1
|
Giuri D, Cenciarelli F, Tomasini C. Low-molecular-weight gels from amino acid and peptide derivatives for controlled release and delivery. J Pept Sci 2024; 30:e3643. [PMID: 39010663 DOI: 10.1002/psc.3643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024]
Abstract
Low-molecular-weight (LMW) gelators are a versatile class of compounds able to self-assemble and to form supramolecular materials, such as gels. The use of LMW peptides to produce these gels shows many advantages, because of their wide structure tunability, the low-cost and effective synthesis, and the in vivo biocompatibility and biodegradability, which makes them optimal candidates for release and delivery applications. In addition, in these materials, the binding of the hosts may occur through a variety of noncovalent interactions, which are also the main factors responsible for the self-assembly of the gelators, and through specific interactions with the fibers or the pores of the gel matrix. This review aims to report LMW gels based on amino acid and peptide derivatives used for the release of many different species (drugs, fragrances, dyes, proteins, and cells) with a focus on the possible strategies to incorporate the cargo in these materials, and to demonstrate how versatile these self-assembled materials are in several applications.
Collapse
Affiliation(s)
- Demetra Giuri
- Dipartimento di Chimica Giacomo Ciamician, Università di Bologna, Bologna, Italy
| | - Fabia Cenciarelli
- Dipartimento di Chimica Giacomo Ciamician, Università di Bologna, Bologna, Italy
| | - Claudia Tomasini
- Dipartimento di Chimica Giacomo Ciamician, Università di Bologna, Bologna, Italy
| |
Collapse
|
2
|
Giuri D, Ravarino P, Tomasini C. Transparent Organogels as a Medium for the Light-Induced Conversion from Spiropyran to Merocyanine. Gels 2023; 9:932. [PMID: 38131918 PMCID: PMC10742928 DOI: 10.3390/gels9120932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Low-molecular-weight peptide gelators are a versatile class of compounds able to form gels under a variety of conditions, even via simple ultrasound sonication. In this paper, the ability of Boc-L-Phe-D-Oxd-L-Phe-OBn to gelate three organic solvents (toluene, tert-butyl methyl ether, and ethanol) was evaluated. The rheological behaviour of the materials was assessed via strain sweep analysis, while the fibrous network was analysed via optical microscopy on the wet gels. The gel obtained from toluene is a highly transparent material, and the one from ethanol appears translucent, while the one from tert-butyl methyl ether is opaque. These gels were used to study the reversible light-induced transformation from spyropiran (SP) to merocyanine (MC) and back, as a model system to check the effect of the gel medium onto the rection kinetic. We observed that the solvent used to form the organogels has a crucial effect on the reaction, as gels from aprotic solvents stabilize the SP form, while the ones from protic solvents stabilize the MC form. We thus obtained a solid support to stabilize the two photochromic species just by changing the solvent polarity. Moreover, we could demonstrate that the self-assembled gels do not interfere with the light-driven conversion process, either starting from SP or MC, thus representing a valid and economical photochromic material.
Collapse
Affiliation(s)
| | | | - Claudia Tomasini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Piero Gobetti 85, 40129 Bologna, Italy; (D.G.); (P.R.)
| |
Collapse
|
3
|
Low-Molecular-Weight Gels as Smart Materials for the Enhancement of Antioxidants Activity. COSMETICS 2023. [DOI: 10.3390/cosmetics10020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Antioxidants are important substances used in the cosmetic and pharmaceutical fields that are able to block free radicals. These compounds can be incorporated into formulations for many reasons, such as release over time or preservation of the formulation activity and applicability. In the present study, a low-molecular-weight gel made with Boc-L-DOPA(Bn)2-OH was studied as suitable material to host antioxidants and improve their activity. The solvent change (DMSO/H2O) in combination with temperature was the technological procedure for the preparation of the gel. Two different antioxidants were tested: (1) α-tocopherol and (2) postbiotics. The antioxidant activity of α-tocopherol and of the postbiotics in the gel, measured by the (2,2-diphenyl-1-picryl-hydrazyl radical (DPPH) assay, showed higher values than those in the pure solvent. The antioxidant activity of the gel with 0.8 w/v% of gelator and α-tocopherol in the concentration range of 5–100 µM was 2.7–1.1 times higher on average than in the pure solvent. In the case of both postbiotics, the biggest difference was observed at 30% of postbiotics in the gel with 0.5% of a gelator, when the antioxidant activity was 4.4 to 4.7 times higher than that in the pure solvent.
