Escobedo
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera-Pachuca-Tulancingo Km 4.5, Ciudad Universitaria, 42184 Mineral de la Reforma, Hidalgo, Mexico
| | - Yliana Lopez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030 Morelia, Michoacán, Mexico
| | - Susana Rojas-Lima
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera-Pachuca-Tulancingo Km 4.5, Ciudad Universitaria, 42184 Mineral de la Reforma, Hidalgo, Mexico
| | - Juan Pablo García-Merinos
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030 Morelia, Michoacán, Mexico
| | - Heraclio López-Ruiz
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera-Pachuca-Tulancingo Km 4.5, Ciudad Universitaria, 42184 Mineral de la Reforma, Hidalgo, Mexico
| |
Collapse
|
28
|
Faisal M, Larik FA, Salman M, Saeed A. Phospho Sulfonic Acid: A Highly Efficient and Novel Catalyst for Formation of Bis(Indolyl)Alkanes from Aldehydes and Indole under Aqueous Conditions. KINETICS AND CATALYSIS 2019. [DOI: 10.1134/s0023158419040049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Reddy SS, Kalla RMN, Varyambath A, Kim I. Sulfonic acid functionalized hyper-cross-linked polymer: An efficient heterogeneous acid catalyst for the synthesis of N-containing bisphosphonates. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
30
|
Muthukumar A, Rao GN, Sekar G. Zn(OTf) 2-catalyzed access to symmetrical and unsymmetrical bisindoles from α-keto amides. Org Biomol Chem 2019; 17:3921-3933. [PMID: 30941387 DOI: 10.1039/c9ob00114j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zn(OTf)2-catalyzed synthesis of 3,3'-bisindolyl acetamides from α-keto amides is developed. Both aromatic α-keto amides substituted with electron-donating as well as -withdrawing groups and aliphatic α-keto amides are well tolerated to provide symmetrical bisindoles in moderate to excellent yields. The chemoselective bisindolylation of the keto group of α-keto amides in the presence of a simple keto functionality is successfully achieved in good yields. The transformation is further extended to the synthesis of challenging unsymmetrical bisindoles by treating indolyl α-hydroxy amides with substituted indoles. The unsymmetrical bisindoles are isolated in good to excellent yields.
Collapse
Affiliation(s)
- Alagesan Muthukumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, India.
| | | | | |
Collapse
|
31
|
First biomimetic electrospun polymer from Carthamus tinctorius plant for sustainable synthesis of bis (1H-indol-3-yl)methanes. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.10.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Norouzi M, Elhamifar D, Mirbagheri R. Self-assembled alkyl imidazolium based organosilica as efficient support for sulfonic acid catalyst in the synthesis of bis(indolyl)methanes. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.07.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Kalla RMN, Kim MR, Kim I. Sulfonic Acid-Functionalized, Hyper-Cross-Linked Porous Polyphenols as Recyclable Solid Acid Catalysts for Esterification and Transesterification Reactions. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02418] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Reddi Mohan Naidu Kalla
- BK21 PLUS Center for Advanced Chemical Technology, Department Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Mi-Ra Kim
- BK21 PLUS Center for Advanced Chemical Technology, Department Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Il Kim
- BK21 PLUS Center for Advanced Chemical Technology, Department Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea
| |
Collapse
|