Collapse
|
4
|
TiO2-Embedded Biocompatible Hydrogel Production Assisted with Alginate and Polyoxometalate Polyelectrolytes for Photocatalytic Application. INORGANICS 2023. [DOI: 10.3390/inorganics11030092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
The hybrid hydrogel materials meet important social challenges, including the photocatalytic purification of water and bio-medical applications. Here, we demonstrate two scenarios of polyacrylamide-TiO2 (PAAm@TiO2) composite hydrogel design using calcium alginate (Alg-Ca) or Keplerate-type polyoxometalates (POMs) {Mo132} tuning the polymer network structure. Calcium alginate molding allowed us to produce polyacrylamide-based beads with an interpenetrating network filled with TiO2 nanoparticles Alg-Ca@PAAm@TiO2, demonstrating the photocatalytic activity towards the methyl orange dye bleaching. Contrastingly, in the presence of the POM, the biocompatible PAAm@TiO2@Mo132 composite hydrogel was produced through the photo-polymerization approach (under 365 nm UV light) using vitamin B2 as initiator. For both types of the synthesized hydrogels, the thermodynamic compatibility, swelling and photocatalytic behavior were studied. The influence of the hydrogel composition on its structure and the mesh size of its network were evaluated using the Flory–Rehner equation. The proposed synthetic strategies for the composite hydrogel production can be easily scaled up to the industrial manufacturing of the photocatalytic hydrogel beads suitable for the water treatment purposes or the biocompatible hydrogel patch for medical application.
Collapse
|
5
|
Tuning Peptide-Based Hydrogels: Co-Assembly with Composites Driving the Highway to Technological Applications. Int J Mol Sci 2022; 24:ijms24010186. [PMID: 36613630 PMCID: PMC9820439 DOI: 10.3390/ijms24010186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Self-assembled peptide-based gels provide several advantages for technological applications. Recently, the co-assembly of gelators has been a strategy to modulate and tune gel properties and even implement stimuli-responsiveness. However, it still comprises limitations regarding the required library of compounds and outcoming properties. Hence, efforts have been made to combine peptide-based gels and (in)organic composites (e.g., magnetic nanoparticles, metal nanoparticles, liposomes, graphene, silica, clay, titanium dioxide, cadmium sulfide) to endow stimuli-responsive materials and achieve suitable properties in several fields ranging from optoelectronics to biomedical. Herein, we discuss the recent developments with composite peptide-based gels including the fabrication, tunability of gels' properties, and challenges on (bio)technological applications.
Collapse
|
6
|
Controlled Hydrolysis of Odorants Schiff Bases in Low-Molecular-Weight Gels. Int J Mol Sci 2022; 23:ijms23063105. [PMID: 35328526 PMCID: PMC8952255 DOI: 10.3390/ijms23063105] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Imines or Schiff bases (SB) are formed by the condensation of an aldehyde or a ketone with a primary amine, with the removal of a water molecule. Schiff bases are central molecules in several biological processes for their ability to form and cleave by small variation of the medium. We report here the controlled hydrolysis of four SBs that may be applied in the fragrance industry, as they are profragrances all containing odorant molecules: methyl anthranilate as primary amine, and four aldehydes (cyclamal, helional, hydroxycitronellal and triplal) that are very volatile odorants. The SB stability was assessed over time by HPLC-MS in neutral or acidic conditions, both in solution and when trapped in low molecular weight gels. Our results demonstrate that it is possible to control the hydrolysis of the Schiff bases in the gel environment, thus tuning the quantity of aldehyde released and the persistency of the fragrance.
Collapse
|
7
|
Ravarino P, Di Domenico N, Barbalinardo M, Faccio D, Falini G, Giuri D, Tomasini C. Fluorine Effect in the Gelation Ability of Low Molecular Weight Gelators. Gels 2022; 8:gels8020098. [PMID: 35200480 PMCID: PMC8871896 DOI: 10.3390/gels8020098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 02/05/2023] Open
Abstract
The three gelators presented in this work (Boc-D-Phe-L-Oxd-OH F0, Boc-D-F1Phe-L-Oxd-OH F1 and Boc-D-F2Phe-L-Oxd-OH F2) share the same scaffold and differ in the number of fluorine atoms linked to the aromatic ring of phenylalanine. They have been applied to the preparation of gels in 0.5% or 1.0% w/v concentration, using three methodologies: solvent switch, pH change and calcium ions addition. The general trend is an increased tendency to form structured materials from F0 to F1 and F2. This property ends up in the formation of stronger materials when fluorine atoms are present. Some samples, generally formed by F1 or F2 in 0.5% w/v concentration, show high transparency but low mechanical properties. Two gels, both containing fluorine atoms, show increased stiffness coupled with high transparency. The biocompatibility of the gelators was assessed exposing them to fibroblast cells and demonstrated that F1 and F2 are not toxic to cells even in high concentration, while F0 is not toxic to cells only in a low concentration. In conclusion, the presence of even only one fluorine atom improves all the gelators properties: the gelation ability of the compound, the rheological properties and the transparency of the final materials and the gelator biocompatibility.
Collapse
Affiliation(s)
- Paolo Ravarino
- Dipartimento di Chimica Giacomo Ciamician, Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy; (P.R.); (N.D.D.); (D.F.); (G.F.)
| | - Nadia Di Domenico
- Dipartimento di Chimica Giacomo Ciamician, Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy; (P.R.); (N.D.D.); (D.F.); (G.F.)
| | - Marianna Barbalinardo
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, (ISMN-CNR)-Via P. Gobetti 101, 40129 Bologna, Italy;
| | - Davide Faccio
- Dipartimento di Chimica Giacomo Ciamician, Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy; (P.R.); (N.D.D.); (D.F.); (G.F.)
| | - Giuseppe Falini
- Dipartimento di Chimica Giacomo Ciamician, Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy; (P.R.); (N.D.D.); (D.F.); (G.F.)
| | - Demetra Giuri
- Dipartimento di Chimica Giacomo Ciamician, Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy; (P.R.); (N.D.D.); (D.F.); (G.F.)
- Correspondence: (D.G.); (C.T.); Tel.: +39-0512099486 (C.T.)
| | - Claudia Tomasini
- Dipartimento di Chimica Giacomo Ciamician, Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy; (P.R.); (N.D.D.); (D.F.); (G.F.)
- Correspondence: (D.G.); (C.T.); Tel.: +39-0512099486 (C.T.)
| |
Collapse
|
8
|
Ravarino P, Giuri D, Faccio D, Tomasini C. Designing a Transparent and Fluorine Containing Hydrogel. Gels 2021; 7:43. [PMID: 33918097 PMCID: PMC8167729 DOI: 10.3390/gels7020043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 01/21/2023] Open
Abstract
Physical hydrogels are supramolecular materials obtained by self-assembly of small molecules called gelators. Aromatic amino acids and small peptides containing aromatic rings are good candidates as gelators due to their ability to form weak bonds as π-π interactions and hydrogen bonds between NH and CO of the peptide chain. In this paper we show our results in the preparation of a transparent hydrogel that was obtained by self-assembly of a fluorine-containing dipeptide that relies on the additional formation of halogen bonds due to the fluorine atoms contained in the dipeptide. We used Boc-D-F2Phe-L-Oxd-OH (F2Phe = 3,4-difluorophenylalainine; Oxd = 4-methyl-5-carboxy-oxazolidin-2-one) that formed a strong and transparent hydrogel in 0.5% w/w concentration at pH = 4.2. The formation of a hydrogel made of unnatural fluorinated amino acids may be of great interest in the evaluation of patients with parkinsonian syndromes and may be used for controlled release.
Collapse
Affiliation(s)
| | | | | | - Claudia Tomasini
- Dipartimento di Chimica Giacomo Ciamician, Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy; (P.R.); (D.G.); (D.F.)
| |
Collapse
|
9
|
Liu Y, Lyu Y, Hu Y, An J, Chen R, Chen M, Du J, Hou C. Novel Graphene Oxide Nanohybrid Doped Methacrylic Acid Hydrogels for Enhanced Swelling Capability and Cationic Adsorbability. Polymers (Basel) 2021; 13:1112. [PMID: 33915840 PMCID: PMC8037351 DOI: 10.3390/polym13071112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
Novel versatile hydrogels were designed and composited based on covalent bond and noncovalent bond self-assembly of poly(methacrylic acid) (PMAA) networks and nanohybrids doped with graphene oxide (GO). The structures and properties of the neat PMAA and the prepared PMAA/GO hydrogels were characterized and analyzed in detail, using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, swelling and cationic absorption, etc. The swelling results showed that the water penetration follows the non-Fick transport mechanism based on swelling kinetics and diffusion theory. The swelling capacity of PMAA and composited PMAA/GO hydrogels toward pH, Na+, Ga2+, and Fe3+ was investigated; the swelling ratio was tunable between 4.44 and 36.44. Taking methylene blue as an example, the adsorption capacity of PMAA/GO hydrogels was studied. Nanohybrid doped GO not only self-associated with PMAA via noncovalent bonding interactions and had a tunable swelling ratio, but also interacted with water molecules via electrostatic repulsion, offering a pH response of both the network and dye absorption. Increases in pH caused a rise in equilibrium swelling ratios and reduced the cumulative cationic dye removal.
Collapse
Affiliation(s)
- Yufei Liu
- Key Laboratory of Optoelectronic Technology & Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; (Y.L.); (Y.L.); (Y.H.); (J.A.); (R.C.); (M.C.); (J.D.)
- Centre for Intelligent Sensing Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
- Centre for Nano Health, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Ying Lyu
- Key Laboratory of Optoelectronic Technology & Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; (Y.L.); (Y.L.); (Y.H.); (J.A.); (R.C.); (M.C.); (J.D.)
| | - Yongqin Hu
- Key Laboratory of Optoelectronic Technology & Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; (Y.L.); (Y.L.); (Y.H.); (J.A.); (R.C.); (M.C.); (J.D.)
- Centre for Intelligent Sensing Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Jia An
- Key Laboratory of Optoelectronic Technology & Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; (Y.L.); (Y.L.); (Y.H.); (J.A.); (R.C.); (M.C.); (J.D.)
- Centre for Intelligent Sensing Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Rubing Chen
- Key Laboratory of Optoelectronic Technology & Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; (Y.L.); (Y.L.); (Y.H.); (J.A.); (R.C.); (M.C.); (J.D.)
| | - Meizhu Chen
- Key Laboratory of Optoelectronic Technology & Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; (Y.L.); (Y.L.); (Y.H.); (J.A.); (R.C.); (M.C.); (J.D.)
| | - Jihe Du
- Key Laboratory of Optoelectronic Technology & Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; (Y.L.); (Y.L.); (Y.H.); (J.A.); (R.C.); (M.C.); (J.D.)
| | - Chen Hou
- Key Laboratory of Optoelectronic Technology & Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; (Y.L.); (Y.L.); (Y.H.); (J.A.); (R.C.); (M.C.); (J.D.)
- Centre for Intelligent Sensing Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
10
|
Jain K, Patel AS, Pardhi VP, Flora SJS. Nanotechnology in Wastewater Management: A New Paradigm Towards Wastewater Treatment. Molecules 2021; 26:1797. [PMID: 33806788 PMCID: PMC8005047 DOI: 10.3390/molecules26061797] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
Clean and safe water is a fundamental human need for multi-faceted development of society and a thriving economy. Brisk rises in populations, expanding industrialization, urbanization and extensive agriculture practices have resulted in the generation of wastewater which have not only made the water dirty or polluted, but also deadly. Millions of people die every year due to diseases communicated through consumption of water contaminated by deleterious pathogens. Although various methods for wastewater treatment have been explored in the last few decades but their use is restrained by many limitations including use of chemicals, formation of disinfection by-products (DBPs), time consumption and expensiveness. Nanotechnology, manipulation of matter at a molecular or an atomic level to craft new structures, devices and systems having superior electronic, optical, magnetic, conductive and mechanical properties, is emerging as a promising technology, which has demonstrated remarkable feats in various fields including wastewater treatment. Nanomaterials encompass a high surface to volume ratio, a high sensitivity and reactivity, a high adsorption capacity, and ease of functionalization which makes them suitable for application in wastewater treatment. In this article we have reviewed the techniques being developed for wastewater treatment using nanotechnology based on adsorption and biosorption, nanofiltration, photocatalysis, disinfection and sensing technology. Furthermore, this review also highlights the fate of the nanomaterials in wastewater treatment as well as risks associated with their use.
Collapse
Affiliation(s)
- Keerti Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)—Raebareli, Lucknow 226002, India; (A.S.P.); (V.P.P.)
| | - Anand S. Patel
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)—Raebareli, Lucknow 226002, India; (A.S.P.); (V.P.P.)
| | - Vishwas P. Pardhi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)—Raebareli, Lucknow 226002, India; (A.S.P.); (V.P.P.)
| | - Swaran Jeet Singh Flora
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)—Raebareli, Lucknow 226002, India
| |
Collapse
|
11
|
Giuri D, Barbalinardo M, Zanna N, Paci P, Montalti M, Cavallini M, Valle F, Calvaresi M, Tomasini C. Tuning Mechanical Properties of Pseudopeptide Supramolecular Hydrogels by Graphene Doping. Molecules 2019; 24:E4345. [PMID: 31795090 PMCID: PMC6930602 DOI: 10.3390/molecules24234345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/10/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
Supramolecular hydrogels, obtained from small organic molecules, may be advantageous over polymeric ones for several applications, because these materials have some peculiar properties that differentiate them from the traditional polymeric hydrogels, such as elasticity, thixotropy, self-healing propensity, and biocompatibility. We report here the preparation of strong supramolecular pseudopeptide-based hydrogels that owe their strength to the introduction of graphene in the gelling mixture. These materials proved to be strong, stable, thermoreversible and elastic. The concentration of the gelator, the degree of graphene doping, and the nature of the trigger are crucial to get hydrogels with the desired properties, where a high storage modulus coexists with a good thixotropic behavior. Finally, NIH-3T3 cells were used to evaluate the cell response to the presence of the most promising hydrogels. The hydrogels biocompatibility remains good, if a small degree of graphene doping is introduced.
Collapse
Affiliation(s)
- Demetra Giuri
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi, 240126 Bologna, Italy; (D.G.); (N.Z.); (P.P.); (M.M.)
| | - Marianna Barbalinardo
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, (ISMN-CNR), Via P. Gobetti 101, 40129 Bologna, Italy; (M.B.); (M.C.); (F.V.)
| | - Nicola Zanna
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi, 240126 Bologna, Italy; (D.G.); (N.Z.); (P.P.); (M.M.)
| | - Paolo Paci
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi, 240126 Bologna, Italy; (D.G.); (N.Z.); (P.P.); (M.M.)
| | - Marco Montalti
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi, 240126 Bologna, Italy; (D.G.); (N.Z.); (P.P.); (M.M.)
| | - Massimiliano Cavallini
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, (ISMN-CNR), Via P. Gobetti 101, 40129 Bologna, Italy; (M.B.); (M.C.); (F.V.)
| | - Francesco Valle
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, (ISMN-CNR), Via P. Gobetti 101, 40129 Bologna, Italy; (M.B.); (M.C.); (F.V.)
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi, 240126 Bologna, Italy; (D.G.); (N.Z.); (P.P.); (M.M.)
| | - Claudia Tomasini
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi, 240126 Bologna, Italy; (D.G.); (N.Z.); (P.P.); (M.M.)
| |
Collapse
|